
Deanship of Graduate Studies

Al – Quds University

Peripheral USB Interface Board

Khaled Hasan Saleh Murad

M.Sc. Thesis

Jerusalem – Palestine

1427/2006

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Al-Quds University Digital Repository

https://core.ac.uk/display/287332697?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Peripheral USB Interface Board

Prepared By :

Khaled Hasan Saleh Murad

B.Sc. of Electrical Engineering, Birzeit University,

Palestine

Supervisor : Dr. Ahmad Al-Qutob

A thesis Submitted in Partial fulfillment of requirements

for the degree of Master of Electronics and computer

Engineering, Department of Electronics and Computer

Engineering Program.

Faculty of Engineering / Alquds University

1427/2006

Al Quds University

Deanship of Graduate Studies

M.Sc. in Electronics and Computer Engineering

Thesis Approval

Peripheral USB Interface Board

Prepared By : Khaled Hasan Saleh Murad

Registration No. : 20310007

Supervisor : Dr. Ahmad Al-Qutob

Master thesis submitted and accepted, Date : 17 September 2006 .

The names and signature of the examining committee members are as

follows :

1- Head of committee : Dr. Ahmad Al-Qutob Signature………….

2- Internal Examiner : Dr. Labib Arafeh Signature………….

3- External Examiner : Dr. Adnan Yahya Signature………….

Jerusalem – Palestine

1427 / 2006

i

DECLARATION

I Certify that this thesis submitted for the degree of master is the result of my own research,

except where otherwise acknowledged, and that this thesis (or any part of the same) has not

been submitted for a higher degree to any other university or institution.

Signed ……………………

Khaled Hasan Saleh Murad

Date : 20 June 2006 .

ii

ACKNOWLEDGMENTS

Writing acknowledgment for all who have contributed to this work is practically impossible,

but I would like to explicitly thank a few people who helped me along the way.

First, I thank my family especially my wife , my mother who have always supported and

encouraged me in my educational endeavors, I also thank my advisor Dr. Ahmad Al-Qutob

for his support, quick feedback and valuable advice, to Dr. Aysheh Al-Rifa'ee ,thank you for

your help and assistance.

To all I have not mentioned, thank you. I thank my friends, I am thankful for Al Quds

University, my many teachers and colleagues.

iii

ملخص

 (ports) كبديل لمعظم مخارج الحاسوب القديمة USB (Universal Serial Bus)لقد تم تصميم ال
وبمقارنة ال , وغيرىا(serial port) ومخرج التوالي (parallel port)والتي تشمل مخرج التوازي

USB بيذه المخارج نجد أن ال USBأكثر مرونة وأقل كمفة وأسيل في الاستخدام .
, (USB Input/Output Board)لادخال و اخراج المعمومات USB في ىذه الرسالة تم بناء بطاقة

 وبرنامج الحاسب (microcontroller Firmware)كما تم تطوير كل من برنامج المتحكم الدقيق
(PC Software) , ومن المتوقع ان تزودنا البطاقة وبرامجيا بأساس سيل وقميل الكمفة لأداة عامة

علاوة عمى ذلك فان البرامج التي تم , يمكن استخداميا لمتحكم بأجيزة أخرى من خلال جياز الحاسوب
بعض التعديلات من قبل اخرين لتطوير تطبيقات أخرى - مع أو بدون–تطويرىا يمكن استخداميا

. خاصو بيم
 لمبطاقة يبين كيفية بناء البطاقة وتعريفيا (user manual)بالأضافة لذلك تم تضمين دليل مستخدم

 Human) ومن اجل توفير الوقت والجيد والمال تم استخدام , عمى جياز الحاسوب واستخدامو

Interface Device -HID- Driver) , وىذا الHID متضمن في برنامج Windows وقد استخدم
 (Drivers) يعفي المستخدم من تحميل (HID)ان استخدام ال , لمبطاقة(Device Driver)ك

. (plug-and-play)وىذا ما يمنح الجياز خاصية , خاصة قبل تشغيل الجياز
 والتي تشكل قمب (microcontroller) كمتحكم دقيق TUSB3210لقد تم استخدام الدارة المتكاممو

 لتطوير برنامج المتحكم الدقيق (keil c51 compiler)كما تم استخدام برنامج , البطاقة
(microcontroller Firmware) , بينما استخدم برنامج(Delphi 7) لتطوير برنامج الحاسب

(PC Software) .

iv

ABSTRACT

USB (Universal Serial Bus) is designed to serve as a replacement for most of the old ports:

Parallel ,Serial ,and so on , compared to these ports USB is more flexible, hot pluggable with

low cost and ease of use.

In this thesis a USB Input/Output Board has been built, the board's Firmware and Host

Application codes were also developed , the board and codes are expected to provide a

platform for a simple, low cost and versatile instrument that can be used to control

peripherals via Personal Computer, moreover the developed codes –with or without- small

changes will hopefully be suitable to be used by other developers to develop their own

applications.

In addition a detailed User Manual was produced, the manual describes how to build, install

and use the board, in order to save time and money the Human Interface Device (HID)

Driver included with Windows was used as the PC Device Driver, this eliminates the need

for user to load specific drivers before running the device, thus furthering "plug-and play"-

ability.

The TUSB3210 from Texas Instruments was chosen to be the microcontroller chip at the

heart of the board, the Keil "C51" compiler was used to develop the Firmware , while the

"Delphi 7" software package was used to develop the Host Application software.

v

TABLE OF CONTENTS

Declaration .. i

Acknowledgments .. ii

 iii ... ملخص

Abstract ... iv

Table of Contents ...v

List of tables ..xi

List of figures ... xii

Chapter 1 INTRODUCTION ..1

1.1 USB Overview .. 1

1.2 Thesis Goals and Design Trajectory ... 2

1.3 Limitations ... 3

1.4 Outline of Thesis Work ... 3

Chapter 2 USB CONCEPT OVERVIEW ..5

2.1 USB Benefits .. 5

2.2 Is USB the Right Choice for a Certain Project? ... 5

2.2.1 The Host Controller ... 7

2.2.2 The Operating System ... 7

2.2.3 The Components .. 7

2.2.4 Bus Topology ... 7

2.3 Terms Definition: .. 8

2.4 Host and Device (peripheral) Duties .. 9

2.5 USB Standards .. 10

2.6 Developing USB projects .. 10

2.6.1 Development Tools .. 11

2.6.2 Development Process Steps ... 11

2.7 How USB Transfers Data:- ... 12

2.7.1 Communication Basics .. 13

2.7.2 USB Transfer Elements ... 14

2.7.3 USB Transfer Types .. 15

vi

2.7.4 Transfer Initiation... 15

2.7.5 Transactions ... 16

2.7.6 USB Transaction Parts. .. 17

2.8 USB Functions .. 17

2.9 Bandwidth management .. 18

2.10 USB Descriptors .. 18

2.11 USB Standard Requests ... 20

2.12 Enumeration .. 20

2.13 Human Interface Devices (HIDs) ... 21

2.13.1 Abilities and Limitations of HID Class Devices. .. 21

2.13.2 HIDs Requirements .. 22

2.13.3 Reports.. 24

2.14 Device driver ... 24

2.14.1 Communication Flow .. 25

2.14.2 Writing Device Drivers .. 26

2.15 Device Testing ... 27

Chapter 3 USB INTERFACE BOARD HARDWARE AND SOFTWARE 29

3.1 Chip Choices ... 29

3.2 Main Features of the Required Chip ... 29

3.2 The TUSB3210.. 30

3.2.1 Why Choose the TUSB3210 ... 31

3.2.2 The Board Schematic Diagram.. 31

3.3 Writing Firmware .. 32

3.3.1 Hardware responsibilities. ... 32

3.3.2 TUSB3210 Firmware (Texas Instruments, 2000, 2001-a, 2003-d, 2004) ... 33

3.3.2.1 Usbinit. h ... 34

3.3.2.2 Usb.h ... 34

3.3.2.3 Delay. h ... 34

3.3.2.4 Descriptor .h .. 34

3.3.2.5 Reg52. h .. 35

3.3.2.6 Tusb3210. h... 35

3.3.2.7 Prog. h ... 35

vii

3.3.2.8 Application. h .. 35

3.3.2.9 Usbinit. C .. 35

3.3.2.10 Usb. C .. 36

3.3.2.11 Delay. C .. 40

3.3.2.12 Application .C ... 41

3.3.2.13 Prog. C .. 42

3.3.2.14 main. C .. 42

3.4 The Host Application Software .. 43

3.4.1 Code Functions and Procedures .. 44

3.4.1.1 HidCtlDeviceChange .. 45

3.4.1.2 HidCtlEnumerate .. 45

3.4.1.3 WriteBufferToDevice .. 46

3.4.1.4 SendDataPacketToDevice .. 46

3.4.1.5 HidData ... 46

3.4.1.6 WriteDevice ... 47

3.4.1.7 ReadDevice ... 48

3.4.1.8 ShowBufferContents ... 48

3.4.1.9 HidCtlDeviceDataError ... 48

3.4.1.10 breadClick ... 48

3.4.1.11 bwriteClick .. 49

3.4.1.12 bterminateClick ... 49

3.4.1.13 SaveBtnClick ... 49

3.4.1.14 DisableButtons .. 49

3.4.1.15 EnableButtons ... 49

3.4.1.16 FormActivate .. 49

3.4.1.17 ClearBtnClick ... 50

3.4.1.18 BuffBtnClick .. 50

3.5 Board's Competitive Factors ... 50

3.6 Difficulties Faced .. 50

Chapter 4 USER MANUAL ... 52

4.1 Minimum Requirements to Operate the Board .. 52

4.1.1 USB Board Features .. 52

viii

4.1.2 Hardware Overview. .. 53

4.1.3 Schematic Diagram .. 54

4.1.4 Host Application Software. ... 54

4.1.5 Communication Protocol ... 55

4.1.6 The Device Firmware .. 56

4.1.7 Communication Process. ... 57

4.2 Building the Board. ... 57

4.2.1 Interfaces and USB Port .. 58

4.2.2 Supplying Power to the Board ... 58

4.2.3 Light Emitting Diodes (LEDs) Used. .. 59

4.2.4 Jumpers ... 59

4.3 Board Installation .. 60

4.3.1 The INF File .. 60

4.3.2 The TI Apploader Driver ... 63

Chapter 5 TESTING, DISCUSSION, CONTRIBUTIONS AND FUTURE WORK 65

5.1 Summary .. 65

5.2 Testing the Board and Codes .. 66

5.3 Discussion .. 66

5.4 Main Contributions ... 68

5.5 Future Work ... 69

REFERENCES .. 71

APPENDIX A .. 73

USB Transfer Types ... 73

A.1 Control Transfers. ... 73

A.2 Interrupt Transfers .. 77

A.3 Isochronous Transfers .. 78

A.4 Bulk Transfers ... 80

APPENDIX B .. 82

B.1 USB Descriptors ... 82

B.1.1 Device Descriptor .. 82

B.1.2 Configuration Descriptor .. 84

B.1.3 Interface Descriptor ... 85

ix

B.1.4 Endpoint Descriptors ... 87

B.1.5 String Descriptors .. 88

B.2 USB standard requests .. 89

APPENDIX C .. 95

C.1 HIDs Descriptors ... 95

C.1.1 HID Class Descriptor. ... 95

C.1.2 Report descriptors .. 97

C.1.3 Physical descriptor: ... 99

C.2 HID Specific Requests ... 99

APPENDIX D .. 104

FIRMWARE SOURCE CODE ... 104

D.1 Header Files .. 104

D.1.1 Usbinit.h .. 104

D.1.2 Usb.h .. 105

D.1.3 Delay.h... 109

D.1.4 Descriptor.h ... 110

D.1.5 Reg52.h .. 112

D.1.6 Tusb3210.h .. 115

D.1.7 Prog.h ... 120

D.1.8 Application.h ... 121

D.2 *.C Files ... 122

D.2.1 Usbinit.c... 122

D.2.2 Usb.c .. 124

D.2.3 Delay.c ... 142

D.2.4 Application.c ... 143

D.2.5 Prog.c ... 146

D.2.6 Main.c .. 148

APPENDIX E... 149

PC SAMPLE SOURCE CODE ... 149

E.1 UML Diagram ... 149

E.2 PC Software Source Code. ... 149

APPENDIX F ... 156

x

BOARD SCHEMATIC DIAGRAM ... 156

APPENDIX G .. 158

BOARD'S BILL OF MATERIAL ... 158

xi

LIST OF TABLES

Number Page

Table 2.1 : Comparison between USB and popular computer interfaces. 6

Table 2.2: Descriptor and the corresponding value and type of that descriptor 20

Table 2.3 : Transfer types and their uses in HIDs. ... 22

Table 3.1 : API functions used to establish communications and exchange data with a HID.

 .. 44

Table A.1: The maximum data transfer rate as related to transfer type and bus speed. 76

Table B.1: Format of the device descriptor. ... 82

Table B.2: Configuration descriptor fields. ... 84

Table B.3: Format of the interface descriptor. ... 86

Table B.4: Format of the endpoint descriptor. ... 87

Table B.5: The format of string descriptor zero. ... 89

Table B.6: Format of all subsequent strings. ... 89

Table B.7: USB 1.1 standard device requests. .. 90

Table B.8: Standard interface requests.. 92

Table B.9: Details of standard endpoint requests. ... 93

Table C.1: Fields of a HID class descriptor. ... 96

Table C.2: HID specific requests. .. 99

Table C.3: Format of any HID request. ... 100

xii

LIST OF FIGURES

Number Page

Figure 2.1 : USB uses a tiered star topology (Axelson, 2005). .. 8

Figure 2.2 : USB transfer elements, each transfer consists of a transaction, the transaction

contains packets, each packet contains a packet identifier (PID), CRC and sometimes

additional information (Axelson, 2005). ... 16

Figure 2.3 : Connection of host PC to a USB device (Peacock, 2002) 17

Figure 3.1 : Block diagram of the TUSB 3210. .. 30

Figure 4.1 : The application interface form. ... 55

Figure A.1: The setup stage. ... 73

Figure A.2: IN and OUT token packets in a data stage. ... 74

Figure A.3: The status stage, IN token. ... 75

Figure A.4: The status stage, OUT token... 76

Figure A.5: Interrupt transfer, IN and OUT transactions format. ... 77

Figure A.6: Isochronous transfers, IN and OUT formats. ... 79

Figure A.7: Bulk transaction, IN and OUT formats. ... 80

Figure B.1: Data packet format send by the device in response to a get status request. 90

Figure B. 2: The format of the wIndex Field used by the host . .. 92

Figure B. 3: The format of the wINdex field. .. 93

Figure B. 4: The format of the get status field. .. 94

1

C h a p t e r 1

INTRODUCTION

This section is aimed to introduce the thesis, section 1.1 will give a short overview of the

USB (Universal Serial Bus) development, section 1.2 will explain the goals of the thesis,

section 1.3 will give a short description of the limitations of the project, and finally section

1.4 will list the outline of the thesis work.

1.1 USB Overview

The Universal Serial Bus (USB) was born from the need to connect an incredibly diverse

range of peripheral to computers, it's based on an inexpensive high volume chipsets, with

data transfer rates ranging from 1.5 Mbps to 480 Mbps, and a 25 meter distance capacity, it

is designed to be a "plug and play " device with a 5 volt voltage and a current capacity of up

to 500 mA, it is also compatible with many consumer products nowadays.

What makes USB communications preferable to other interfaces is the availability to design

a device with any of the three speeds (1.5 ,12 ,480 Mbps) and any of the transfer types.

Once the device is attached to the USB port of the PC, it must respond to a series of requests,

this is needed by the PC to learn about the device and communicate with it. In order to

communicate with a device the PC should have a device driver for that device, this is needed

to manage communications between the PC and the application.

To develop a USB device you have first of all to choose the right chip that suits your

application , then you have to choose the device class in order to decide what device driver

should be used , do you need to write the driver or use a one supplied by the chip's vendor or

should you use the device drivers included with Windows ,such as Human Interface Device

(HID) , then the Firmware code and the software that enables communication between the

device and the PC should be developed , this requires knowing something about how USB

works and how the operating system of the PC implements the interface , reading the USB

specification would be of great help , also you need to purchase the tools needed to develop

the codes and debug them.

2

Once you have the Firmware code , the Host Application software and the device (Interface

Board) and you choose the device class (this decides what driver to use) , you can develop

you application.

1.2 Thesis Goals and Design Trajectory

In this thesis the device (Interface board) has been built , the Firmware and host application

codes were developed for a HID class device, choosing this class eliminates the need to write

a Device Driver which requires an investment in tools , expertise in C++ and is time

consuming, the developed Firmware and Host Application codes , the built board and the

User Manual could be used by other developers to develop their own applications -such as

Barcode reader, Flash Memory Reader and General Purpose Controller- with or without

small modifications , this means that the introduced hardware and software are generic.

To accomplish this, the following design trajectory was followed :

1. The requirements of the needed controller chip were specified according to the size

of data to be transferred, the transfer rate, the power supply requirements, the size of

controller RAM, etc…

2. According to the above requirements a decision should be made on how the PC will

communicate with the peripheral, we have three alternatives : using the Windows

built in drivers, or a generic driver from another source or writing a custom driver.

3. The TUSB3210 controller chip from Texas Instruments was selected according to the

needed requirements.

4. Building the Interface Board according to a generic purpose schematic.

5. Deciding upon the developing tools (software) needed to write the Firmware code

and the Host Application software.

6. Developing the Firmware and the Host Application software simultaneously.

7. Verification and testing of the Interface Board, the Firmware and PC software.

3

8. Writing a user manual explaining how to build, install and operate the board and the

accompanied codes.

1.3 Limitations

In the current design Windows' HID (Human Interface Device) driver was used to manage

communication with the device, classic examples of HID devices are Keyboards, Mice and

Joysticks, other examples include Remote Controls, Medical Instruments, Audio/Video

devices and Vender Defined Functions, it also supports device primitives such as LED and a

Button, and standard measurements such as time, temperature and distance.

The simplest and cheapest method for communication at moderate rates between a PC and

the device is to use the HID Driver when it's feasible, because there is no need to write or

install a driver and any Windows computer can access the device, in addition writing a

custom Device Driver requires a big investment in tools and time, expertise in Visual C++

programming and a good knowledge about how windows communicates with the device and

the host application, despite this advantage the HID class has the following main limitations

(Axelson, 2005) :

1. The amount of data each transaction can carry ranges from 8 bytes per transaction

for low-speed and 64 bytes per transaction for full speed devices, to 1024 bytes per

transaction for high-speed devices, long reports can use multiple transactions.

2. The maximum transfer rate is limited to 800 Bytes per second (Bps) for low speed,

64,000 Bps for full speed ,and 24,576 KBps for high speed devices.

As explained above a trade-off exists between the transfer rate and writing a driver, writing a

driver needs time, tools and big efforts, unfortunately the needed tools were not available for

me, and time available was limited, this forces me to use the HID driver in spite of its

limitations.

1.4 Outline of Thesis Work

In summary, USB devices have become very popular, many products such as digital

cameras, and removal flash storage use USB. Nowadays PC's use USB to connect keyboards

4

and mice, USB is so popular because of its low cost, flexibility and its ease of use (plug and

play), it is expected that many applications in home appliances, automotive and medical

industries will also use USB interface.

What have been achieved in this thesis includes : building a USB interface board, developing

both the Firmware and Host Application Software codes for a HID, the board and the

software codes are expected to provide a platform for a simple, low cost, generic purpose

instrument used to control peripherals via a host personal computer, developers are expected

to use the board, Firmware and Host Application codes to design their own applications , this

may or may not require small modifications to the codes, the amount of modifications

depends on the application requirements .

Chapter 1 gives a short overview of USB development, explains the goals of this thesis, the

design trajectory and a summary for the main limitations of the project.

Chapter 2 introduces and discuses the main USB concepts needed by the developer to

understand the USB Communication Protocol, Human Interface Devices (HID's) are

specifically introduced and discussed.

Chapter 3 introduces how to choose the suitable chip for a specific application; it also

describes in details the Firmware and Host Application Software codes for the TUSB3210

full speed microcontroller.

Chapter 4 introduces the User Manual which describes how to build the hardware and

develop the software codes for the interface board; it also explains the board's installation

process.

Chapter 5 concludes this thesis and contains testing the board and codes, discussion, the

main contributions and the related future work .

5

C h a p t e r 2

USB CONCEPTS OVERVIEW

2.1 USB Benefits

USB was first introduced in 1996, it was born out of the frustration of PC users who needed

to communicate with an increasing number of peripherals without the limitations and

frustrations of existing interfaces like Centronics Parallel Interface and the RS-232 Serial

Port Interface.

In particular USB provides many benefits to both users and developers, it offers users simple

connectivity, fast and reliable data transfers, flexibility, low cost and power conservation.

Table (2.1) compares USB with other popular interfaces (Axelson, 2005).

For developers it offers flexibility built into the USB protocol, the technical support offered

by the so many vendors especially in the controller chip and operating systems.

Despite the many advantages offered by the USB interface it is not perfect since its speed is

limited to 480 Mbps for high speed devices and the maximum USB link can be as much as

30 meters when using links between five hubs and a device, the complexity of the USB

protocol adds to the difficulties faced when using a USB interface.

2.2 Is USB the Right Choice for a Certain Project?

Before taking this decision, the developer should make sure that the PC that will use the

device must have the minimum hardware and software requirements, in particular the PC

should have a USB host controller and a root hub with at least one USB port, also its

software should have an operating system that supports USB.

6

Table 2.1 : Comparison between USB and popular computer interfaces

(Axelson, 2005).

Interface Format Number of Length Speed Typical Use

 Devices (maximum (maximum,

 (maximum) , feet) bits/sec.)

USB asynchronous 127 16 (or up to 1.5M, 12M, Mouse,

 serial 96 ft. with

5

480M keyboard, disk

 hubs) drive, modem,

 audio

RS-232 asynchronous 2 50-100 20k (115k Modem, mouse,

(EIA/TIA- serial with some instrumentation

232) hardware)

RS-485 asynchronous 32 unit loads 4000 10M Data acquisition

(TIA/EIA- serial (up to 256 and control

485) devices with systems

 some

 hardware)

IrDA asynchronous 2 6 115k Printers, hand-

 serial

infrared

 held computers

Microwire synchronous 8 10 2M Microcontroller

 serial communications

SPI synchronous 8 10 2.1M Microcontroller

 serial communications

I2C synchronous 40 18 3.4M Microcontroller

 serial communications

IEEE-1394 serial 64 15 400M Video, mass

(FireWire) (increasing to

3.2G with

storage

 IEEE-1394b

IEEE-488 parallel 15 60 8M Instrumentation

(GPIB)

Ethernet serial 1024 1600 10M/100M/ Networked PC

 1G

MIDI serial current 2 (more with 50 31.5k Music, show

 loop flow-through control

 mode)

Parallel

Printer
parallel 2 (8 with 10–30 8M Printers,

Port daisy-chain scanners, disk

 support) drives

7

2.2.1 The Host Controller

Since 1997 PC's have a hardware that supports USB, if it is not built in, an expansion card

can be used , the host controller formats received and transmitted data and makes sure that

the operating system components can understand the received data, it also performs other

functions related to managing communications on the bus, the root hub and the host are

responsible for the detection , the arrival and removal of a USB device, they are also

responsible for the transmission of data between the host controller and the connected

device. The device might be an additional hub or a peripheral that is connected to the USB

bus.

2.2.2 The Operating System

Windows 95 had some USB support, this support was enhanced in Windows 98, 2000 and

XP, Apple's iMac, Unix / Linux also support USB, Windows NT 4 does not support USB.

2.2.3 The Components

The components of the USB include the electronic circuits, connectors and cables between

the host and the connected device or devices, devices are required to contain circuits and

code that knows how to communicate with the host.

2.2.4 Bus Topology

The only topology of the USB bus is the tiered star (Axelson, 2005), as shown in Figure (2.1)

, the hub is the centre of each star while each point on a star is a device that is connected to

the hub's port. Following are some facts concerning the USB bus:-

1. A typical hub can have two, four or seven ports.

2. The hubs arrange the communication between each other automatically,

neither the host nor the device knows or cares about this process.

3. Only one device can communicate with the host at a time.

4. A maximum of 127 peripherals and hubs (including the root hub) can be

connected to the bus.

8

ROOT

HUB

PERIPHERALPERIPHERAL

HUB

PERIPHERAL PERIPHERAL

PERIPHERAL

HUB

HUB

PERIPHERAL PERIPHERAL PERIPHERALPERIPHERAL

Figure 2.1 : USB uses a tiered star topology (Axelson, 2005).

2.3 Terms Definition:

When talking about the USB world the following words have specific meanings (Axelson,

2005) :-

 Host : It is defined as the computer that controls the interface.

 Function : A device that provides a capability to the host, examples are a mouse,

a set of speakers or a data acquisition unit.

 Hub : A 1.x hub repeats received USB traffic in both directions, and also contains

the intelligence to manage power, send and respond to status and control

messages, and prevent full- speed data from transmitting to a low speed device .

9

 Device (peripheral) : It is something you attach to a USB Port on a PC or hub,

or it is a function or a hub - except for the special case of the compound

device, which contains a hub and one or more functions .

 Port : In general a computer Port is an addressable location that is available

for attaching additional circuits (Axelson, 2005). USB ports differ from many

other ports because all ports on the bus share a single path to the host, with

RS 232 Serial Interface, each port is independent from the others.

 Firmware : A software code in the controller chip that enables it to

communicate with the host and other circuits in the peripheral.

 Device driver: A software in the host to enable applications (programs that

users run) to communicate with the peripheral.

2.4 Host and Device (peripheral) Duties

The host maintains the state of the bus and all the devices attached to it, only one host can be

in a USB network, the host provides the following capabilities (Compaq, Intel, Microsoft,

NEC, 1998) :-

a) Detecting the attachment / detachment of devices.

b) Managing data-flow control between the host and devices.

c) Collecting device status and activity statistics.

d) Error-checking.

e) Providing power to devices that request the power.

The device must respond wherever the host initiates communication. In particular the device

has the following capabilities (Compaq, Intel, Microsoft, NEC, 1998) :-

a) Detecting and monitoring communications directed to the

microcontroller chip.

10

b) Responding to all requests made by the host during enumeration

and during data exchange with the host.

c) Error checking and power management.

d) Exchanging data with the host.

2.5 USB Standards

USB standard editions that have been released (Peacock, 2002) :

 USB 1.0, this is the first edition released in January 1996, it supports low speed (1.5

Megabits/second), the actual data transfer rate is less than 1.5 Mbps because a

percentage of this rate is reserved for USB protocol overhead.

 USB 1.1, released in September 1998, it supports full speed (12 Mb/S).

 USB 2.0, released in 2000, it supports high speed (480 Mb/S), and this version is

compatible with USB 1.x .

2.6 Developing USB projects

Developing a USB project involves the design of the hardware and a code in the peripheral

to manage communication with the host (Firmware) and enable the peripheral to run , also it

includes designing the PC software needed to communicate with the peripheral , in particular

the following elements are needed (Axelson, 2005):-

 A microcontroller chip with USB interface.

 Firmware on the chip to carry out communications with the host.

 Any additional hardware and code that is needed to process data read inputs and

write to outputs.

 A PC that supports USB.

11

 Device driver software on the host.

 Application software on the host to enable users to access the device.

2.6.1 Development Tools

The following tools are needed to develop the USB device:-

 A compiler or assembler to create the Firmware code, the developer can use C or

other high level language to create the code, to create an assembly code you will

need a cross assembler that runs on a PC, the compiler or assembler should translate

the written source code to the machine code (binary file).

 A development Kit to store the generated code in the controller's code memory.

 A programming language to write the host software, which may include a device

driver and /or an application software, examples are C++ and Delphi.

2.6.2 Development Process Steps

This process includes initial decisions, enumeration and data exchange between the host and

the device (Axelson, 2005) :

a- Initial Decisions

Before starting to develop any project the developer should gather data to enable him making

some decisions:-

1. Specify the device specifications, data transfer type, transfer rate, power

requirements, device driver needed …etc.

2. Choose the suitable chip that will enable you to meet the device

specifications.

3. Decide whether to use a device driver supplied by the vendor, design

a custom driver or use Windows - built - in drivers.

12

b- Enumeration:

The following steps should be accomplished to enable Windows to enumerate the device :

1. The Firmware should include the code the chip needs to be enumerated by the host,

this can be done by the chip which should be able to send a series of descriptors to

the host, these descriptors describe the chip's USB capabilities, when the host sends

the enumeration request, the chip should respond to this request, this is done by

hardware or by a program code stored in the chip.

2. Modify the (.INF) (information) file created by Windows to identify the device when

enumerated or create the file using any text editor.

3. Build the necessary circuits needed to be connected to the host.

4. Download the Firmware into the device and plug it to the host's USB bus, once

connected Windows should enumerate it.

c- Data Exchange

To enable the device to perform its intended functions, the following steps should be done:-

1. Design your Firmware such that it includes all the code needed to add the required

abilities to the device.

2. Write the needed driver or use the drivers included with Windows.

3. Write the needed application software to enable the user to communicate with the

device.

2.7 How USB Transfers Data:-

Understanding how the transfer of data works leads to deciding which transfer type is

suitable for your project, it also helps in writing the Firmware for the chip and in debugging

the circuits and codes.

13

The USB interface is difficult; trying to simplify it we will start from a big picture and work

down to the details. If you want to know details about USB interface you should review the

specification manual titled "Universal Serial Bus Specifications" (Compaq, Intel, Microsoft,

NEC, 1998).

2.7.1 Communication Basics

USB communications are divided into two categories:-

1. Configuration communications

 In this type the host learns about the device and gives it an address in order to exchange data

with it, this is done when the device is connected to the host's USB bus when the host starts

enumerating the device.

When the device is attached to the host, the host sends a series of standard requests to the

device, the Firmware of the device should respond to these requests by returning the

requested information.

2. Application Communications

 In this type, the host exchanges data with the Device, and the user activates the functions of

the device from the PC side.

Once the device is enumerated, the host can exchange data with it, this is done using

standard API (Application Programmer’s Interface) functions at the host side, these functions

enable the user to read from and write to the device, at the device side, exchanging data

requires placing the data to be send in the transmit buffer and that to be read in the receive

buffer, at the end of the transfer process, the device should acknowledge the host that it is

ready for the next transfer.

14

2.7.2 USB Transfer Elements

A USB transfer is made up of transactions, each transaction is made up of packets, the packet

contains the information to be exchanged, to understand USB transfers we need to know

about endpoints and pipes (Compaq, Intel, Microsoft, NEC, 1998).

 Peripheral Endpoint

The Endpoint is a storage location (buffer) that stores multiple bytes, the endpoint stores data

to be transmitted or received, the host has buffers but it does not have endpoints, the host is

the starting point for communication with the device endpoints. According to specification

an endpoint should have a unique address, this address consists of an endpoint number and

direction, the number should be between 0 and 15 while the direction is from the host's

perspective: IN is from the device towards the host and OUT is from the host towards the

device.

Since a control endpoint is supposed to transfer data in both directions it consists of a pair of

IN and OUT endpoints that share the same endpoint number, usually Endpoint 0 is

configured as a control endpoint, the other transfer types send data in one direction only,

each endpoint number supports both IN and OUT endpoint addresses.

 Pipes

A pipe is a logical communication channel between a device's endpoint and the host

controllers' software, a USB pipe is not a physical object .

Establishing a pipe between the host and the device must be done before any transfer can

occur, this process occurs directly after power -up or the attachment of the device when the

host requests configuration information from the device, upon the removal of the device the

host removes the pipes.

Every device has a default control pipe that uses endpoint 0, which supports generic USB

status and configuration protocol.

15

2.7.3 USB Transfer Types
1

USB supports four data transfer types: control, interrupt, bulk and isochronous.

 Control mode : this mode is initiated by the host, in this mode data travels in both

directions, but only in one direction at a time, this mode is used for initialization of

the device since it enables the host to read information about the device, set the

device address and other settings. Control transfers may be used to transfer small

amounts of data; all USB devices must support control transfers.

 Interrupt mode : in this mode the host has to initiate the transfer of data, and queer

devices to see if they need to be serviced, peripherals exchanging small amounts of

data that need immediate attention (such as mice and keyboards) use this type of

transfer.

 Bulk mode : this mode is used when data accuracy is of prime importance, and the

rate of data transfer is not guaranteed, typical applications include printers and

scanners.

 Isochronous mode : this mode sacrifices data accuracy in favor of guaranteed

timing of data delivery, typical applications are audio and video devices, in this type

data received with errors is not automatically re-transmitted as in the other modes,

so occasional errors must be expected.

2.7.4 Transfer Initiation

The USB specification defines the transfer as the process of making and carrying out a

communication request.

"Windows application opens communication with a device using a handle retrieved using

standard API functions" (Axelson, 2005), Applications can request the device to send data

like reading the contents of report, they also can provide data to be send to the device like

sending the contents of a text file. The operating system passes the request of the application

1 For more information on Transfer Types ,see Appendix A.

16

to the appropriate device driver which passes this request to other system-level drivers until

the request is received by the host controller, which interne initiates the transfer on the bus.

2.7.5 Transactions

Any USB transfer consists of transactions, and each USB transaction consist of

 Token packet.

 Optional data packet.

 Handshake packet: used to acknowledge transactions and to provide a means of

error correction.

Figure (2.2) shows the elements of a typical transfer.

TRANSFER TRANSFERTRANSFER

TRANSACTION TRANSACTION TRANSACTION

TOKEN

PACKET
DATA HANDSHAKE

PID CRC
ADDITIONAL

INFORMATION

EACH TRANSFER

CONTAINS 1 OR MORE

TRANSACTIONS

.

EACH TRANSACTION

CONTAINS A TOKEN

PACKET AND MAY

CONTAIN A DATA AND/

OR HANDSHAKE

PACKET.

EACH PACKET

CONTAINS A PID AND

MAY CONTAIN

ADDITIONAL

INFORMATION AND CRC

(ERROR -CHECKING

BITS)

Figure 2.2 : USB transfer elements, each transfer consists of a

transaction, the transaction contains packets, each packet contains a

packet identifier (PID), CRC and sometimes additional information

(Axelson, 2005).

17

USB is a host centric bus, which means that the host initiates all transactions, the first packet

(token packet) is generated by the host, it describes what is to follow and if the data transfer

is a read or write, it also contains the address of the device and the target endpoint.

The next packet is usually a data packet which is followed by a handshaking packet to report

the status of the transaction.

2.7.6 USB Transaction Parts.

A transaction consists of three parts (phases) that occur in sequence: token, data and

handshake, a phase consists of one or two packets, the packet is a block of information which

conform to a special format, all packets begin with a packet ID (PID) that contains

information that identify the transaction (Compaq, Intel, Microsoft, NEC, 1998) .

2.8 USB Functions

USB Functions are USB devices which provide a capability or function such as a Printer, Zip

Drive, Scanner, Modem or other peripheral, figure (2.3) below shows how the host is

connected to a USB devices (Peacock, 2002).

Figure 2.3 : Connection of host PC to a USB device (Peacock, 2002) .

18

2.9 Bandwidth management

The host is responsible for managing the bandwidth, during enumeration and when

configuring Isochronous and Interrupt Endpoints , the host is always watching the operation

of the bus in order to keep the bandwidth within the allowed limits, the specification puts

limits on the bus such that no more than 90% of any frame to be allocated in Interrupt and

Isochronous transfers on a full speed bus, for high speed bus, this limitation is reduced to

80% of a microframe, the remaining (10% or 20%) is left for control and bulk transfers

(Compaq, Intel, Microsoft, NEC, 1998).

2.10 USB Descriptors
2

Descriptors are data structures or formatted blocks of information, that enable the host to

learn about a device (Compaq, Intel, Microsoft, NEC, 1998).

All USB devices must store the information needed in descriptors and when requested by the

host, must respond (send the descriptors) in the expected format, these descriptors describe to

the host what the device is, what is the USB version supported, the number of endpoints and

their type…etc, the most common USB descriptor types are:-

1. Device Descriptor.

2. Configuration Descriptors.

3. Interface Descriptors.

4. Endpoint Descriptors.

5. String Descriptors.

Each device has only one device descriptor which contains information about the device

such as the USB revision of the device, product and vender ID's and the number of

configurations the device is allowed to have.

2 For more information see Appendix B.1

19

Each device also has one or more configuration descriptors, this type of descriptors contains

information about the power consumption of the device, whether the device is bus or self

powered and the number of interfaces supported by the configuration, during enumeration

the host reads the device descriptor and decides which configuration should be enabled, one

configuration can be enabled at a time, it should be mentioned that few devices have more

than one configuration.

Each interface descriptor has zero or more endpoint descriptors which contains the

information needed to communicate with the endpoint, if the interface has zero endpoints, it

can use the control endpoint (endpoint 0) for communications, a device can have one or

more interface descriptors enabled at a time.

Each endpoint descriptor contains the transfer type, transfer direction and endpoint

maximum packet size; all endpoints except endpoint “0” are supposed to have endpoint

descriptor.

A string descriptor is used to store text such as the devices name, and version, the developer's

name, etc.

Each descriptor consists of a series of fields, some fields use prefixes to indicate the format

or the contents of the data in that field, examples are:-

b= byte, w=word, bm = bit map, bcd= binary –coded decimal.

i= index, id= identifier.

Table (2.2) shows values defined by USB and HID specification.

20

Table 2.2: Descriptor and the corresponding value and type of that

descriptor (Axelson, 2005).

type Value (hexadecimal) descriptor

Standard 01 device

02 configuration

03 string

04 interface

05 endpoint

06 device-qualifier

07 other-speed-

configuration

08 interface-power

Class 21 HID

29 hub

Specific to the

HID class

22 report

23 physical

2.11 USB Standard Requests
3

There are three Types :

1. Device Requests : All devices must respond to standard requests.

2. Interface Requests : According to USB specification, there are five standard interface

requests : GET_FEATURE, CLEAR_FEATURE, SET_FEATURE, GET_INTERFACE and

SET_INTERFACE.

3. Endpoint requests : According to USB specification, there are four standard endpoint

requests : GET_FEATURE, CLEAR_FEATURE, SET_FEATURE, and SYNCH_FRAME.

2.12 Enumeration

It is a process by which the host determines what device has just been connected to the bus

and what are the needs of the device such as power consumption, number and type of

3 For more details see Appendix B.2

21

endpoints. When a new device is connected to an active host, the host sends a series of

requests to the device hub in order to establish communication with the device, the host then

starts the enumeration process by sending control transfers containing standard USB requests

to endpoint 0 , if the device responds by sending the requested information to the host the

enumeration is successful, otherwise it is failed, when enumeration is complete, Windows

add the new detected device to the Device Manager display in the control panel (Axelson,

2005).

2.13 Human Interface Devices (HIDs)
4

A human interface device (HID) is a device that communicates with the host computer using

structured reports, this type of device interacts directly with people, in this type applications

communicate with HIDs using the drivers built into the operating system, typical examples

of HID class devices include keyboards, mice, joysticks and control found on some devices

like VCR remote controls, games, other devices that may not interact with humans include

bar-code readers, thermometers, or voltmeters (Universal Serial Bus, 2001).

2.13.1 Abilities and Limitations of HID Class Devices.

A HID may not have interface with humans, instead it has to be able to function within the

limits and specifications of the HID class. Following are the abilities and limitations of a

HID (Axelson, 2005).

 HIDs use structured reports to exchange data with the host, the device's Firmware

must conform to the HID report format, the host exchanges data with the device by

sending and receiving these reports, it can use Control or Interrupt transfers only.

 For full speed devices the maximum report size is 64 bytes per transaction, while its

8 bytes for low speed and 1024 bytes for high-speed, a report may use multiple

transactions.

 The device may send data to the host at any time, this requires the host driver to poll

the device periodically to obtain new data.

4 For more details on HID Descriptors and HID Specific Requests see Appendix c

22

 Regarding the transfer speed, the speed is limited for low and full-speed devices, for

low-speed HIDs such as Mice and Keyboards, the maximum transfer rate is 800

bytes per second, while it reaches 64,000 bytes per second for full-speed devices

such as Barcode Readers and UPS Controller, for high – speed HIDs such as

Compact Flash Card Reader and Oscilloscopes, it is 24.576 Megabytes per second.

 There is no guaranteed rate of transfer, if a device is configured for 10 ms interval,

the time between transactions may be equal to or less than this period.

 Under Windows 98, host to device data transfers may use control transfers only.

2.13.2 HIDs Requirements

The USB specification defines the requirements that should be met by a device to be

classified as a HID. Following is a brief description of some of these requirements

(Universal Serial Bus, 2001) :-

1- Endpoints

For a HID device to send data to the host, it must have an interrupt IN endpoint, while an

interrupt OUT endpoint is optional. According to specification all HIDs should use the

default control pipe or interrupt pipe to exchange data with the host, table (2,3) below

shows details.

Table 2.3 : Transfer types and their uses in HIDs (Axelson, 2005).

Transfer

Type

Source of

Data

Type of Data Required

Pipe?

Windows

Support

Control Device (IN

transfer)

Data that doesn’t have critical timing

requirements.

Yes Windows 98 and

later

Host

(OUT

transfer)

Data that doesn’t have critical timing

requirements, or any data if there is

no OUT interrupt pipe.

Yes

Interrupt Device

(IN transfer)

Periodic or low-latency data. Yes

Host(OUT

transfer)

Periodic or low-latency data. no Windows 98 SE

and later

23

2- Control Pipe

The control pipe for a HID is used for (Universal Serial Bus, 2001) :

- Receiving and responding to requests for USB control and class data.

- Transmitting data when polled by the HID class driver (using the Get-Report

request).

- Receiving data from the host.

All USB devices must support Endpoint zero, this means that only an Interrupt IN pipe

is included in the interface descriptor using an Endpoint Descriptor.

3- Interrupt Transfers

 If the host is expected to receive data from the device quickly or periodically, the

interrupt pipe should be used to exchange data instead of the control pipe, an Interrupt IN

pipe sends data to the host and an interrupt OUT pipe sends data to the device.

Interrupt OUT pipes are not required if the host uses the control pipe to send reports

using Set-Report requests.

The interrupt pipe is used for (Universal Serial Bus, 2001) :

 Receiving asynchronous (unrequested) data from the device.

 Transmitting low latency data to the device.

4- Firmware

For a HID device to communicate with the host, the device Firmware must meet some

requirements like (Universal Serial Bus, 2001) :

 The device must be identified as a HID in the device descriptor or in the interface

descriptor.

24

 In addition, to the default control pipe, the Firmware of the device should include an

Interrupt IN Endpoint.

 A report descriptor that represents the format of the transmitted and received device

data should be included in the Firmware.

 The Firmware should support Get-Report Control transfers or Interrupt IN transfers

in order to send data to the host.

 The Firmware should support Set-Report Control transfers in order to receive data, it

may also support Interrupt OUT transfers.

2.13.3 Reports

A data report in a data packet may be preceded by a prefix called the report ID, if a device

supports multiple reports of the same type, each report may contain different data and have

its unique ID, in many cases it is better to have a single report for simplicity.

The report ID is an item in the report descriptor, if the report descriptor contains no report

ID, the default value of zero is assumed for the ID, but in any way a report ID of zero should

not be declared in a descriptor.

In transfers that uses a Set-Report or Get-Report request, the report ID should be specified by

the host in the Setup transaction in the low byte of the value field, in an Interrupt transfer the

Report ID should be the first byte sent with a report if the interface supports multiple reports

with different IDs, if it supports the default ID of zero, the Report ID should not be sent with

the report, applications running under Windows, should always precede any report to be sent

with a report ID. If the Report ID is zero the Device Driver does not send it with the report

data, reports read into applications running under Windows should begin with a report ID,

this is done by the Device Driver which inserts an ID of zero if necessary (Axelson, 2005) .

2.14 Device driver

When a device is attached to the USB port, Windows detects the device and adds the suitable

previously installed driver to manage communication between the device and the host, some

25

devices need to have a special driver, others don’t, there are at least two ways to get device

drivers (Axelson, 2005):

- Supported classes such as disk drives, printers, keyboards…etc may use the device

drivers included with Windows.

- Custom devices designed to be used with specific application, such as motor

controllers and test instruments do not have a built-in drivers because Windows do

not know about them, so the developer may need to write a special Device Driver to

support his device or design the device to comply with the requirements of

supported classes.

Under Windows code run in one of two modes : user or kernel mode, applications written by

users must run in user mode, while USB drivers and almost all drivers run in kernel mode, in

user mode the access to memory and other system resources is limited by Windows, while in

kernel mode unrestricted access to memory and other resources is allowed to the code.

Usually applications use Win32 API functions to communicate with the operating system,

drivers communicate with each other using I/O request packets.

2.14.1 Communication Flow

 The device must be attached to the USB port.

 Windows detects the attached device and enumerates it and decides upon the

suitable Device Driver for the device, this is done by comparing the retrieved

descriptors with the information contained in the INF file.

 The application has to get a handle that identifies the device, this is done by calling

the CreateFile API function with a symbolic link that identifies the device.

 The device is now ready to transfer data upon the request of the host, for example

when the user clicks a button to read data in an application.

26

 The data to be read should be stored in a buffer specified by the call, Windows has

three functions used to exchange data with the device, these functions are ReadFile,

WritFile and DeviceIoControl, a call to ReadFile causes the driver to retrieve data

from the device or data stored in a buffer and did not be sent according to a host's

request, DeviceIoControl can be used to transfer data in both directions instead of

using ReadFile and WritFile.

 Writing to a device : similar to reading except for the direction and the API

function used which is WritFile instead of ReadFile.

2.14.2 Writing Device Drivers

Choosing a Device Driver for a certain device depends on a combination of the performance

needed, the cost and transfer rate (speed), the easiest approach to access a USB device is to

use the Device Drivers included within Windows, some times the chip's vendor supplied a

Device Driver to be used with the chip, this is a general purpose driver ready to be used by

the developer, this driver should be accompanied by the needed documentation and source

code, the last option available is to write a custom Device Driver, writing a driver is not a

trivial task because it requires an investment in tools, experience in C programming and a

good knowledge about how Windows communicate with hardware and applications, to write

a driver you need Microsoft Visual C++ which is capable of compiling WDM (Win32

Driver Model) drivers, the compiler should include a programming environment and a

debugger, other tools that may help include Windows' Device Developers kit (DDK), driver

tool kits and advanced debugger (Axelson, 2005).

Following are the steps needed to develop a device driver (SCO Group, 2005).

Preparation

 Learn about the hardware. Most of the information you need can be found in

the documentation for the device.

 Test the hardware to make sure it is functioning.

27

 Design the software. Even though the overall structure of a driver is not the

same as an application program, good structured design remains important.

 Select a software maintenance and tracking utility.

Implementation

 Select one of the sample drivers to use as a starting point for your driver.

 Globally change the prefix used in the sample driver to your driver prefix.

 Modify the initialization entry point routines first and test loading and

accessing the driver.

 Write base-level routines before interrupt-level routines.

 If applicable to the device, write and test any associated firmware.

 Develop utilities such as disk formatting, network administration, and

diagnostic programs at the same time as the driver.

Follow-up

 As much as possible, use the testing phase to create error conditions that exercise

the driver's ability to handle them.

 Evaluate the driver's performance both in isolation and in a production

environment where other drivers are installed.

 Make sure documents affected by the creation of the driver are updated.

2.15 Device Testing

The USB interface is complex and improper functioning Firmware or PC software can make

a peripheral impossible to use, so testing a USB product is essential, there are many tools

28

that help in testing a USB peripheral, these tests include free software tools such as the

HidTest program, Protocol analyzers and other test equipment.

The HidTest program exercises the HID API of Windows for a specific device, it calls the

relevant HID functions and shows results on the screen, this test is available from the site

(http://www.lvr.com) .

Other testing software tools are available from the USB implementers Forum and Microsoft,

developers can use these tools to test their devices and their host software, passing the tests

can earn a product the right to display the USB Logo or the Microsoft Windows Logo, but to

access these resources you have to join the Forum.

The Ultimate tool for USB development is a protocol analyzer, analyzers are used to monitor

USB bus traffic, the analyzer is a combination of hardware and software that enables the

developer to view every detail of the traffic on the bus, the analyzer collects data the

developer requests, then it decodes and displays it in a variety of formats, the developer can

watch what happens during enumeration , detect and examine the protocol and signaling

errors, view the data being transferred during control, interrupt, bulk and isochronous

transfers.

http://www.lvr.com/

29

C h a p t e r 3

USB Interface Board Hardware and Software

3.1 Chip Choices

When it comes to choose the chip for a project involving embedded controllers, the decision

depends on many features such as:

- The function performed by the chip.

- The cost.

- The availability of the chip.

- The ease of development (the availability of tools, device driver, sample Firmware)

and the developer experience with the device hardware and a suitable programming

language.

3.2 Main Features of the Required Chip

Following are the required chip features based on the Board's Features :

 USB2.0 Full-speed compliant device.

 At least 8 KB RAM for application code space.

 32 General Purpose I/O.

 Firmware loaded from PC or from I2C.

 Supports Control, Bulk, and Interrupt transfers.

 Can Support at least a total of 4-Input and 4-Output endpoints.

30

3.2 The TUSB3210

The TUSB3210 microcontroller chip was chosen to be the heart of the board, this chip is the

one witch accomplishes the required Features of the board, The chip's CPU is clocked at 12

Megahertz, the chip is fully compliant with the USB version 2.0 full-speed-specification, it

supports a USB transfer rate of 12 Megabits per second, Figure (3.1) shows the block

diagram of the chip.

Figure (3.1) shows the block diagram of the chip.

Figure 3.1 : Block diagram of the TUSB 3210 (Texas Instruments, 2003-c).

31

3.2.1 Why Choose the TUSB3210

This choice fulfills the minimum main requirements of the required chip, in addition the

TUSB3210 is notable for the following reasons:-

- Since it is 8052 compatible, developers are familiar with the architecture and

programming of this family, this makes the development process easier.

- The chip is well supported, it has Evaluation Modules and Product Developer's

Kits, detailed Technical Documentation and other Utilities and Tools such as

Apploader Driver, Bootcode Source Listing and Keyboard Sample Source Code.

- It's cheap, the chip costs about 2.5 $, additionally it's popular because many Forums

are available on the Internet for developers interested in this chip .

- The availability of Host application and Firmware sample codes in the market, these

codes may be used as a starting point in developing your own codes .

3.2.2 The Board Schematic Diagram

The USB Board has been built according to a schematic diagram provided by Texas

Instruments, the schematic diagram can be found in Appendix F, the Hardware design is

assumed to be generic, it is designed for use with personal computers running a USB enabled

operating system, the operating system of the PC must be USB 1.1 specification compliant,

the board consists of several circuits, following is a brief description for each circuit :

 Power Supply Circuit : As shown in here in the schematic, the board is supplied by

a positive 5-volt power supply, there are two options for supplying the power to the

circuit, bus-powered mode where 5 volts are supplied by the USB bus, this is

achieved by setting JP(3) to position 1-2, the other option is the self powered mode

where JP(3) is set to position 2-3, in addition pin 21 in the chip must be grounded for

bus powered mode, in any case the input 5 volts are fed into a voltage regulator

(278R33) which converts the 5 volts to 3.3 volts, the 3.3 volts are converted to

positive 1.8 volts using R3 and R18 as voltage divider, the 1.8, 3.3 and 5 volts are

used to supply the chip with the required voltage levels.

32

 Reset Circuit : when the switch push button is pushed down, pin 13 (reset pin) in the

chip is connected to ground via resistor R15, this pin is the controller master reset

signal pin which resets the controller.

 Run/Suspend modes Circuit: In this circuit D4 determines the state of the board,

when D4 is ON, the board is powered and not suspended, when the SUSP pin (pin 16

in the TUSB3210) is in the low state, transistor Q2 is switched ON and a positive

voltage drop is developed across the D4 diode, which as a result illuminates, when

D4 is OFF, the board is not powered or suspended, once the SUSP terminal in the

chip goes high, Q2 is turned OFF, and D4 is reversed biased and thus turns OFF.

 The Main Circuit: In this circuit, when the TUSB3210 is connected to the USB bus

through Type B USB-shield as shown in the schematic, 5 volts are applied to the

Base of the Q1 Transistor through R5, when pin 17 (PUR) of the TUSB3210 goes

high (pull-up is enabled), Q1 is switched ON, as a result terminal DP0 (DP) is pulled

high with respect to DM0 (DM) through resistor R4, this means that a Full speed

device is attached to the bus, on the other hand if PUR terminal (pin 17) is pulled

down to zero (pull-up disabled), Q1 switches OFF and no voltage difference is

developed between DP0 and DM0, this means that: even if a device is attached it will

not be enumerated by the host as long as the pull-up is disabled, the 12 MHz crystal

oscillator is connected between pin 61 and 60 of the TUSB3210.

3.3 Writing Firmware

Any project that includes a controller chip is useless unless the developer writes the code that

enables the device to communicate with the host and vice versa.

3.3.1 Hardware responsibilities.

The USB controller in the device should manage many of the communication's

responsibilities automatically, the remaining tasks should be done by the Firmware which

should supplement the hardware's capabilities, these tasks include sending data to the host,

receiving data from the host, handling interrupt transfers and responding to interrupts

generated by the hardware at the end of each transaction .

33

3.3.2 TUSB3210 Firmware
5
 (Texas Instruments, 2000, 2001-a, 2003-d, 2004)

The best software (according to Texas Instruments and other USB Sites) for writing the

Firmware code is the Keil uvision2 'C' compiler (Keil Electronik, 2003), other cheap

alternatives exists such as the SDCC 8051 developing tool, in this project the Keil 'C'

compiler was used to develop the Firmware for the following reasons :

 It is one of three packages the vendor advices to use for developing the Firmware.

 I evaluated the Demo version of this software, It is easy to use, and well

documented.

 It combines project management, source code editing, and program debugging in

one powerful environment.

 I am familiar with C++ programming .

The developed Firmware consists of eight header files (*. h) and six (*. c) files, some of the

header files and functions used in these files are taken from the Texas Instruments

TUSB2136 Generic Keyboard Demo Program
6
 (Texas Instruments, 2000), the header files

are:-

- Usbinit. h.

- Usb. h

- Delay. h

- Descriptor. h

- Reg52. h

- Tusb3210. h

5 For Firmware source code, see Appendix D

6 For more information refer to Appendix D

34

- Prog. h.

- Application. h.

The (*. c) files are named :

- Usbinit. c.

- Usb. c

- Delay. c

- Prog. c

- Application. c

- Main. c

Following is a general description of each of the above mentioned files.

3.3.2.1 Usbinit. h

This file is a header file for initializing the USB board.

3.3.2.2 Usb.h

This file is a header file for the USB protocol functions.

3.3.2.3 Delay. h

o This file is a header file for the Delay functions.

3.3.2.4 Descriptor .h

This file contains the definitions of the following descriptors :-

 Device Descriptor.

35

 Report Descriptor.

 Configuration Descriptor.

 Interface Descriptor.

 HID Descriptor.

 Input Endpoint 1 Descriptor.

 String Descriptors.

3.3.2.5 Reg52. h
7

This file contains the definitions of the 8052 controller's registers addresses and interrupt

vectors.

3.3.2.6 Tusb3210. h

 This file contains the definition of the Tusb3210 registers (Texas Instruments,

2000).

3.3.2.7 Prog. h

This file is a header file for initializing the device and decoding the device data functions.

3.3.2.8 Application. h

This file is a header file for the host application data exchange functions.

3.3.2.9 Usbinit. C

This file consists of two functions (Texas Instruments, 2000) :-

o InitializeUsbFunction (Void).

7 For more details refer to the TUSB3210 datasheets and the 8052 tutorial and reference.

36

o UsbReset (Void).

The first function is used to initialize the USB device and all its registers, it enables the

external zero (EX0) and, global (EA) interrupts, it also enables the pull up to enumerate the

device on the USB bus, this function calls the UsbReset () function in order to Reset the

USB device, when this function (InitializeUsbFunction) is called the device is disconnected

from the bus.

The second function (UsbReset) resets the USB device, enables endpoint zero and endpoint

one interrupts, it also enables the USB specific interrupts (SETUP, RESET, and STPW).

3.3.2.10 Usb. C

Then file includes the following functions :

o UsbGetConfiguration (Void): this function sends the current Configuration value to

the host upon request (Texas Instruments, 2000) .

o UsbSetConfiguration (Void): this function sets the device Configuration (at the end

of a Set Configuration request, the device enters the configuration state) and Stalls

output endpoint zero (Texas Instruments, 2000) .

The following functions are called on power up when the host starts enumerating the device

and are used to obtain the device, configuration and string descriptors.

o UsbGetDeviceDescriptor (Void).

o UsbGetConfigurationDescriptor (Void).

o UsbGetStringDescriptor (Void) (Texas Instruments, 2000) .

The following functions are used for HID (Human Interface Devices) devices.

o UsbGetHIDDescriptor (Void): sends HID descriptor to the host (Texas Instruments,

2000) .

37

o UsbGetReportDescriptor (Void): sends report descriptor to the host.

o UsbSetReport (Void): the Set Report request is sent by the host to the HID device,

when the Set-Report Setup Packet is received, this initiates a "Receive Data Packet"

sequence since the actual data value will be in the next packet on OEP0.

o UsbGetInterface (Void): this function sends the current interface number to the host

(Texas Instruments, 2000).

o UsbSetInterface (Void): this function sets the interface number sent by the host

(Texas Instruments, 2000).

o UsbGetDeviceStatus (Void): this function sends device statues to the host (Texas

Instruments, 2000).

o UsbSetRemoteWakeup (Void): this function sets remote wake up (Texas

Instruments, 2000) .

o UsbClearRemoteWakeup (void): this function clears the remote wakeup option

(Texas Instruments, 2000).

o UsbGetInterfaceStatus (Void): this function sends the interface status to the

host(Texas Instruments, 2000) .

o UsbSetAddress (Void) : this request is used by the host to assign an address to the

nearly attached device, usually the device is given a zero address until the host

assigns another address after the enumeration process has been successfully

completed.

o UsbSetEndpointHalt (Void): this function when called stops the input Endpoint 1

from sending data to the host.

o UsbClearEndpointHalt (Void): this function enables the input Endpoint 1 to send

data to the host.

38

o UsbGetEndpointStatus (Void): this function when called allows the device to send

the status of IEP1 (Input Endpoint1) to the host.

o UsbNonStandardRequest (Void): this function allows any non standard or

unrecognized request to arrive to it by default, the Endpoint 0 is automatically

stalled to indicate that the request is invalid or unrecognized (Texas Instruments,

2000).

o Code DEVIC-REQUEST-COMPAIRE tUsbRequestList []: this code defines a

lookup table, using the structure defined in the header file. The values of constants

used in this structure are defined in the usb. h file, this table includes the standard

Device Requests, the standard Interface Requests, the Class specific Interface

Requests and the standard Endpoint Requests (Texas Instruments, 2000) .

Structure of the table:

 bmRequestType: indicates the type of request, this is a bit mapped variable defined

in the USB specification.

 bRequest: indicates the Request ID (Get Descriptor, Get Status, etc.), these are

defined in the USB and HID specification and declared in “Usb. h”.

 bValueL/H: additional values, purpose varies with requests.

 bIndexL/H: additional values, purpose varies with requests.

 bLengthL/H: number of bytes to transfer to or from the host.

 bCompareMask: indicates which of the above bytes should be compared to

determine the function to call. For example, the mask 0x80 means only

bmRequestType must match, 0xC0 means both bmRequestType and bRequest must

match, If this variable is 0x00, as is the case in the last entry in the table, then no

bytes are compared and, thus, ANY packet will pass the comparison stage.

39

o usbDecodeAndProcesUsbRequest (Void): this function is called when a USB

request has been received. It searches the tUSBRequestList [] structure defined in

the previous section for a request that matches a given entry in the table and, when

matched excites the corresponding function (Texas Instruments, 2000) .

o usbStallEndpoint0 (Void): this function sets the STALL flag on both IEP0 (Input

Endpoint zero) and OEP0 (Output Endpoint zero).

o usbReceiveDataPacketOnEP0 (unsigned char * pBuffer): this function enable the

device to receive a dada packet on EP0 (Endpoint zero), this function is called when

a SET_REPORT token is received (Texas Instruments, 2000) .

o usbReceiveNextPacketOnOEP0 (Void): this function allows the device to receive a

data packet on EP0, if all data has not been sent, send the rest of data now.

o usbSendZeroLengthPacketOnIEP0 (Void): this function allows the device to send a

zero- length packet back to the host on IEP0, often called to acknowledge a packet

received from the host that requires no data in the reply, just an acknowledgment of

receipt (Texas Instruments, 2000).

o usbSendDataPacketOnEP0 (unsigned char * pBuffer): this function allows the

device to send data packet to EP0, this is used to send descriptors and other requests

to the host, the length of data is defined in the Setup Packet (Texas Instruments,

2000).

o usbSendNextPacketOnIEP0 (Void): this function allows the device to send the

following packets to IEP0 if not all data has been transferred with the last IN token

(Texas Instruments, 2000).

o usbSendDataToHostOnEP1 (Void): this function allows the device to send the data

in the device transmit buffer to the host on EP1, this data is from reading a port

,status ...etc, there is no defined length for the data, the length is defined in the

Report Descriptor (64 bytes).

40

o SetUpPacketInterruptHandler (Void): this function is called by the USB interrupt

function when a Setup Packet is received. This function immediately sets both

OEP0 and IEP0 to a NAK state, and sets the USBCTL to send / receive based on

the direction of the request, then proceeds to call the

usbDecodeAndProcessUsbRequest() function, which determines which function

should be called to handle the given USB request (Texas Instruments, 2000).

o OEP0InterruptHandler (Void): this function is called by the USB interrupt function

when a USB interrupt is called by OEP0 (Texas Instruments, 2000).

o IEP0InterruptHandler (Void): this function is called by the UsbInterrupt function

when a USB interrupt is called by IEP0, this will happen once the data sent by

calling usbSendNextPacketOnIEP0() and means that , the previous data packet has

been sent, at that point there are two condition : either there is more data to send or

there is not, it there is, we call usbSendNextPacketOnIEP0 () to send next packet of

data, if there is not any more data, we STALL, however, if the bStatusAction

condition indicates that we were changing the devices, we do so at this point (Texas

Instruments, 2000).

o IEP1InterruptHandler (Void): this function is called by the USB Interrupt function

when a USB interrupt is caused by IEP1, this will happen once the data sent by

calling usbSendDataPacketOnIEP1 () and means the previous data packet has been

sent.

o EX0_int (Void): this is an interrupt service routine for the external Interrupt 0

(Texas Instruments, 2000).

3.3.2.11 Delay. C

This file consists of two functions, the first provides time delay for a specified time in

milliseconds, the other function provides 5 microseconds time delay.

41

3.3.2.12 Application .C

This file is responsible for data exchange between the peripheral and the host, it includes two

functions :

o Write_Data (Void): this function, when called, writes the data stored in the host

buffer to Port one of the USB device. The device receives always a "59" bytes of

data, knowing that "64" bytes except the report ID are sent, the first 5 bytes sent by

the host are as follows:-

1. Byte 1 = DataFromHost[0] : used for device information, in this case it is the

hypothetical device which consists of LEDs.

2. Byte 2 = DataFromHost[1] : contains the mode (write or read) "1" for read

and "2" for write operations.

3. Byte 3 = DataFromHost[2] : contains the size of data in bytes. (actual data

Byte count)

4. Byte 4 = DataFromHost[3] : indicates whether this packet is the last one (byte

4=0), or there is more data to follow (byte 4=1).

5. Byte 5 = DataFromHost[4] : general purpose data byte.

This function writes all the data sent by the host and after sending the data it resets the device

by calling the function ResetDevice (), it also sends a byte to the host indicating that it

received the last data packet.

o Read_Data (Void): this function is used to read the data from Port "1" of the device,

the device receives 64 bytes from the host, in this stage no data is sent, bytes from

one to five contains information as follows :-

Byte 1 = DataFromHost[0] : the hypothetical device connected to the USB ports (the

LEDs).

Byte 2 = DataFromHost[1] : the mode which is one for reading from Port.

42

Byte 3 = DataFromHost[2] : the maximum read bytes which are in this case "63" bytes.

Byte 4 = DataFromHost[3] : not used in this mode.

Byte 5 = DataFromHost[4] : contains the actual read bytes defined by the user.

This function sends the data to the host when the device transmit buffer is full (contains a

maximum of 63 bytes of data) the first byte Buffer[0] (from the 64 bytes sent) contains the

number of bytes to be send to the host (size of data).

3.3.2.13 Prog. C

This file includes two functions :

o ResetDevice (Void): this function is responsible for initializing the device ports by

setting them to zero except port 2 which is used for Interrupts , also the pull-ups of

the chip's ports are enabled in order to enumerate the device.

o DecodeDeviceData(unsigned char Data) : This function is used to Decode the data

from host to read port or write to port ,first Byte indicates the device(LEDs), second

Byte indicates the mode (read, write)

3.3.2.14 main. C

This is the main function, it initializes the TUSB3210 chip, it starts by setting the SDW (set

by the boot program) in the configuration register of the chip, then it disables the watchdog

timer and delays port 2 interrupt by 2 ms, then it resets the device using the function

Reset_Device () and finally the USB registers are initialized using the function

InitializeUsbFunction (), all these actions are forced to run in an infinite loop using a

while(1) command.

43

3.4 The Host Application Software
8

The host computer has to maintain the state of the USB bus and monitor all the devices

attached to the bus, in a USB network, only one host exists .

The host controller is responsible for managing the physical part of the Universal Serial Bus,

the host application software is responsible for communication with the host controller which

communicates with the devices connected to the bus, the host system has three sections :

- The USB hardware interface.

- The system's Device Driver (software).

- The USB client software (application program and the peripheral Device Driver).

Windows 98 and later include every thing needed for an application to communicate with a

HID class device, if a decision is made to use the HID Driver included with Windows, there

is no need to write special drivers, before an application can communicate with a HID

device, it has to identify the device and learn about the report's format, this is done by calling

a series of API (Application Programmer's Interface) functions, first the application finds the

attached HID device, it requests information about the device in order to find the suitable

Device Driver, then it can exchange information with the device by sending and receiving

reports.

Table (3.2) lists API (Application Programmer's Interface) functions used to establish

communication and exchange data with HID devices (Axelson, 2005).

8 For Host Application software's source code, see Appendix E

44

Table 3.1 : API functions used to establish communications and

exchange data with a HID.

API Function DLL Purpose

HidD-GetHidGuid hid.dll Obtain the GUID for the HID class

SetupDiGetClassDevs setupapi.dll Return a device information set

containing all of the devices in a

specified class.

SetupDiEnumDevuceInterfaces setupapi.dll Return information about a device

in the device information set.

SetupDiGetDeviceInterfaceDetail setupapi.dll Return a device pathname.

SetupDiDestroyDeviceInfoList setupapi.dll Free resources used by

SetupDiGetClass-Devs.

CreateFile Kernel32.dll Open communications with a

device.

HidD-GetAttributes Hid.dll Return a Vendor ID, Product ID,

and Version Number.

HidD-GetPreparsedData Hid.dll Return a handle to a buffer with

information about the device's

capabilities

HidP-GetCaps Hid.dll Return a structure describing the

device's capabilities

HidD-FreePreparsedData Hid.dll Free resources used by

HidD-GetPreparsedData.

Write-File Kernel32.dll Send an Output report to the device

ReadFile Kernel32.dll Read an Input report from the

device

HidD-SetFeature Hid.dll Send a Feature report to the device

HidD-GetFeature Hid.dll Read a Feature report from the

device

CloseHandle Kernel32.dll Free resources used by CreateFile

3.4.1 Code Functions and Procedures

Code needed for communication with a HID can be written in C++, Delphi or Visual

Basic, in this application Delphi (Borland corporation, 2002) was used to write the PC

software. To use Delphi for writing the code you need the Delphi plus the HID

Component (Marquerdt, 2004) which is needed to give complete access to all HID

devices connected to computers using an Operating System like Windows 98 and later

45

versions, this component is a controller component which handles all the HID device

plugs and unplugs.

Borland Delphi7 was chosen to develop the PC software for the following reasons :

 The full version is available in the local market with a low cost.

 I am familiar with Object Oriented Pascal programming which is the basis for

Delphi programming.

 The HID component is available for free from the internet, many related sample

codes are included which helps the developer to understand how PCs

communicate with HIDs using API functions.

Two versions of the host software were produced, one to be used with practical

applications and the other for testing the board, the latest will be described in the

following sections.

The host application software consists of the following procedures and functions:-

3.4.1.1 HidCtlDeviceChange

This procedure detects any new HID device when it is attached to the bus and

enumerates it.

3.4.1.2 HidCtlEnumerate

This function checks the attached device by index which is provided by the

OnEnumerate event, if the index is within bounds and the device was not checked out

already by CheckOutByIndex , the CheckOutByIndex function returns True, otherwise it

returns False and HidDevice is set to nil. The HidCtlEnumerate function detects the

attached device by checking the VID (vender ID) and PID (product ID), if these values

match those for the TUSB3210, then the enumeration process continues and the main

menu buttons are enabled, if the function returns False the Enumeration stops.

46

3.4.1.3 WriteBufferToDevice

This procedure is activated if a device is connected and enumerated correctly, if so the

report ID is set to zero (Buf [0]= 0 , the first entry in the 65 bytes buffer), this value is

always set zero. Then Buf [1] is set to 1 which is the connected device information, in

this case it is the LEDs connected to Port 1 of the TUSB3210, then the

"OutputReportByteLength" is determined and assigned to the variable "ToWrite" which

is then sent as an argument to the "WriteFile" function which is an API function used to

send the contents of the Buffer (report) from the host to the device.

3.4.1.4 SendDataPacketToDevice

 This procedure is responsible for preparing the data to be send to the device as 64 bytes

packet, particularly :

 It fills the contents of data buffer from entry (Buf [6] to entry Buf [64]) with data

bytes entered by the user .

 It processes the data to be displayed on the PC screen to the hexadecimal format.

 It determines according to the actual data size (Buf [3]) whether this data packet is

the last packet (Buf [4]=0), or there is more data to be sent (Buf [4]=1).

 It calls the WriteBufferToDevice procedure to transfer the data packets.

3.4.1.5 HidData

This event automatically starts a thread to read the device, each time the device sends a

report the event fires and presents the report (Marquerdt, 2004), this means that this

procedure is responsible for receiving the reports sent by the device and decode it

according to Firmware in order to take decisions.

In particular the following actions were monitored:-

47

 If the device is not in a read-status the procedure checks the first data byte

received from the device if this byte is a "*" this means that the device has

received the last data packet and is ready to receive a new packet.

 If the user clicks the read button then the device should read data from port 1

according to Firmware.

 If the user clicks the write button, the device should be ready to receive data as in

the Firmware.

 Else the status of the device is set to NOTHING.

 If the user clicks the write button and the device sends a "w" to the host, this

means that the last data packet was sent to the device and the host should stop

sending data, if the write button is clicked again, the status of the device is set to

NOTHING.

 If the status of the device is set to NOTHING then enable the interface buttons in

order to start communication again with the device.

3.4.1.6 WriteDevice

This procedure is used to send the report's data to the device, in details the following

actions take place:-

 The status of the device is set to WRITE.

 Buf [2] is set to "2" to select the write mode.

 Buf [5] is set to zero indicating that it is not used in this mode.

 The procedure SendDataPacketToDevice is called to complete the writing process.

 The contents of the data packet are displayed on the screen.

48

3.4.1.7 ReadDevice

This procedure is used to read the data from Port 1 of the device in particular:-

 The status of the device is set to READ.

 Buf [2] is set to "1" to select reading mode.

 Buf [3] is set to have the value of the global variable " MaxReadBytes= 63", which

is the maximum bytes that could be read from Port 1 at a time.

 Buf [5] is set to a value equal to the "ActualReadBytes" which is set by the user in

this application, in other applications this value might not be determined, but can be

calculated depending on the application.

 The read buffer is filled with data bytes the device reads from Port 1, this is done by

calling the WriteBufferToDevice procedure.

3.4.1.8 ShowBufferContents

This procedure is used to display the contents of the reports sent by the host at any time

on the screen.

3.4.1.9 HidCtlDeviceDataError

This procedure is an event on the "TjvHidDevice", this event occurs if "On Data"

encounters a read Error on calling "ReadFileEx", the parameters of the event are the

device which encountered the read error and the error value gathered through

"GetLastError " (Marquerdt, 2004)
9
.

3.4.1.10 breadClick

This procedure is used to activate the "ReadDevice" procedure by setting

"ButtonClicked" to B-Read.

9 For more details review the HID component documentation.

49

3.4.1.11 bwriteClick

This procedure is used to activate the "WriteDevice" procedure by setting the

"ButtonClicked" to B-Write.

3.4.1.12 bterminateClick

This procedure is used to terminate the application.

3.4.1.13 SaveBtnClick

This procedure is used to save the contents of the history list box (PC display) to a text

file named by the user.

3.4.1.14 DisableButtons

This procedure is used to disable the following buttons (options) on the main application

interface menu :

- Writing .

- Reading .

3.4.1.15 EnableButtons

This procedure is used to enable the following buttons (options) on the main application

interface menu :

- Writing .

- Reading .

3.4.1.16 FormActivate

This procedure is used to create and activate the Edit elements used to enter data by the

user in the application interface menu .

50

3.4.1.17 ClearBtnClick

This procedure is used to clear the contents of the history list box (display) on the

application interface menu .

3.4.1.18 BuffBtnClick

This procedure is used to call the "ShowBufferContents" procedure when the suitable

button on the main interface form is clicked.

3.5 Board's Competitive Factors

This board has been built according to a schematic provided by Texas Instruments, the

Texas Instruments has a similar commercially available board named

TUSB3210GENPDK Generic Product Development Kit, this Kit has the same hardware

design as the built board, this Kit is shipped with a Keyboard Firmware source code , this

product costs 199$, concerning the built board and taking into consideration the bill of

material for the board (can be found in Appendix G), the hardware components and other

materials needed to build the board costs about 140 N.I.S., which is about 30$.

Compared to the TUSB3210GENPDK Kit, the built board has the same performance

since it has the same hardware and a similar HID Firmware code, so the two boards are

expected to have the same data transfer rate, this means that the cost of the built board is

a competitive factor in favor of the built board.

3.6 Difficulties Faced

 The electronic components needed to build the board's circuits and the printed

board needed to fix the tiny surface mounted TUSB3210 were not found in the

local market (West Bank), some were purchased from U.S.A., the remaining

were purchased from Haifa.

 The availability of the software system needed to develop the Firmware (Keil

C51) was the major difficulty, the system is very expensive, it costs about 3000$

and can be purchased from the Keil dealer at Haifa, in the beginning of the

51

project and to overcome this difficulty I used the SDCC 8051 system to develop

the Firmware, this system is available for free downloading from the Internet, the

system is difficult to use and does not contain a simulator or a debugger like the

keil, I managed to obtain the Firmware hex file, this file was converted to a

binary file using a suitable utility, the Firmware was downloaded to the chip's

RAM, but Windows can't recognize the board, this mains that the Firmware is not

functioning, with this result we insisted on purchasing the Keil .

 I tried to benefit from the Keil Demo version, but the demo was restricted to

2Kbytes of object code, this restriction did not allow me to develop the Firmware

which has more than 2Kbyts object code.

 After one year we managed to purchase the full version of the Keil C51 system at

a low price, this makes the development process easier and more efficient.

 Many difficulties were faced during the development of the Firmware and host

application software because this is my first experiment with microcontrollers,

the availability of sample codes helped a lot in solving many problems.

52

C h a p t e r 4

USER MANUAL

This guide describes the setup and operation of the peripheral interface board, the user is

assumed to be familiar with the universal serial bus (USB) protocol, also he should

download and review other software needed for setup, this software is available for

downloading from the Texas Instruments Site (www.ti.com).

4.1 Minimum Requirements to Operate the Board

 The board is designed for use with a personal computer running a USB-enabled operating

system, the PC should be 1.1 specification compliant (has a hardware support consisting of a

USB host controller and a root hub with at least one USB port), the main component of the

board is the TUSB3210 from Texas Instruments .

The Firmware of the TUSB3210 can be downloaded from the host computer via USB bus

every time power is supplied to the device (this enables debugging the Firmware easily)or it

can be programmed via an inter-IC (I²C) serial interface at power on from an EEPROM,

when downloaded from the host the Firmware is loaded into an 8 Kbytes RAM memory

using a built in boot loader. In this board the Firmware is downloaded via the USB port, this

requires a driver on the PC to send the Firmware to the chip, once the Firmware is loaded

into the RAM the boot loader software disconnects from the USB and the Firmware is

executed.

4.1.1 USB Board Features

 Fully compliant with the USB release 1.11 HID specification.

 Data transfer rate : 64 Kbytes per second.

 High performance 12 MHz integrated 8052 controller.

 256 X 8 RAM for internal Data.

53

 8K X 8 RAM Code space.

 512 X 8 shared RAM used for Data Buffers and Endpoint Descriptor Block.

 Four GPIO Ports (ports 0,1,2 and 3).

 Watchdog timer.

 Could be Bus or Self Powered.

 On-chip PLL generates 48 MHz.

 Power- down mode .

 Three 16- bit timer/counters.

 Supports SUSP and PUR pins.

Compared with the existing commercial boards, it differs in two aspects :

 The transfer rate : which is limited to 64 Kbytes per second, this relatively

low rate results from using the HID Device Driver included with Windows

which supports Control and Interrupt transfers only (Axelson, 2005).

 The board’s software codes do not include DLLs, which make it easier to

access any of the controller ports from the PC side.

4.1.2 Hardware Overview.

The board provides a platform that is practical and easy to use, it is designed to operate from

an external 12-MHZ crystal, the board is set up for bus powered operation using 5-V to

3.3V voltage regulator, the UART is disabled, several test points have been added to the

board for testing purposes (Texas Instruments, 2001-b).

54

Port 1 is used for data exchange, other ports' pins could be used as needed by the application,

eight LEDs are connected to Port 1, these LEDs are connected in a common anode

configuration, LED (D4) provides power and suspended status of the device (board).

4.1.3 Schematic Diagram

The complete schematic (Texas Instruments, 2001-b) of the board can be found in

Appendix F.

4.1.4 Host Application Software.

The host software is written using Delphi 7.

The application interface form has the most needed programming functions such as:

 Save: saving the contents of the History List Box (screen) to a file.

 Read-from-Device: reads the bytes on port 1, the number of read bytes is set by the

user in a special Edit location, the read bytes are displayed on the History List Box

on the PC screen.

 Write-To-Device: sends the given number of bytes (maximum 59 bytes) to port 1,

the actual number of bytes to send and the values of these bytes are filled by the

user in the available Edit cells on the main form, the sent bytes are displayed on the

History List Box.

 Show Buffer Contents: this option displays the contents of the buffer (at any time)

on the History List Box (screen).

 Clear list: this option clears the contents of the History List Box (screen).

 Terminate Application: this option terminates the application.

The status of the device and the current action is displayed on the status bar at the top of the

form.

55

Figure (4.1) shows the application interface form (screen).

Figure 4.1 : The application interface form.

4.1.5 Communication Protocol

The protocol is needed to insure that communication between the host and the device is

achieved correctly and as required, the host sends 64 bytes to the device, the format of the

sent report is shown in figure (4.2), the contents of these bytes are as follows:-

 The first byte Buf [1]: contains information about the device connected to the USB

port (port 1), in this case Buf [1]=1 means that, the selected device is the LEDs

connected to port 1 for testing , this means that other value may be given to other

connected device.

 The second byte Buf [2]: gives information about the mode (action), Buf [2]=1,

means that the selected action is Reading from port 1, Buf [2]=2, means Writing to

port 1.

56

 The third byte Buf [3]: contains the actual byte count.

 The fourth byte Buf [4]: the value of this entry indicates whether the data packet

sent is the last one (Buf [4] =0) or whether more data is available to be send (Buf

[4]=1).

 The fifth byte Buf [5]: this is a general purpose byte, it is used in the reading mode

to indicate the actual number of bytes to read from port 1.

 The bytes from Buf [6] to Buf [64] are used for data bytes to be send to the device.

After each action the device should send a number of bytes to the host (Handshaking

signals), informing it to send more data or to stop sending data.

Buf[1] Buf[2] Buf[3] Buf[4] Buf[5] Buf[6] …. Buf[64]

Figure 4.2 : Output report format

4.1.6 The Device Firmware

The Firmware of the TUSB3210 was written using the keil uvision2 "C51" Compiler, the

main program (main .c) disables the watchdog timer and then resets the device using the

function ResetDevice(), then the USB registers are initialized using the

"InitializeUsbFunction ()" function, then the pull up is enabled to 3.3V to enumerate the

device.

After the Boot Loader completes downloading the Firmware to the controller's RAM, it

disconnects from the bus and the Firmware starts execution by setting the SDW bit in the

configuration register to 1 to switch the memory map to normal mode (the 8k-RAM is

mapped to code space), the device is now ready to be enumerated by the host, this is done by

the host when it sends a number of SETUP tokens containing Requests to identify the

device Interface and configure it's endpoints, the enumeration process uses the default pipe

(endpoint 0) for the configuration of the device, during enumeration the host retrieves

57

several Descriptors, these Descriptors include the Interface Descriptor which identify the

device as a HID, then the host assigns a unique address for the device and a suitable device

driver according to the retrieved information.

The device is now ready to operate, if the host sends an IN token, then either status

information or data packet is supposed to be transmitted by the device to the host, if the host

wishes to send data, it issues an OUT token followed by the data payload, after receiving a

SETUP, IN, or OUT transaction, the hardware triggers an interrupt which forces the

Firmware to jump to a suitable Interrupt Handler to prepare endpoints and copy the data to

its suitable buffer.

4.1.7 Communication Process.

Data sent by the host is decoded using the "DecodeDeviceData () " file, the first byte (Data

[0]) contains information about functions connected to port 1 of the microcontroller, in this

case (Data [0]=1) means that the function is the LEDs connected to port 1, the second byte

(Data [1]) selects the desired mode, if (Data [1]=0x01),this indicates reading mode, if (Data

[1]= 0x02), this indicates Writing mode, after executing the desired action the device is Reset

using the "ResetDevice ()" function, after the device finished processing the first Report (64

bytes) and upon the type of message sent by the device, the host should decide whether or

not to send another report. When there is no data to be send the host should inform the

device that this packet is the last one by sending a zero byte (Buf [4]= 0).

When reading data from port 1, the read report consists of 64 bytes, one byte for the actual

number of read bytes (first byte) and the remaining bytes are the data read from port 1.

4.2 Building the Board.

The most important part of building the board is soldering the tiny TUSB3210 chip with

many fine leads on the special printed circuit board, soldering this kind of chips requires

confidence and experience.

58

4.2.1 Interfaces and USB Port

The USB board uses a standard cable connected from one end to the USB port of the PC, and

from the other end to a standard type-B USB connector (this is the upstream port), in this

design the circuit of the I²C serial interface was not built, but this option could be added to

enable the user to access an I²C EEPROM, the UART port is embedded in the IC, in the

current design it is not used but the circuit can be built (see the schematic diagram) and

connected to the RS-232 port if needed.

4.2.2 Supplying Power to the Board

The TUSB3210 requires a power supply with the following rating:-

 Positive regulated 5 volts dc.

 The supplied current should be at least 0.5 amperes.

 Power can be supplied to the chip using two modes :

 Self-powered mode: in this mode an external switching 5 volts dc power supply

should be plugged into the input power socket (J1) on the board.

 Bus-powered mode: in this mode the board is supplied with a 5 dc volts via the USB

cable.

According to the data sheet two voltage rates should be generated from the supplied 5 volts

they are:-

 3.3 volts which is generated from the 5 volts using a voltage regulator (278R33).

 1.8 volts which is generated from the 3.3 volts using a voltage divider as in the

schematic diagram.

When the board is powered correctly (D4) should turn on.

59

4.2.3 Light Emitting Diodes (LEDs) Used.

The board contains “9” LEDs:

 D4: when this LED is on, this indicates that the board is powered and not suspended,

when it is off, the board is not powered or suspended.

 D5...D12: these LEDs are connected to port 1 of the microcontroller, they work as a

hypothetical device connected to the port to show the complement of the ports' output

and input bytes (the LEDs are connected in common anode configuration).

4.2.4 Jumpers

The following description may help the user to configure the board jumpers to the required

mode of operation, as explained before, the Firmware can be downloaded from the host to

the chips' RAM using a loading program supplied by the vendor or the Firmware can be

stored on an I²C EEPROM, the board can be powered from an external 5 Volts supply or

from the USB cable, following is a description of the jumpers used in the board :

 U2: this jumper is related to the board power mode, if it is set to position 2-3, the

board is self-powered from an external source, if it is set to position 1-2, the board

is bus-powered via the USB cable.

The following jumpers are not used in the current design, but if the user wishes to build the

circuit containing the jumpers, he should configure them properly :

 JP2: this jumper is related to the RS-232 circuit, when this jumper is set to connect

points 1 and 2, it connects P3.0 to R1OUT, when position 1-2 is off, it disconnects

P3.0 from R1OUT.

 JP3: this jumper is related to the RS-232 circuit, when this jumper is set to connect

points 1 and 2, it connects P3.1 to T1IN, when it is set to the off position, it

disconnects P3.1 from T1IN.

60

 JP4: this jumper is related to the MCU's UART, when it is set to connect point 1

and 2, it enables the RS-232 port, when it is set to the off position it disables the

RS-232 port.

4.3 Board Installation

After completing the construction and testing of the board we have two alternatives:

 If we have the Firmware downloaded to an EEPROM (not used in the current

design), we do not need any Windows Driver, and when connecting the board to the

USB port, it should be seen on the device manger as a HID device, if it appears as a

HID, it is ready to be used.

 If the Firmware is to be loaded from the host computer (Texas Instruments, 2003-d)

-as in the current design- , once the device is connected, Windows recognizes that a

new hardware is connected and will ask the user for the Device Driver, this file is

called TI Apploader Driver, it is available from Texas Instruments for downloading

from their site.

4.3.1 The INF File

It is a text file containing information that Windows requires to identify a USB device, this

file contains information that tells Windows what Driver to use and what information to store

in the registry (Axelson, 2005), this file is created by the TI Apploader Driver during its

installation, the INF file can be found in the \Windows\temp Directory, the developer

needs to change the name of the Firmware binary file, the name of the Firmware file can be

changed simply by replacing all the instances of that name in the INF file with the chosen

filename, then the Apploader Driver should be reinstalled again.

This file contains much information, the most important is the name of the Firmware binary

file that will be downloaded to the chips’ RAM, this piece of information is needed by the

Driver, the INF file should be copied the \WINDOWS\INF directory, the INF file has

different names depending on the Windows version, for example:

 On Windows 98SE it is named ”TIUPDatr.inf” .

61

 On Windows 2000, Windows ME and Windows XP it is named

“OEMxxx.INF ” where the “xxx ” is a system-generated incrementing number

(Texas Instruments, 2003-b).

As an example the INF file for the current board “TUSB3210.INF” is listed below.

; TI Application Firmware Loader Driver INF

;

;

; The .bin file listed under [SourceDisksFiles] and [DriverCopyFiles]

; AND referenced under the [DriverHwAddReg] section (These values

; MUST match) is the Bin file the driver will read and download to

; the device.

;

; To change the name of the file that will be downloaded to the

; device, not only change the value of the string 'FIRMWARE_FILENAME'

; at the bottom of this file, but also in [DriverCopyFiles] and

; [DriverHwAddReg] sections.

;

 [Version]

Signature=$CHICAGO$

Class=USB

LayoutFile=layout.inf

Provider=%MFGNAME%

[Manufacturer]

%MFGNAME%=DeviceList

;---

; Device directory

;---

[DestinationDirs]

DefaultDestDir=10,System32\Drivers

DriverCopyFiles = 10,SYSTEM32\DRIVERS ; WINDOWS\SYSTEM32\DRIVERS

 [SourceDisksFiles]

ApLoader.sys=1

%FIRMWARE_FILENAME%=1 ; This is the bin file that the driver

 ; will read and download to the device

[PreCopySection]

HKR,,NoSetupUI,,1

[SourceDisksNames]

1=%INSTDISK%,,,

[DeviceList]

%DESCRIPTION%=DriverInstall,USB\VID_0451&PID_2136

;--

; Windows 2000 Sections

;--

62

[DriverInstall.NT]

CopyFiles=DriverCopyFiles

[DriverCopyFiles]

ApLoader.SYS

TUSB3210.BIN

 [DriverInstall.NT.Services]

AddService=APLOADER,2,DriverService

 [DriverService]

ServiceType=1

StartType=3

ErrorControl=1

ServiceBinary=%10%\system32\drivers\ApLoader.sys

 [DriverInstall.nt.hw]

AddReg=DriverHwAddReg

[DriverHwAddReg]

HKR,,FWFileName,,"TUSB3210.BIN"

;--

; Windows 98 Sections

;--

[DriverInstall]

AddReg=DriverAddReg

CopyFiles=DriverCopyFiles

 [DriverAddReg]

HKR,,DevLoader,,*ntkern

HKR,,NTMPDriver,,ApLoader.sys

[DriverInstall.hw]

AddReg=DriverHwAddReg

;--

; String Definitions

;--

[Strings]

MFGNAME="Texas Instruments"

INSTDISK="TI TUSB3210 Application Firware Loader Install Disk"

DESCRIPTION="TI TUSB3210 Application Firmware Loader"

FIRMWARE_FILENAME="TUSB3210"

Notes:-

1- The name of the Firmware file that should be downloaded is listed under

[SourceDisksFiles] and [DriverInstall.NT] and referenced under

[DriverHwAddReg] section, the name of the Firmware file under these sections

must be the same (TUSB3210.bin) in the current design (Texas Instruments, 2003-b).

63

2- The INF file is configured to look for a particular “ *.bin ” file in the

\WINDOWS\SYSTEM32\DRIVERS directory, this file should be an absolute binary

file, if -as in the current design- we use the Keil Compiler to write the Firmware the “

*.bin ” file should be produced by the generated “ *.hex ” file using a special utility

called “ hex2bin.exe ”, this file after being produced should be placed in the above

mentioned directory (Texas Instruments, 2003-a).

3- The name of the firmware file can be changed simply by replacing all the instances

of that name in the INF file with the chosen filename, then reinstall the Apploader

Driver again (Texas Instruments, 2003-b).

4.3.2 The TI Apploader Driver

This is a Windows USB Device Driver, this driver enables the Firmware code written for the

TUSB3210 chip to be downloaded from the host computer to the chips' RAM on power up,

when the USB board built around the TUSB3210 is connected to the USB bus, Windows

associates it with this driver which downloads the Firmware code to the chip's RAM (Texas

Instruments, 2003-b).

To install the Apploader driver, and Setup the device the user should :

1- Download the Apploader Driver from the Texas Instruments web site (www.ti.com) .

2- The installation process should be done before the device (board) is connected to the

USB port, if the device is already attached to the USB bus and recognized by

Windows as “unknown hardware” the installation process should continue while

keeping the device attached to the bus.

3- To install the Apploader Driver just double click on the executable file and follow the

instructions of the Installation Wizard.

4- The file named 'TUSB3210.INF' should be copied to the Directory \Windows\inf

before attaching the device to the USB port on the PC.

64

5- The files named 'TUSB3210.bin' and 'Aploader.sys
10

' should be copied to the

Directory \Windows\system32\Drivers.

6- Attach the device to the USB port.

7- Follow the Wizard instructions to Setup the device.

Comments:

1- Before installing the Apploader, make sure that the EEPROM -if present- is not

connected to the chip pins.

2- To uninstall the driver go to the “add/ remove” programs in the Windows control

panel or run the install again (Texas Instruments, 2003-b).

10 This file is created by the Apploader Driver when installed and can be found in the Directory Windows\temp

65

C h a p t e r 5

TESTING, DISCUSSION, CONTRIBUTIONS AND FUTURE WORK

In this thesis a peripheral USB Interface Board was built, the Firmware and Host Application

software needed to operate the board were developed for a HID class device. Furthermore

the USB concepts were briefly introduced and a user manual was produced to help others to

build, install and use the board.

The design trajectory of this project was introduced which involves : choosing the suitable

controller chip, building the Interface Board, deciding what type of Device Driver should be

used to accomplish the communication process between the device connected to the chip's

port and the PC, developing the Firmware and the PC software codes, writing the user

manual for the board and finally verification and testing of the board and software.

This chapter presents conclusions and future work and highlights the main contributions.

This chapter is organized as follows : section 5.1 summarizes the main conclusions of this

thesis, section 5.2 introduces Testing the board and codes, section 5.3 introduces the

Discussion, section 5.4 presents the main contributions and section 5.5 introduces the

proposed future work.

5.1 Summary

Chapter 2 introduced an overview of USB concepts, this includes : comparing USB interface

to other popular interfaces, terms definition, Host (PC) and peripheral duties, developing

USB projects including the development tools and steps, how USB transfers data, USB

transfer types, USB descriptors, USB device requests and HID (Human Interface Device)

class devices. These concepts constitute the basis to understanding the USB communication

protocol which is essential for developing the Firmware and Host application software.

Chapter 3 introduced the USB Interface Board hardware and software, this includes : how to

choose the suitable chip for a USB project, a description of the TUSB3210 microcontroller

chip which was chosen to be the heart of the Board, why choosing this chip and a detailed

66

description of the files of both the Firmware and the Host application software developed to

operate the board.

Chapter 4 presented the Board's User Manual which includes : the hardware and software

required for building and operating the USB interface, building steps of the board and its

installation process.

5.2 Testing the Board and Codes

To test the board several alternatives exists, using free software tools such as the HidTest,

using a protocol analyzer and other tools. the built board and its codes were tested using the

HidTest program
11

, and passes the tests, the best test for such a board is to use a protocol

analyzer, but unfortunately the analyzer is not available, instead LEDs are used to watch the

data transfer between the device and the host, this test if succeeded indicates the success of

the enumeration processes and the data transfer protocol.

The Board was tested on a simple application which consists of "8" LEDs connected to port

one of the microcontroller chip, when the board is connected to the PC USB port, the PC

enumerates the board successfully, several bytes were sent from the PC to the board and

received successfully on port 1, one byte was sent from port 1 to the host, the byte was

received successfully, the board is capable of receiving and transmitting 64 bytes reports, this

limitation on the number of data bytes sent and received is just for testing purposes.

The fact that we managed to send / receive data from/to the host implies that the data

exchange process between the host and the board is successful; this indicates that the

Hardware, Firmware and Host software are functioning as required.

5.3 Discussion

The board was built according to a ready made schematic provided by Texas Instruments,

the board was built with some modifications on the diagram, these modifications include :

11 For more details see Chapter 2, Device Testing section

67

 Changing the tiny surface mounted voltage regulator (TPS76333DBV) with the DIP

mounted voltage regulator (278R33), this regulator converts 5 volts dc to 3.3 volts.

 Changing the tiny surface mounted transistors (MMBT4401,MMBT4403) with

normal package transistors (2N2222A,2N4403).

 Additional circuit was added for testing the board, this circuit consists of 8 LEDs

connected through current limiting resistors to port1's pins, this circuit is used to

show the data exchange between the host and the board.

These changes simplifies the soldering and testing of the components on the board, the

board's hardware is supposed to be generic in the sense that it allows access to all the GPIO

pins of the microcontroller chip, the board's hardware functions exactly as planned.

The Board's schematic diagram is simple and includes a limited number of components, as a

result building the board is not tedious, the board's Hardware costs about 30$, this is a low

cost compared to the ready made board's cost of 199$.

The board's hardware could not be evaluated without the Firmware and the PC software

codes, these codes were developed simultaneously, in order to develop the codes, the

developer should have expertise in programming and software tools to enable him to write,

compile, run and debug the codes, also codes samples could be of great help if available, the

Firmware was developed using the Keil C51 package and Delphi 7 package was used to

develop the PC software.

The developed Firmware code is generic and could be used by other developers to develop

their own applications, this adds to the generic property of the hardware, on the other hand,

the PC software is supposed to be generic also, it is somehow generic because it allows data

to be exchanged between the PC and the board, but the user could not write to or read from

the port he chooses, instead he can access only port "1"of the microcontroller, to enable the

user to access any port ,Dynamic Link Libraries (DLLs) should be included in the software,

unfortunately DLLs were not included due to lack of time, despite this fact, the board –as it

is- can be used to develop several applications such as Barcode Reader, Flash Memory

68

Reader and General Purpose Controller, to implement these applications the developer

should change the contents of some files as explained in section 5.5 .

Because the human Interface Device (HID) Driver included with Windows was used as the

Device Driver of the PC software, data transfer rate is limited to a maximum of 64 Kbytes

per second , this rate is relatively low compared to the Full speed transfer rate of 12 Mbits

per second, this limitation is justified because we avoid the processes of writing a special

Device Driver which is time consuming and requires big investment in tools, despite this

limitation, the board is suitable to communicate with several HID applications.

The board's developed Firmware allow any USB HID enabled operating system to directly

access the board, this includes Windows 98 and later Windows versions, MacOS,

Unix/Linux, so I expect that when the board is attached to the USB port of any of these

systems, it will be enumerated, when it comes to the way the user can access the board from

the PC side, every operation system has its own API (Application Programmer's Interface)

functions, in the current application, the host application software uses Win32 API functions,

these functions can access devices running under Windows, so I expect that the board with

the current application can't run under operating systems other than Windows, instead each

operating system should have its own PC host application in order to access the board, the

board was tested under Windows only.

5.4 Main Contributions

The ultimate objectives of this thesis are to build a Full speed USB Input/Output Interface

Board, to develop the software codes needed to operate the board and to provide a user

manual for the board, the board is assumed to be generic in away that enables users to access

any of the board's ports.

The main contributions of this thesis can be summarized as follows :

 The design trajectory was presented and was followed in the next stages.

69

 Several decisions were taken concerning the suitable microcontroller chip, the

Device Driver and the development tools needed to build and operate the Board,

these decisions were based on obtaining the simplest, cheapest and efficient design.

 The Interface Board was built according to a schematic diagram provided by the

chip's vendor.

 The Firmware code and the Host application software needed to operate the Board

were developed for a HID class device using the suitable tools.

 A user manual describing how, install and operate the Board was produced.

 The Board and the codes were verified and tested in accordance with HID

specifications.

Unfortunately the USB Full speed (12 Mbps) did not be achieved because the HID device

driver was used which limits the transfer rate to a maximum of 64 KBytes per second, also

the user can access only port one of the board because DLLs were not included in the

developed codes due to lack of time, despite these limitations a HID board has been built, the

Firmware and PC software were developed and a user manual was provided.

5.5 Future Work

The built Board and the developed codes are supposed to be generic, this means that other

developers may use the board and the codes to develop several applications, the codes may

or may not need some modifications depending on the specific application design, these

modifications should include :

 The PC software : the data exchange procedures should be changed, these functions

include : WriteBufferToDevice, SendDataPacketToDevice and HidData .

 The Firmware : All the protocol functions should not be changed, only the data

exchange functions should be changed, these functions are included in the following

files : Prog.c, Application.c and the corresponding header files, also the report

70

descriptor in the descriptor.h file has to be changed to cope with the new application

data format.

I hope some body will develop the codes to include DLLs, this will enable users to access all

the board's ports and narrow the gap between this product and the available similar

commercial products.

Writing a custom Device Driver which enables using any of the four transfer types (instead

of control and interrupt transfers in the HID device which limits the transfer rate) will

enhance the board capabilities by obtaining almost the full speed transfer rate (12

Megabits/sec), this requires modifying the codes in order to cope with the new driver

requirements.

The idea of building the board and developing the Firmware and host application codes can

be followed to design a board and codes for the high-speed microcontroller chip TUSB6250

from Texas Instruments, this process requires changing some header files like tusb3210.h,

usb.h and descriptor.h and some other minor modifications according to data sheets, using

the HID Device Driver with the TUSB6250 gives a transfer rate of 24.576 Megabytes/sec,

this rate is suitable for applications like the e-learning.

71

REFERENCES

Axelson, J., (2005) : USB Complete, Third edition, Lakeview Research LLC, USA.

Borland Software Corporation (2002): Borland Delphi7 Enterprise.

(http:// www.borland.com).

Compaq Computer Corporation, Intel Corporation, Microsoft Corporation, NEC

Corporation (1998): Universal Serial Bus Specification, Release 1.1.

(http:// www.USB.org).

Keil Electronik GmbH/Keil Software, Inc. (2003): uvision2, Version 2.4.

(http:// www.Keil.com).

Marquerdt R. (2004): HID Component, Version 1.1, project JEDI.

(http:// www.delphi-jedi.org).

Peacock, C. (2002) : USB in a nutshell, third release, beyondlogic organization.

(http:// www.beyondlogic.org).

Texas Instruments (2001-a): TUSB2130 Boot Code Document for USB to General
Purpose Device Controller (SLLU025A).

(http:// www.TI.com).

Texas Instruments (2001-b): TUSB3210 Generic Evaluation Board (SLLU031).

(http:// www.TI.com).

Texas Instruments (2003-a): TI Application Firmware Loader Driver INF.

(http:// www.TI.com).

Texas Instruments (2003-b): TI Apploader Driver (SLLC 160).

(http:// www.TI.com).

Texas Instruments (2003-c): TUSB3210 Universal Serial Bus General Purpose Device

Controller (SLLS 466B).

(http:// www.TI.com).

Texas Instruments (2003-d): VIDs, PIDs, and Firmware (Design Decisions when Using TI
USB Device Controllers) – SLLA 154 .

(http:// www.TI.com).

Texas Instruments (2004): TUSB2136/TUSB3210/TUSB5052 USB Firmware

Programming Flow 8052 Embedded (SLLU020A), Revision A .

(http:// www.TI.com).

http://www.borland.com/
http://www.usb.org/
http://www.keil.com/
http://www.delphi-jedi.org/
http://www.beyondlogic.org/
http://www.ti.com/
http://www.ti.com/
http://www.ti.com/
http://www.ti.com/
http://www.ti.com/
http://www.ti.com/
http://www.ti.com/

72

Universal Serial Bus (2001): Device Class Specification for Human Interface Devices

(HID), Firmware specification, Version (1.11).

(http:// www.USB.org).

Vault Information Services LLC (2004) : The 8052 Tutorial & Reference, Version (1.0).

(http:// www.8052.com).

Texas Instruments (2000) : TUSB2136 Generic Keyboard Demo Program, USA.

(http://www.TI.com).

SCO Group Inc. (2005) : Developing Device Driver, USA.

(http:// www.sco.com).

http://www.usb.org/
http://www.8052.com/
http://www.ti.com/
http://www.sco.com/

73

APPENDIX A

 USB Transfer Types

A.1 Control Transfers.

Control transfers are typically used to:-

a) Carry the host requests needed for configuration of the device to the device so that

the host enumerates the device.

b) Transfer small amounts of data.

All USB devices must support control transfers, this is done over the default pipe at

Endpoint 0, control transfers are initiated by the host and can have up to three stages:

 The setup stage : It consists of three packets:-

1. The setup token packet which contains the address and the endpoint number.

2. The data packet which always has a PID type of DATA 0, and it includes a

setup packet which tells the request type.

3. The handshake packet is the last packet to send, this packet is used to report the

successful or failure of the transaction, if the device receives successfully the

setup data it returns ACK otherwise the data is ignored and no handshake packet

is send as shown in figure (A.1) (Peacock, 2002) .

Figure A.1: The setup stage (Peacock, 2002).

74

 The Data Stage : This stage is optional, it consists of one or more IN or OUT

transactions, the setup request contains the size of data to be transmitted, if the size

of data exceeds the maximum packet size, another packet is transmitted which has

the maximum packet size, until the end of data, the last packet may or may not has

the maximum packet size, depending on the direction of data transfer the data stage

has two alternatives :

A- IN : the host issues an IN token, when the device receives the IN token:-

1. It ignores the packet if there is an error in the IN token.

2. If the IN token was received correctly , it replay with a DATA packet

containing the control data to be sent or a STALL packet indicating that the

endpoint is not functioning or a NAK packet indicating that the endpoint has no

data to send at this time. Figure (A.2) shows details (Peacock, 2002).

Figure A.2: IN and OUT token packets in a data stage (Peacock, 2002).

B- OUT: when the host sends a control data packet to the device, it sends an

out token , then a data packet containing the control data as in figure (A.2) above.

1. If the OUT token or the data packet is not received correctly, the device

ignores the packet.

75

2. If the device endpoint has received the data it issues an ACK informing the

host that the transfer process was successful.

3. If the device endpoint is not ready to receive the data, the device issues a

NAK.

4. If the endpoint is not functioning, the device returns a STALL.

 The status stage: In this stage the device issues a signal indicating the status of the

overall request, this depends on the direction of the transfer :

A- IN: If the host has sent an IN token during the data stage, it should acknowledge the

successful reception of data, this is done by sending an OUT token and then a zero

length data packet, if the device issues an ACK, this means that the device has

completed the last job and is now ready to do the next job, if an error occurs, the device

issues a STALL, however if the device is still processing data, it issues a NAK

informing the host to repeat the status stage later , this is shown in figure (A.3)

(Peacock, 2002).

Figure A.3: The status stage, OUT token (Peacock, 2002).

B- OUT: if the host has sent an OUT token during the data stage.

1. If the data was received correctly, the device sends a zero length packet in

response to an IN token.

2. If an error occurs, the device sends a STALL or a NAK if it is processing data,

informing the host to repeat the status stage later. Figure (A.4) shows this case.

76

Figure A.4: The status stage, IN token (Peacock, 2002).

Data size:

The maximum data packet size for a low speed device is 8 bytes, for a full speed device the

maximum may be 8, 16, 32, or 64 bytes, all data packets except the last one must have the

maximum packet size, the host reads the maximum packet size from the device descriptor

during enumeration.

Speed:

It is the amount of data that each transfer type can move, it depends on the speed of the

device. Table (A.1) shows a comparison between the three speeds.

Table A.1: The maximum data transfer rate as related to transfer type

and bus speed (Axelson, 2005).

Transfer Type Maximum data-transfer rate per endpoint

(kilobytes/second with data payload/transfer = maximum

packet size for the speed)

Low Speed Full Speed High Speed

Control 24 832 15,872

Interrupt 0.8 64 24,576

Bulk Not allowed 1216 53,248

isochronous 1023 24,576

77

A.2 Interrupt Transfers

Interrupt transfers are useful when data has to be transferred within a specific amount of

time; typical applications are keyboards, joysticks and mice. Interrupt transfers are

popular because Windows includes drivers that enable applications to use interrupt

transfers with devices that conform to the HID specification, usually interrupts are device

generated, under USB if a device requires a service from the host, it must wait until the

host polls it asking for data before it can report that it needs urgent attention, this type of

transfer has two stages:

 Interrupt IN stage:

In this stage the host polls periodically the interrupt endpoint, the endpoint

descriptor contains the polling rate, each poll requires the host to send an IN token,

if the IN token is not received correctly, the device ignores the packet and wait for

new tokens.

Figure (A.5 upper part) shows the format of an IN transaction.

Figure A.5: Interrupt transfer, IN and OUT transactions format (Peacock, 2002).

78

 Interrupt OUT stage:

In this stage the host issues an OUT token to send the interrupt data to the device,

following the OUT token it sends a data packet containing the interrupt data, the

device ignores the data if the OUT token or the data packet is corrupted.

1. The device issues ACK if the endpoint received the data successfully.

2. The device returns an NAK if the endpoint is busy in processing a previous

packet.

3. The device return a STALL if the endpoint is not functioning.

Fig (A.5 lower part) above shows the format of an OUT transaction

Data size:

 For low-speed devices the maximum packet size ranges from 1 to 8 bytes, for full speed

devices the maximum size ranges from 1 to 64 bytes, while for high speed device, it ranges

from 1 to 1024 bytes.

Speed:

For low speed transfers, the transfer rate is 800 bytes per second, for full-speed transfers , the

rate is 64-kilo bytes per second, while for high-speed transfers; it is 24.576 Megabytes per

second.

A.3 Isochronous Transfers

In this type of transfer, transfers occur continuously and periodically, data contained

within the packet is typically time sensitive information, such as an audio or video

stream, in isochronous transfers, there is no provision for retransmitting data received

with errors.

79

When using isochronous transfers the following are provided (Peacock, 2002):

1. Guaranteed access to USB bandwidth.

2. Bounded latency.

3. Unidirectional stream pipe.

4. Error detection via CRC, but no retry or guarantee of delivery.

5. Used with full and high speeds only.

6. No data toggling.

Figure (A.6) below (Peacock, 2002), shows the format of an isochronous IN and OUT

transactions. Since isochronous transfers can't retransmit data received with errors, there is

no need for a handshake stage or error reporting.

Figure A.6: Isochronous transfers, IN and OUT formats (Peacock, 2002)

Data Size:

For full speed endpoints, the maximum packet size ranges from 0 to 1023 bytes, for high

speed endpoints, the maximum packet size could be 1024 bytes.

Speed:

A full speed transaction can transfer up to 1.023 Megabytes per second, while a high speed

transaction has a transfer rate of 24.576 Megabytes per second.

80

A.4 Bulk Transfers

Bulk transfers can send large amounts of data when time is not critical, typical uses

include, sending data from host to printer and reading and writing to a disk. Bulk

transfers provide error correction in the form of a CRC16 field and error detection and

re-transition ensuring data is transmitted and received correctly and without errors, if

the USB bus is busy while trying to send bulk data, the data may slowly and gradually

go over the bus, this means that bulk transfers should only be used for time insensitive

communication, because there is no guarantee of latency.

In particular bulk transfers have the following properties (Peacock, 2002):-

1. Can be used to transfer large amounts of data.

2. Provide error correction via CRC with guarantee of delivery.

3. No guarantee of bandwidth or minimum latency.

4. Used with full and high speed transfers only.

Figure (A.7) below shows the format of a bulk IN and OUT transaction.

Figure A.7: Bulk transaction, IN and OUT formats (Peacock, 2002).

81

A- IN: The host issues an IN token indicating that it is ready to receive bulk data.

1. If the device receives the Token data with an error, it ignores the packet.

2. If the data was received correctly, the device sends an ACK, or a STALL packet

indicating an error in the endpoint or a NAK packet indicating that the endpoint

is busy in processing a previous packet.

B- OUT: When the host wants to send a bulk data packet to the device, it issues an OUT

token and a data packet containing the bulk data immediately after the token:

1. If the OUT token or the data packet is not received correctly the device

ignores the packet.

2. If the token was received correctly, the device sends a DATA packet

containing the bulk data, or a STALL packet indicating that the endpoint is

not functioning, or a NAK packet informing the host that the endpoint is

functioning, but has no data to send at this time.

Data size:

A full speed bulk transfer has a maximum packet size of 8, 16, and 32 or 64 bytes, while for

high speed, the maximum packet size is 512 bytes, the host reads the maximum packet size

from the device's descriptor during the enumeration process.

Speed:

For full-speed bulk transfers the transfer rate is 1.216 Megabytes per second, while high-

speed transfers have a transfer rate of 53.248 Megabytes per second.

82

APPENDIX B

B.1 USB Descriptors

B.1.1 Device Descriptor

The device descriptor is the first descriptor the host reads immediately after the attachment

of the device, a USB device can have one device descriptor, this descriptor presents the

entire device, it includes the information needed by the host such as the supported USB

version, maximum packet size, Vender and product IDs and the number of possible

configurations the device can have .Table (B.1) shows the format of the device descriptor

(Compaq, Intel, Microsoft, NEC, 1998).

Table B.1: Format of the device descriptor (Compaq, Intel, Microsoft, NEC, 1998).

Offset Field Size Value Description

0 bLength 1 Number Size of the Descriptor in Bytes (18 bytes)

1 bDescriptorType 1 Constant Device Descriptor (0x01)

2 bcdUSB 2 BCD USB Specification Number which device

complies to.

4 bDeviceClass 1 Class Class Code (Assigned by USB Org) If

equal to Zero, each interface specifies its

own class code, If equal to 0xFF, the class

code is vendor specified. Otherwise field is

valid Class Code.

5 bDeviceSubClass 1 Subclass Subclass Code (Assigned by USB Org)

6 bDeviceProtocol 1 Protocol Protocol Code (Assigned by USB Org)

7 bMaxPacketSize 1 Number Maximum Packet Size for Zero Endpoint.

Valid Sizes are 8, 16, 32, 64

8 idVendor 2 ID Vendor ID (Assigned by USB Org)

10 idProduct 2 ID Product ID (Assigned by Manufacturer)

12 bcdDevice 2 BCD Device Release Number

14 iManufacturer 1 Index Index of Manufacturer String Descriptor

15 iProduct 1 Index Index of Product String Descriptor

16 iSerialNumber 1 Index Index of Serial Number String Descriptor

17 bNumConfigurations 1 Integer Number of Possible Configurations

83

 bcdUSB, the highest version of USB the device supports, the value is in binary –

coded – decimal (BCD) format, the format of this field is 0xJJMN where JJ is the

major version number, M is the minor and N is the sub minor, example: USB 1.1 is

represented as 0x0110.

 bDeviceClass, bDeviceSubClass and bDeviceProtocol: used by the operating system

to find a suitable device driver for the attached device, if we set bDeviceClass to be

(0x00), this means that one device supports multiple classes.

 bMaxPacketSize : this field gives the maximum packet size for endpoint zero which

all devices should support.

 idVender : the device descriptor for every commercial USB product must have a

vender ID, usually this value should be written in the host INF file and if so,

Windows uses this value to find a suitable devise driver for the device.

 idProduct : same as idVender above.

 bcdDevice : used to provide the device version number assigned by the developer,

this field has the same format as the bcdUSB field.

 iManufacturer : this is an index which points to a string describing the manufacture,

if unused; it should be set to zero.

 iProduct : an index pointing, to a string describing the product, if unused, it should

be set to zero.

 iSerialNumber : an index pointing to string describing the serial number of the

product, if unused, should be set to zero.

 bNumConfigurations : the number of configurations the device supports.

84

B.1.2 Configuration Descriptor

Each USB device can have at least one configuration descriptor, the descriptor describes the

device's features and abilities, usually one configuration is enough, but some devices support

multiple configurations for multiple uses, the configuration descriptor contains information

on the following :

 How the device is powered (bus or mains powered).

 The maximum power consumption of the device.

 The number of interfaces.

After receiving the device descriptor, the host issues requests to receive the device's

configuration, the interface and endpoint descriptors, then the host issues a SetConfiguration

command with a value that matches the bConfiguration value of one configuration, by doing so

the host selects the desired configuration. Table (B.2) below shows the fields of the

configuration descriptor (Compaq, Intel, Microsoft, NEC, 1998).

Table B.2: Configuration descriptor fields (Compaq, Intel, Microsoft, NEC, 1998).

Offset Field Size Value Description

0 bLength 1 Number Size of Descriptor in Bytes

1 bDescriptorType 1 Constant Configuration Descriptor (0x02)

2 wTotalLength 2 Number Total length in bytes of data returned

4 bNumInterfaces 1 Number Number of Interfaces

5 bConfigurationValue 1 Number Value to use as an argument to select

this configuration

6 iConfiguration 1 Index Index of String Descriptor describing

this configuration

7 bmAttributes 1 Bitmap D7 Reserved, set to 1. (USB 1.0 Bus

Powered)

D6 Self Powered

D5 Remote Wakeup

D4...0 Reserved, set to 0.

8 bMaxPower 1 mA Maximum Power Consumption in

2mA units

85

 bLength : the length of the descriptor in bytes.

 bDescriptorType : the constant Configuration (0x02).

 wTotalLength : the total length of data (in bytes) that the device returns.

 bNumberInterfaces : gives the number of interfaces the configuration supports, the

minimum number is “1”.

 bConfigurationValue : used by the SetConfiguration request to identify the

configuration.

 iConfiguration : this is an optional field, it is an index to a string descriptor that

describes the configuration.

 bmAttributes : this field contains information about the way the device is powered. If

bit 6=1 then the device is self-powered, if bit 5=1, the device supports remote

wakeup feature, bit 6=0 the device is bus- powered in USB 1.1 and higher, bits (0-4)

= 0, bit 7=1.

 bMaxPower : this field specifies how much current a device requires, the value of

max power is equal to half the number of milli-amperes the device requires , for

example : if the device needs 200 milli-amperes then bMaxPower = 100, the

maximum power the device can drain from the bus should not exceed 500 mA

according to specifications.

B.1.3 Interface Descriptor

Interface is a set of Endpoints used by a device feature or function, the configuration

interface descriptor contains information about the endpoints supported by the interface, each

interface has an interface descriptor and a secondary endpoint descriptor for each endpoint

supported by the interface. The interface descriptor conforms to the format shown in table

(B.3) below (Peacock, 2002).

86

Table B.3: Format of the interface descriptor (Peacock, 2002).

Offset Field Size Value Description

0 bLength 1 Number Size of Descriptor in Bytes (9 Bytes)

1 bDescriptorType 1 Constant Interface Descriptor (0x04)

2 bInterfaceNumber 1 Number Number of Interface

3 bAlternateSetting 1 Number Value used to select alternative

setting

4 bNumEndpoints 1 Number Number of Endpoints used for this

interface

5 bInterfaceClass 1 Class Class Code (Assigned by USB Org)

6 bInterfaceSubClass 1 SubClass Subclass Code (Assigned by USB

Org)

7 bInterfaceProtocol 1 Protocol Protocol Code (Assigned by USB

Org)

8 iInterface 1 Index Index of String Descriptor

Describing this interface

 bLength : the length of the descriptor (in bytes).

 bDescriptorType : the constant Interface (0x04).

 bInterfaceNumber : this field is an index which identifies the interface, each

interface must have a descriptor with unique bInterfaceNumber, the default value for

this field is zero.

 bAlternateSetting : the field could be used to specify alternative interfaces, the

default value of this field is zero.

 bNumberEndpoints : the number of endpoints supported by the interface excluding

Endpoint zero. For devices that support endpoint zero only, the value of this field is

zero.

 bInterfaceClass, bInterfaceSubClass and bInterfaceProtocol : these fields are used to

specify supported classes such as HID and mass storage, this facility eliminates the

need to write specific device drivers for the device and instead use class drivers.

87

 iInterface : this field contains an index to a string that describes the interface.

B.1.4 Endpoint Descriptors

Every endpoint mentioned in the interface descriptor has its endpoint descriptor except

endpoint zero, which has no descriptor and every device must support it since it is a control

endpoint and is configured before requesting any descriptors, the information contained in

the endpoint descriptors are used by the host to determine the bandwidth requirements of the

device (Peacock, 2002) .

The endpoint descriptor conforms to the format shown in table (B.4) below.

Table B.4: Format of the endpoint descriptor (Peacock, 2002).

Offset Field Size Value Description

0 bLength 1 Number Size of Descriptor in Bytes (7 bytes)

1 bDescriptorType 1 Constant Endpoint Descriptor (0x05)

2 bEndpointAddress 1 Endpoint Endpoint Address

Bits 0...3b Endpoint Number.

Bits 4...6b Reserved. Set to Zero

Bit 7 Direction 0 = Out, 1 = In (Ignored for

Control Endpoint)

3 bmAttributes 1 Bitmap Bits 0..1 Transfer Type

00 = Control

01 = Isochronous

10 = Bulk

11 = Interrupt

Bits 2..7 are reserved. If Isochronous

endpoint,

Bits 3..2 = Synchronisation Type (Iso

Mode)

00 = No Synchonisation

01 = Asynchronous

10 = Adaptive

11 = Synchronous

88

Offset Field Size Value Description

Bits 5..4 = Usage Type (Iso Mode)

00 = Data Endpoint

01 = Feedback Endpoint

10 = Explicit Feedback Data

Endpoint

11 = Reserved

4 wMaxPacketSize 2 Number Maximum Packet Size this endpoint is

capable of sending or receiving

6 bInterval 1 Number Interval for polling endpoint data transfers.

Value in frame counts. Ignored for Bulk &

Control Endpoints. Isochronous must equal

1 and field may range from 1 to 255 for

interrupt endpoints.

 bEndpointAddress : this field indicates the endpoint number and direction.

 bmAttribute : this field specifies the type of transfer the endpoint supports.

 wMaxPacketSize : this field indicates the maximum number of data bytes the

endpoint can transfer in a transaction.

 bInterval : this field is used to specify the polling interval of certain transfers.

B.1.5 String Descriptors

 String descriptors are optional, they contain descriptive text such as : the device

manufacture, product and serial number, if the developer did not use these descriptors, he

should set to zero any string index fields of the descriptors, this means that string descriptors

are not used.

 Table (B.5) (Peacock, 2002) shows the format of String Descriptor Zero, this descriptor is

read by the host to determine what languages are available, if a language is supported, it is

referenced by sending the language ID in the wIndex field of a Get-Descriptor (string)

request (Peacock, 2002).

89

Table B.5: The format of string descriptor zero (Peacock, 2002) .

Offset Field Size Value Description

0 bLength 1 Number Size of Descriptor in Bytes

1 bDescriptorType 1 Constant String Descriptor (0x03)

2 wLANGID[0] 2 number Supported Language Code Zero

(e.g. 0x0409 English - United States)

4 wLANGID[1] 2 number Supported Language Code One

(e.g. 0x0c09 English - Australian)

n wLANGID[x] 2 number Supported Language Code x

(e.g. 0x0407 German - Standard)

All subsequent strings conform to the format shown in table (B.6) below.

Table B.6: Format of all subsequent strings (Peacock, 2002).

Offset Field Size Value Description

0 bLength 1 Number Size of Descriptor in Bytes

1 bDescriptorType 1 Constant String Descriptor (0x03)

2 bString n Unicode Unicode Encoded String

B.2 USB standard requests

There are three requests :

1. Device Requests

All devices must respond to standard requests, table (B.7) below summarizes USB 1.1

standard device requests (Peacock, 2002,Compaq, Intel, Microsoft and NEC, 1998).

90

Table B.7: USB 1.1 standard device requests (Peacock, 2002,Compaq, Intel, Microsoft

and NEC, 1998).

bmRequestType bRequest wValue wIndex wLength

(Byte)

Data

1000 0000b GET_STATUS (0x00) Zero Zero Two Device Status

0000 0000b CLEAR_FEATURE

(0x01)

Feature

Selector

Zero Zero None

0000 0000b SET_FEATURE (0x03) Feature

Selector

Zero Zero None

0000 0000b SET_ADDRESS (0x05) Device

Address

Zero Zero None

1000 0000b GET_DESCRIPTOR

(0x06)

Descriptor

Type & Index

Zero or

Language

ID

Descriptor

Length

Descriptor

0000 0000b SET_DESCRIPTOR

(0x07)

Descriptor

Type & Index

Zero or

Language

ID

Descriptor

Length

Descriptor

1000 0000b GET_CONFIGURATION

(0x08)

Zero Zero 1 Configuration

Value

0000 0000b SET_CONFIGURATION

(0x09)

Configuration

Value

Zero Zero None

 Get Status : this request is directed to the device, the host requests information about

the device, the device responds by sending a data packet, the information needed are

contained in D0 and D1 of the 16 bits packet, the packet has the format shown below

in Figure (B.1)(Peacock, 2002,Compaq, Intel, Microsoft and NEC, 1998).

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

Reserved Remote

Wakeup

Self

Powered

Figure B.1: Data packet format sent by the device in response to a Get

Status request (Peacock, 2002,Compaq, Intel, Microsoft and NEC, 1998).

- Bit ”0” (Do) is the Self-Powered field : 0 = bus-powered, 1 = self powered.

91

- Bit “1” (D1) is the Remote Wakeup field : default on reset is “0” (disabled) .

- All other bits are reserved.

For endpoint requests, only bit “0” is defined:-

- Bit 0 = 1 indicates a HALT condition.

 Set Feature : using this field the host requests to enable a feature on a device,

interface or endpoint, the USB specification defines two features:

- DEVICE-REOMOTE-WAKEUP : when set by the host, a suspended device signals

the host to resume communications.

- ENDPOINT – HALT : with a value of zero.

 Clear Feature : using this field the host requests to disable a feature on a device,

interface or endpoint, the USB specification defines two features.

- DEVICE-REMOTE-WAKEUP : with a value of “1”, applies to device.

- ENDPOINT-HALT : with a value of zero applies to endpoint.

 Set Address : this field is used during the enumeration process, it is used to give a

unique address to the device, the address is specified in the wValue field. 'this

request is unlike most other requests because the device doesn’t carry out the request

until it has completed the status stage of the request by sending a 0-length data

packet' (Axelson, 2005), before this the device is assigned address 0, after the

completion of Set Address, it will be assigned an address other than “0”.

 Set Descriptor : this field is used by the host to add a descriptor or update an existing

descriptor, this request enables the host to add descriptors different from those in the

Firmware, or to change existing descriptors.

 Get Descriptor : this field is used by the host to request a specific descriptor, when

the host sends a request for a configuration descriptor -for example- , the device

92

responds by returning the configuration descriptor and all interface descriptors for

that configuration and all endpoint descriptors for the interface.

 Set Configuration : this field is used to set the device configuration, at the end of a

Set Configuration request, the device enters the configuration state.

 Get Configuration : this field enables the host to request the value of the current

device configuration.

2. Interface Requests

According to USB specification, there are five standard interface requests, table (B.8) below

shows details.

Table B.8: Standard interface requests (Peacock, 2002) .

bmRequestType bRequest wValue wIndex wLength Data

1000 0001b GET_STATUS

(0x00)

Zero Interface Two Interface

Status

0000 0001b CLEAR_FEATURE

(0x01)

Feature

Selector

Interface Zero None

0000 0001b SET_FEATURE

(0x03)

Feature

Selector

Interface Zero None

1000 0001b GET_INTERFACE

(0x0A)

Zero Interface One Alternate

Interface

0000 0001b SET_INTERFACE

(0x0B)

Alternative

Setting

Interface Zero None

 wIndex : is used to specify the referring interface for requests directed to the

interface, the format of this field is shown below in figure (B.2) (Peacock, 2002),

this field is used by the host.

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

Reserved Interface Number

Figure B. 2: The format of the wIndex Field used by the host (Peacock, 2002).

93

 Get Status : is used to return the status of the interface.

 Clear Feature : used to request to disable an interface feature, according to

specification, we have no interface features.

 Set Feature : this field is used by the host to enable an interface feature .

 Get Interface : devices with configurations that support multiple settings for an

interface are requested by the host to send the current setting .

 Set Interface : devices with configurations that support multiple settings for an

interface are requested by the host to use a specific setting.

3. Endpoint requests

The details of these requests (Peacock, 2002) are shown in table (B.9).

Table B.9: Details of standard endpoint requests (Peacock, 2002).

bmRequestType bRequest wValue wIndex wLength Data

1000 0010b GET_STATUS

(0x00)

Zero Endpoint Two Endpoint

Status

0000 0010b CLEAR_FEATURE

(0x01)

Feature

Selector

Endpoint Zero None

0000 0010b SET_FEATURE

(0x03)

Feature

Selector

Endpoint Zero None

1000 0010b SYNCH_FRAME

(0x12)

Zero Endpoint Two FrameNumber

 wIndex : is used to specify the referring endpoint and direction for requests directed

to an endpoint, the format of this field is as shown below in figure (B.3) (Peacock,

2002).

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

Reserved Dir Reserved Endpoint Number

Figure B. 3: The format of the wIndex field (Peacock, 2002).

94

 Get Status : the host requests the status of an endpoint , the contents of this field are

two bytes indicating the endpoint status (HALT/STALL) , the format of these two

bytes are shown below in figure (B.4) (Peacock, 2002).

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

Reserved Halt

Figure B. 4: The format of the get status field (Peacock, 2002).

 Clear Feature : the host requests to disable an endpoint feature, the USB

specification defines one feature applies to endpoints, which is ENDPOINT-HALT

with a value of zero.

 Set Feature : the endpoint is requested to set or enable a feature by the host, USB

specification defines one feature applies to endpoints, which is ENDPOINT-HALT

with a value of zero.

 Synch Frame : the device reports an endpoint synchronization frame .

95

APPENDIX C

C.1 HIDs Descriptors

A HID class device uses the following standard USB descriptors.

 Device.

 Configuration.

 Interface.

 Endpoint.

 The interface descriptor is of special importance in writing Firmware for a HID device since

it is the descriptor where the device is defined as a HID, this is done by setting the class –

code byte in the interface descriptor to “3” to define the device as a HID.

The HID class devices use the following Class-Specific descriptors in addition to the

standard descriptors:

 HID.

 Report.

 Physical.

C.1.1 HID Class Descriptor.

The main purpose of this descriptor is to identify the length of the descriptor and additional

descriptors to be used in HID communications, this descriptor has at least seven or more

fields, table (C.1) shows details (Universal Serial Bus, 2001).

96

Table C.1: Fields of a HID class descriptor (Universal Serial Bus, 2001).

Offset

(decimal)

Field Size

(bytes)

description

0 bLenght 1 Descriptor size in bytes

1 bDescriptorType 1 21h indicates the HID class

2 bcdHID 2 HID specification release number (BCD)

4 bCountryCode 1 Numeric expression identifying the country

for localized hardware (BCD)

5 bNumDescriptors 1 Number of subordinate class descriptors

supported

6 bDescriptorType 1 The type of class descriptor

7 wDescriptorLength 2 Total length of report descriptor

9 bDescriptorType 1 Constant identifying the type of descriptor.

Optional, for devices with more than one

descriptor.

10 wDescriptorLength 2 Total length of descriptor. Optional, for

devices with more than one descriptor. May

be followed by additional bDescriptorType

and wDescriptorLength fields.

- bLength : descriptor length in bytes.

- bDescriptorType : constant (0x21) specifying the HID class.

- bcdHID : a binary coded decimal numeric expression identifying the HID version,

example : version 1.1 is (0110 h).

- bCountryCode : a code identifying the country if the device is localized, if not the

value in this field is (00 h).

- bNumDescriptors : a number identifying the number of class descriptors, this value

should be at least 1 (report descriptor).

- bDescriptorType : report or physical descriptor, a HID must support at least one

report descriptor.

- wDescriptorLength : length of descriptor specified in the previous field.

97

- bDescriptorType, wDescriptorLength : these fields identify the type and the length

of any additional descriptors.

C.1.2 Report descriptors

A report descriptor is made up of items that provide information about the device uses, it

defines the format of the data that performs the device tasks, for example, if the device is a

relay controller, the data consist of codes that determine which relay or relays to open or

close, the report descriptor must determine in advance the size and contents of a HID report,

the report descriptor length vary from device to device, the host retrieves the descriptor by a

Get-Descriptor request. Listing (C.1) shows on example of a report descriptor, in this

descriptor the input and output reports are described (Axelson, 2005).

Listing C.1 : An example of a report descriptor.

hid_report_desc_table :
 db 06h, A0h, FFh ; Usage Page (vendor defined)
 db 09h, A5h

; Usage (vendor defined)

 db A1h, 01h ; Collection (Application)
 db 09h, A6h

; Usage (vendor defined)

; the input report
 db 09h, A7h ; Usage (vendor defined)
 db 15h, 80h ; Logical Minimum (-128)
 db 25h, 7Fh ; Logical Maximum (127)
 db 75h, 08h ; Report Size (8) (bits)
 db 95h, 02h ; Report Count (2) (fields)
 db 81h, 02h

; Input (Data, Variable, Absolute)

; the output report
 db 09h, A9h ; Usage (vendor defined)
 db 15h, 80h ; Logical Minimum (-128)
 db 25h, 7Fh ; Logical Maximum (127)
 db 75h, 08h ; Report Size (8) (bits)
 db 95h, 02h ; Report Count (2) (fields)
 db 91h, 02h

; Output (Data, Variable, Absolute)

 db C0h ; End collection
End_hid_report_desc_table:

98

As shown in the descriptor : the input report has a size of “2” bytes to be send to the host, the

output report has also “2” bytes to be send to the device, all the items listed in the above

report descriptor are needed in all reports, each item in this descriptor consists of a byte that

identifies the item, the item’s data may be one or more bytes, in particular each item in the

above descriptor means (Axelson, 2005):

 Usage Page: this item specifies the general function of the device (generic desktop

controls, game control …etc), this item has a value of (06 h), according to HID

specification this defines a single operating mode for a control, in the above example

the usage page value (FFA0 h) is a vender defined value.

 usage: this item is a subset of the usage page, its value is (09h) and it describes the

function of the individual report, example of usages available for generic desktop

controls are keyboards, mice, …etc, if the usage page is vender -defined, the usage

should be a vender -defined, in this example it was given the value of (A5 h) .

 Collection (Application): each report descriptor, should have an application

collection, this is necessary for Windows to enumerate the device, this item and all

the items that follow it performs together a single function such as a keyboard or a

mouse, the usage that follows this item has a value of (A6 h) and is vender- defined

value.

 Logical minimum and maximum: this item determines the range of values the report

can contain. In the example the values are (80 h) and (7F h) which is within the range

from (-128 to +127), negative values are expressed in 2's complement format.

 Report size: this item defines the number of bits in any data item, in this particular

example this item has a value of (75 h) and each data item consists of eight bits.

 Report count: this item identifies the number of data items in the report, in this

example it has a value of (95 h) and the report contains two bytes (data items).

99

 Input (Data, Variable, Absolute): this item specifies the direction of data, whether it

is from the host to the device (91 h) or from the device to the host (81 h), it also gives

other information about the data.

 End collocation: this item indicates the end of the application collection.

C.1.3 Physical descriptor:

 A physical descriptor is a data structure that provides information about the specific part or

parts of the human body that are activating a control or controls (Universal Serial Bus, 2001),

for example “ the right hand thump is used to activate buttons”.

Physical descriptors are optional, the host retrieves physical descriptors by sending a Get-

Descriptor request to the device.

C.2 HID Specific Requests

According to the HID specification, there are six HID – specific requests, table (C.2) below

shows details.

Table C.2: HID specific requests (Axelson, 2005).

Request # request Data

source

value index Data

Length

(bytes)

Data

Stage

contents

Required?

01 h Get-

Report

device Report

Type,

Report ID

interface report

length

report Yes

02 h Get-

Idle

device Report ID interface 1 idle

duration

no

03 h Get-

Protocol

device 0 interface 1 protocol required

for boot

devices

09 h Set-

Report

host Report

Type,

Report ID

interface report

length

report no

0A h Set-

Idle

host idle

Duration,

Report ID

interface 0 none no

0B h Set-

Protocol

host protocol interface 0 none required

for boot

devices

100

As explained in the table above the Get-Report request is required for all HIDs while Get-

Protocol and Set-Protocol are required for boot devices, the remaining requests are optional,

table (C.3) below shows the format of any request (Universal Serial Bus, 2001).

Table C.3: Format of any HID request (Universal Serial Bus, 2001) .

Part Offset/Size (Bytes) Description

bmRequestType

0/1

Bits specifying

characteristics of request.

Valid values are

10100001 or 00100001

only based on the

following description:

7 Data transfer direction

0 = Host to device

1 = Device to host

6..5 Type

1 = Class

4..0 Recipient

1 = Interface

bRequest 1/1 A specific request.

wValue 2/2 Numeric expression

specifying word-size

field (varies according to

request.)

wIndex 4/2 Index or offset specifying

word-size field

(varies according to

request.)

wLength 6/2 Numeric expression

specifying number of

bytes to transfer in the

data phase.

A detailed description of each request is given below (Universal Serial Bus, 2001).

 Get -Report: this request allows the host to receive data from the device using control

transfers.

101

Part Description

bmRequestType 1010 0001

bRequest Get-Report

wValue Report type and report ID

High byte = Report Type (1=input, 2= output, 3= feature),

low byte = report ID, default report ID = 0.

wIndex Number of supported interfaces.

wLength Report length.

Data Report.

According to HID specification the host should use Interrupt IN pipe to obtain periodic data,

using Interrupt OUT pipe for sending output reports is optional, all HIDs must support this

request.

 Set -Report: this request allows the host to send data to the device using Control

transfers.

Part Description

bmRequestType 0010 0001

bRequest Set-Report

wValue Report Type (high byte, 1= input, 2=output, 3=feature) and

Report ID (low byte, default value=0).

wIndex Number of interfaces supported.

wLength Report length.

Data Report

For devices that do not have an Interrupt OUT Endpoint, using this request is the only way

that enables the host to send data to the device, this request is not required for HID devices.

102

 Get -Idle : this request is used by the host to read the current idle rate from a device.

Part Description

bmRequestType 1010 0001

bRequest Get-Idle

wValue High byte = 0. low byte=report ID

wIndex Number of interfaces that support this request

wLength 1 (one)

Data Idle rate expressed in units of milliseconds.

HID devices are not required to support this request.

 Set-Idle: when the data received hasn’t changed since the last report, the Set-Idle

request limits the frequency of the Interrupt IN endpoint and thus saves bandwidth.

Part Description

bmRequestType 0010 0001

bRequest Set-Idle

wValue Sets the duration (high byte) or the maximum a mount of time

between successive reports, if the value is zero the device will

send reports only when the report data has changed, otherwise it

sends a NAK, the low byte indicates report ID.

wIndex Number of interfaces that support this request

wLength Zero

Data Not applicable

This request is not required for HID devices, during a HID enumeration the Windows Device

Driver sets the idle rate to zero, if this request is supported by a HID, the device sends a

report when the report data has changed, if the device returns a STALL when receiving this

103

request, this means that the request is not supported and reports can be send regardless of the

change of data.

 Get-Protocol: this request is used by the host to read which protocol is currently

active on the device.

Part Description

bmRequestType 101 0001

bRequest Get-Protocol

wValue 0 (zero)

wIndex Number of interface that support this request.

wLength 1 (one)

Data 0=boot protocol, 1= report protocol

This request is supported by boot devices.

 Set-Protocol: this request is used by the host to switch between boot and report

protocols, it is supported by boot devices.

Part Description

bmRequestType 0010 0001

bRequest Set-Protocol

wValue 0 = boot protocol , 1 = report protocol.

wIndex Number of interfaces supporting this request.

wLength 0 (zero)

Data Not applicable.

104

APPENDIX D

FIRMWARE SOURCE CODE

D.1 Header Files

D.1.1 Usbinit.h

#ifndef USBINIT_H

#define USBINIT_H

//***

// Prototypes

//***

void InitializeUsbFunction(void);

void UsbReset(void);

#endif

105

D.1.2 Usb.h

-- Description: header file for USB functions

#ifndef USB_H

#define USB_H

//***

// Enumeration Definitions

//***

typedef enum

{

 STATUS_ACTION_NOTHING,

 STATUS_ACTION_DATA_IN,

 STATUS_ACTION_DATA_OUT

} tSTATUS_ACTION_LIST;

//***

// Stucture Definitions

//***

// DEVICE_REQUEST Structure

typedef struct _tDEVICE_REQUEST

{

 unsigned char bmRequestType; // See bit definitions below

 unsigned char bRequest; // See value definitions below

 unsigned char bValueL; // Meaning varies with request type

 unsigned char bValueH; // Meaning varies with request type

 unsigned char bIndexL; // Meaning varies with request type

 unsigned char bIndexH; // Meaning varies with request type

 unsigned char bLengthL; // Number of bytes of data to transfer (LSByte)

 unsigned char bLengthH; // Number of bytes of data to transfer (MSByte)

} tDEVICE_REQUEST;

typedef struct _tDEVICE_REQUEST_COMPARE

{

 unsigned char bmRequestType; // See bit definitions below

 unsigned char bRequest; // See value definitions below

 unsigned char bValueL; // Meaning varies with request type

 unsigned char bValueH; // Meaning varies with request type

 unsigned char bIndexL; // Meaning varies with request type

 unsigned char bIndexH; // Meaning varies with request type

 unsigned char bLengthL; // Number of bytes of data to transfer (LSByte)

 unsigned char bLengthH; // Number of bytes of data to transfer (MSByte)

 unsigned char bCompareMask; // MSB is bRequest, if set 1, bRequest should be matched,

LSB is bLengthH

 void (*pUsbFunction)(void);

// function pointer

} tDEVICE_REQUEST_COMPARE, *ptDEVICE_REQUEST_COMPARE;

//***

// Constant Definitions

//***

// USB Device VID and PID Definition

#define VID_L 0x51 // TI = 0x0451

106

#define VID_H 0x04

#define PID_L 0x10 // TUSB3210 = 0x3210

#define PID_H 0x32

#define VER_L 0x00 // Version 1.0

#define VER_H 0x01

#define NO_MORE_DATA 0xFFFF // 0 means, send a null packet, 0xFF => no more data

//***

// DEVICE REQUEST

//***

#define SIZEOF_DEVICE_REQUEST 0x08

// Bit definitions for DEVICE_REQUEST.bmRequestType

// Bit 7: Data direction

#define USB_REQ_TYPE_OUTPUT 0x00 // 0 = Host sending data to device

#define USB_REQ_TYPE_INPUT 0x80 // 1 = Device sending data to host

// Bit 6-5: Type

#define USB_REQ_TYPE_MASK 0x60 // Mask value for bits 6-5

#define USB_REQ_TYPE_STANDARD 0x00 // 00 = Standard USB request

#define USB_REQ_TYPE_CLASS 0x20 // 01 = Class specific

#define USB_REQ_TYPE_VENDOR 0x40 // 10 = Vendor specific

// Bit 4-0: Recipient

#define USB_REQ_TYPE_RECIP_MASK 0x1F // Mask value for bits 4-0

#define USB_REQ_TYPE_DEVICE 0x00 // 00000 = Device

#define USB_REQ_TYPE_INTERFACE 0x01 // 00001 = Interface

#define USB_REQ_TYPE_ENDPOINT 0x02 // 00010 = Endpoint

#define USB_REQ_TYPE_OTHER 0x03 // 00011 = Other

// Values for DEVICE_REQUEST.bRequest

// Standard Device Requests

#define USB_REQ_GET_STATUS 0

#define USB_REQ_CLEAR_FEATURE 1

#define USB_REQ_SET_FEATURE 3

#define USB_REQ_SET_ADDRESS 5

#define USB_REQ_GET_DESCRIPTOR 6

#define USB_REQ_SET_DESCRIPTOR 7

#define USB_REQ_GET_CONFIGURATION 8

#define USB_REQ_SET_CONFIGURATION 9

#define USB_REQ_GET_INTERFACE 10

#define USB_REQ_SET_INTERFACE 11

#define USB_REQ_SYNCH_FRAME 12

//***

// HID CLASS Requests

//***

#define USB_REQ_GET_REPORT 0x01

#define USB_REQ_GET_IDLE 0x02

#define USB_REQ_GET_PROTOCOL 0x03

#define USB_REQ_SET_REPORT 0x09

#define USB_REQ_SET_IDLE 0x0A

#define USB_REQ_SET_PROTOCOL 0x0B

107

//***

// DESCRIPTOR TYPES

//***

// Descriptor Type Values

#define DESC_TYPE_DEVICE 1 // Device Descriptor (Type 1)

#define DESC_TYPE_CONFIG 2 // Configuration Descriptor (Type 2)

#define DESC_TYPE_STRING 3 // String Descriptor (Type 3)

#define DESC_TYPE_INTERFACE 4 // Interface Descriptor (Type 4)

#define DESC_TYPE_ENDPOINT 5 // Endpoint Descriptor (Type 5)

#define DESC_TYPE_HID 0x21 // HID Descriptor (Type 0x21)

#define DESC_TYPE_REPORT 0x22 // Report Descriptor (Type 0x22)

#define DESC_TYPE_PHYSICAL 0x23 // Physical Descriptor (Type 0x23)

//***

// FEATURES

//***

// Feature Selector Values

#define FEATURE_REMOTE_WAKEUP 1 // Remote wakeup (Type 1)

#define FEATURE_ENDPOINT_STALL 0 // Endpoint stall (Type 0)

//***

// GET STATUS VALUES

//***

// Device Status Values

#define DEVICE_STATUS_REMOTE_WAKEUP 0x02

#define DEVICE_STATUS_SELF_POWER 0x01

//***

// DECSRIPTOR SIZES

//***

#define SIZEOF_DEVICE_DESCRIPTOR 0x12

#define SIZEOF_CONFIG_DESCRIPTOR 0x09

#define SIZEOF_INTERFACE_DESCRIPTOR 0x09

#define SIZEOF_ENDPOINT_DESCRIPTOR 0x07

#define SIZEOF_HID_DESCRIPTOR 0x09

#define SIZEOF_CONFIG_DESC_GROUP SIZEOF_CONFIG_DESCRIPTOR +

SIZEOF_INTERFACE_DESCRIPTOR + SIZEOF_HID_DESCRIPTOR +

SIZEOF_ENDPOINT_DESCRIPTOR

// Bit definitions for CONFIG_DESCRIPTOR.bmAttributes

#define CFG_DESC_ATTR_SELF_POWERED 0x40 // Bit 6: If set, device is self powered

#define CFG_DESC_ATTR_BUS_POWERED 0x80 // Bit 7: If set, device is bus powered

#define CFG_DESC_ATTR_REMOTE_WAKE 0x20 // Bit 5: If set, device supports remote

wakeup

// Bit definitions for EndpointDescriptor.EndpointAddr

#define EP_DESC_ADDR_EP_NUM 0x0F // Bit 3-0: Endpoint number

#define EP_DESC_ADDR_DIR_IN 0x80 // Bit 7: Direction of endpoint, 1/0 = In/Out

// Bit definitions for EndpointDescriptor.EndpointFlags

#define EP_DESC_ATTR_TYPE_MASK 0x03 // Mask value for bits 1-0

#define EP_DESC_ATTR_TYPE_CONT 0x00 // Bit 1-0: 00 = Endpoint does control transfers

#define EP_DESC_ATTR_TYPE_ISOC 0x01 // Bit 1-0: 01 = Endpoint does isochronous

transfers

108

#define EP_DESC_ATTR_TYPE_BULK 0x02 // Bit 1-0: 10 = Endpoint does bulk transfers

#define EP_DESC_ATTR_TYPE_INT 0x03 // Bit 1-0: 11 = Endpoint does interrupt

transfers

//***

// Prototypes

//***

void usbGetConfiguration(void);

void usbSetConfiguration(void);

void usbGetDeviceDescriptor(void);

void usbGetConfigurationDescriptor(void);

void usbGetStringDescriptor(void);

void usbGetHIDDescriptor(void);

void usbGetReportDescriptor(void);

void usbSetReport(void);

void usbGetInterface(void);

void usbSetInterface(void);

void usbGetDeviceStatus(void);

void usbSetRemoteWakeup(void);

void usbClearRemoteWakeup(void);

void usbGetInterfaceStatus(void);

void usbSetAddress(void);

void usbSetEndpointHalt(void);

void usbClearEndpointHalt(void);

void usbGetEndpointStatus(void);

void usbNonStandardRequest(void);

void usbDecodeAndProcessUsbRequest(void);

void usbStallEndpoint0(void);

void usbReceiveDataPacketOnEP0(unsigned char * pBuffer);

void usbReceiveNextPacketOnOEP0(void);

void usbSendZeroLengthPacketOnIEP0(void);

void usbSendDataPacketOnEP0(unsigned char * pBuffer);

void usbSendNextPacketOnIEP0(void);

void usbSendDataToHostOnEP1(void);

void SetupPacketInterruptHandler(void);

void OEP0InterruptHandler(void);

void IEP0InterruptHandler(void);

void IEP1InterruptHandler(void);

#endif

109

D.1.3 Delay.h

-- Description: header file for delay in ms

#ifndef DELAY_H

#define DELAY_H

//***

// Prototypes

//***

void Delay_ms(unsigned int time);

void Delay_5us(void);

#endif

110

D.1.4 Descriptor.h

-- Description: header file with descriptor definitions

#ifndef DESCRIPTOR_H

#define DESCRIPTOR_H

//***

// Device descriptor

//***

unsigned char code romDeviceDescriptor[] = {

 SIZEOF_DEVICE_DESCRIPTOR, // Length of this descriptor (12h bytes)

 DESC_TYPE_DEVICE, // Type code of this descriptor (01h)

 0x10,0x01, // Release of USB spec (Rev 1.1)

 0, // Device's base class code

 0, // Device's sub class code

 0, // Device's protocol type code

 EP0_MAX_PACKET_SIZE, // End point 0's max packet size = 8

 VID_L,VID_H, // Vendor ID for device, TI=0x0451

 PID_L,PID_H, // Product ID for device, 0x2136

 VER_L,VER_H, // Revision level of device, Rev=1.0

 1, // Index of manufacturer name string desc

 2, // Index of product name string desc

 3, // Index of serial number string desc

 1 // Number of configurations supported

 };

//***

// Report descriptor

// generated with HID-Generator

//***

unsigned char code romReportDescriptor[] =

{

0x06, 0xA0, 0xFF, // Usage Page (vendor defined)

0x09, 0x01, // Usage (I/O Device)

0xA1, 0x01, // Collection (Application)

 // input report

0x19, 0x00, // Usage_Minimum(Unicode Char 0)

0x29, 0x3F, // Usage_Maximum(Unicode Char 63)

0x15, 0x80, // Logical Minimum (-128)

0x25, 0x7F, // Logical Maximum (127)

0x75, 0x08, // Report Size (8 bit)

0x95, 0x40, // Report Count (64 Bytes)

0x81, 0x02, // Input (Data, Variable, Absolute)

// output report

0x19, 0x00, // Usage_Minimum(Unicode Char 0)

0x29, 0x3F, // Usage_Maximum(Unicode Char 63)

0x91, 0x02, // Output (Data, Variable, Absolute)

0xC0 // End Collection

};

111

//***

// Configuration descriptor group

//***

unsigned char code romConfigurationDescriptorGroup[] =

{

 // Configuration Descriptor, size=0x09

 SIZEOF_CONFIG_DESCRIPTOR, // bLength

 DESC_TYPE_CONFIG, // bDescriptorType

 SIZEOF_CONFIG_DESC_GROUP, 0x00, // wTotalLength

 1, // bNumInterfaces

 1, // bConfigurationValue

 0, // iConfiguration, string index

 CFG_DESC_ATTR_BUS_POWERED, // bmAttributes, bus bootcode

 0x64, // Max. Power Consumption at 2mA unit (200mA)

 // Interface Descriptor, size = 0x09

 SIZEOF_INTERFACE_DESCRIPTOR, // bLength

 DESC_TYPE_INTERFACE, // bDescriptorType

 0, // bInterfaceNumber

 0, // bAlternateSetting

 1, // bNumEndpoints

 3, // bInterfaceClass: 3 = HID class

 0, // bInterfaceSubClass: 0 = no Subclass, 1 = boot device

 0, // bInterfaceProtocol: 0 = no protocol, 1 = keyboard

 0, // iInterface, string index

 // HID DESCRIPTOR (9 bytes)

 SIZEOF_HID_DESCRIPTOR, // bLength of HID descriptor

 DESC_TYPE_HID, // HID Descriptor Type: assigned by USB

 0x10,0x01, // HID Revision number 1.1

 0, // Target country

 1, // Number of HID classes to follow

 DESC_TYPE_REPORT, // Report descriptor type

 sizeof(romReportDescriptor), 0x00, // Total length of report descriptor

 // Input Endpoint 1 Descriptor, size = 0x07

 SIZEOF_ENDPOINT_DESCRIPTOR, // bLength

 DESC_TYPE_ENDPOINT, // bDescriptorType

 0x81, // bEndpointAddress; bit7=1 for IN, bits 3-0=1 for EP1

 EP_DESC_ATTR_TYPE_INT, // bmAttributes, interupt transfer for HID IN

 EP1_MAX_PACKET_SIZE, 0x00, // wMaxPacketSize

 1 // bInterval

};

//***

// String descriptors

//***

char code mfgDescription[] = "Peripheral USB Interface Board By Khaled Murad";

char code prodDescription[] = "USB-Peripheral Interface Board";

char code revDescription[] = "Version 1.0";

#endif

112

D.1.5 Reg52.h

-- Description: header file for 8052 controllers

#ifndef REG52_H

#define REG52_H

/* BYTE Registers */

sfr P0 = 0x80;

sfr P1 = 0x90;

sfr P2 = 0xA0;

sfr P3 = 0xB0;

sfr PSW = 0xD0;

sfr ACC = 0xE0;

sfr B = 0xF0;

sfr SP = 0x81;

sfr DPL = 0x82;

sfr DPH = 0x83;

sfr PCON = 0x87;

sfr TCON = 0x88;

sfr TMOD = 0x89;

sfr TL0 = 0x8A;

sfr TL1 = 0x8B;

sfr TH0 = 0x8C;

sfr TH1 = 0x8D;

sfr IE = 0xA8;

sfr IP = 0xB8;

sfr SCON = 0x98;

sfr SBUF = 0x99;

/* 8052 Extensions */

sfr T2CON = 0xC8;

sfr RCAP2L = 0xCA;

sfr RCAP2H = 0xCB;

sfr TL2 = 0xCC;

sfr TH2 = 0xCD;

/* BIT Registers */

/* PSW */

sbit CY = PSW^7;

sbit AC = PSW^6;

sbit F0 = PSW^5;

sbit RS1 = PSW^4;

sbit RS0 = PSW^3;

sbit OV = PSW^2;

sbit P = PSW^0; //8052 only

/* TCON */

sbit TF1 = TCON^7;

sbit TR1 = TCON^6;

sbit TF0 = TCON^5;

sbit TR0 = TCON^4;

113

sbit IE1 = TCON^3;

sbit IT1 = TCON^2;

sbit IE0 = TCON^1;

sbit IT0 = TCON^0;

/* IE */

sbit EA = IE^7;

sbit ET2 = IE^5; //8052 only

sbit ES = IE^4;

sbit ET1 = IE^3;

sbit EX1 = IE^2;

sbit ET0 = IE^1;

sbit EX0 = IE^0;

/* IP */

sbit PT2 = IP^5;

sbit PS = IP^4;

sbit PT1 = IP^3;

sbit PX1 = IP^2;

sbit PT0 = IP^1;

sbit PX0 = IP^0;

/* SCON */

sbit SM0 = SCON^7;

sbit SM1 = SCON^6;

sbit SM2 = SCON^5;

sbit REN = SCON^4;

sbit TB8 = SCON^3;

sbit RB8 = SCON^2;

sbit TI = SCON^1;

sbit RI = SCON^0;

/* T2CON */

sbit TF2 = T2CON^7;

sbit EXF2 = T2CON^6;

sbit RCLK = T2CON^5;

sbit TCLK = T2CON^4;

sbit EXEN2 = T2CON^3;

sbit TR2 = T2CON^2;

sbit C_T2 = T2CON^1;

sbit CP_RL2 = T2CON^0;

/*--

P0 Bit Registers

--*/

sbit P0_0 = P0^0;

sbit P0_1 = P0^1;

sbit P0_2 = P0^2;

sbit P0_3 = P0^3;

sbit P0_4 = P0^4;

sbit P0_5 = P0^5;

sbit P0_6 = P0^6;

sbit P0_7 = P0^7;

114

/*--

P1 Bit Registers

--*/

sbit P1_0 = P1^0;

sbit P1_1 = P1^1;

sbit P1_2 = P1^2;

sbit P1_3 = P1^3;

sbit P1_4 = P1^4;

sbit P1_5 = P1^5;

sbit P1_6 = P1^6;

sbit P1_7 = P1^7;

/*--

P2 Bit Registers

--*/

sbit P2_0 = P2^0;

sbit P2_1 = P2^1;

sbit P2_2 = P2^2;

sbit P2_3 = P2^3;

sbit P2_4 = P2^4;

sbit P2_5 = P2^5;

sbit P2_6 = P2^6;

sbit P2_7 = P2^7;

/*--

P3 Bit Registers

--*/

sbit P3_0 = P3^0;

sbit P3_1 = P3^1;

sbit P3_2 = P3^2;

sbit P3_3 = P3^3;

sbit P3_4 = P3^4;

sbit P3_5 = P3^5;

sbit P3_6 = P3^6;

sbit P3_7 = P3^7;

/*--

Interrupt Vectors:

Interrupt Address = (Number * 8) + 3

--*/

#define IE0_VECTOR 0 /* 0x03 External Interrupt 0 */

#define TF0_VECTOR 1 /* 0x0B Timer 0 Interrupt, used for all internal peripherals*/

#define IE1_VECTOR 2 /* 0x13 External Interrupt 1, used for P2[7:0] interrupt */

#define TF1_VECTOR 3 /* 0x1B Timer 1 Interrupt*/

#define SIO_VECTOR 4 /* 0x23 UART Interrupt */

#define TF2_VECTOR 5 /* 0x2B Timer 2 Interrupt */

#endif

115

D.1.6 Tusb3210.h

-- Description: header file defining the registers of the tusb3210

This file contains definitions from the TUSB2136 Generic Keyboard Demo Program

From Texas Instruments (Texas Instruments, 2000) .

#ifndef TUSB3210_H

#define TUSB3210_H

/*--+

| Constant Definition |

+--*/

// USB related Constant

#define MAX_ENDPOINT_NUMBER 0x03

#define EP0_MAX_PACKET_SIZE 0x08

#define EP1_MAX_PACKET_SIZE 0x40 // 64 bytes FIFO

/*--+

| DATA BUFFER (368 Byte, XDATA range = FD80...FEEF

+--*/

// Buffer for descriptors (0xFD80...0xFDB3)

#define START_OF_USER_BUFFER_ADDRESS 0xFD80

// Buffer address for Endpoints 1 (0xFDB8...0xFEB7)

#define IEP1_X_BUFFER_ADDRESS 0xFDB8 // Input Endpoint 1 X Buffer Base-address (64

Bytes)

#define OEP1_X_BUFFER_ADDRESS 0xFDF8 // Output Endpoint 1 X Buffer Base-address

(64 Bytes)

#define DATAFROMHOST_ADDRESS 0xFE38// Data received from host on SET_REPORT (64

Bytes)

#define DATATOHOST_ADDRESS 0xFE78 // Data to be sent to the host via IEP1 (64 Bytes)

// Endpoint 0: buffer address

#define OEP0_BUFFER_ADDRESS 0xFEF0 // Output Endpoint 0 Buffer Base-address hard

wired

#define IEP0_BUFFER_ADDRESS 0xFEF8 // Input Endpoint 0 Buffer Base-address hard

wired

// Setup packet block

#define EP0_SETUP_ADDRESS 0xFF00 // Setup packet request type

// MCU Configuration Register

#define MCNFG_SDW 0x01 // 0: start from BootRom, 1: start from RAM

#define MCNFG_XINT 0x40 // INT1 source control bit

 // 0:P3.3 1:P2[7:0]

// Watchdog Register

#define WDCSR_WDT 0x01 // Watchdog timer reset bit

 // write a 1 to reset timer

#define WDCSR_WDR 0x40 // Watchdog reset indication bit

 // 0:a power-up or USB reset

 // 1:watchdog timeout reset occurred.

116

#define WDCSR_WDE 0x80 // Watchdog timer enable bit

 // 0:disable(only cleared on power-up, USB or WDT reset)

 // 1:enable

// EndPoint Desciptor Block

#define EPCNF_USBIE 0x04 // USB Interrupt on Transaction Completion. Set By MCU

 // 0:No Interrupt, 1:Interrupt on completion

#define EPCNF_STALL 0x08 // USB Stall Condition Indication. Set by UBM

 // 0: No Stall, 1:USB Install Condition

#define EPCNF_DBUF 0x10 // Double Buffer Enable. Set by MCU

 // 0: Primary Buffer Only(X-buffer only), 1:Toggle Bit Selects Buffer

#define EPCNF_TOGLE 0x20 // USB Toggle bit. This bit reflects the toggle sequence bit of

DATA0 and DATA1.

#define EPCNF_ISO 0x40 // ISO=0, Non Isochronous transfer. This bit must be cleared

by MCU since only non isochronous transfer is supported.

#define EPCNF_UBME 0x80 // UBM Enable or Disable bit. Set or Clear by MCU.

 // 0:UBM can't use this endpoint

 // 1:UBM can use this endpoint

#define EPBCT_BYTECNT_MASK 0x7F // MASK for Buffer Byte Count

#define EPBCNT_NAK 0x80 // NAK bit

 // 0:buffer contains valid data

 // 1:buffer is empty

// USB Registers

#define USBSTA_STPOW 0x01 // Setup Overwrite Bit. Set by hardware when setup packet

is received

 // while there is already a packet in the setup buffer.

 // 0:Nothing, 1:Setup Overwrite

#define USBSTA_RWUP 0x02 // Remote wakeup overwrite bit

#define USBSTA_SETUP 0x04 // Setup Transaction Received Bit. As long as SETUP is '1',

 // IN and OUT on endpoint-0 will be NAKed regardless of their real NAK bits values.

#define USBSTA_PWON 0x08 // Power Request for port3

#define USBSTA_PWOFF 0x10 // Power Off Request for port3

#define USBSTA_RESR 0x20 // Function Resume Request Bit. 0:clear by MCU, 1:Function

Resume is detected.

#define USBSTA_SUSR 0x40 // Function Suspended Request Bit. 0:clear by MCU,

1:Function Suspend is detected.

#define USBSTA_RSTR 0x80 // Function Reset Request Bit. This bit is set in response to a

global or selective suspend condition.

 // 0:clear by MCU, 1:Function reset is detected.

#define USBMSK_STPOW 0x01 // Setup Overwrite Interrupt Enable Bit

 // 0: disable, 1:enable

#define USBMSK_RWUP

 0x02

#define USBMSK_SETUP 0x04 // Setup Interrupt Enable Bit

 // 0: disable, 1:enable

#define USBMSK_RESR 0x20 // Function Resume Interrupt Enable Bit

 // 0: disable, 1:enable

#define USBMSK_SUSR 0x40 // Function Suspend Interrupt Enable Bit

 // 0: disable, 1:enable

#define USBMSK_RSTR 0x80 // Function Reset Interrupt Enable Bit

 // 0: disable, 1:enable

#define USBCTL_DIR 0x01 // USB traffic direction 0: USB out packet, 1:in packet (from

TUSB3210 to Host)

117

#define USBCTL_SIR 0x02 // Setup interrupt status bit

 // 0: SETUP interrupt is not served.

 // 1: SETUP interrupt in progess

#define USBCTL_SELF 0x04 // Bus/self powered bit

 // 0: bus, 1:self

#define USBCTL_RWE 0x08 // remote wakeup enable bit

 // 0: disable, 1:enable

#define USBCTL_FRSTE 0x10 // Function Reset Condition Bit.

 // This bit connects or disconnects the USB Function Reset

from the MCU reset

 // 0:not connect, 1:connect

#define USBCTL_RWUP 0x20 // Device Remote Wakeup Request

 // 0:nothing, 1:remote wakeup request to USB Host

#define USBCTL_U12 0x40 // USB Hub version

 // 0:1.x, 1:2.x

#define USBCTL_CONT 0x80 // Connect or Disconnect Bit

 // 0:Upstream port is disconnected. Pull-up disabled

 // 1:Upstream port is connected. Pull-up enabled

// Interrupt vector values for INT0

#define VECINT_NO_INTERRUPT 0x00

#define VECINT_OUTPUT_ENDPOINT1 0x12

#define VECINT_OUTPUT_ENDPOINT2 0x14

#define VECINT_OUTPUT_ENDPOINT3 0x16

#define VECINT_INPUT_ENDPOINT1 0x22

#define VECINT_INPUT_ENDPOINT2 0x24

#define VECINT_INPUT_ENDPOINT3 0x26

#define VECINT_STPOW_PACKET_RECEIVED 0x30 // USBSTA

#define VECINT_SETUP_PACKET_RECEIVED 0x32 // USBSTA

#define VECINT_POWER_ON 0x34

#define VECINT_POWER_OFF 0x36

#define VECINT_RESR_INTERRUPT 0x38 // USBSTA

#define VECINT_SUSR_INTERRUPT 0x3A // USBSTA

#define VECINT_RSTR_INTERRUPT 0x3C // USBSTA

#define VECINT_I2C_RXF_INTERRUPT 0x40 // I2CSTA

#define VECINT_I2C_TXE_INTERRUPT 0x42 // I2CSTA

#define VECINT_INPUT_ENDPOINT0 0x44

#define VECINT_OUTPUT_ENDPOINT0 0x46

//I2C Registers

#define I2CSTA_SWR 0x01 // Stop Write Enable

 // 0:disable, 1:enable

#define I2CSTA_SRD 0x02 // Stop Read Enable

 // 0:disable, 1:enable

#define I2CSTA_TIE 0x04 // I2C Transmitter Empty Interrupt Enable

 // 0:disable, 1:enable

#define I2CSTA_TXE 0x08 // I2C Transmitter Empty

 // 0:full, 1:empty

#define I2CSTA_400K 0x10 // I2C Speed Select

 // 0:100kHz, 1:400kHz

#define I2CSTA_ERR 0x20 // Bus Error Condition

 // 0:no bus error, 1:bus error

118

#define I2CSTA_RIE 0x40 // I2C Receiver Ready Interrupt Enable

 // 0:disable, 1:enable

#define I2CSTA_RXF 0x80 // I2C Receiver Full

 // 0:empty, 1:full

#define I2CADR_READ 0x01 // Read Write Command Bit

 // 0:write, 1:read

/*--+

| ENDPOINT 0 SETUP BLOCK (EDB, XDATA range = FF00...FF07

+--*/

#define pEP0_SETUP_ADDRESS ((char xdata *)0xFF00)

/*--+

| ENDPOINT 1..3 BLOCKS (EDB, XDATA range = FF08...FF7F

+--*/

// Output Endpoint 1: configuration

#define OEPCNF_1 (* (char xdata *)0xFF08) // Output Endpoint 1 Configuration

#define OEPBBAX_1 (* (char xdata *)0xFF09) // Output Endpoint 1 X-Buffer Base-address

#define OEPBCTX_1 (* (char xdata *)0xFF0A) // Output Endpoint 1 X Byte Count

#define OEPBBAY_1 (* (char xdata *)0xFF0D) // Output Endpoint 1 Y-Buffer Base-address

#define OEPBCTY_1 (* (char xdata *)0xFF0E) // Output Endpoint 1 Y Byte Count

#define OEPSIZXY_1 (* (char xdata *)0xFF0F) // Output Endpoint 1 XY-Buffer Size

// Output Endpoint 2: configuration

#define OEPCNF_2 (* (char xdata *)0xFF10) // Output Endpoint 2 Configuration

#define OEPBBAX_2 (* (char xdata *)0xFF11) // Output Endpoint 2 X-Buffer Base-address

#define OEPBCTX_2 (* (char xdata *)0xFF12) // Output Endpoint 2 X Byte Count

#define OEPBBAY_2 (* (char xdata *)0xFF15) // Output Endpoint 2 Y-Buffer Base-address

#define OEPBCTY_2 (* (char xdata *)0xFF16) // Output Endpoint 2 Y Byte Count

#define OEPSIZXY_2 (* (char xdata *)0xFF17) // Output Endpoint 2 XY-Buffer Size

// Output Endpoint 3: configuration

#define OEPCNF_3 (* (char xdata *)0xFF18) // Output Endpoint 3 Configuration

#define OEPBBAX_3 (* (char xdata *)0xFF19) // Output Endpoint 3 X-Buffer Base-address

#define OEPBCTX_3 (* (char xdata *)0xFF1A) // Output Endpoint 3 X Byte Count

#define OEPBBAY_3 (* (char xdata *)0xFF1D) // Output Endpoint 3 Y-Buffer Base-address

#define OEPBCTY_3 (* (char xdata *)0xFF1E) // Output Endpoint 3 Y Byte Count

#define OEPSIZXY_3 (* (char xdata *)0xFF1F) // Output Endpoint 3 XY-Buffer Size

// Input Endpoint 1: configuration

#define IEPCNF_1 (* (char xdata *)0xFF48) // Input Endpoint 1 Configuration

#define IEPBBAX_1 (* (char xdata *)0xFF49) // Input Endpoint 1 X-Buffer Base-address

#define IEPBCTX_1 (* (char xdata *)0xFF4A) // Input Endpoint 1 X Byte Count

#define IEPBBAY_1 (* (char xdata *)0xFF4D) // Input Endpoint 1 Y-Buffer Base-address

#define IEPBCTY_1 (* (char xdata *)0xFF4E) // Input Endpoint 1 Y Byte Count

#define IEPSIZXY_1 (* (char xdata *)0xFF4F) // Input Endpoint 1 XY-Buffer Size

// Input Endpoint 2: configuration

#define IEPCNF_2 (* (char xdata *)0xFF50) // Input Endpoint 2 Configuration

#define IEPBBAX_2 (* (char xdata *)0xFF51) // Input Endpoint 2 X-Buffer Base-address

#define IEPBCTX_2 (* (char xdata *)0xFF52) // Input Endpoint 2 X Byte Count

#define IEPBBAY_2 (* (char xdata *)0xFF55) // Input Endpoint 2 Y-Buffer Base-address

#define IEPBCTY_2 (* (char xdata *)0xFF56) // Input Endpoint 2 Y Byte Count

#define IEPSIZXY_2 (* (char xdata *)0xFF57) // Input Endpoint 2 XY-Buffer Size

119

// Input Endpoint 3: configuration

#define IEPCNF_3 (* (char xdata *)0xFF58) // Input Endpoint 3 Configuration

#define IEPBBAX_3 (* (char xdata *)0xFF59) // Input Endpoint 3 X-Buffer Base-address

#define IEPBCTX_3 (* (char xdata *)0xFF5A) // Input Endpoint 3 X Byte Count

#define IEPBBAY_3 (* (char xdata *)0xFF5D) // Input Endpoint 3 Y-Buffer Base-address

#define IEPBCTY_3 (* (char xdata *)0xFF5E) // Input Endpoint 3 Y Byte Count

#define IEPSIZXY_3 (* (char xdata *)0xFF5F) // Input Endpoint 3 XY-Buffer Size

/*--+

| INTERNAL MEMORY MAPPED REGISTERS (MMR, XDATA range = FF80...FFFF

+--*/

// Endpoint 0 Descriptor Registers

#define IEPCNFG_0 (* (char xdata *)0xFF80) // Input Endpoint Configuration Register

#define IEPBCNT_0 (* (char xdata *)0xFF81) // Input Endpoint 0 Byte Count

#define OEPCNFG_0 (* (char xdata *)0xFF82) // Output Endpoint Configuration Register

#define OEPBCNT_0 (* (char xdata *)0xFF83) // Output Endpoint 0 Byte Count

// Interrupt Registers

#define INTCFG (* (char xdata *)0xFF84) // Interrupt P2 delay

// Miscellaneous Registers

#define MCNFG (* (char xdata *)0xFF90) // MCU Configuration Register

#define VECINT (* (char xdata *)0xFF92) // Vector Interrupt Register

#define WDCSR (* (char xdata *)0xFF93) // Watchdog Timer, Control & Status Register

// Pull-up enable Registers

#define PUR0 (* (char xdata *)0xFF94) // Pull-up control register 1=Enabled 0=Disabled

#define PUR1 (* (char xdata *)0xFF95) // Pull-up control register 1=Enabled 0=Disabled

#define PUR2 (* (char xdata *)0xFF96) // Pull-up control register 1=Enabled 0=Disabled

#define PUR3 (* (char xdata *)0xFF97) // Pull-up control register 1=Enabled 0=Disabled

// I2C Registers

#define I2CSTA (* (char xdata *)0xFFF0) // I2C Status and Control Register

#define I2CDAO (* (char xdata *)0xFFF1) // I2C Data Out Register

#define I2CDAI (* (char xdata *)0xFFF2) // I2C Data In Register

#define I2CADR (* (char xdata *)0xFFF3) // I2C Address Register

// VID/PID selection Register

#define VIDSTA (* (char xdata *)0xFFF6) // VID/PID status register

// USB Registers

#define USBCTL (* (char xdata *)0xFFFC) // USB Control Register

#define USBMSK (* (char xdata *)0xFFFD) // USB Interrupt Mask Register

#define USBSTA (* (char xdata *)0xFFFE) // USB Status Register

#define FUNADR (* (char xdata *)0xFFFF) // This register contains the device

function address.

#endif

120

D.1.7 Prog.h

Description: header file for device functions

#ifndef PROG_H

#define PROG_H

//***

// Enumeration Definition

//***

typedef enum

{

 NOTHING,

 WRITING

} tPROGR_MODE;

//***

// Prototypes

//***

void ResetDevice(void);

void DecodeDeviceData(unsigned char * Data);

#endif

121

D.1.8 Application.h

-- Description: header file for application functions

#ifndef _Application_H

#define _Application_H

//***

// Prototypes

//***

void Read_Data(void);

void Write_Data(void);

#endif

122

D.2 *.C Files

D.2.1 Usbinit.c

-- Description: USB init functions

#include "reg52.h"

#include "Tusb3210.h"

#include "Usb.h"

#include "Usbinit.h"

//***

// extern variables

//***

extern unsigned int BytesRemainingOnIEP0;

extern unsigned int BytesRemainingOnOEP0;

extern unsigned char StatusAction;

extern unsigned char ConfigurationNumber;

extern unsigned char InterfaceNumber;

extern unsigned char deviceReady;

//***

// Initializes the USB function and all registers

// if this function is called, the function is disconnected from usb

// This function was taken from the TUSB2136 Generic Keyboard Demo Program

// From Texas Instruments (Texas Instruments, 2000) .

//***

void InitializeUsbFunction(void)

{

IT0 = 0; // Edge-triggered interrupt EX0

EX0 = 1; // Enable external 0 interrupt (USB interrupt source)

EA = 1; // Enable global interrupts

UsbReset(); // Reset the USB Function

// now enable the pull up to enumerate the device on usb

USBCTL |= USBCTL_CONT;

}

//***

// Description: This initializes or resets the USB function

//***

void UsbReset(void)

{

deviceReady = 0; // Device is not currently ready

 ConfigurationNumber = 0x00; // device is unconfigured

 InterfaceNumber = 0x00;

 FUNADR = 0x00; // no device address

 BytesRemainingOnIEP0 = NO_MORE_DATA;

 BytesRemainingOnOEP0 = NO_MORE_DATA;

 StatusAction = STATUS_ACTION_NOTHING;

 // enable endpoint 0 interrupt

 IEPCNFG_0 = EPCNF_USBIE | EPCNF_UBME;

 OEPCNFG_0 = EPCNF_USBIE | EPCNF_UBME;

123

 // NAK both endpoints

 IEPBCNT_0 = EPBCNT_NAK;

 OEPBCNT_0 = EPBCNT_NAK;

 // enable input Endpoint 1 interrupt and set configurations

 // only use primary (X) buffer

 IEPCNF_1 = EPCNF_USBIE | EPCNF_UBME;

 IEPBBAX_1 = (unsigned char)(IEP1_X_BUFFER_ADDRESS >> 3 & 0x00FF);

 IEPBCTX_1 = EPBCNT_NAK; // no data

 IEPSIZXY_1 = EP1_MAX_PACKET_SIZE;

 // Enable the USB-specific Interrupts; SETUP, RESET and STPOW

 USBMSK = USBMSK_STPOW | USBMSK_SETUP | USBMSK_RSTR | USBMSK_RESR |

USBMSK_SUSR;

}

124

D.2.2 Usb.c

-- Description: USB functions

/*--

Some function used are from the Texas InstrumentTUSB2136 Generic Keyboard

Demo Program (Texas Instruments, 2000).

--*/

#include "reg52.h"

#include "Tusb3210.h"

#include "Usb.h"

#include "Usbinit.h"

#include "Prog.h"

#include "Descriptor.h"

#include <string.h>

//***

// external variables

//***

//***

// global variables

//***

unsigned char HostAskMoreDataThanAvailable; // If host ask more data then TUSB3210 has

 // It will send one zero-length packet

 // if the asked lenght is a multiple of

 // max. size of endpoint 0

unsigned char * pIEP0Buffer; // A buffer pointer to input end point 0

 // Data sent back to host is copied from

 // this pointed memory location

unsigned int BytesRemainingOnIEP0; // For endpoint zero transmitter only

 // Holds count of bytes remaining to be

 // transmitted by endpoint 0. A value

 // of 0 means that a 0-length data packet

 // A value of 0xFF means that transfer

 // is complete

unsigned int BytesRemainingOnOEP0; // For endpoint zero transmitter only

 // Holds count of bytes remaining to be

 // received by endpoint 0. A value

 // of 0 means that a 0-length data packe

 // A value of 0xFFFF means that transfer is complete

unsigned char * pOEP0Buffer; // A buffer pointer to output end point 0

 // Data sent from host is copied to

 // this pointed memory location

 // is complete.

unsigned char ConfigurationNumber = 0; // Set to 1 when USB device has been

 // configured, set to 0 when unconfigured

unsigned char InterfaceNumber = 0; // The interface number selected

unsigned int DeviceFeatures = 0; // The device features

unsigned char Suspended = 0; // Indicates whether the device is suspended or not

unsigned char deviceReady = 0;

unsigned char StatusAction; // Indicates the current state of sending

 // receiving data packets.

125

//***

// XDATA buffer locations

//***

// locations of Descriptors in RAM (user definied)

unsigned char xdata Descriptor[SIZEOF_DEVICE_DESCRIPTOR] _at_

START_OF_USER_BUFFER_ADDRESS;

// location of Endpoint 1 buffers, use only X-buffer (user definied)

unsigned char xdata IEP1Buffer[EP1_MAX_PACKET_SIZE] _at_

IEP1_X_BUFFER_ADDRESS;

unsigned char xdata OEP1Buffer[EP1_MAX_PACKET_SIZE] _at_

OEP1_X_BUFFER_ADDRESS;

// location of Endpoint 0 buffers (fixed by datasheet)

unsigned char xdata OEP0Buffer[EP0_MAX_PACKET_SIZE] _at_ OEP0_BUFFER_ADDRESS;

unsigned char xdata IEP0Buffer[EP0_MAX_PACKET_SIZE] _at_ IEP0_BUFFER_ADDRESS;

// location of setup packet block (fixed by datasheet)

tDEVICE_REQUEST xdata tSetupPacket _at_ EP0_SETUP_ADDRESS;

// location of the data received from host on SET_REPORT

unsigned char xdata DataFromHost[EP1_MAX_PACKET_SIZE] _at_

DATAFROMHOST_ADDRESS;

unsigned char xdata * pDataFromHost = DATAFROMHOST_ADDRESS;

// location of data to be transfered to host by the device

unsigned char xdata DataToHost[EP1_MAX_PACKET_SIZE] _at_ DATATOHOST_ADDRESS;

unsigned char xdata * pDataToHost = DATATOHOST_ADDRESS;

//***

// Send Configuration value to Host

// This function was taken from the TUSB2136 Generic Keyboard Demo Program

// From Texas Instruments (Texas Instruments, 2000) .

//***

void usbGetConfiguration(void)

{

 BytesRemainingOnIEP0 = 1;

 usbSendDataPacketOnEP0(&ConfigurationNumber);

}

//***

// Set Configuration from Host and stall output endpoint 0

 // This function was taken from the TUSB2136 Generic Keyboard Demo Program

// From Texas Instruments (Texas Instruments, 2000) .

//***

void usbSetConfiguration(void)

{

 OEPCNFG_0 |= EPCNF_STALL;

 ConfigurationNumber = tSetupPacket.bValueL;

 usbSendZeroLengthPacketOnIEP0();

}

126

//***

// The following functions are called at initial device enumeration, and are

// used to obtain the device, configuration, and string descriptors

//***

void usbGetDeviceDescriptor(void)

{

 OEPBCNT_0 = 0x00;

 BytesRemainingOnIEP0 = SIZEOF_DEVICE_DESCRIPTOR;

 usbSendDataPacketOnEP0(&romDeviceDescriptor);

 // Once the Device Descriptor has been sent, the device can work

deviceReady = 1;

}

//***

// Get Configuration descriptor

//***

void usbGetConfigurationDescriptor(void)

{

 OEPBCNT_0 = 0x00;

 BytesRemainingOnIEP0 = SIZEOF_CONFIG_DESC_GROUP;

 usbSendDataPacketOnEP0(&romConfigurationDescriptorGroup);

}

//***

// Get String descriptor

// sends the wanted descriptor string to the host

// 0: language info

// 1: manufacturer description

// 2: product description

// This function was taken from the TUSB2136 Generic Keyboard Demo Program

// From Texas Instruments (Texas Instruments, 2000) .

//***

void usbGetStringDescriptor(void)

{

 unsigned char Temp;

 unsigned char stringOffset = 0;

 OEPBCNT_0 = 0x00;

switch(tSetupPacket.bValueL)

{

case 0: // LANGUAGE ID

Descriptor[0] = 4; // Length of language descriptor ID

Descriptor[1] = DESC_TYPE_STRING; // LANGID tag

Descriptor[2] = 0x09; // Low byte of 0x0409 (English)

Descriptor[3] = 0x04; // High byte of 0x0409 (English)

break;

case 1: // MANUFACTURER DESCRIPTION

Descriptor[stringOffset++] = strlen(mfgDescription) * 2 + 2; // Length of this string

Descriptor[stringOffset++] = DESC_TYPE_STRING; // String descriptor type

for(Temp = 0; Temp < strlen(mfgDescription); Temp++)

{

Descriptor[stringOffset++] = mfgDescription[Temp]; // Insert the character from the string

Descriptor[stringOffset++] = 0x00; // Insert a trailing 00h for Unicode representation

}

break;

127

case 2: // PRODUCT DESCRIPTION

Descriptor[stringOffset++] = strlen(prodDescription) * 2 + 2; // Length of this string

Descriptor[stringOffset++] = DESC_TYPE_STRING; // String descriptor type

for(Temp = 0; Temp < strlen(prodDescription); Temp++)

{

Descriptor[stringOffset++] = prodDescription[Temp]; // Insert the character from the string

Descriptor[stringOffset++] = 0x00; // Insert a trailing 00h for Unicode representation

}

break;

case 3: // VERSION DESCRIPTION

Descriptor[stringOffset++] = strlen(revDescription) * 2 + 2; // Length of this string

Descriptor[stringOffset++] = DESC_TYPE_STRING; // String descriptor type

for(Temp = 0; Temp < strlen(revDescription); Temp++)

{

Descriptor[stringOffset++] = revDescription[Temp]; // Insert the character from the string

Descriptor[stringOffset++] = 0x00; // Insert a trailing 00h for Unicode representation

}

break;

default :

// default send a zero data packet

Descriptor[0] = 0;

break;

}

 BytesRemainingOnIEP0 = Descriptor[0];

 usbSendDataPacketOnEP0(&Descriptor);

}

//***

// the following 3 functions are used for HID devices

//***

// Get HID descriptor

// This function was taken from the TUSB2136 Generic Keyboard Demo Program

// From Texas Instruments (Texas Instruments, 2000) .

//***

void usbGetHIDDescriptor(void)

{

unsigned char Temp;

// Copy the DEVICE DESCRIPTOR from program "ROM" to XRAM

 for(Temp = 0; Temp < SIZEOF_HID_DESCRIPTOR; Temp++)

 Descriptor[Temp] = romConfigurationDescriptorGroup[SIZEOF_CONFIG_DESCRIPTOR +

SIZEOF_INTERFACE_DESCRIPTOR + Temp];

 OEPBCNT_0 = 0x00;

 BytesRemainingOnIEP0 = SIZEOF_HID_DESCRIPTOR;

 usbSendDataPacketOnEP0(&Descriptor);

}

//***

// Send report descriptor to host

//***

void usbGetReportDescriptor(void)

{

 BytesRemainingOnIEP0 = sizeof(romReportDescriptor);

 usbSendDataPacketOnEP0(&romReportDescriptor);

}

128

//***

// The Set_Report request is sent by the host to a typical HID device.

// when the Set_Report setup packet is received, we initiate a

// "Receive Data Packet" sequence since the actual data value will be

// in the following packet on OEP0.

//***

void usbSetReport(void)

{

 usbReceiveDataPacketOnEP0((unsigned char *)&DataFromHost);

}

//***

// Send Interface number to host

// This function was taken from the TUSB2136 Generic Keyboard Demo Program

// From Texas Instruments (Texas Instruments, 2000) .

//***

void usbGetInterface(void)

{

 BytesRemainingOnIEP0 = 1;

 usbSendDataPacketOnEP0(&InterfaceNumber);

}

//***

// Set Interface number which we get from host

// This function is taken from the TUSB2136 Generic Keyboard Demo Program

// From Texas Instruments (Texas Instruments, 2000) .

//***

void usbSetInterface(void)

{

 OEPCNFG_0 |= EPCNF_STALL; // control write without data stage

 InterfaceNumber = tSetupPacket.bIndexL;

 usbSendZeroLengthPacketOnIEP0();

}

//***

// Send device status to host

// This function was taken from the TUSB2136 Generic Keyboard Demo Program

// From Texas Instruments (Texas Instruments, 2000) .

//***

void usbGetDeviceStatus(void)

{

 BytesRemainingOnIEP0 = 2;

 usbSendDataPacketOnEP0((unsigned char *)&DeviceFeatures);

}

129

//***

// Set remote wake up

// This function was taken from the TUSB2136 Generic Keyboard Demo Program

// From Texas Instruments (Texas Instruments, 2000) .

//***

void usbSetRemoteWakeup(void)

{

USBCTL |= USBCTL_RWE;

DeviceFeatures |= 0x0200; // bit 0: self power, bit 1: remote wake up

 OEPCNFG_0 |= EPCNF_STALL; // first low, then high byte => 0x0200

 usbSendZeroLengthPacketOnIEP0();

}

//***

// clear remote wake up

// This function was taken from the TUSB2136 Generic Keyboard Demo Program

// From Texas Instruments (Texas Instruments, 2000) .

//***

void usbClearRemoteWakeup(void)

{

USBCTL &= ~USBCTL_RWE;

DeviceFeatures &= ~0x0200; // bit 0: self power, bit 1: remote wake up

 OEPCNFG_0 |= EPCNF_STALL;

 usbSendZeroLengthPacketOnIEP0();

}

//***

// Send interface status to host

// return 0x00 0x00 (reserved for future use)

// This function was taken from the TUSB2136 Generic Keyboard Demo Program

// From Texas Instruments (Texas Instruments, 2000) .

//***

void usbGetInterfaceStatus(void)

{

unsigned int StatusBuffer = 0x00;

 OEPCNFG_0 |= EPCNF_STALL;

 BytesRemainingOnIEP0 = 2;

usbSendDataPacketOnEP0((unsigned char *)&StatusBuffer);

}

//***

// The SetAddress request allows the host to assign an address to this device.

// The device starts with an address of 00h, as do all USB devices, until

// the host specifically assigns it another address

//***

void usbSetAddress(void)

{

 if (tSetupPacket.bValueL < 128)

 {

 FUNADR = tSetupPacket.bValueL;

 usbSendZeroLengthPacketOnIEP0();

 }

 else usbStallEndpoint0();

}

130

//***

// stop the input Endpoint 1 from sending data to the host

//***

void usbSetEndpointHalt(void)

{

if (tSetupPacket.bIndexL == 0x81) IEPCNF_1 &= ~EPCNF_UBME;

 usbSendZeroLengthPacketOnIEP0();

}

//***

// enable the input Endpoint 1 to send data to the host

//***

void usbClearEndpointHalt(void)

{

if (tSetupPacket.bIndexL == 0x81) IEPCNF_1 |= EPCNF_UBME;

 usbSendZeroLengthPacketOnIEP0();

}

//***

// Send the status of IEP1 to host

//***

void usbGetEndpointStatus(void)

{

unsigned int EndpointStatus = 0x0100;

 if(tSetupPacket.bIndexL == 0x81 && IEPCNF_1 & EPCNF_UBME) EndpointStatus = 0x0000;

BytesRemainingOnIEP0 = 2;

usbSendDataPacketOnEP0((unsigned char *)&EndpointStatus);

}

/***

// Any non-standard or unrecognized request will arrive at the following

// function by default. We automatically stall the endpoint to indicate

// it's an invalid or unrecognized request.

// This function was taken from the TUSB2136 Generic Keyboard Demo Program

// from Texas Instruments (Texas Instruments, 2000) .

//***

void usbNonStandardRequest(void)

{

usbStallEndpoint0();

}

//***

// USB REQUEST TABLE:

// This section of code defines the lookup table, using the structure

// defined in the header file. The values of the constants used in this

// structure are also defined in "usb.h".

// This Table was taken from the TUSB2136 Generic Keyboard Demo Program

// from Texas Instruments (Texas Instruments, 2000) .

//***

131

code tDEVICE_REQUEST_COMPARE tUsbRequestList[] =

{

// STANDARD DEVICE REQUESTS

 USB_REQ_TYPE_INPUT | USB_REQ_TYPE_STANDARD | USB_REQ_TYPE_DEVICE,

 USB_REQ_GET_STATUS,

 0x00,0x00, // wValue always 0

 0x00,0x00, // wIndex always 0

 0x02,0x00, // Length is 2

 0xff,&usbGetDeviceStatus, // all values must match

// CLEAR DEVICE FEATURE

 USB_REQ_TYPE_OUTPUT | USB_REQ_TYPE_STANDARD | USB_REQ_TYPE_DEVICE,

 USB_REQ_CLEAR_FEATURE,

 FEATURE_REMOTE_WAKEUP,0x00, // Feature Selector

 0x00,0x00, // wIndex is 0

 0x00,0x00, // Length is 0

 0xff,&usbClearRemoteWakeup, // all values must match

 // SET DEVICE FEATURE

 USB_REQ_TYPE_OUTPUT | USB_REQ_TYPE_STANDARD | USB_REQ_TYPE_DEVICE,

 USB_REQ_SET_FEATURE,

 FEATURE_REMOTE_WAKEUP,0x00, // Feature Selector

 0x00,0x00, // wIndex is 0

 0x00,0x00, // wLength is 0

 0xff,&usbSetRemoteWakeup, // all values must match

 // SET ADDRESS

 USB_REQ_TYPE_OUTPUT | USB_REQ_TYPE_STANDARD | USB_REQ_TYPE_DEVICE,

 USB_REQ_SET_ADDRESS,

 0xff,0x00, // Device address

 0x00,0x00, // wIndex is 0

 0x00,0x00, // wLength is 0

 0xdf,&usbSetAddress, // all values, except address must match

 // GET DEVICE DESCRIPTOR

 USB_REQ_TYPE_INPUT | USB_REQ_TYPE_STANDARD | USB_REQ_TYPE_DEVICE,

 USB_REQ_GET_DESCRIPTOR,

 0xff,DESC_TYPE_DEVICE, // Descriptor Type & Index

 0xff,0xff, // Zero or Language ID

 0xff,0xff, // Descriptor Length

 0xd0,&usbGetDeviceDescriptor, // only bReqType, bReq and decriptor type must match

 // GET CONFIGURATION DESCRIPTOR

 USB_REQ_TYPE_INPUT | USB_REQ_TYPE_STANDARD | USB_REQ_TYPE_DEVICE,

 USB_REQ_GET_DESCRIPTOR,

 0xff,DESC_TYPE_CONFIG, // Descriptor Type & Index

 0xff,0xff, // Zero or Language ID

 0xff,0xff, // Descriptor Length

 0xd0,&usbGetConfigurationDescriptor,// only bReqType, bReq and decriptor type must match

 // GET STRING DESCRIPTOR

 USB_REQ_TYPE_INPUT | USB_REQ_TYPE_STANDARD | USB_REQ_TYPE_DEVICE,

 USB_REQ_GET_DESCRIPTOR,

 0xff,DESC_TYPE_STRING, // Descriptor Type & Index

132

 0xff,0xff, // Zero or Language ID

 0xff,0xff, // Descriptor Length

 0xd0,&usbGetStringDescriptor, // only bReqType, bReq and decriptor type must match

// SET DESCRIPTOR not implemented

// GET CONFIGURATION

 USB_REQ_TYPE_INPUT | USB_REQ_TYPE_STANDARD | USB_REQ_TYPE_DEVICE,

 USB_REQ_GET_CONFIGURATION,

 0x00,0x00, // always 0

 0x00,0x00, // always 0

 0x01,0x00, // wLength is 1

 0xff,&usbGetConfiguration, // all values must match

 // SET CONFIGURATION

 USB_REQ_TYPE_OUTPUT | USB_REQ_TYPE_STANDARD | USB_REQ_TYPE_DEVICE,

 USB_REQ_SET_CONFIGURATION,

 0xff,0x00, // configuration value

 0x00,0x00, // zero

 0x00,0x00, // wLength is 0

 0xdf,&usbSetConfiguration, // all values, except configuration value must match

//******************************

// STANDARD INTERFACE REQUESTS

//******************************

 // GET INTERFACE STATUS

 USB_REQ_TYPE_INPUT | USB_REQ_TYPE_STANDARD |

USB_REQ_TYPE_INTERFACE,

 USB_REQ_GET_STATUS,

 0x00,0x00, // zero

 0xff,0x00, // interface number

 0x02,0x00, // length is 2

 0xf7,&usbGetInterfaceStatus, // all values, except interface number must match

// CLEAR/SET FEATURE not implemented

// GET INTERFACE

 USB_REQ_TYPE_INPUT | USB_REQ_TYPE_STANDARD |

USB_REQ_TYPE_INTERFACE,

 USB_REQ_GET_INTERFACE,

 0x00,0x00, // zero

 0xff,0xff, // interface number

 0x01,0x00, // length is 1

 0xf3,&usbGetInterface, // all values, except interface number must match

// SET INTERFACE FEATURE

 USB_REQ_TYPE_OUTPUT | USB_REQ_TYPE_STANDARD |

USB_REQ_TYPE_INTERFACE,

USB_REQ_SET_INTERFACE,

 0xff,0x00, // Alternative Setting

 0xff,0x00, // Interface number

 0x00,0x00, // length is 0

 0xd7,&usbSetInterface, // all value, except alternate settings and interface number must match

133

 // GET HID DESCRIPTOR

 USB_REQ_TYPE_INPUT | USB_REQ_TYPE_STANDARD |

USB_REQ_TYPE_INTERFACE,

 USB_REQ_GET_DESCRIPTOR,

 0xff,DESC_TYPE_HID, // Descriptor Type & Index

 0xff,0xff, // Zero or Language ID

 0xff,0xff, // Descriptor Length

 0xd0,&usbGetHIDDescriptor, // only bReqType, bReq and decriptor type must match

 // GET REPORT DESCRIPTOR

 USB_REQ_TYPE_INPUT | USB_REQ_TYPE_STANDARD |

USB_REQ_TYPE_INTERFACE,

 USB_REQ_GET_DESCRIPTOR,

 0xff,DESC_TYPE_REPORT, // Report Type(High) and Index(Low)

 0xff,0xff, // Interface number

 0xff,0xff, // descriptor length

 0xd0,&usbGetReportDescriptor, // only bReqType, bReq and report type must match

//**********************************

// CLASS SPECIFIC INTERFACE REQUESTS

//**********************************

 // SET REPORT

 USB_REQ_TYPE_OUTPUT | USB_REQ_TYPE_CLASS | USB_REQ_TYPE_INTERFACE,

 USB_REQ_SET_REPORT,

 0xff,0xff, // Report type and Report ID

 0xff,0xff, // Interface number

 0xff,0xff, // Report length

 0xc0,&usbSetReport, // only bReqType and bReq must match

 // GET REPORT not supported

 // GET/SET IDLE not supported

 // GET/SET PROTOCOL not supported

//******************************

// STANDARD ENDPOINT REQUESTS

//******************************

 // GET ENDPOINT STATUS

 USB_REQ_TYPE_INPUT | USB_REQ_TYPE_STANDARD | USB_REQ_TYPE_ENDPOINT,

 USB_REQ_GET_STATUS,

 0x00,0x00, // always 0

 0xff,0x00, // Endpoint number

 0x02,0x00, // wLength is 2

 0xf7,&usbGetEndpointStatus, // all values, except endpoint number must match

 // CLEAR ENDPOINT FEATURE

 USB_REQ_TYPE_OUTPUT | USB_REQ_TYPE_STANDARD |

USB_REQ_TYPE_ENDPOINT,

 USB_REQ_CLEAR_FEATURE,

 FEATURE_ENDPOINT_STALL,0x00, // Feature selector

 0xff,0x00, // Endpoint number

 0x00,0x00, // wLength is 0

 0xf7,&usbClearEndpointHalt, // all values, except endpoint number must match

134

// SET ENDPOINT FEATURE

 USB_REQ_TYPE_OUTPUT | USB_REQ_TYPE_STANDARD |

USB_REQ_TYPE_ENDPOINT,

 USB_REQ_SET_FEATURE,

 FEATURE_ENDPOINT_STALL,0x00, // Feature selector

 0xff,0x00, // Endpoint number

 0x00,0x00, // wLength is 0

 0xf7,&usbSetEndpointHalt, // all values, except endpoint number must match

// SYNCH FRAME is not implemented

// END OF LIST CATCH-ALL REQUEST:

// This will match any USB request since bCompareMask is 0x00.

 0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,

 0x00,&usbNonStandardRequest

};

//***

//This function is called when a USB request has been received. It searches

// the tUsbRequestList[] structure defined in the previous section for a

// request that matches a given entry in the table and, when matched, executes

// the corresponding function.

// This function was taken from the TUSB2136 Generic Keyboard Demo Program

// from Texas Instruments (Texas Instruments, 2000) .

//***

void usbDecodeAndProcessUsbRequest(void)

{

 unsigned char Mask, Result, Temp;

 unsigned char * pUsbRequestList; // save code space

// We initialize the pUsbRequestList pointer to the beginning of the

// tUsbRequestList[] so that we can subsequently traverse the table

// by incrementing the pUsbRequestList pointer.

 pUsbRequestList = (unsigned char *)&tUsbRequestList[0];

// Cycle indefinitely until we've found an entry in the tUsbRequestList[]

// table. Since the last entry in the table has a 0x00 mask, we'll

// *always* find a match, so this cycle will always exit.

 while(1)

 {

 Result = 0x00;

 Mask = 0x80;

 // We cycle through fields 0 through 7, which correspond to the 8 fields

 // in each entry of tUsbRequestList. If the given byte in the packet

 // we just receive is equal to the corresponding byte in the table, we

 // set that bit in the result, indicating a byte which matched. Otherwise,

 // we don't set the bit which means that byte didn't match.

 for(Temp = 0; Temp < 8; Temp++)

 {

 if(*(pEP0_SETUP_ADDRESS + Temp) == *(pUsbRequestList + Temp)) Result |= Mask;

 Mask >>= 1;

 }

135

 // At this point, bResult holds 8 bits which indicate whether each of the

 // bytes in the packet matched the corresponding bytes in the tUsbRequestList[]

 // table. We then AND the mask value in the table with the result so that

 // we only are comparing the bits required in the mask. If the resulting

 // value is equal to the mask, that means that all significant bytes match.

 // This is done since any bit that is clear in the mask is a "don't care", so

 // the AND makes sure we don't reject a "valid" comparison beause a don't

 // care bit actually matched.

 if((*(pUsbRequestList + Temp) & Result) == *(pUsbRequestList + Temp)) break;

 // If we haven't found a matching entry yet, we advenced the pointer to point

 // to the next entry in the table, and keep looking.

 pUsbRequestList += sizeof(tDEVICE_REQUEST_COMPARE);

 }

 // We check to see if any more setup packet(s) have been received and, if so, we

 // anbandon this one to handle the next one.

 if(USBSTA & (USBSTA_SETUP | USBSTA_STPOW) != 0x00) return;

// If we've reached this point of the function, we've found the function that should

// be called given the current request. So we call it...

((ptDEVICE_REQUEST_COMPARE)pUsbRequestList)->pUsbFunction();

}

//***

// Sets the STALL flag on both IEP0 and OEP0.

//***

void usbStallEndpoint0(void)

{

 IEPCNFG_0 |= EPCNF_STALL;

 OEPCNFG_0 |= EPCNF_STALL;

}

//***

// Receive a data packet on EP0

// sets buffer address and bytes remaining and counter to 0 => receiving on

// next OUT token

// called when a SET_REPORT token is received.

// This function was taken from the TUSB2136 Generic Keyboard Demo Program

// from Texas Instruments (Texas Instruments, 2000) .

//***

void usbReceiveDataPacketOnEP0(unsigned char * pBuffer)

{

 pOEP0Buffer = pBuffer;

 BytesRemainingOnOEP0 = (unsigned int)(tSetupPacket.bLengthH << 8) | (unsigned

int)tSetupPacket.bLengthL;

 StatusAction = STATUS_ACTION_DATA_OUT;

 OEPBCNT_0 = 0x00;

}

136

//***

// Receive a data packet on EP0

// if not all data has been sent, send the rest now

//***

void usbReceiveNextPacketOnOEP0(void)

{

 unsigned char Index, Byte;

 Byte = OEPBCNT_0 & EPBCT_BYTECNT_MASK;

 // enter if received bytes (should be 8) arrived

 if(BytesRemainingOnOEP0 >= (unsigned int)Byte)

 {

 for(Index = 0; Index < Byte; Index++) *pOEP0Buffer++ = OEP0Buffer[Index];

 BytesRemainingOnOEP0 -= (unsigned int)Byte;

 // if we are waiting for more data, wait for the next OUT token

 if(BytesRemainingOnOEP0 > 0)

 {

 OEPBCNT_0 = 0x00;

 StatusAction = STATUS_ACTION_DATA_OUT;

 }

// if all bytes are received, stall endpoint

 else

 {

 OEPCNFG_0 |= EPCNF_STALL;

 StatusAction = STATUS_ACTION_NOTHING;

 // data has been received here

 // now decode the packet

 DecodeDeviceData(&DataFromHost);

 }

 }

// if to much data has been sent, stall endpoint

 else

 {

 OEPCNFG_0 |= EPCNF_STALL;

 StatusAction = STATUS_ACTION_NOTHING;

 }

}

//***

// Sends a 0-length packet back to the host on IEP0. Often called to

// acknowledge a packet received from the host that requires no data in the

// reply, just an acknowledgement of receipt.

// This function was taken from the TUSB2136 Generic Keyboard Demo Program

// from Texas Instruments (Texas Instruments, 2000) .

//***

void usbSendZeroLengthPacketOnIEP0(void)

{

 BytesRemainingOnIEP0 = NO_MORE_DATA;

 StatusAction = STATUS_ACTION_NOTHING;

 IEPBCNT_0 = 0x00;

}

137

//***

// Send data packet to EP0

// used for sending descriptors and other requests to the host

// length of data is defined in the setup packet.

// This function was taken from the TUSB2136 Generic Keyboard Demo Program

// from Texas Instruments (Texas Instruments, 2000) .

//***

void usbSendDataPacketOnEP0(unsigned char * pBuffer)

{

 unsigned int Temp;

 pIEP0Buffer = pBuffer;

 Temp = (unsigned int)(tSetupPacket.bLengthH << 8) | (unsigned int)tSetupPacket.bLengthL;

 // Limit transfer size to Length if needed

 // this prevent USB device sending 'more than require' data back to host

 if(BytesRemainingOnIEP0 >= Temp)

 {

 BytesRemainingOnIEP0 = Temp;

 HostAskMoreDataThanAvailable = 0;

 }

 else HostAskMoreDataThanAvailable = 1;

 usbSendNextPacketOnIEP0();

}

//***

// Send following packets to IEP0 if not all data has been transfered

// with the last IN token.

// This function was taken from the TUSB2136 Generic Keyboard Demo Program

// from Texas Instruments (Texas Instruments, 2000) .

//***

void usbSendNextPacketOnIEP0(void)

{

 unsigned char PacketSize, Index;

 // First check if there are bytes remaining to be transferred

 if(BytesRemainingOnIEP0 != NO_MORE_DATA)

 {

 if(BytesRemainingOnIEP0 > EP0_MAX_PACKET_SIZE)

 {

 // More bytes are remaining than will fit in one packet

 // there will be More IN Stage

 PacketSize = EP0_MAX_PACKET_SIZE;

 BytesRemainingOnIEP0 -= EP0_MAX_PACKET_SIZE;

 StatusAction = STATUS_ACTION_DATA_IN;

 }

 else if (BytesRemainingOnIEP0 < EP0_MAX_PACKET_SIZE)

 {

 // The remaining data will fit in one packet.

 // This case will properly handle wBytesRemainingOnIEP0 == 0

 PacketSize = (unsigned char)BytesRemainingOnIEP0;

 BytesRemainingOnIEP0 = NO_MORE_DATA; // No more data need to be Txed

 StatusAction = STATUS_ACTION_NOTHING;

 }

138

 else

 {

 PacketSize = EP0_MAX_PACKET_SIZE;

 if(HostAskMoreDataThanAvailable == 1)

 {

 BytesRemainingOnIEP0 = 0;

 StatusAction = STATUS_ACTION_DATA_IN;

 }

 else

 {

 BytesRemainingOnIEP0 = NO_MORE_DATA;

 StatusAction = STATUS_ACTION_NOTHING;

 }

 }

 for(Index = 0; Index < PacketSize; Index++) IEP0Buffer[Index] = *pIEP0Buffer++;

 IEPBCNT_0 = PacketSize;

 }

 else StatusAction = STATUS_ACTION_NOTHING;

}

//***

// Send the buffer DataToHost on EP1

// this data is data from reading a device, status,....

// there is no defined length, because this function is not called

// because of the setup packet

// but length is defined inthe report descriptor (64 Bytes)

//***

void usbSendDataToHostOnEP1(void)

{

unsigned char Index;

// wait for the NAK

Index = IEPBCTX_1;

while(Index != EPBCNT_NAK) Index = IEPBCTX_1;

for(Index = 0; Index < EP1_MAX_PACKET_SIZE; Index++) IEP1Buffer[Index] =

DataToHost[Index];

 IEPBCTX_1 = Index;

}

139

//***

// This function is called by the UsbInterrupt function when

// a setup packet is received. This function immediately sets both

// OEP0 and IEP0 to a NAK state, sets the USBCTL to send/receive based

// on the direction of the request, then proceeds to call the

// usbDecodeAndProcessUsbRequest() function which determines which

// function should be called to handle the given USB request.

// This function was taken from the TUSB2136 Generic Keyboard Demo Program

// from Texas Instruments (Texas Instruments, 2000) .

//***

void SetupPacketInterruptHandler(void)

{

 // Hardware clears STALL in both data endpoints once valid setup packet is

 // received. NAK both data endpoints.

 IEPBCNT_0 = EPBCNT_NAK;

 OEPBCNT_0 = EPBCNT_NAK;

 USBSTA = USBSTA_SETUP; // from now, hardware will refer NAK bit in I/OEPBCNT

 // Copy the MSB of bmRequestType to DIR bit of USBCTL to indicate the

 // direction of the transfer.

 if((tSetupPacket.bmRequestType & USB_REQ_TYPE_INPUT) == USB_REQ_TYPE_INPUT)

 USBCTL |= USBCTL_DIR;

 else

 USBCTL &= ~USBCTL_DIR;

// Clear the bStatusAction to indicate that, at this point, nothing is

// happening (it may be set to DATA_OUT by specific functions that

// expect a DATA packet following the setup packet).

 StatusAction = STATUS_ACTION_NOTHING;

// Call the function that determines which function should be called to

// handle the specific USB request.

 usbDecodeAndProcessUsbRequest();

}

//***

// This function is called by the UsbInterrupt function when

// a USB interrupt is called by OEP0.

// This function was taken from the TUSB2136 Generic Keyboard Demo Program

// from Texas Instruments (Texas Instruments, 2000) .

//***

void OEP0InterruptHandler(void)

{

// We clear the IEP0 byte count since we have nothing to send out.

 IEPBCNT_0 = 0x00;

// We now handle the interrupt based on the bStatusAction condition.

// If we are in a DATA_OUT condition, we call the usbReceiveNextPacketOnEP0

// function to copy the data payload to its correct buffer. If we are

// not expecting any data on OEP0, we set the stall flag to stall the

// endpoint and abort any additional data that may otherwise be

// sent.

 if(StatusAction == STATUS_ACTION_DATA_OUT)

 usbReceiveNextPacketOnOEP0(); // Handle this data packet

 else

 OEPCNFG_0 |= EPCNF_STALL; // We weren't expecting data

}

140

//***

// This function is called by the UsbInterrupt function when

// a USB interrupt is caused by IEP0. This will happen once the data

// sent by calling usbSendNextPacketOnIEP0 and means the previous data

// packet has been sent. At that point, there are two conditions:

// either there is more data to send or there isn't. If there is, we

// call usbSendNextPacketOnIEP0 to send the next packet of data. If

// there isn't anymore data, we stall. However, if the bStatusAction

// condition indicates that we were changing the devices address, we

// do so at this point.

// This function was taken from the TUSB2136 Generic Keyboard Demo Program

// from Texas Instruments (Texas Instruments, 2000) .

//***

void IEP0InterruptHandler(void)

{

// We clear the OEP0 byte count since we are not expecting any data.

 OEPBCNT_0 = 0x00;

// We now handle the interrupt based on the bStatusAction condition.

// If we are in a DATA_IN condition, we call the usbSendNextPacketOnIEP0

// function to send the next data payload packet. If we are in a

// Set Address mode, we modify the address. In any other case, we've

// sent all the data we had to send, so we stall the endpoint to indicate

// there is no more data to send.

 if(StatusAction == STATUS_ACTION_DATA_IN) usbSendNextPacketOnIEP0();

 else IEPCNFG_0 |= EPCNF_STALL; // No more data to send

}

//***

// This function is called by the UsbInterrupt function when

// a USB interrupt is caused by IEP1. This will happen once the data

// sent by calling usbSendDataPacketOnEP1 and means the previous data

// packet has been sent.

//***

void IEP1InterruptHandler(void)

{

OEPBCNT_0 = 0x00;

}

//***

// Interrupt Service Routine for EX0

// This function was taken from the TUSB2136 Generic Keyboard Demo Program

// from Texas Instruments (Texas Instruments, 2000) .

//***

void EX0_int(void) interrupt IE0_VECTOR // External Interrupt 0

{

 EA = 0; // Disable any further interrupts

 switch (VECINT)

141

{ // Identify Interrupt ID

 case VECINT_OUTPUT_ENDPOINT0:

 VECINT = 0x00;

 OEP0InterruptHandler();

 break;

 case VECINT_INPUT_ENDPOINT0:

 VECINT = 0x00;

 IEP0InterruptHandler();

 break;

 case VECINT_INPUT_ENDPOINT1:

 VECINT = 0x00;

 IEP1InterruptHandler();

 break;

 case VECINT_STPOW_PACKET_RECEIVED:

 VECINT = 0x00;

 // clear setup packet flag

 USBSTA = USBSTA_STPOW;

 SetupPacketInterruptHandler();

 break;

 case VECINT_SETUP_PACKET_RECEIVED:

 VECINT = 0x00;

 // clear setup packet flag

 USBSTA = USBSTA_SETUP;

 SetupPacketInterruptHandler();

 break;

 case VECINT_RSTR_INTERRUPT:

 VECINT = 0x00;

 // clear reset flag

 USBSTA = USBSTA_RSTR;

 UsbReset();

 break;

 case VECINT_RESR_INTERRUPT:

 VECINT = 0x00;

 USBSTA = USBSTA_RESR;

 Suspended = 0;

 break;

 case VECINT_SUSR_INTERRUPT:

 VECINT = 0x00;

 USBSTA = USBSTA_SUSR;

 Suspended = 1;

 break;

 default:

 VECINT = 0x00;

 break; // unknown interrupt ID

 }

 EA = 1; // Enable the interrupts again

}

142

D.2.3 Delay.c

-- Description: delay time in ms

#include "Delay.h"

#include "reg52.h"

#include <intrins.h>

#define SYS_CLOCK 48

//***

// Delay with time * 1ms

// with 48MHz ossillator

//***

void Delay_ms(unsigned int time)

{

TMOD = 0x01; // Timer 0 16 bit Mode

TR0 = 0;

while(time--)

{

 TL0 = (65536L-1000L*SYS_CLOCK/12) % 256L;

 TH0 = (65536L-1000L*SYS_CLOCK/12) / 256L;

 TR0 = 1; // start timer

 while(!TF0);

 TF0 = 0;

 }

 TR0 = 0;

}

//***

// Delay with 5us

// with 48MHz ossillator

//***

void Delay_5us(void)

{

 nop_(); _nop_();

nop(); _nop_();

nop(); _nop_();

nop(); _nop_();

nop(); _nop_();

nop(); _nop_();

nop(); _nop_();

nop(); _nop_();

}

143

D.2.4 Application.c

-- Description: Application programming functions

---*/

#include "reg52.h"

#include "Application.h"

#include "Prog.h"

#include "Delay.h"

#include "Usb.h"

#include "Tusb3210.h"

#include <intrins.h>

//***

// extern variables

//***

extern tPROGR_MODE ProgMode;

extern unsigned char xdata * pDataToHost;

extern unsigned char xdata * pDataFromHost;

//***

// Writing data to port P1

// DataFromHost[2]: Bytes to write from the actual packet

// DataFromHost[3]: 0: the last packet was sent, not 0: more data will come

//***

void Write_Data(void)

{

unsigned char Counter;

// do this only one time if writing to port

if (ProgMode == NOTHING)

{

Delay_ms(10);

ProgMode = WRITING;

}

// device receives always max 59 bytes of data

// 64 bytes are sent, but 1 for device info, 1 for mode,

// 1 byte for size info and 2 bytes for other info => max 59 bytes data

for (Counter = 0; Counter < *(pDataFromHost+2); Counter++)

 {

// apply data on Port1

P1 = *(pDataFromHost+Counter+5);

Delay_5us();

nop();

while(P2_2 == 0); // wait for button to be pressed (to go High)

 // indicating ready to receive next byte

//while(P2_2 == 1); // continue reading port without interrupt

 nop();

 nop();

Delay_ms(60);

 } // end for

144

// if the last packet was sent, exit writing

if (*(pDataFromHost+3) == 0) // Buf[4]

{

// now power off

ResetDevice();

ProgMode = NOTHING;

*pDataToHost = 'w';

usbSendDataToHostOnEP1();

 }

}

//***

// Read data from P1

// DataFromHost[2]: Max Bytes to read from port

//***

void Read_Data(void)

{

unsigned int Counter, ActualBytesToRead, MaxBytesToRead;

unsigned char BytesToSend;

MaxBytesToRead = (*(pDataFromHost+2)); // Buf[3]

ActualBytesToRead = (*(pDataFromHost+4)); // Buf[5]

Delay_5us();

nop();

// P1 to high to enable reading

P1 = 0xFF;

BytesToSend = 0;

for (Counter = 0; Counter < MaxBytesToRead; Counter++)

{

// read a byte

*(pDataToHost+BytesToSend+1) = P1;

BytesToSend++;

// if the buffer is full, send a packet to host

// max data is 63 bytes + (1 byte for size)

if ((BytesToSend == 63) || (BytesToSend == ActualBytesToRead))

 {

 // now send the data to host on next IN token

 // buffer[0] is size info

 *pDataToHost = BytesToSend;

 usbSendDataToHostOnEP1();

 BytesToSend = 0;

 } // enf if

 nop();

 nop();

} // end for

 if ((BytesToSend == 63) || (BytesToSend == ActualBytesToRead))

break;

} // end for

145

if (BytesToSend != 0)

 {

 // finally send the rest of the readbuffer if size < 63 Bytes

 *pDataToHost = BytesToSend;

 usbSendDataToHostOnEP1();

 }

} // end function

146

D.2.5 Prog.c

-- Description: Main programme functions

#include "reg52.h"

#include "Tusb3210.h"

#include "Prog.h"

#include "Usb.h"

#include "Delay.h"

#include "application.h"

//***

// extern variables

//***

extern unsigned char xdata * pDataToHost;

extern unsigned char xdata * pDataFromHost;

//***

// global variables

//***

tPROGR_MODE ProgMode;

//***

// Initializes the Device ports and enable pull ups

//***

void ResetDevice(void)

{

// initialize Ports

PUR0 = 0; // enable pullups for Port0

PUR1 = 0; // enable pullups for Port1

PUR2 = 0; // enable pullups for Port2

PUR3 = 0; // enable pullups for Port3

P0 = 0x00; // initialize ports

P1 = 0x00;

P3 = 0x00;

}

//***

// Decode the data from host to read port or write to port

// first Byte indicates read/write

// second Byte indicates mode (read,write)

//***

void DecodeDeviceData(unsigned char * Data)

{

// select read/write

switch (Data[0])

{

// 1: TUSB3210 selected

case 0x01:

147

switch (Data[1])

{

// 1: read selected

case 0x01 : Read_Data(); break;

// 2: write selected

case 0x02: Write_Data(); break;

}

break;

default: break;

}

// tell host, that data has been Written

// and new data can be send

if (ProgMode == WRITING)

{

pDataToHost = '';

usbSendDataToHostOnEP1();

}

// else power off

else ResetDevice();

148

D.2.6 Main.c

-- Description: main program

#include "reg52.h"

#include "Tusb3210.h"

#include "Usbinit.h"

#include "Usb.h"

#include "Prog.h"

//***

// extern variables

//***

extern unsigned char deviceReady;

extern tPROGR_MODE ProgMode;

//***

// Main routine to initialize the TUSB3210

//***

void main()

{

// misc. settings

 MCNFG = (MCNFG_XINT | MCNFG_SDW); // SDW is already set by boot program

WDCSR = 0x00; // disable watchdog

INTCFG = 0x02; // P2 Interrupt delay in ms (here 2ms)

INTCFG = 0x01; // P2 Interrupt delay in ms (here 1ms)

ProgMode = NOTHING; // actual state: nothing

// initialize device pins

ResetDevice();

// initialize USB registers

InitializeUsbFunction();

while(1);

}

149

APPENDIX E

PC SAMPLE SOURCE CODE

E.1 UML Diagram

E.2 PC Software Source Code.

procedure TMainForm.HidCtlDeviceChange(Sender: TObject);
var
Dev: TJvHidDevice;
Counter: Byte;
begin
 CurrentDevice := nil;
 // if not found , disable buttons
 DisableButtons;
 StatusBar.SimpleText := 'USB HID Device not found';

if HIDDevCount > 0 then
begin
for Counter := 0 to HIDDevCount-1 do
 begin
 Dev := TJvHidDevice(HIDDevices[Counter]);
 Dev.Free;
 end;
 HIDDevCount := 0;

150

 end;
 HidCtl.Enumerate;
end;

function TMainForm.HidCtlEnumerate(const HidDev: TJvHidDevice;
 const Idx: Integer): Boolean;
var
 Dev: TJvHidDevice;
begin
 HidCtl.CheckOutByIndex(Dev, Idx);
 HIDDevices[HIDDevCount] := Dev;
 inc(HIDDevCount);

 // TUSB3210 Device has these values
 // Detect the Device and enable buttons
 // if the correct VID/PID is found
 if (HidDev.Attributes.VendorID = $0451) and
 (HidDev.Attributes.ProductID = $3210) then
 begin
 EnableButtons;
 StatusBar.SimpleText := 'USB HID Device is connected';
 CurrentDevice := Dev;
 end;
 Result := true;

end;

//**
// The Buffer sends to the Device 64 Bytes + one Byte Report ID
//**
 Procedure TMainForm.WriteBufferToDevice;
 var
 Written: Cardinal;
 ToWrite: Cardinal;
begin
if Assigned(CurrentDevice) then
 begin
 // report ID is always zero
 Buf[0] := 0;

 //*******************************
 // Buf[1]: device information
 // 1: TUSB3210
 // 2,3,4, etc..: Other connected
 // Devices If any
 //*******************************

Buf[1] := 1 ; // TUSB3210
 ToWrite := CurrentDevice.Caps.OutputReportByteLength;
 CurrentDevice.WriteFile(Buf, ToWrite, Written);
 end;
 end;

151

 //***
 // Preparing the data to be send to the Device as a 64 Bytes packet .
 //***
 procedure TMainForm.SendDataPacketToDevice;
 var
ByteCounter, MaxPacketSize: byte;

begin

 // Buf[5] is also a general information Byte
 // => data starts at Buf[6]

 MaxPacketSize := 59;
 datalength := StrToInt(BytesToSend.Text);

 // initialize the Buffer
 for ByteCounter := 1 to MaxPacketSize do
 Buf[ByteCounter+5] := 0;

 // Filling the data from the list (Filled by the user)
 for ByteCounter := 1 to MaxPacketSize do
 begin
 if Edits[ByteCounter].Text <> ' ' then
 begin
 Buf[ByteCounter+5] := StrToIntDef('$'+ Edits[ByteCounter-1].Text,0);
 Edits[ByteCounter-1].Text := Format('%.2x', [Buf[ByteCounter+5]]);;
 inc(SentBytes);
 if datalength = SentBytes then break;
 end;
 end;

 // Buf[3]: Actual byte count in packet
 // Buf[4]= (0): Indicates that the last packet was sent
 // Buf[4]= (1): Indicates that more data will follow

 if datalength = SentBytes then
 begin

 Buf[3] := SentBytes; // actual Byte count
 Buf[4] := 0; // last packet was sent (end of data)
 end
 else
 begin
 Buf[3] := SentBytes;
 Buf[4] := 1; // more data will follow
 end;

 WriteBufferToDevice;
end;

152

 //***
 // Receiving the data sent by the device
 //***
procedure TMainForm.HidData(const HidDev: TJvHidDevice; ReportID: Byte;
 const Data: Pointer; Size: Word);
 var
 Counter : Byte;
begin
 // writing of the last data packet has finished =>
 // send next data packet if a '*' is received. That means,
 // that the device has received the last data packet
 // and is ready to receive a new data packet
 if not (Status = READ) then
 if Byte(PChar(Data)[0]) = ord('*') then SendDataPacketToDevice;
 if ((ButtonClicked = B_READ) or (Status = READ))then
 begin
 for Counter:= 1 to Byte(PChar(Data)[0]) do
 readbuffer := readbuffer + Format ('%.2x ',[Cardinal(PChar(Data)[Counter])]);
 //if ((length(readbuffer) = MaxReadBytes) or (length(readbuffer) = ActualReadBytes)) then
 HistoryListBox.ItemIndex := HistoryListBox.Items.Add(readbuffer);
 Status := NOTHING;
 end
 else if ButtonClicked = B_WRITE then WriteDevice
 else Status := NOTHING ;

 // if last packet was sent to device stop sending data
 if (Status = WRITE) and (Byte(PChar(Data)[0])= ord('w')) then
 if ButtonClicked = B_WRITE then Status := NOTHING;
 // if just detecting device, then exit
 if Status = NOTHING then
 Status := NOTHING ;
 // enable buttons
 EnableButtons;
end;

//************************************
// Write to the Device
//************************************
 Procedure TMainForm.WriteDevice;
 var
 Str : string;
 I : integer;
 begin
 StatusBar.SimpleText := ' Writing to port...';
 Status := WRITE;
 Buf[2] := 2; // select mode (writing)
 Buf[5] := 0; // not used in writing mode
 SentBytes := 0;
 SendDataPacketToDevice;
 Str := Format('W %.2x ', [Buf[6]]); // first data byte
 for I := 7 to (datalength+5) do

153

 Str := Str + Format('%.2x ', [Buf[I]]);
 HistoryListBox.ItemIndex := HistoryListBox.Items.Add(Str);
 end;

//************************************
// Read the Device
//************************************
 Procedure TMainForm.ReadDevice;
 begin
 StatusBar.SimpleText := ' Reading from port...';
 Status := READ;
 Buf[2] := 1; // select mode (reading)
 MaxReadBytes := 63; // one byte for size information
 ActualReadBytes := StrToInt(BytesToRead.Text); // actual Byte count
 Buf[3] := MaxReadBytes ; // data size
 Buf[5] := ActualReadBytes; // actual Byte count
 readbuffer := '';
 WriteBufferToDevice;
end;

 procedure TmainForm.ShowBufferContents;
 var
 Str,Str1,Str2,Str3,Str4 : string;
 I : integer;
 begin
 Str1 := 'Buf[0]= Report ID , Buf[1]= Device(TUSB3210) , Buf[2]= Mode';
 Str2 := 'Buf[3]= Data Size , Buf[4]= 0:No more data ,1:More data will';
 Str3 := 'follow , Buf[5]= General Purpose, Buf[6..64]= Dtata';
 Str4 := '--'+
 '-------------------------------------';
 HistoryListBox.ItemIndex := HistoryListBox.Items.Add(Str1);
 HistoryListBox.ItemIndex := HistoryListBox.Items.Add(Str2);
 HistoryListBox.ItemIndex := HistoryListBox.Items.Add(Str3);
 HistoryListBox.ItemIndex := HistoryListBox.Items.Add(Str4);
 StatusBar.SimpleText := ' Display Contents of Buffer ...';
 Str := Format('Buf %.2x ', [Buf[0]]); // first data byte
 for I := 1 to (datalength+5) do
 Str := Str + Format('%.2x ', [Buf[I]]);
 HistoryListBox.ItemIndex := HistoryListBox.Items.Add(Str);
 end;

procedure TMainForm.HidCtlDeviceDataError(const HidDev: TJvHidDevice;
 Error: Cardinal);
 begin
 HistoryListBox.ItemIndex := HistoryListBox.Items.Add(Format('READ ERROR: %s (%x)',

[SysErrorMessage(Error), Error]));
 end;
procedure TMainForm.breadClick(Sender: TObject);
begin
 ButtonClicked := B_READ;
 if (BytesToRead.Text <> '') then
 ReadDevice
 else
 begin
 Status := NOTHING;

154

 StatusBar.SimpleText := 'To Read from the port , Enter the Number of Bytes to Read';
 end;
end;

procedure TMainForm.bwriteClick(Sender: TObject);
begin
 ButtonClicked := B_Write;
 if ((BytesToSend.Text <> '') and (StrToInt(BytesToSend.Text) <= 59)) then
 WriteDevice
 else
 begin
 Status := NOTHING;
 StatusBar.SimpleText := 'To write to the port ,Enter the Number of Bytes to Send (Maximum

59 Bytes)';
 end;
end;

procedure TMainForm.bterminateClick(Sender: TObject);
begin
 Application.Terminate;
end;

procedure TMainForm.SaveBtnClick(Sender: TObject);
begin
 ForceCurrentDirectory := True;
 if SaveDialog.Execute then
 HistoryListBox.Items.SaveToFile(SaveDialog.FileName);
end;

// ******************************
// ****** disable buttons ********
// ******************************
Procedure TMainForm.DisableButtons;
 begin
 bwrite.Enabled := false;
 bread.Enabled := false;
 end;

// ******************************
// ****** enable buttons ********
// ******************************
 Procedure TMainForm.EnableButtons;
 begin
 bwrite.Enabled := true ;
 bread.Enabled := true;
 end;
procedure TMainForm.FormActivate(Sender: TObject);
var
 I, J: Integer;
begin

155

 Edits[0] := Edit1;
 for I := 1 to High(Edits) do
 Edits[I] := TEdit.Create(Self);
 for J := 0 to 3 do
 for I := 0 to 14 do
 with Edits[J*15 + I] do
 begin
 Visible := True;
 Left := Edit1.Left + I*(Edit1.Width+2);
 Top := Edit1.Top + J*(Edit1.Height+4);
 Width := Edit1.Width;
 Anchors := Edit1.Anchors;
 //Edits[58].Visible := False;
 Edits[59].Visible := False;
 if not Assigned(Parent) then
 Parent := Edit1.Parent;
 TabOrder := Edit1.TabOrder + J*15 + I;
 end;
 HidCtl.OnDeviceChange := HidCtlDeviceChange;
end;

procedure TMainForm.ClearBtnClick(Sender: TObject);
begin
 Status := NOTHING;
 HistoryListBox.Items.Clear;
 StatusBar.SimpleText := ' Device is Ready...';
end;

procedure TMainForm.BuffBtnClick(Sender: TObject);
begin
 ShowBufferContents;
end;

156

APPENDIX F

BOARD SCHEMATIC DIAGRAM

The schematic diagram of the board (Texas Instruments, 2001-b) is show in the next

page, the diagram includes :

 The Generic Board built around the TUSB3210.

 The Power Supply circuit providing the board with a regulated 3.3 volts.

 The Reset circuit which resets the TUSB3210 by pushing a button.

 The EEPROM circuit (not used in the built board) .

 The Run and Suspend circuit.

 The RS232 Serial Port circuit (not used in the built board) .

157

P
0

.2

P
0

.6

P
0

.1

P
0

.4
P

0
.3

P
0

.0

P
0

.7

P
0

.5

P
1

.0
P

1
.1

P
1

.5
P

1
.6

P
1

.2
P

1
.3

P
1

.4

P
1

.7

P
2

.0
P

2
.1

P
2

.5
P

2
.6

P
2

.2
P

2
.3

P
2

.4

P
2

.7

P
3

.0
P

3
.1

P
3

.5
P

3
.6

P
3

.2
P

3
.3

P
3

.4

P
3

.7

S
2

P
U

R

S
3

G
N

D

+
3

.3
V

S
U

S
P +

3
.3

S
u

s
p

B
S

R
S

T
#

J
P

2
(P

3
.0

)
1

2

R
1

1

1
5
K

1
2

C
1

1

1
u
F

12

R
6

3
3

1
2

Q
2

P
N

P

1

2
3

1
2

M
H

Z
1

S
E

3
4
0
9
-N

D

U
1

T
P

S
7

6
3

3
3

D
B

V

2 1
54

3

G
N

D

IN
O

U
T

N
C

E
N

R
1

45
1
0

12

+
5
V

D
M

D
P

G
N
D

U
3

T
y

p
e

 B
 U

S
B

-S
h

ie
ld3 124

5 6

C
7

2
2
p
F

12

R
8

1
0
0
K

1
2

T
P

2 1

T
P

1

1

R
1

2
1

.2
K

+
C

3
1
0
u
F

12

R
4

1
.5

k
1

2

J
1

AC adaptor 5VDC

1

2

R
7

3
3

1
2

Q
1

2
N

2
2

2
2

A
3

1

2

R
1

3
1

.2
K

C
2

4
.7

u
F

1 2

R
1

51
0

1
2

R
5

1
5
k

1
2

R
E

S
E

T
1

S
W

 P
U

S
H

B
U

T
T

O
N

1
2

D
4

R
U

N
(re

d
) 21

T
P

41

T
P

51

R
1

6
5
1
0

12

C
1

0
0

.1
u

F

R
1

0
1
0
0
K1

2

R
9

1
0
0
K1

2

T
P

31

G
1

C
O

N
1

1

J
D

P
1

DB 9-F (1-2-1cable only)

1

6

2

7

3

8

4

9

5

1

6

2

7

3

8

4

9

5

G
4

C
O

N
1

1

G
3

C
O

N
1

1

U
2

J
P

(3
)

1
3

2

C
5

4
.7

u
F

1
2

U
5

M
A

X
2

3
2

1
38

1
1

1
0134526

1
2

91
4

7

R
1

IN
R

2
IN

T
1

IN
T

2
IN

C
+

C
1

-
C

2
+

C
2

-
V

+
V

-

R
1

O
U

T
R

2
O

U
T

T
1

O
U

T
T

2
O

U
T

T
P

61

T
P

71

C
6

2
2
p
F

12

G
2

C
O

N
1

1

U
4

T
U

S
B

3
2

1
0

1
9

1
8

1
1

6
1

6
0

2
4 5

1
2

1
7

1
5

1
4

4
2

1
3

5
9

1
0

3
9

5
8

5
7

5
6

5
4

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

6
2

1
6

3
1

3
2

3
3

3
4

3
5

3
6

4
0

4
1

2
2

2
3

2
5

2
6

2
7

2
8

2
9

3
0

3
8

3
7

89 5
5

5
3

5
2

5
1

2
1

2
0

D
M

0
D

P
0

S
D

A

X
1

X
2

G
N

D
2

G
N

D
1

S
C

L

P
U

R

T
E

S
T
1

T
E

S
T
0

G
N

D
3

R
S

T

G
N

D
4

V
C

C
1

V
C

C
2

P
3

.0
/R

x
D

/S
0

P
3

.1
/T

x
D

/S
1

P
3

.2

P
3

.4
/T

0

P
0

.0
P

0
.1

P
0

.2
P

0
.3

P
0

.4
P

0
.5

P
0

.6
P

0
.7

V
C

C
3

S
U

S
P

P
1

.0
P

1
.1

P
1

.2
P

1
.3

P
1

.4
P

1
.5

P
1

.6
P

1
.7

P
2

.0
P

2
.1

P
2

.2
P

2
.3

P
2

.4
P

2
.5

P
2

.6
P

2
.7

V
R

E
N

V
D

D
O

U
T

S
2

S
3

P
3

.3
/IN

T
1

#

P
3

.5
P

3
.6

P
3

.7

S
E

L
F

/B
U

S

T
E

S
T
2

R
1

8
1
0
0
k

1
2

J
P

3
(P

3
.1

)
1

2

C
1

0
.1

u
F

1
2

S
1

s
h

o
rt

1
2

S
2

s
h

o
rt

1
2

C
8

2
2
p
F

12

J
P

4

J
U

M
P

E
R

1
2

C
1

3
1
u
F

C
1

4
1
u
F

C
9

1
u
F

C
1

2
1
u
F

U
6

8
p

in
 S

o
c
k
e

t fo
r 2

4
L

C
x
x

85

1234
6 7

V
c
c

S
D

A

A
0

A
1

A
3

V
s
s

S
C

L
W

P

R
3

1
0
0
k

1
2

R
1

7
1
M

C
4

0
.1

u
F

1 2

R
2

1
0
0
K

1
2

+
3

.3
V

+
1

.8
V

+
5

V

+
5

V

S
D

A
S

C
L

V
b
u
s

V
b
u
s

+
5

V

S
U

S
P

R
S

T
#

+
3

.3
V

R
S

T
#

+
3

.3
V

P
3

.1

P
3

.0

P
W

R
2

3
2

P
3

.1
P

3
.0

S
C

L
S

D
A

+
3

.3
V

S
U

S
P +

3
.3

S
u

s
p

+
1

.8
V+
3

.3
V

+
3

.3
V

[
W
a
i
t

1
0
m
s

b
e
f
o
r
e

e
n
a
b
l
e

3
.
3
V
]

[
I
f

S
2

o
r

S
3

t
i
e
d

t
o

g
r
o
u
n
d
,

r
e
m
o
v
e

1
0
0
K

p
u
l
l
-
u
p

t
o

s
a
v
e

p
o
w
e
r
]

B
E

C

1
2

3

B

3

1
E

2 C

N
P
N

M
M
B
T
4
4
0
1

M
M
B
T
4
4
0
3

E
E

P
R

O
M

 c
irc

u
it

R
e

s
e

t c
irc

u
it

R
u

n
 S

u
s

p
e

n
d

 m
o

d
e

s
 c

irc
u

it

R
S

2
3

2
 S

e
ria

l P
o

rt c
irc

u
it

P
o

w
e

r S
u

p
p

ly
 c

irc
u

it

158

APPENDIX G

BOARD'S BILL OF MATERIAL

The table below is a bill of material listing all the needed components

to build the board (Texas Instruments, 2001-b).

Item Quantity Reference Part

1 3 C1, C4, C10 Capacitor, 0.1 μF

2 2 C2, C5 Capacitor, 4.7 μF

3 1 C3 Capacitor, 10 μF

4 3 C6, C7, C8 Capacitor, 22 pF

5 5 C9, C11, C12, C13, C14 Capacitor, 1 μF

6 9 D4, D5...D12 LEDs

7 4 G1, G2, G3, G4 CON1

8 1 JDP1 DB 9–F (1–2–1 cable only)

9 1 JP1 Connector plug 25×2

10 1 JP2 Jumper (P3.0)

11 1 JP3 Jumper (P3.1)

12 1 JP4 Jumper

13 1 J1 AC adaptor 5 Vdc

14 1 Q1 NPN transistor, 2N2222A

15 1 Q2 PNP transistor, 2N4403

16 1 RESET1 Pushbutton switch

17 6 R2, R3, R8, R9, R10, R18 Resistor, 100 kΩ

18 1 R4 Resistor, 1.5 kΩ

19 2 R5, R11 Resistor, 15 kΩ

20 2 R7, R6 Resistor, 33 Ω

21 2 R13, R12 Resistor, 1.2 kΩ

22 2 R14, R16 Resistor, 510 Ω

23 1 R15 Resistor, 10 Ω

24 1 R17 Resistor, 1 MΩ

25 2 S2, S1 Short

26 7 TP1, TP2, TP3, TP4, TP5, TP6, TP7 Test point

27 1 U1 TPS76333DBV or 278R33

28 1 U2 Jumper. JP(3)

29 1 U3 Type-B USB shield

159

Item Quantity Reference Part

30 1 U4 USB controller, TUSB3210

31 1 U5 MAX232

32 1 U6 Eight-pin socket for 24LCxx

33 1 12 MHz SE3409-ND

 4

