27,102 research outputs found

    Session 5: Development, Neuroscience and Evolutionary Psychology

    Get PDF
    Proceedings of the Pittsburgh Workshop in History and Philosophy of Biology, Center for Philosophy of Science, University of Pittsburgh, March 23-24 2001 Session 5: Development, Neuroscience and Evolutionary Psycholog

    The Liability Threshold Model for Censored Twin Data

    Full text link
    Family studies provide an important tool for understanding etiology of diseases, with the key aim of discovering evidence of family aggregation and to determine if such aggregation can be attributed to genetic components. Heritability and concordance estimates are routinely calculated in twin studies of diseases, as a way of quantifying such genetic contribution. The endpoint in these studies are typically defined as occurrence of a disease versus death without the disease. However, a large fraction of the subjects may still be alive at the time of follow-up without having experienced the disease thus still being at risk. Ignoring this right-censoring can lead to severely biased estimates. We propose to extend the classical liability threshold model with inverse probability of censoring weighting of complete observations. This leads to a flexible way of modeling twin concordance and obtaining consistent estimates of heritability. We apply the method in simulations and to data from the population based Danish twin cohort where we describe the dependence in prostate cancer occurrence in twins

    Online Tool Condition Monitoring Based on Parsimonious Ensemble+

    Full text link
    Accurate diagnosis of tool wear in metal turning process remains an open challenge for both scientists and industrial practitioners because of inhomogeneities in workpiece material, nonstationary machining settings to suit production requirements, and nonlinear relations between measured variables and tool wear. Common methodologies for tool condition monitoring still rely on batch approaches which cannot cope with a fast sampling rate of metal cutting process. Furthermore they require a retraining process to be completed from scratch when dealing with a new set of machining parameters. This paper presents an online tool condition monitoring approach based on Parsimonious Ensemble+, pENsemble+. The unique feature of pENsemble+ lies in its highly flexible principle where both ensemble structure and base-classifier structure can automatically grow and shrink on the fly based on the characteristics of data streams. Moreover, the online feature selection scenario is integrated to actively sample relevant input attributes. The paper presents advancement of a newly developed ensemble learning algorithm, pENsemble+, where online active learning scenario is incorporated to reduce operator labelling effort. The ensemble merging scenario is proposed which allows reduction of ensemble complexity while retaining its diversity. Experimental studies utilising real-world manufacturing data streams and comparisons with well known algorithms were carried out. Furthermore, the efficacy of pENsemble was examined using benchmark concept drift data streams. It has been found that pENsemble+ incurs low structural complexity and results in a significant reduction of operator labelling effort.Comment: this paper has been published by IEEE Transactions on Cybernetic

    Evolutionary biology and genetic techniques for insect control

    Get PDF
    The requirement to develop new techniques for insect control that minimize negative environmental impacts has never been more pressing. Here we discuss population suppression and population replacement technologies. These include sterile insect technique, genetic elimination methods such as the release of insects carrying a dominant lethal (RIDL), and gene driving mechanisms offered by intracellular bacteria and homing endonucleases. We also review the potential of newer or underutilized methods such as reproductive interference, CRISPR technology, RNA interference (RNAi), and genetic underdominance. We focus on understanding principles and potential effectiveness from the perspective of evolutionary biology. This offers useful insights into mechanisms through which potential problems may be minimized, in much the same way that an understanding of how resistance evolves is key to slowing the spread of antibiotic and insecticide resistance. We conclude that there is much to gain from applying principles from the study of resistance in these other scenarios – specifically, the adoption of combinatorial approaches to minimize the spread of resistance evolution. We conclude by discussing the focused use of GM for insect pest control in the context of modern conservation planning under land-sparing scenarios

    VARIATION IN CAROTENOID-BASED COLOR IN NORTHERN FLICKERS IN A HYBRID ZONE

    Get PDF

    Is Captain Kirk a natural blonde? Do X-ray crystallographers dream of electron clouds? Comparing model-based inferences in science with fiction

    Get PDF
    Scientific models share one central characteristic with fiction: their relation to the physical world is ambiguous. It is often unclear whether an element in a model represents something in the world or presents an artifact of model building. Fiction, too, can resemble our world to varying degrees. However, we assign a different epistemic function to scientific representations. As artifacts of human activity, how are scientific representations allowing us to make inferences about real phenomena? In reply to this concern, philosophers of science have started analyzing scientific representations in terms of fictionalization strategies. Many arguments center on a dyadic relation between the model and its target system, focusing on structural resemblances and “as if” scenarios. This chapter provides a different approach. It looks more closely at model building to analyze the interpretative strategies dealing with the representational limits of models. How do we interpret ambiguous elements in models? Moreover, how do we determine the validity of model-based inferences to information that is not an explicit part of a representational structure? I argue that the problem of ambiguous inference emerges from two features of representations, namely their hybridity and incompleteness. To distinguish between fictional and non-fictional elements in scientific models my suggestion is to look at the integrative strategies that link a particular model to other methods in an ongoing research context. To exemplify this idea, I examine protein modeling through X-ray crystallography as a pivotal method in biochemistry

    A Type System for First-Class Layers with Inheritance, Subtyping, and Swapping

    Get PDF
    Context-Oriented Programming (COP) is a programming paradigm to encourage modularization of context-dependent software. Key features of COP are layers---modules to describe context-dependent behavioral variations of a software system---and their dynamic activation, which can modify the behavior of multiple objects that have already been instantiated. Typechecking programs written in a COP language is difficult because the activation of a layer can even change objects' interfaces. Inoue et al. have informally discussed how to make JCop, an extension of Java for COP by Appeltauer et al., type-safe. In this article, we formalize a small COP language called ContextFJ<:_{<:} with its operational semantics and type system and show its type soundness. The language models main features of the type-safe version of JCop, including dynamically activated first-class layers, inheritance of layer definitions, layer subtyping, and layer swapping
    • 

    corecore