298 research outputs found

    A multi-objective centralised agent-based optimisation approach for vehicle routing problem with unique vehicles

    Get PDF
    Motivated by heterogeneous service suppliers in crowd shipping routing problems, vehicles’ similarity assumption is questioned in the well-known logistical Vehicle Routing Problems (VRP) by considering different start/end locations, capacities, as well as shifts in the Time Window variant (VRPTW). In order to tackle this problem, a new agent-based metaheuristic architecture is proposed to capture the uniqueness of vehicles by modelling them as agents while governing the search with centralised agent cooperation. This cooperation aims to generate near optimum routes by minimising the number of vehicles used, total travelled distance, and total waiting times. The innovative architecture encapsulates three individual core modules in a flexible metaheuristic implementation. First, the problem is modelled by an agent-based module that includes its components in representing, evaluating, and altering solutions. A second metaheuristic module is then designed and integrated, followed by a multi-objective module introduced to sort solutions generated by the metaheuristic module based on Pareto dominance. Tests on benchmark instances were run, resulting in better waiting times, with an average reduction of 2.21-time units, at the expense of the other objectives. Benchmark instances are modified to tackle the unique vehicle's problem by randomising locations, capacities, and operating shifts and tested to justify the proposed model's applicability

    A Hybrid Heuristic for a Broad Class of Vehicle Routing Problems with Heterogeneous Fleet

    Full text link
    We consider a family of Rich Vehicle Routing Problems (RVRP) which have the particularity to combine a heterogeneous fleet with other attributes, such as backhauls, multiple depots, split deliveries, site dependency, open routes, duration limits, and time windows. To efficiently solve these problems, we propose a hybrid metaheuristic which combines an iterated local search with variable neighborhood descent, for solution improvement, and a set partitioning formulation, to exploit the memory of the past search. Moreover, we investigate a class of combined neighborhoods which jointly modify the sequences of visits and perform either heuristic or optimal reassignments of vehicles to routes. To the best of our knowledge, this is the first unified approach for a large class of heterogeneous fleet RVRPs, capable of solving more than 12 problem variants. The efficiency of the algorithm is evaluated on 643 well-known benchmark instances, and 71.70\% of the best known solutions are either retrieved or improved. Moreover, the proposed metaheuristic, which can be considered as a matheuristic, produces high quality solutions with low standard deviation in comparison with previous methods. Finally, we observe that the use of combined neighborhoods does not lead to significant quality gains. Contrary to intuition, the computational effort seems better spent on more intensive route optimization rather than on more intelligent and frequent fleet re-assignments

    Combining heuristics with simulation and fuzzy logic to solve a flexible-size location routing problem under uncertainty

    Get PDF
    The location routing problem integrates both a facility location and a vehicle routing problem. Each of these problems are NP-hard in nature, which justifies the use of heuristic-based algorithms when dealing with large-scale instances that need to be solved in reasonable computing times. This paper discusses a realistic variant of the problem that considers facilities of different sizes and two types of uncertainty conditions. In particular, we assume that some customers’ demands are stochastic, while others follow a fuzzy pattern. An iterated local search metaheuristic is integrated with simulation and fuzzy logic to solve the aforementioned problem, and a series of computational experiments are run to illustrate the potential of the proposed algorithm.This work has been partially supported by the Spanish Ministry of Science (PID2019-111100RB-C21/AEI/10.13039/501100011033). In addition, it has received the support of the Doctoral School at the Universitat Oberta de Catalunya (Spain) and the Universidad de La Sabana (INGPhD-12-2020).Peer ReviewedPostprint (published version

    A Tabu Search Based Metaheuristic for Dynamic Carpooling Optimization

    Get PDF
    International audienceThe carpooling problem consists in matching a set of riders' requests with a set of drivers' offers by synchronizing their origins, destinations and time windows. The paper presents the so-called Dynamic Carpooling Optimization System (DyCOS), a system which supports the automatic and optimal ridematching process between users on very short notice or even en-route. Nowadays, there are numerous research contributions that revolve around the carpooling problem, notably in the dynamic context. However, the problem's high complexity and the real time aspect are still challenges to overcome when addressing dynamic carpooling. To counter these issues, DyCOS takes decisions using a novel Tabu Search based metaheuristic. The proposed algorithm employs an explicit memory system and several original searching strategies developed to make optimal decisions automatically. To increase users' satisfaction, the proposed metaheuristic approach manages the transfer process and includes the possibility to drop off the passenger at a given walking distance from his destination or at a transfer node. In addition, the detour concept is used as an original aspiration process, to avoid the entrapment by local solutions and improve the generated solution. For a rigorous assessment of generated solutions , while considering the importance and interaction among the optimization criteria, the algorithm adopts the Choquet integral operator as an aggregation approach. To measure the effectiveness of the proposed method, we develop a simulation environment based on actual carpooling demand data from the metropolitan area of Lille in the north of France

    Efficient neighborhood evaluations for the vehicle routing problem with multiple time windows

    Get PDF
    In the vehicle routing problem with multiple time windows (VRPMTW), a single time window must be selected for each customer from the multiple time windows provided. Compared with classical vehicle routing problems with only a single time window per customer, multiple time windows increase the complexity of the routing problem. To minimize the duration of any given route, we present an exact polynomial time algorithm to efficiently determine the optimal start time for servicing each customer. The proposed algorithm has a reduced worst-case and average complexity than existing exact algorithms. Furthermore, the proposed exact algorithm can be used to efficiently evaluate neighborhood operations during a local search resulting in significant acceleration. To examine the benefits of exact neighborhood evaluations and to solve the VRPMTW, the proposed algorithm is embedded in a simple metaheuristic framework generating numerous new best known solutions at competitive computation times

    The Tractor and Semitrailer Routing Considering Carbon Dioxide Emissions

    Get PDF
    The incorporation of the minimization of carbon dioxide (CO2) emissions in the VRP is important to logistics companies. The paper deals with the tractor and semitrailer routing problem with full truckload between any two depots of the network; an integer programming model with the objective of minimizing CO2 emissions per ton-kilometer is proposed. A two-stage approach with the same core steps of the simulated annealing (SA) in both stages is designed. The number of tractors is provided in the first stage and the CO2 emissions per ton-kilometer are then optimized in the second stage. Computational experiments on small-scale randomly generated instances supported the feasibility and validity of the heuristic algorithm. To a practical-scale problem, the SA algorithm can provide advice on the number of tractors, the routes, and the location of the central depot to realize CO2 emissions decrease

    New Formulations and Solution Methods for the Dial-a-ride Problem

    Full text link
    The classic Dial-A-Ride Problem (DARP) aims at designing the minimum-cost routing solution that accommodates a set of user requests under constraints at the operations planning level. It is a highly constrained combinatorial optimization problem initially designed for providing door-to-door transportation for people with limited mobility (e.g. the elderly or disabled). It consists of routing and scheduling a fleet of capacitated vehicles to service a set of requests with specified pickup and drop-off locations and time windows. With the details of requests obtained either beforehand (static DARP) or en-route (dynamic DARP), dial-a-ride operators strive to deliver efficient and yet high-quality transport services that satisfy each passenger's individual travel needs. The goal of this thesis is threefold: (1) to propose rich DARP formulations where users' preferences are taken into account, in order to improve service quality of Demand-Responsive Transport (DRT) services and promote ridership strategically; (2) to develop novel and efficient solution methods where local search, column generation, metaheuristics and machine learning techniques are integrated to solve large-scale DARPs; and (3) to conduct real-life DARP case studies (using data extracted from NYC Yellow Taxi trip records) to test the practicality of proposed models and solution methods, as well as to emphasise the importance of connecting algorithms with real-world datasets. These aims are achieved and presented in the three core chapters of this thesis. In the first core chapter (Chapter 3), two Mixed Integer Programming (MIP) formulations (link-based and path-based) of DARP are presented, alongside with their objective functions and standard solution methods. This chapter builds the foundation of the thesis by elaborating the base models and algorithms that this thesis is based on, and by running benchmark experiments and reporting numerical results as the base line of the whole thesis. In the second core chapter (Chapter 4), two DARP models (one deterministic, one stochastic) integrated with users' preferences from dial-a-ride service operators' perspective are proposed, facilitating them to optimise their overall profit while maintaining service quality. In these models, users' utility users' preferences are considered within a dial-a-ride problem. A customized local search based heuristic and a matheuristic are developed to solve the proposed Chance-Constrained DARP (CC-DARP). Numerical results are reported for both DARP benchmark instances and a realistic case study based on New York City yellow taxi trip data. This chapter also explores the design of revenue/fleet management and pricing differentiation. The proposed chance-constrained DARP formulation provides a new decision-support tool to inform on revenue and fleet management, including fleet sizing, for DRT systems at a strategic planning level. In the last core chapter (Chapter 5), three hybrid metaheuristic algorithms integrated with Reinforcement Learning (RL) techniques are proposed and implemented, aiming to increase the scale-up capability of existing DARP solution methods. Machine learning techniques and/or a branching scheme are incorporated with various metaheuristic algorithms including VNS and LNS, providing innovative methodologies to solve large-instance DARPs in a more efficient manner. Thompson Sampling (TS) is applied to model dual values of requests under a column generation setting to negate the effect of dual oscillation (i.e. promote faster converging). The performance of proposed algorithms is tested benchmark datasets, and strengths and weaknesses across different algorithms are reported

    Optimizing transportation systems and logistics network configurations : From biased-randomized algorithms to fuzzy simheuristics

    Get PDF
    242 páginasTransportation and logistics (T&L) are currently highly relevant functions in any competitive industry. Locating facilities or distributing goods to hundreds or thousands of customers are activities with a high degree of complexity, regardless of whether facilities and customers are placed all over the globe or in the same city. A countless number of alternative strategic, tactical, and operational decisions can be made in T&L systems; hence, reaching an optimal solution –e.g., a solution with the minimum cost or the maximum profit– is a really difficult challenge, even by the most powerful existing computers. Approximate methods, such as heuristics, metaheuristics, and simheuristics, are then proposed to solve T&L problems. They do not guarantee optimal results, but they yield good solutions in short computational times. These characteristics become even more important when considering uncertainty conditions, since they increase T&L problems’ complexity. Modeling uncertainty implies to introduce complex mathematical formulas and procedures, however, the model realism increases and, therefore, also its reliability to represent real world situations. Stochastic approaches, which require the use of probability distributions, are one of the most employed approaches to model uncertain parameters. Alternatively, if the real world does not provide enough information to reliably estimate a probability distribution, then fuzzy logic approaches become an alternative to model uncertainty. Hence, the main objective of this thesis is to design hybrid algorithms that combine fuzzy and stochastic simulation with approximate and exact methods to solve T&L problems considering operational, tactical, and strategic decision levels. This thesis is organized following a layered structure, in which each introduced layer enriches the previous one.El transporte y la logística (T&L) son actualmente funciones de gran relevancia en cual quier industria competitiva. La localización de instalaciones o la distribución de mercancías a cientos o miles de clientes son actividades con un alto grado de complejidad, indepen dientemente de si las instalaciones y los clientes se encuentran en todo el mundo o en la misma ciudad. En los sistemas de T&L se pueden tomar un sinnúmero de decisiones al ternativas estratégicas, tácticas y operativas; por lo tanto, llegar a una solución óptima –por ejemplo, una solución con el mínimo costo o la máxima utilidad– es un desafío realmente di fícil, incluso para las computadoras más potentes que existen hoy en día. Así pues, métodos aproximados, tales como heurísticas, metaheurísticas y simheurísticas, son propuestos para resolver problemas de T&L. Estos métodos no garantizan resultados óptimos, pero ofrecen buenas soluciones en tiempos computacionales cortos. Estas características se vuelven aún más importantes cuando se consideran condiciones de incertidumbre, ya que estas aumen tan la complejidad de los problemas de T&L. Modelar la incertidumbre implica introducir fórmulas y procedimientos matemáticos complejos, sin embargo, el realismo del modelo aumenta y, por lo tanto, también su confiabilidad para representar situaciones del mundo real. Los enfoques estocásticos, que requieren el uso de distribuciones de probabilidad, son uno de los enfoques más empleados para modelar parámetros inciertos. Alternativamente, si el mundo real no proporciona suficiente información para estimar de manera confiable una distribución de probabilidad, los enfoques que hacen uso de lógica difusa se convier ten en una alternativa para modelar la incertidumbre. Así pues, el objetivo principal de esta tesis es diseñar algoritmos híbridos que combinen simulación difusa y estocástica con métodos aproximados y exactos para resolver problemas de T&L considerando niveles de decisión operativos, tácticos y estratégicos. Esta tesis se organiza siguiendo una estructura por capas, en la que cada capa introducida enriquece a la anterior. Por lo tanto, en primer lugar se exponen heurísticas y metaheurísticas sesgadas-aleatorizadas para resolver proble mas de T&L que solo incluyen parámetros determinísticos. Posteriormente, la simulación Monte Carlo se agrega a estos enfoques para modelar parámetros estocásticos. Por último, se emplean simheurísticas difusas para abordar simultáneamente la incertidumbre difusa y estocástica. Una serie de experimentos numéricos es diseñada para probar los algoritmos propuestos, utilizando instancias de referencia, instancias nuevas e instancias del mundo real. Los resultados obtenidos demuestran la eficiencia de los algoritmos diseñados, tanto en costo como en tiempo, así como su confiabilidad para resolver problemas realistas que incluyen incertidumbre y múltiples restricciones y condiciones que enriquecen todos los problemas abordados.Doctorado en Logística y Gestión de Cadenas de SuministrosDoctor en Logística y Gestión de Cadenas de Suministro
    corecore