26,627 research outputs found

    Organization of Multi-Agent Systems: An Overview

    Full text link
    In complex, open, and heterogeneous environments, agents must be able to reorganize towards the most appropriate organizations to adapt unpredictable environment changes within Multi-Agent Systems (MAS). Types of reorganization can be seen from two different levels. The individual agents level (micro-level) in which an agent changes its behaviors and interactions with other agents to adapt its local environment. And the organizational level (macro-level) in which the whole system changes it structure by adding or removing agents. This chapter is dedicated to overview different aspects of what is called MAS Organization including its motivations, paradigms, models, and techniques adopted for statically or dynamically organizing agents in MAS.Comment: 12 page

    Extending MAM5 Meta-Model and JaCalIVE Framework to Integrate Smart Devices from Real Environments

    Full text link
    [EN] This paper presents the extension of a meta-model (MAM5) and a framework based on the model (JaCalIVE) for developing intelligent virtual environments. The goal of this extension is to develop augmented mirror worlds that represent a real and virtual world coupled, so that the virtual world not only reflects the real one, but also complements it. A new component called a smart resource artifact, that enables modelling and developing devices to access the real physical world, and a human in the loop agent to place a human in the system have been included in the meta-model and framework. The proposed extension of MAM5 has been tested by simulating a light control system where agents can access both virtual and real sensor/actuators through the smart resources developed. The results show that the use of real environment interactive elements (smart resource artifacts) in agent-based simulations allows to minimize the error between simulated and real system.This work is partially supported by the TIN2009-13839-C03-01, TIN2011-27652-C03-01, 547CSD2007-00022, COST Action IC0801, FP7-294931 and the FPI grant AP2013-01276 548 awarded to Jaime-Andres Rincon.Rincón Arango, JA.; Poza Luján, JL.; Julian Inglada, VJ.; Posadas Yagüe, JL.; Carrascosa Casamayor, C. (2016). Extending MAM5 Meta-Model and JaCalIVE Framework to Integrate Smart Devices from Real Environments. PLoS ONE. 11(2):1-27. https://doi.org/10.1371/journal.pone.0149665S127112Luck, M., & Aylett, R. (2000). Applying artificial intelligence to virtual reality: Intelligent virtual environments. Applied Artificial Intelligence, 14(1), 3-32. doi:10.1080/088395100117142Barella A, Ricci A, Boissier O, Carrascosa C. MAM5: Multi-Agent Model For Intelligent Virtual Environments. In: 10th European Workshop on Multi-Agent Systems (EUMAS 2012); 2012. p. 16–30.Omicini, A., Ricci, A., & Viroli, M. (2008). Artifacts in the A&A meta-model for multi-agent systems. Autonomous Agents and Multi-Agent Systems, 17(3), 432-456. doi:10.1007/s10458-008-9053-xYu Ch, Nagpal R. Distributed Consensus and Self-Adapting Modular Robots. In: IROS-2008 workshop on Self-Reconfigurable Robots and Applications; 2008. Available from: http://www.isi.edu/robots/iros08wksp/Papers/iros08-wksp-paper.pdfLidoris G, Buss M. A Multi-Agent System Architecture for Modular Robotic Mobility Aids. In: European Robotics Symposium 2006; 2006. p. 15–26. Available from: http://link.springer.com/chapter/10.1007/11681120_2Yu, C.-H., & Nagpal, R. (2010). A Self-adaptive Framework for Modular Robots in a Dynamic Environment: Theory and Applications. The International Journal of Robotics Research, 30(8), 1015-1036. doi:10.1177/0278364910384753Barbero A, González-Rodríguez MS, de Lara J, Alfonseca M. Multi-Agent Simulation of an Educational Collaborative Web System. In: European Simulation and Modelling Conference; 2007. Available from: http://sistemas-humano-computacionais.wikidot.com/local--files/capitulo:colaboracao-auxiliada-por-computador/%5BBarbero%202007%5D%20Multi-Agent%20Simulation%20of%20an%20Educational%20Collaborative%20Web%20System.pdfRanathunga S, Cranefield S, Purvis MK. Interfacing a cognitive agent platform with a virtual world: a case study using Second Life. In: AAMAS; 2011. p. 1181–1182. Available from: http://www.aamas-conference.org/Proceedings/aamas2011/papers/B20.pdfAndreoli R, De Chiara R, Erra U, Scarano V. Interactive 3d environments by using videogame engines. In: Information Visualisation, 2005. Proceedings. Ninth International Conference on. IEEE; 2005. p. 515–520. Available from: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1509124Dignum, F. (2011). Agents for games and simulations. Autonomous Agents and Multi-Agent Systems, 24(2), 217-220. doi:10.1007/s10458-011-9169-2dos Santos C, Osorio F. AdapTIVE: an intelligent virtual environment and its application in e-commerce. In: Computer Software and Applications Conference, 2004. COMPSAC 2004. Proceedings of the 28th Annual International; 2004. p. 468–473 vol.1.Kazemi, A., Fazel Zarandi, M. H., & Moattar Husseini, S. M. (2008). A multi-agent system to solve the production–distribution planning problem for a supply chain: a genetic algorithm approach. The International Journal of Advanced Manufacturing Technology, 44(1-2), 180-193. doi:10.1007/s00170-008-1826-5Dimuro GP, Costa ACdR, Gonçalves LV, Hubner A. Interval-valued Hidden Markov Models for recognizing personality traits in social exchanges in open multiagent systems. Repositório Institucional da Universidade Federal do Rio Grande. 2008;.Woźniak, M., Graña, M., & Corchado, E. (2014). A survey of multiple classifier systems as hybrid systems. Information Fusion, 16, 3-17. doi:10.1016/j.inffus.2013.04.006Jia L, Zhenjiang M. Entertainment Oriented Intelligent Virtual Environment with Agent and Neural Networks. In: IEEE International Workshop on Haptic, Audio and Visual Environments and Games, 2007. HAVE 2007; 2007. p. 90–95.Corchado, E., Woźniak, M., Abraham, A., de Carvalho, A. C. P. L. F., & Snášel, V. (2014). Recent trends in intelligent data analysis. Neurocomputing, 126, 1-2. doi:10.1016/j.neucom.2013.07.001Ricci A, Viroli M, Omicini A. Give agents their artifacts: the A&A approach for engineering working environments in MAS. In: Proceedings of the 6th international joint conference on Autonomous agents and multiagent systems; 2007. p. 150. Available from: http://dl.acm.org/citation.cfm?id=1329308Barella, A., Valero, S., & Carrascosa, C. (2009). JGOMAS: New Approach to AI Teaching. IEEE Transactions on Education, 52(2), 228-235. doi:10.1109/te.2008.925764Behrens, T. M., Hindriks, K. V., & Dix, J. (2010). Towards an environment interface standard for agent platforms. Annals of Mathematics and Artificial Intelligence, 61(4), 261-295. doi:10.1007/s10472-010-9215-9Ricci A, Viroli M, Omicini A. A general purpose programming model & technology for developing working environments in MAS. In: 5th International Workshop Programming Multi-Agent Systems(PROMAS 2007); 2007. p. 54–69. Available from: http://lia.deis.unibo.it/~ao/pubs/pdf/2007/promas.pdfChee-Yee Chong, & Kumar, S. P. (2003). Sensor networks: Evolution, opportunities, and challenges. Proceedings of the IEEE, 91(8), 1247-1256. doi:10.1109/jproc.2003.814918Kushner D. The making of arduino. IEEE Spectrum. 2011;26.Schmidt, A., & van Laerhoven, K. (2001). How to build smart appliances? IEEE Personal Communications, 8(4), 66-71. doi:10.1109/98.944006Salzmann C, Gillet D. Smart device paradigm standardization for online labs. In: 4th IEEE Global Engineering Education Conference (EDUCON); 2013.Gonzalez-Jorge, H., Riveiro, B., Vazquez-Fernandez, E., Martínez-Sánchez, J., & Arias, P. (2013). Metrological evaluation of Microsoft Kinect and Asus Xtion sensors. Measurement, 46(6), 1800-1806. doi:10.1016/j.measurement.2013.01.011Cook, D. J., & Das, S. K. (2007). How smart are our environments? An updated look at the state of the art. Pervasive and Mobile Computing, 3(2), 53-73. doi:10.1016/j.pmcj.2006.12.001Compton, M., Barnaghi, P., Bermudez, L., García-Castro, R., Corcho, O., Cox, S., … Taylor, K. (2012). The SSN ontology of the W3C semantic sensor network incubator group. Journal of Web Semantics, 17, 25-32. doi:10.1016/j.websem.2012.05.003Munera, E., Poza-Lujan, J.-L., Posadas-Yagüe, J.-L., Simó-Ten, J.-E., & Noguera, J. (2015). Dynamic Reconfiguration of a RGBD Sensor Based on QoS and QoC Requirements in Distributed Systems. Sensors, 15(8), 18080-18101. doi:10.3390/s150818080Castrillón-Santan, M., Lorenzo-Navarro, J., & Hernández-Sosa, D. (2014). Conteo de personas con un sensor RGBD comercial. Revista Iberoamericana de Automática e Informática Industrial RIAI, 11(3), 348-357. doi:10.1016/j.riai.2014.05.006Rincon JA, Julian V, Carrascosa C. An Emotional-based Hybrid Application for Human-Agent Societies. In: 10th International Conference on Soft Computing Models in Industrial and Environmental Applications. vol. 368; 2015. p. 203–214.Rincon JA, Julian V, Carrascosa C. Applying a Social Emotional Model in Human-Agent Societies. In: Workshop WIHAS’15. Intelligent Human-Agent Societies‥ vol. 524 of CCIS; 2015. p. 377–388.Leccese, F., Cagnetti, M., & Trinca, D. (2014). A Smart City Application: A Fully Controlled Street Lighting Isle Based on Raspberry-Pi Card, a ZigBee Sensor Network and WiMAX. Sensors, 14(12), 24408-24424. doi:10.3390/s141224408Mateevitsi V, Haggadone B, Leigh J, Kunzer B, Kenyon RV. Sensing the environment through SpiderSense. In: Proceedings of the 4th Augmented Human International Conference. ACM; 2013. p. 51–57.Kavitha R, Thiyagarajan N. Distributed Intelligent Street Lamp Monitoring and Control System Based on Zigbee. International Journal of Science and Research (IJSR) PP; p. 2319–7064.Pan, M.-S., Yeh, L.-W., Chen, Y.-A., Lin, Y.-H., & Tseng, Y.-C. (2008). A WSN-Based Intelligent Light Control System Considering User Activities and Profiles. IEEE Sensors Journal, 8(10), 1710-1721. doi:10.1109/jsen.2008.2004294Villarrubia, G., De Paz, J., Bajo, J., & Corchado, J. (2014). Ambient Agents: Embedded Agents for Remote Control and Monitoring Using the PANGEA Platform. Sensors, 14(8), 13955-13979. doi:10.3390/s14081395

    Advances in infrastructures and tools for multiagent systems

    Full text link
    In the last few years, information system technologies have focused on solving challenges in order to develop distributed applications. Distributed systems can be viewed as collections of service-provider and ser vice-consumer components interlinked by dynamically defined workflows (Luck and McBurney 2008).Alberola Oltra, JM.; Botti Navarro, VJ.; Such Aparicio, JM. (2014). Advances in infrastructures and tools for multiagent systems. Information Systems Frontiers. 16:163-167. doi:10.1007/s10796-014-9493-6S16316716Alberola, J. M., Búrdalo, L., Julián, V., Terrasa, A., & García-Fornes, A. (2014). An adaptive framework for monitoring agent organizations. Information Systems Frontiers, 16(2). doi: 10.1007/s10796-013-9478-x .Alfonso, B., Botti, V., Garrido, A., & Giret, A. (2014). A MAS-based infrastructure for negotiation and its application to a water-right market. Information Systems Frontiers, 16(2). doi: 10.1007/s10796-013-9443-8 .Andrighetto, G., Castelfranchi, C., Mayor, E., McBreen, J., López-Sánchez, M., & Parsons, S. (2013). (Social) norm dynamics. In G. Andrighetto, G. Governatori, P. Noriega, & L. W. van der Torre (Eds.), Normative multi-agent systems (pp. 135–170). Dagstuhl: Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik.Baarslag, T., Fujita, K., Gerding, E. H., Hindriks, K., Ito, T., Jennings, N. R., et al. (2013). Evaluating practical negotiating agents: results and analysis of the 2011 international competition. Artificial Intelligence, 198, 73–103.Boissier, O., Bordini, R. H., Hübner, J. F., Ricci, A., & Santi, A. (2013). Multi-agent oriented programming with JaCaMo. Science of Computer Programming, 78(6), 747–761.Campos, J., Esteva, M., López-Sánchez, M., Morales, J., & Salamó, M. (2011). Organisational adaptation of multi-agent systems in a peer-to-peer scenario. Computing, 91(2), 169–215.Carrera, A., Iglesias, C. A., & Garijo, M. (2014). Beast methodology: an agile testing methodology for multi-agent systems based on behaviour driven development. Information Systems Frontiers, 16(2). doi: 10.1007/s10796-013-9438-5 .Criado, N., Such, J. M., & Botti, V. (2014). Norm reasoning services. Information Systems Frontiers, 16(2). doi: 10.1007/s10796-013-9444-7 .Del Val, E., Rebollo, M., & Botti, V. (2014). Enhancing decentralized service discovery in open service-oriented multi-agent systems. Journal of Autonomous Agents and Multi-Agent Systems, 28(1), 1–30.Denti, E., Omicini, A., & Ricci, A. (2002). Coordination tools for MAS development and deployment. Applied Artificial Intelligence, 16(9–10), 721–752.Dignum, V., & Dignum, F. (2012). A logic of agent organizations. Logic Journal of IGPL, 20(1), 283–316.Ferber, J., & Gutknecht, O. (1998). A meta-model for the analysis and design of organizations in multi-agent systems. In Multi agent systems. Proceedings. International Conference on (pp. 128–135). IEEE.Fogués, R. L., Such, J. M., Espinosa, A., & Garcia-Fornes, A. (2014). BFF: a tool for eliciting tie strength and user communities in social networking services. Information Systems Frontiers, 16(2). doi: 10.1007/s10796-013-9453-6 .Garcia, E., Giret, A., & Botti, V. (2011). Evaluating software engineering techniques for developing complex systems with multiagent approaches. Information and Software Technology, 53(5), 494–506.Garcia-Fornes, A., Hübner, J., Omicini, A., Rodriguez-Aguilar, J., & Botti, V. (2011). Infrastructures and tools for multiagent systems for the new generation of distributed systems. Engineering Applications of Articial Intelligence, 24(7), 1095–1097.Jennings, N., Faratin, P., Lomuscio, A., Parsons, S., Sierra, C., & Wooldridge, M. (2001). Automated negotiation: prospects, methods and challenges. International Journal of Group Decision and Negotiation, 10(2), 199–215.Jung, Y., Kim, M., Masoumzadeh, A., & Joshi, J. B. (2012). A survey of security issue in multi-agent systems. Artificial Intelligence Review, 37(3), 239–260.Kota, R., Gibbins, N., & Jennings, N. R. (2012). Decentralized approaches for self-adaptation in agent organizations. ACM Transactions on Autonomous and Adaptive Systems (TAAS), 7(1), 1.Kraus, S. (1997). Negotiation and cooperation in multi-agent environments. Artificial Intelligence, 94(1), 79–97.Lin, Y. I., Chou, Y. W., Shiau, J. Y., & Chu, C. H. (2013). Multi-agent negotiation based on price schedules algorithm for distributed collaborative design. Journal of Intelligent Manufacturing, 24(3), 545–557.Luck, M., & McBurney, P. (2008). Computing as interaction: agent and agreement technologies.Luck, M., McBurney, P., Shehory, O., & Willmott, S. (2005). Agent technology: Computing as interaction (A roadmap for agent based computing). AgentLink.Ossowski, S., & Menezes, R. (2006). On coordination and its significance to distributed and multiagent systems. Concurrency and Computation: Practice and Experience, 18(4), 359–370.Ossowski, S., Sierra, C., & Botti. (2013). Agreement technologies: A computing perspective. In Agreement Technologies (pp. 3–16). Springer Netherlands.Pinyol, I., & Sabater-Mir, J. (2013). Computational trust and reputation models for open multi-agent systems: a review. Artificial Intelligence Review, 40(1), 1–25.Ricci, A., Piunti, M., & Viroli, M. (2011). Environment programming in multi-agent systems: an artifact-based perspective. Autonomous Agents and Multi-Agent Systems, 23(2), 158–192.Sierra, C., & Debenham, J. (2006). Trust and honour in information-based agency. In Proceedings of the 5th international conference on autonomous agents and multi agent systems, (p. 1225–1232). New York: ACM.Sierra, C., Botti, V., & Ossowski, S. (2011). Agreement computing. KI-Knstliche Intelligenz, 25(1), 57–61.Vasconcelos, W., García-Camino, A., Gaertner, D., Rodríguez-Aguilar, J. A., & Noriega, P. (2012). Distributed norm management for multi-agent systems. Expert Systems with Applications, 39(5), 5990–5999.Wooldridge, M. (2002). An introduction to multiagent systems. New York: Wiley.Wooldridge, M., & Jennings, N. R. (1995). Intelligent agents: theory and practice. Knowledge Engineering Review, 10(2), 115–152

    Towards adaptive multi-robot systems: self-organization and self-adaptation

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.The development of complex systems ensembles that operate in uncertain environments is a major challenge. The reason for this is that system designers are not able to fully specify the system during specification and development and before it is being deployed. Natural swarm systems enjoy similar characteristics, yet, being self-adaptive and being able to self-organize, these systems show beneficial emergent behaviour. Similar concepts can be extremely helpful for artificial systems, especially when it comes to multi-robot scenarios, which require such solution in order to be applicable to highly uncertain real world application. In this article, we present a comprehensive overview over state-of-the-art solutions in emergent systems, self-organization, self-adaptation, and robotics. We discuss these approaches in the light of a framework for multi-robot systems and identify similarities, differences missing links and open gaps that have to be addressed in order to make this framework possible

    Survey of dynamic scheduling in manufacturing systems

    Get PDF
    • …
    corecore