7,528 research outputs found

    Phylogenetic Analysis of Cell Types using Histone Modifications

    Full text link
    In cell differentiation, a cell of a less specialized type becomes one of a more specialized type, even though all cells have the same genome. Transcription factors and epigenetic marks like histone modifications can play a significant role in the differentiation process. In this paper, we present a simple analysis of cell types and differentiation paths using phylogenetic inference based on ChIP-Seq histone modification data. We propose new data representation techniques and new distance measures for ChIP-Seq data and use these together with standard phylogenetic inference methods to build biologically meaningful trees that indicate how diverse types of cells are related. We demonstrate our approach on H3K4me3 and H3K27me3 data for 37 and 13 types of cells respectively, using the dataset to explore various issues surrounding replicate data, variability between cells of the same type, and robustness. The promising results we obtain point the way to a new approach to the study of cell differentiation.Comment: Peer-reviewed and presented as part of the 13th Workshop on Algorithms in Bioinformatics (WABI2013

    Study of cell differentiation by phylogenetic analysis using histone modification data

    Get PDF
    Background: In cell differentiation, a cell of a less specialized type becomes one of a more specialized type, even though all cells have the same genome. Transcription factors and epigenetic marks like histone modifications can play a significant role in the differentiation process.Results: In this paper, we present a simple analysis of cell types and differentiation paths using phylogenetic inference based on ChIP-Seq histone modification data. We precisely defined the notion of cell-type trees and provided a procedure of building such trees. We propose new data representation techniques and distance measures for ChIP-Seq data and use these together with standard phylogenetic inference methods to build biologically meaningful cell-type trees that indicate how diverse types of cells are related. We demonstrate our approach on various kinds of histone modifications for various cell types, also using the datasets to explore various issues surrounding replicate data, variability between cells of the same type, and robustness. We use the results to get some interesting biological findings like important patterns of histone modification changes during cell differentiation process.Conclusions: We introduced and studied the novel problem of inferring cell type trees from histone modification data. The promising results we obtain point the way to a new approach to the study of cell differentiation. We also discuss how cell-type trees can be used to study the evolution of cell types

    A Unifying Model of Genome Evolution Under Parsimony

    Get PDF
    We present a data structure called a history graph that offers a practical basis for the analysis of genome evolution. It conceptually simplifies the study of parsimonious evolutionary histories by representing both substitutions and double cut and join (DCJ) rearrangements in the presence of duplications. The problem of constructing parsimonious history graphs thus subsumes related maximum parsimony problems in the fields of phylogenetic reconstruction and genome rearrangement. We show that tractable functions can be used to define upper and lower bounds on the minimum number of substitutions and DCJ rearrangements needed to explain any history graph. These bounds become tight for a special type of unambiguous history graph called an ancestral variation graph (AVG), which constrains in its combinatorial structure the number of operations required. We finally demonstrate that for a given history graph GG, a finite set of AVGs describe all parsimonious interpretations of GG, and this set can be explored with a few sampling moves.Comment: 52 pages, 24 figure

    Graphical Models and Symmetries : Loopy Belief Propagation Approaches

    Get PDF
    Whenever a person or an automated system has to reason in uncertain domains, probability theory is necessary. Probabilistic graphical models allow us to build statistical models that capture complex dependencies between random variables. Inference in these models, however, can easily become intractable. Typical ways to address this scaling issue are inference by approximate message-passing, stochastic gradients, and MapReduce, among others. Exploiting the symmetries of graphical models, however, has not yet been considered for scaling statistical machine learning applications. One instance of graphical models that are inherently symmetric are statistical relational models. These have recently gained attraction within the machine learning and AI communities and combine probability theory with first-order logic, thereby allowing for an efficient representation of structured relational domains. The provided formalisms to compactly represent complex real-world domains enable us to effectively describe large problem instances. Inference within and training of graphical models, however, have not been able to keep pace with the increased representational power. This thesis tackles two major aspects of graphical models and shows that both inference and training can indeed benefit from exploiting symmetries. It first deals with efficient inference exploiting symmetries in graphical models for various query types. We introduce lifted loopy belief propagation (lifted LBP), the first lifted parallel inference approach for relational as well as propositional graphical models. Lifted LBP can effectively speed up marginal inference, but cannot straightforwardly be applied to other types of queries. Thus we also demonstrate efficient lifted algorithms for MAP inference and higher order marginals, as well as the efficient handling of multiple inference tasks. Then we turn to the training of graphical models and introduce the first lifted online training for relational models. Our training procedure and the MapReduce lifting for loopy belief propagation combine lifting with the traditional statistical approaches to scaling, thereby bridging the gap between statistical relational learning and traditional statistical machine learning

    Architecture and Information Requirements to Assess and Predict Flight Safety Risks During Highly Autonomous Urban Flight Operations

    Get PDF
    As aviation adopts new and increasingly complex operational paradigms, vehicle types, and technologies to broaden airspace capability and efficiency, maintaining a safe system will require recognition and timely mitigation of new safety issues as they emerge and before significant consequences occur. A shift toward a more predictive risk mitigation capability becomes critical to meet this challenge. In-time safety assurance comprises monitoring, assessment, and mitigation functions that proactively reduce risk in complex operational environments where the interplay of hazards may not be known (and therefore not accounted for) during design. These functions can also help to understand and predict emergent effects caused by the increased use of automation or autonomous functions that may exhibit unexpected non-deterministic behaviors. The envisioned monitoring and assessment functions can look for precursors, anomalies, and trends (PATs) by applying model-based and data-driven methods. Outputs would then drive downstream mitigation(s) if needed to reduce risk. These mitigations may be accomplished using traditional design revision processes or via operational (and sometimes automated) mechanisms. The latter refers to the in-time aspect of the system concept. This report comprises architecture and information requirements and considerations toward enabling such a capability within the domain of low altitude highly autonomous urban flight operations. This domain may span, for example, public-use surveillance missions flown by small unmanned aircraft (e.g., infrastructure inspection, facility management, emergency response, law enforcement, and/or security) to transportation missions flown by larger aircraft that may carry passengers or deliver products. Caveat: Any stated requirements in this report should be considered initial requirements that are intended to drive research and development (R&D). These initial requirements are likely to evolve based on R&D findings, refinement of operational concepts, industry advances, and new industry or regulatory policies or standards related to safety assurance

    Geophysical imaging using trans-dimensional trees.

    Get PDF
    In geophysical inversion, inferences of Earth's properties from sparse data involve a trade-off between model complexity and the spatial resolving power. A recent Markov chain Monte Carlo (McMC) technique formalized by Green, the so-called trans-dimensional samplers, allows us to sample between these trade-offs and to parsimoniously arbitrate between the varying complexity of candidate models. Here we present a novel framework using trans-dimensional sampling over tree structures. This new class of McMC sampler can be applied to 1-D, 2-D and 3-D Cartesian and spherical geometries. In addition, the basis functions used by the algorithm are flexible and can include more advanced parametrizations such as wavelets, both in Cartesian and Spherical geometries, to permit Bayesian multiscale analysis. This new framework offers greater flexibility, performance and efficiency for geophysical imaging problems than previous sampling algorithms. Thereby increasing the range of applications and in particular allowing extension to trans-dimensional imaging in 3-D. Examples are presented of its application to 2-D seismic and 3-D teleseismic tomography including estimation of uncertainty

    Storage of organically produced crops (OF0127T)

    Get PDF
    This is the final report of Defra Project OF0127T. The main objective of this review was to establish best storage practice for field vegetables, potatoes, cereals and top fruit. A literature review was carried out and information was also gathered from the industry. Information relevant to growers and farmers has been drawn together to provide a comprehensive base from which technical advisory leaflets can be produced. The costs of different storage methods are provided, and case studies used wherever possible. In general, organic crops can be stored using the same methods as conventional crops but there is an increased risk that sometimes there will be higher storage losses because pesticides and sprout suppressants are not used. On the whole, specific problems with pests and diseases can be avoided using good organic husbandry techniques and by storing undamaged, healthy crops. In the case of cereals storage at correct moisture content and temperatures can avoid pests and moulds. However, there are some areas where more technical development or research would be useful and these have been identified. Relatively few organic growers store vegetables, but in order to maintain a supply of good quality UK produce throughout the year, more long term cold storage space is required (either on farm or in co-operative type stores). Based on the limited data available, economic analysis revealed that long term storage of organic vegetables has generally not been profitable. However, as the market expands in the future, it is likely that storage will become as essential for vegetables as it is for organic cereals and fruit
    • …
    corecore