6,793 research outputs found

    A rule-based method for scalable and traceable evaluation of system architectures

    Get PDF
    Despite the development of a variety of decision-aid tools for assessing the value of a conceptual design, humans continue to play a dominant role in this process. Researchers have identified two major challenges to automation, namely the subjectivity of value and the existence of multiple and conflicting customer needs. A third challenge is however arising as the amount of data (e.g., expert judgment, requirements, and engineering models) required to assess value increases. This brings two challenges. First, it becomes harder to modify existing knowledge or add new knowledge into the knowledge base. Second, it becomes harder to trace the results provided by the tool back to the design variables and model parameters. Current tools lack the scalability and traceability required to tackle these knowledge-intensive design evaluation problems. This work proposes a traceable and scalable rule-based architecture evaluation tool called VASSAR that is especially tailored to tackle knowledge-intensive problems that can be formulated as configuration design problems, which is demonstrated using the conceptual design task for a laptop. The methodology has three main steps. First, facts containing the capabilities and performance of different architectures are computed using rules containing physical and logical models. Second, capabilities are compared with requirements to assess satisfaction of each requirement. Third, requirement satisfaction is aggregated to yield a manageable number of metrics. An explanation facility keeps track of the value chain all along this process. This paper describes the methodology in detail and discusses in particular different implementations of preference functions as logical rules. A full-scale example around the design of Earth observing satellites is presented

    Land cover classification using fuzzy rules and aggregation of contextual information through evidence theory

    Full text link
    Land cover classification using multispectral satellite image is a very challenging task with numerous practical applications. We propose a multi-stage classifier that involves fuzzy rule extraction from the training data and then generation of a possibilistic label vector for each pixel using the fuzzy rule base. To exploit the spatial correlation of land cover types we propose four different information aggregation methods which use the possibilistic class label of a pixel and those of its eight spatial neighbors for making the final classification decision. Three of the aggregation methods use Dempster-Shafer theory of evidence while the remaining one is modeled after the fuzzy k-NN rule. The proposed methods are tested with two benchmark seven channel satellite images and the results are found to be quite satisfactory. They are also compared with a Markov random field (MRF) model-based contextual classification method and found to perform consistently better.Comment: 14 pages, 2 figure

    Network Flexibility for Recourse Considerations in Bi-Criteria Facility Location

    Get PDF
    What is the best set of facility location decisions for the establishment of a logistics network when it is uncertain how a company’s distribution strategy will evolve? What is the best configuration of a distribution network that will most likely have to be altered in the future? Today’s business environment is turbulent, and operating conditions for firms can take a turn for the worse at any moment. This fact can and often does influence companies to occasionally expand or contract their distribution networks. For most companies operating in this chaotic business environment, there is a continuous struggle between staying cost efficient and supplying adequate service. Establishing a distribution network which is flexible or easily adaptable is the key to survival under these conditions. This research begins to address the problem of locating facilities in a logistics network in the face of an evolving strategic focus through the implicit consideration of the uncertainty of parameters. The trade-off of cost and customer service is thoroughly examined in a series of multi-criteria location problems. Modeling techniques for incorporating service restrictions for facility location in strategic network design are investigated. A flexibility metric is derived for the purposes of quantifying the similarity of a set of non-dominated solutions in strategic network design. Finally, a multi-objective greedy random adaptive search (MOG) metaheuristic is applied to solve a series of bi-criteria, multi-level facility location problems

    Multi-Criteria Decision Making in Complex Decision Environments

    Get PDF
    In the future, many decisions will either be fully automated or supported by autonomous system. Consequently, it is of high importance that we understand how to integrate human preferences correctly. This dissertation dives into the research field of multi-criteria decision making and investigates the satellite image acquisition scheduling problem and the unmanned aerial vehicle routing problem to further the research on a priori preference integration frameworks. The work will aid in the transition towards autonomous decision making in complex decision environments. A discussion on the future of pairwise and setwise preference articulation methods is also undertaken. "Simply put, a direct consequence of the improved decision-making methods is,that bad decisions more clearly will stand out as what they are - bad decisions.

    An interactive fuzzy physical programming for solving multiobjective skip entry problem

    Get PDF
    The multi-criteria trajectory planning for Space Manoeuvre Vehicle (SMV) is recognised as a challenging problem. Because of the nonlinearity and uncertainty in the dynamic model and even the objectives, it is hard for decision makers to balance all of the preference indices without violating strict path and box constraints. In this paper, to provide the designer an effective method and solve the trajectory hopping problem, an Interactive Fuzzy Physical Programming (IFPP) algorithm is introduced. A new multi-objective SMV optimal control problem is formulated and parameterized using an adaptive technique. By using the density function, the oscillations of the trajectory can be captured effectively. In addition, an interactive decision-making strategy is applied to modify the current designer’s preferences during optimization process. Two realistic decision-making scenarios are conducted by using the proposed algorithm; Simulation results indicated that without driving objective functions out of the tolerable region, the proposed approach can have better performance in terms of the satisfactory degree compared with other approaches like traditional weighted-sum method, Goal Programming (GP) and fuzzy goal programming (FGP). Also, the results can satisfy the current preferences given by the decision makers. Therefore, The method is potentially feasible for solving multi-criteria SMV trajectory planning problems

    Development of a sustainable groundwater management strategy and sequential compliance monitoring to control saltwater intrusion in coastal aquifers

    Get PDF
    The coastal areas of the world are characterized by high population densities, an abundance of food, and increased economic activities. These increasing human settlements, subsequent increases in agricultural developments and economic activities demand an increasing amount quantity of freshwater supplies to different sectors. Groundwater in coastal aquifers is one of the most important sources of freshwater supplies. Over exploitation of this coastal groundwater resource results in seawater intrusion and subsequent deterioration of groundwater quality in coastal aquifers. In addition, climate change induced sea level rise, in combination with the effect of excessive groundwater extraction, can accelerate the seawater intrusion. Adequate supply of good quality water to different sectors in coastal areas can be ensured by adoption of a proper management strategy for groundwater extraction. Optimal use of the coastal groundwater resource is one of the best management options, which can be achieved by employing a properly developed optimal groundwater extraction strategy. Coupled simulation-optimization (S-O) approaches are essential tools to obtain the optimal groundwater extraction patterns. This study proposes approaches for developing multiple objective management of coastal aquifers with the aid of barrier extraction wells as hydraulic control measure of saltwater intrusion in multilayered coastal aquifer systems. Therefore, two conflicting objectives of management policy are considered in this research, i.e. maximizing total groundwater extraction for advantageous purposes, and minimizing the total amount of water abstraction from barrier extraction wells. The study also proposes an adaptive management strategy for coastal aquifers by developing a three-dimensional (3-D) monitoring network design. The performance of the proposed methodologies is evaluated by using both an illustrative multilayered coastal aquifer system and a real life coastal aquifer study area. Coupled S-O approach is used as the basic tool to develop a saltwater intrusion management model to obtain the optimal groundwater extraction rates from a combination of feasible solutions on the Pareto optimal front. Simulation of saltwater intrusion processes requires solution of density dependent coupled flow and solute transport numerical simulation models that are computationally intensive. Therefore, computational efficiency in the coupled S-O approach is achieved by using an approximate emulator of the accompanying physical processes of coastal aquifers. These emulators, often known as surrogate models or meta-models, can replace the computationally intensive numerical simulation model in a coupled S-O approach for achieving computational efficiency. A number of meta-models have been developed and compared in this study for integration with the optimization algorithm in order to develop saltwater intrusion management model. Fuzzy Inference System (FIS), Adaptive Neuro Fuzzy Inference System (ANFIS), Multivariate Adaptive Regression Spline (MARS), and Gaussian Process Regression (GPR) based meta-models are developed in the present study for approximating coastal aquifer responses to groundwater extraction. Properly trained and tested meta-models are integrated with a Controlled Elitist Multiple Objective Genetic Algorithm (CEMOGA) within a coupled S-O approach. In each iteration of the optimization algorithm, the meta-models are used to compute the corresponding salinity concentrations for a set of candidate pumping patterns generated by the optimization algorithm. Upon convergence, the non-dominated global optimal solutions are obtained as the Pareto optimal front, which represents a trade-off between the two conflicting objectives of the pumping management problem. It is observed from the solutions of the meta-model based coupled S-O approach that the considered meta-models are capable of producing a Pareto optimal set of solutions quite accurately. However, each meta-modelling approach has distinct advantages over the others when utilized within the integrated S-O approach. Uncertainties in estimating complex flow and solute transport processes in coastal aquifers demand incorporation of the uncertainties related to some of the model parameters. Multidimensional heterogeneity of aquifer properties such as hydraulic conductivity, compressibility, and bulk density are considered as major sources of uncertainty in groundwater modelling system. Other sources of uncertainty are associated with spatial and temporal variability of hydrologic as well as human interventions, e.g. aquifer recharge and transient groundwater extraction patterns. Different realizations of these uncertain model parameters are obtained from different statistical distributions. FIS based meta-models are advanced to a Genetic Algorithm (GA) tuned hybrid FIS model (GA-FIS), to emulate physical processes of coastal aquifers and to evaluate responses of the coastal aquifers to groundwater extraction under groundwater parameter uncertainty. GA is used to tune the FIS parameters in order to obtain the optimal FIS structure. The GA-FIS models thus obtained are linked externally to the CEMOGA in order to derive an optimal pumping management strategy using the coupled S-O approach. The evaluation results show that the proposed saltwater intrusion management model is able to derive reliable optimal groundwater extraction strategies to control saltwater intrusion for the illustrative multilayered coastal aquifer system. The optimal management strategies obtained as solutions of GA-FIS based management models are shown to be reliable and accurate within the specified ranges of values for different realizations of uncertain groundwater parameters. One of the major concerns of the meta-model based integrated S-O approach is the uncertainty associated with the meta-model predictions. These prediction uncertainties, if not addressed properly, may propagate to the optimization procedures, and may deteriorate the optimality of the solutions. A standalone meta-model, when used within an optimal management model, may result in the optimization routine producing actually suboptimal solutions that may undermine the optimality of the groundwater extraction strategies. Therefore, this study proposes an ensemble approach to address the prediction uncertainties of meta-models. Ensemble is an approach to assimilate multiple similar or different algorithms or base learners (emulators). The basic idea of ensemble lies in developing a more reliable and robust prediction tool that incorporates each individual emulator's unique characteristic in order to predict future scenarios. Each individual member of the ensemble contains different input -output mapping functions. Based on their own mapping functions, these individual emulators provide varied predictions on the response variable. Therefore, the combined prediction of the ensemble is likely to be less biased and more robust, reliable, and accurate than that of any of the individual members of the ensemble. Performance of the ensemble meta-models is evaluated using an illustrative coastal aquifer study area. The results indicate that the meta-model based ensemble modelling approach is able to provide reliable solutions for a multilayered coastal aquifer management problem. Relative sea level rise, providing an additional saline water head at the seaside, has a significant impact on an increase in the salinization process of the coastal aquifers. Although excessive groundwater withdrawal is considered as the major cause of saltwater intrusion, relative sea level rise, in combination with the effect of excessive groundwater pumping, can exacerbate the already vulnerable coastal aquifers. This study incorporates the effects of relative sea level rise on the optimized groundwater extraction values for the specified management period. Variation of water concentrations in the tidal river and seasonal fluctuation of river water stage are also incorporated. Three meta-models are developed from the solution results of the numerical simulation model that simulates the coupled flow and solute transport processes in a coastal aquifer system. The results reveal that the proposed meta-models are capable of predicting density dependent coupled flow and solute transport patterns quite accurately. Based on the comparison results, the best meta-model is selected as a computationally cheap substitute of the simulation model in the coupled S-O based saltwater intrusion management model. The performance of the proposed methodology is evaluated for an illustrative multilayered coastal aquifer system in which the effect of climate change induced sea level rise is incorporated for the specified management period. The results show that the proposed saltwater intrusion management model provides acceptable, accurate, and reliable solutions while significantly improving computational efficiency in the coupled S-O methodology. The success of the developed management strategy largely depends on how accurately the prescribed management policy is implemented in real life situations. The actual implementation of a prescribed management strategy often differs from the prescribed planned strategy due to various uncertainties in predicting the consequences, as well as practical constraints, including noncompliance with the prescribed strategy. This results in actual consequences of a management strategy differing from the intended results. To bring the management consequences closer to the intended results, adaptive management strategies can be sequentially modified at different stages of the management horizon using feedback measurements from a deigned monitoring network. This feedback information can be the actual spatial and temporal concentrations resulting from the implementation of actual management strategy. Therefore, field-scale compliance of the developed coastal aquifer management strategy is a crucial aspect of an optimally designed groundwater extraction policy. A 3-D compliance monitoring network design methodology is proposed in this study in order to develop an adaptive and sequentially modified management policy, which aims to improve optimal and justifiable use of groundwater resources in coastal aquifers. In the first step, an ensemble meta-model based multiple objective prescriptive model is developed using a coupled S-O approach in order to derive a set of Pareto optimal groundwater extraction strategies. Prediction uncertainty of meta-models is addressed by utilizing a weighted average ensemble using Set Pair Analysis. In the second step, a monitoring network is designed for evaluating the compliance of the implemented strategies with the prescribed management goals due to possible uncertainties associated with field-scale application of the proposed management policy. Optimal monitoring locations are obtained by maximizing Shannon's entropy between the saltwater concentrations at the selected potential locations. Performance of the proposed 3-D sequential compliance monitoring network design is assessed for an illustrative multilayered coastal aquifer study area. The performance evaluations show that sequential improvements of optimal management strategy are possible by utilizing saltwater concentrations measurements at the proposed optimal compliance monitoring locations. The integrated S-O approach is used to develop a saltwater intrusion management model for a real world coastal aquifer system in the Barguna district of southern Bangladesh. The aquifer processes are simulated by using a 3-D finite element based combined flow and solute transport numerical code. The modelling and management of seawater intrusion processes are performed based on very limited hydrogeological data. The model is calibrated with respect to hydraulic heads for a period of five years from April 2010 to April 2014. The calibrated model is validated for the next three-year period from April 2015 to April 2017. The calibrated and partially validated model is then used within the integrated S-O approach to develop optimal groundwater abstraction patterns to control saltwater intrusion in the study area. Computational efficiency of the management model is achieved by using a MARS based meta-model approximately emulating the combined flow and solute transport processes of the study area. This limited evaluation demonstrates that a planned transient groundwater abstraction strategy, acquired as solution results of a meta-model based integrated S-O approach, is a useful management strategy for optimized water abstraction and saltwater intrusion control. This study shows the capability of the MARS meta-model based integrated S-O approach to solve real-life complex management problems in an efficient manner

    Rule-Based System Architecting of Earth Observing Systems: Earth Science Decadal Survey

    Get PDF
    This paper presents a methodology to explore the architectural trade space of Earth observing satellite systems, and applies it to the Earth Science Decadal Survey. The architecting problem is formulated as a combinatorial optimization problem with three sets of architectural decisions: instrument selection, assignment of instruments to satellites, and mission scheduling. A computational tool was created to automatically synthesize architectures based on valid combinations of options for these three decisions and evaluate them according to several figures of merit, including satisfaction of program requirements, data continuity, affordability, and proxies for fairness, technical, and programmatic risk. A population-based heuristic search algorithm is used to search the trade space. The novelty of the tool is that it uses a rule-based expert system to model the knowledge-intensive components of the problem, such as scientific requirements, and to capture the nonlinear positive and negative interactions between instruments (synergies and interferences), which drive both requirement satisfaction and cost. The tool is first demonstrated on the past NASA Earth Observing System program and then applied to the Decadal Survey. Results suggest that the Decadal Survey architecture is dominated by other more distributed architectures in which DESDYNI and CLARREO are consistently broken down into individual instruments."La Caixa" FoundationCharles Stark Draper LaboratoryGoddard Space Flight Cente

    Determining Feasibility Resilience: Set Based Design Iteration Evaluation Through Permutation Stability Analysis

    Get PDF
    The goal of robust design is to select a design that will still perform satisfactorily even with unexpected variation in design parameters. A resilient design will accommodate unanticipated future system requirements. Through studying the variations of system parameters through the use of multi objective optimization, a designer hopes to locate a robustly resilient design, which performs current mission well even with varying system parameters and is able to be easily repurposed to new missions. This ability to withstand changes is critical because it is common for the product of a design to undergo changes throughout its life cycle. This subject has been an active area of research in industrial design and systems engineering but most methodologies rest upon exhaustive understanding of design, manufacturing and mission variance. The thrust of this research is to develop new methodologies for estimating robust resilience given imperfect information. In this work we will apply new methodologies for locating resilient designs within a dataset derive from a study performed by the Small Surface Combatant Task Force in order to improve upon a state of the art design process. Two new methodologies, permutation stability analysis and mutation stability analysis, are presented along with results and discussion as applied to the SSCTF dataset. It is demonstrated that these new methods improve upon the state of the art by providing insight into the robustness and resilience of selected system properties. These methodologies, although applied to the SSCTF dataset are posed more generally for wider application in system design
    • …
    corecore