38 research outputs found

    A method for isochronous traffic in a WDM star network

    Get PDF
    Includes bibliographical references (p. 15-16).Supported by ARO. DAAL03-86-K-0171Ghassan Semaan, Pierre Humblet

    A novel approach to fault tolerant multichannel networks designing problems

    Get PDF
    This work presents solution of a bus interconnection network set designing task on the base of a hypergraph model. In order to do this the interconnection network is presented as a multipartite hypergraph. A system with virtual bus connections functioning in an environment of common physical channel was analyzed, which is characteristic of the networks based on the WDM technology. The mathematical reliability model was proposed for two modes of system functioning: with redundancy of communication subsystem and division of communication load. As solution estimation criteria the expected changes of processing efficiency changes were used as also a communication delay change criteria and system reliability criteria. The designing task solution is searched in a Pareto set composed of Pareto optima. The selection procedure of a specific solution in the case of its equivalency in relation to a vector goal function was presented

    Ethernet - a survey on its fields of application

    Get PDF
    During the last decades, Ethernet progressively became the most widely used local area networking (LAN) technology. Apart from LAN installations, Ethernet became also attractive for many other fields of application, ranging from industry to avionics, telecommunication, and multimedia. The expanded application of this technology is mainly due to its significant assets like reduced cost, backward-compatibility, flexibility, and expandability. However, this new trend raises some problems concerning the services of the protocol and the requirements for each application. Therefore, specific adaptations prove essential to integrate this communication technology in each field of application. Our primary objective is to show how Ethernet has been enhanced to comply with the specific requirements of several application fields, particularly in transport, embedded and multimedia contexts. The paper first describes the common Ethernet LAN technology and highlights its main features. It reviews the most important specific Ethernet versions with respect to each application field’s requirements. Finally, we compare these different fields of application and we particularly focus on the fundamental concepts and the quality of service capabilities of each proposal

    Wavelength and time division multiplexing with lightpath trespassing for all-optical star local area networks

    Get PDF
    Many medium access control protocols have been proposed for optical wavelength division multiplexing local area networks with a star topology. These protocols range from those based on the concept of fixed-assignment of communication subchannels, such as TDMA (Time Division Multiple Access); reservation of communication subchannels, such as DAS (Dynamic Allocation Scheme); or random-access to communication subchannels, such as DT-WDMA (Dynamic Time-Wavelength Division Multiple Access). In addition various hybrid protocols have been considered, for example, protocols incorporating both fixed-assignment and reservation rules, such as HTDM (Hybrid TDM). This thesis is on a novel hybrid protocol of fixed-assignment and random-access called "WTDMA with lightpath trespassing". This protocol combines the most desirable aspects of fixed-assignment and random-access protocols, while limiting their drawbacks. The performance of different versions of the protocol are analysed both mathematically and by stochastic simulation. The obtained results justify the introduction of the WTDMA with trespassing protocol, and indicate the situations where its use is advantageous

    Technology Directions for the 21st Century

    Get PDF
    New technologies will unleash the huge capacity of fiber-optic cable to meet growing demands for bandwidth. Companies will continue to replace private networks with public network bandwidth-on-demand. Although asynchronous transfer mode (ATM) is the transmission technology favored by many, its penetration will be slower than anticipated. Hybrid networks - e.g., a mix of ATM, frame relay, and fast Ethernet - may predominate, both as interim and long-term solutions, based on factors such as availability, interoperability, and cost. Telecommunications equipment and services prices will decrease further due to increased supply and more competition. Explosive Internet growth will continue, requiring additional backbone transmission capacity and enhanced protocols, but it is not clear who will fund the upgrade. Within ten years, space-based constellations of satellites in Low Earth orbit (LEO) will serve mobile users employing small, low-power terminals. 'Little LEO's' will provide packet transmission services and geo-position determination. 'Big LEO's' will function as global cellular telephone networks, with some planning to offer video and interactive multimedia services. Geosynchronous satellites also are proposed for mobile voice grade links and high-bandwidth services. NASA may benefit from resulting cost reductions in components, space hardware, launch services, and telecommunications services

    Optical fibre distributed access transmission systems (OFDATS)

    Full text link

    Performance Improvements for FDDI and CSMA/CD Protocols

    Get PDF
    The High-Performance Computing Initiative from the White House Office of Science and Technology Policy has defined 20 major challenges in science and engineering which are dependent on the solutions to a number of high-performance computing problems. One of the major areas of focus of this initiative is the development of gigabit rate networks to be used in environments such as the space station or a National Research and Educational Network (NREN). The strategy here is to use existing network designs as building blocks for achieving higher rates, with the ultimate goal being a gigabit rate network. Two strategies which contribute to achieving this goal are examined in detail.1 FDDI2 is a token ring network based on fiber optics capable of a 100 Mbps rate. Both media access (MAC) and physical layer modifications are considered. A method is presented which allows one to determine maximum utilization based on the token-holding timer settings. Simulation results show that employing the second counter-rotating ring in combination with destination removal has a multiplicative effect greater than the effect which either of the factors have individually on performance. Two 100 Mbps rings can handle loads in the range of 400 to 500 Mbps for traffic with a uniform distribution and fixed packet size. Performance is dependent on the number of nodes, improving as the number increases. A wide range of environments are examined to illustrate robustness, and a method of implementation is discussed
    corecore