2,195 research outputs found

    High-Level Synthesis for Embedded Systems

    Get PDF

    AI/ML Algorithms and Applications in VLSI Design and Technology

    Full text link
    An evident challenge ahead for the integrated circuit (IC) industry in the nanometer regime is the investigation and development of methods that can reduce the design complexity ensuing from growing process variations and curtail the turnaround time of chip manufacturing. Conventional methodologies employed for such tasks are largely manual; thus, time-consuming and resource-intensive. In contrast, the unique learning strategies of artificial intelligence (AI) provide numerous exciting automated approaches for handling complex and data-intensive tasks in very-large-scale integration (VLSI) design and testing. Employing AI and machine learning (ML) algorithms in VLSI design and manufacturing reduces the time and effort for understanding and processing the data within and across different abstraction levels via automated learning algorithms. It, in turn, improves the IC yield and reduces the manufacturing turnaround time. This paper thoroughly reviews the AI/ML automated approaches introduced in the past towards VLSI design and manufacturing. Moreover, we discuss the scope of AI/ML applications in the future at various abstraction levels to revolutionize the field of VLSI design, aiming for high-speed, highly intelligent, and efficient implementations

    Block level voltage

    Get PDF
    Over the past years, state-of-art power optimization methods move towards higher abstraction levels that result in more efficient power savings. Among existing power optimization approaches, dynamic power management (DPM) is considered to be one of the most effective strategies. Depending on abstraction levels, DPM can be implemented in different formats but here we focus on scheduling that is more suitable for real-time system design use. This differs from the concurrent scheduling approaches that start from either the HLS (High-Level Synthesis) or RTS (Real-Time System) point of view, we propose a synergy solution of both approaches, namely block-level voltage/frequency scheduling (BLVFS). The presented block-level voltage/ frequency scheduling approach shows a generic solution for low power SoC (System on Chip) system design while the approaches which belong to the HLS and RTS categories have a strong dependency on the system functionalities. Consider a SoC as a combination of heterogeneous functional blocks, our approach provides efficient power savings by dynamically scheduling the scaling of voltage and frequency at the same time. Simulation results indicate that by using heuristic based strategies significant power savings can be achieved

    NASA Space Engineering Research Center for VLSI systems design

    Get PDF
    This annual review reports the center's activities and findings on very large scale integration (VLSI) systems design for 1990, including project status, financial support, publications, the NASA Space Engineering Research Center (SERC) Symposium on VLSI Design, research results, and outreach programs. Processor chips completed or under development are listed. Research results summarized include a design technique to harden complementary metal oxide semiconductors (CMOS) memory circuits against single event upset (SEU); improved circuit design procedures; and advances in computer aided design (CAD), communications, computer architectures, and reliability design. Also described is a high school teacher program that exposes teachers to the fundamentals of digital logic design

    Optimizing the Use of Behavioral Locking for High-Level Synthesis

    Get PDF
    The globalization of the electronics supply chain requires effective methods to thwart reverse engineering and IP theft. Logic locking is a promising solution, but there are many open concerns. First, even when applied at a higher level of abstraction, locking may result in significant overhead without improving the security metric. Second, optimizing a security metric is application-dependent and designers must evaluate and compare alternative solutions. We propose a meta-framework to optimize the use of behavioral locking during the high-level synthesis (HLS) of IP cores. Our method operates on chip’s specification (before HLS) and it is compatible with all HLS tools, complementing industrial EDA flows. Our meta-framework supports different strategies to explore the design space and to select points to be locked automatically. We evaluated our method on the optimization of differential entropy, achieving better results than random or topological locking: 1) we always identify a valid solution that optimizes the security metric, while topological and random locking can generate unfeasible solutions; 2) we minimize the number of bits used for locking up to more than 90% (requiring smaller tamper-proof memories); 3) we make better use of hardware resources since we obtain similar overheads but with higher security metric
    corecore