602 research outputs found

    A memetic ant colony optimization algorithm for the dynamic travelling salesman problem

    Get PDF
    Copyright @ Springer-Verlag 2010.Ant colony optimization (ACO) has been successfully applied for combinatorial optimization problems, e.g., the travelling salesman problem (TSP), under stationary environments. In this paper, we consider the dynamic TSP (DTSP), where cities are replaced by new ones during the execution of the algorithm. Under such environments, traditional ACO algorithms face a serious challenge: once they converge, they cannot adapt efficiently to environmental changes. To improve the performance of ACO on the DTSP, we investigate a hybridized ACO with local search (LS), called Memetic ACO (M-ACO) algorithm, which is based on the population-based ACO (P-ACO) framework and an adaptive inver-over operator, to solve the DTSP. Moreover, to address premature convergence, we introduce random immigrants to the population of M-ACO when identical ants are stored. The simulation experiments on a series of dynamic environments generated from a set of benchmark TSP instances show that LS is beneficial for ACO algorithms when applied on the DTSP, since it achieves better performance than other traditional ACO and P-ACO algorithms.This work was supported by the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant EP/E060722/01 and Grant EP/E060722/02

    Ant Colony Optimization With Local Search for Dynamic Traveling Salesman Problems

    Get PDF
    For a dynamic traveling salesman problem (DTSP), the weights (or traveling times) between two cities (or nodes) may be subject to changes. Ant colony optimization (ACO) algorithms have proved to be powerful methods to tackle such problems due to their adaptation capabilities. It has been shown that the integration of local search operators can significantly improve the performance of ACO. In this paper, a memetic ACO algorithm, where a local search operator (called unstring and string) is integrated into ACO, is proposed to address DTSPs. The best solution from ACO is passed to the local search operator, which removes and inserts cities in such a way that improves the solution quality. The proposed memetic ACO algorithm is designed to address both symmetric and asymmetric DTSPs. The experimental results show the efficiency of the proposed memetic algorithm for addressing DTSPs in comparison with other state-of-the-art algorithms

    Interactive and non-interactive hybrid immigrants schemes for ant algorithms in dynamic environments

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Dynamic optimization problems (DOPs) have been a major challenge for ant colony optimization (ACO) algorithms. The integration of ACO algorithms with immigrants schemes showed promising results on different DOPs. Each type of immigrants scheme aims to address a DOP with specific characteristics. For example, random and elitism-based immigrants perform well on severely and slightly changing environments, respectively. In this paper, two hybrid immigrants, i.e., non-interactive and interactive, schemes are proposed to combine the merits of the aforementioned immigrants schemes. The experiments on a series of dynamic travelling salesman problems showed that the hybridization of immigrants further improves the performance of ACO algorithms

    A survey of swarm intelligence for dynamic optimization: algorithms and applications

    Get PDF
    Swarm intelligence (SI) algorithms, including ant colony optimization, particle swarm optimization, bee-inspired algorithms, bacterial foraging optimization, firefly algorithms, fish swarm optimization and many more, have been proven to be good methods to address difficult optimization problems under stationary environments. Most SI algorithms have been developed to address stationary optimization problems and hence, they can converge on the (near-) optimum solution efficiently. However, many real-world problems have a dynamic environment that changes over time. For such dynamic optimization problems (DOPs), it is difficult for a conventional SI algorithm to track the changing optimum once the algorithm has converged on a solution. In the last two decades, there has been a growing interest of addressing DOPs using SI algorithms due to their adaptation capabilities. This paper presents a broad review on SI dynamic optimization (SIDO) focused on several classes of problems, such as discrete, continuous, constrained, multi-objective and classification problems, and real-world applications. In addition, this paper focuses on the enhancement strategies integrated in SI algorithms to address dynamic changes, the performance measurements and benchmark generators used in SIDO. Finally, some considerations about future directions in the subject are given

    Bio-inspired Algorithms for TSP and Generalized TSP

    Get PDF

    Ant colony optimization with immigrants schemes in dynamic environments

    Get PDF
    This is the post-print version of this article. The official published version can be accessed from the link below - Copyright @ 2010 Springer-VerlagIn recent years, there has been a growing interest in addressing dynamic optimization problems (DOPs) using evolutionary algorithms (EAs). Several approaches have been developed for EAs to increase the diversity of the population and enhance the performance of the algorithm for DOPs. Among these approaches, immigrants schemes have been found beneficial for EAs for DOPs. In this paper, random, elitismbased, and hybrid immigrants schemes are applied to ant colony optimization (ACO) for the dynamic travelling salesman problem (DTSP). The experimental results show that random immigrants are beneficial for ACO in fast changing environments, whereas elitism-based immigrants are beneficial for ACO in slowly changing environments. The ACO algorithm with hybrid immigrants scheme combines the merits of the random and elitism-based immigrants schemes. Moreover, the results show that the proposed algorithms outperform compared approaches in almost all dynamic test cases and that immigrant schemes efficiently improve the performance of ACO algorithms in DTSP.This work was supported by the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant EP/E060722/1

    Dhouib-Matrix-TSP1 Method to Optimize Octagonal Fuzzy Travelling Salesman Problem Using α-Cut Technique

    Get PDF
    This paper proposes the optimization of the fuzzy travel salesman problem by using the α-Cut technique as a ranking function and the Dhouib-Matrix-TSP1 as an approximation method. This method is enhanced by the standard deviation metric and obtains a minimal tour in fuzzy environment where all parameters are octagonal fuzzy numbers. Fuzzy numbers are converted into a crisp number thanks to the ranking function α-Cut. The proposed approach in details is discussed and illustrated by a numerical example. This method helps in designing successfully the tour to a salesman on navigation through the distance matrix so that it minimizes the total fuzzy distance
    corecore