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Abstract

Protecting valuable resources using optimal control theory and
feedback strategies for plant disease management

Elliott Hamilton Bussell

Mathematical models of tree diseases often have little to say about how to manage esta-
blished epidemics. Models often show that it is too late for successful disease eradication,
but few study what management could still be beneficial. This study focusses on finding
effective control strategies for managing sudden oak death, a tree disease caused by Phy-
tophthora ramorum. Sudden oak death is a devastating disease spreading through forests
in California and southwestern Oregon. The disease is well established and eradication is
no longer possible. The ongoing spread of sudden oak death is threatening high value tree
resources, including national parks, and culturally and ecologically important species like
tanoak. In this thesis we show how the allocation of limited resources for controlling sudden
oak death can be optimised to protect these valuable trees.

We use simple, approximate models of sudden oak death dynamics, to which we apply the
mathematical framework of optimal control theory. Applying the optimised controls from
the approximate model to a complex, spatial simulation model, we demonstrate that the
framework finds effective strategies for protecting tanoak, whilst also conserving biodiversity.
When applied to the problem of protecting Redwood National Park, which is under threat
from a nearby outbreak of sudden oak death, the framework finds spatial strategies that
balance protective barriers with control at the epidemic wavefront. Because of the number
of variables in the system, computational and numerical limitations restrict the control
optimisation to relatively simple approximate models. We show how a lack of accuracy in
the approximate model can be accounted for by using model predictive control, from control
systems engineering: an approach coupling feedback with optimal control theory. Continued
surveillance of the complex system, and re-optimisation of the control strategy, ensures that
the result remains close to optimal, and leads to highly effective disease management.

In this thesis we show how the machinery of optimal control theory can inform plant disease
management, protecting valuable resources from sudden oak death. Incorporating feedback
into the application of the resulting strategies ensures control remains effective over long
timescales, and is robust to uncertainties and stochasticity in the system. Local management
of sudden oak death is still possible, and our results show how this can be achieved.
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1Introduction

1.1 Motivation

Infectious diseases of plants pose a serious economic and environmental threat across

the globe. New pathogens are being introduced into novel environments at ever increasing

rates, driven by increased international trade, climate change and agricultural intensification,

causing significant damage to crops and natural environments (Anderson et al., 2004;

Brasier, 2008). Yield losses of 20 to 30 % are seen globally across the major food crops of

wheat, rice, maize, potato and soybean, with major implications for food security (Strange

and Scott, 2005; Oerke, 2006; Savary et al., 2019). The economic cost from all crop losses to

plant pathogens in the US has been estimated at $33 billion USD (Pimentel et al., 2005).

Plant pathogens also affect wild plants in the natural environment, with increasing num-

bers of new diseases reported in forest ecosystems (Stenlid et al., 2011). Important current

examples include ash dieback in Europe (caused by Hymenoscyphus fraxineus; Kowalski and

Holdenrieder, 2009; DEFRA, 2014b), sudden oak death (caused by Phytophthora ramorum)

in the USA (Rizzo and Garbelotto, 2003) and Europe (Brasier and Webber, 2010), olive

quick decline syndrome in southern Europe (caused by Xylella fastidiosa; Sicard et al., 2018),

and sweet Chestnut blight in Europe (caused by Cryphonectria parasitica; Milgroom and

Cortesi, 2004). Forests are a key part of a landscape, and provide important ecosystem

services (Bateman et al., 2013). The economic value of forests is difficult to quantify, but the

UK government has estimated that healthy forests contribute at least £5 billion to the UK

economy per year, through forestry and social/environmental value (UK government, 2018).

The long generation times of trees mean that resistance to disease develops slowly, or not at

all, and so disease impacts have long-term implications (Boyd et al., 2013). The biodiversity

of forests and the ecosystem services provided by trees are under severe threat from pests

and diseases (Freer-Smith and Webber, 2017), and disease management approaches that

take more consideration of these services are urgently required (Boyd et al., 2013)

1.1.1 Management efforts

There are a number of options available to decision makers for plant disease management,

broadly grouped around four principles: exclusion, eradication, protection, and resistance

(Maloy, 2005). With ever-increasing numbers of pathogens, decisions must be made about

which management methods, plant species and diseases to prioritise. Efforts have been
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made across the globe to help inform disease management, through schemes such as the UK

Plant Health Risk Register (Baker et al., 2014), and regional plant protection organisations

such as the European and Mediterranean Plant Protection Organisation (EPPO) that develop

and advise governments on disease management and surveillance strategies (Maloy, 2005).

But with very large numbers of plant species to protect, and increasing threats from pests

and diseases, making these strategic decisions is not straightforward.

Mistakes in disease management decisions can be extremely costly, and major failures of

management have been fairly common. In the UK, management of the Dutch elm disease

outbreak in the 1970s was ultimately unsuccessful, with the loss of almost 30 million

elm trees (Tomlinson and Potter, 2010). Initially it was believed that the epidemic would

soon die out, and so the disease was left to run its course. In 1970 advice changed to

recommend removing trees killed by the disease, but the need for larger scale efforts was not

acknowledged until 1972. By this time disease containment would have been very expensive

and unlikely to be successful, and so was not carried out. More recently, ash dieback has

become established in the UK and it is now acknowledged that management is unlikely to

make much difference to the long-term outcome across the country (Thomas, 2016). The

total economic cost of the ash dieback outbreak, including management costs and loss of

ecosystem services, has recently been estimated at £15 billion (Hill et al., 2019).

The citrus canker epidemic in Florida highlights the potential costs of these failures.

The most recent introduction of the disease was discovered in Florida in 1995, after which

an eradication program was quickly initiated. This program removed and destroyed all

citrus trees within a certain radius of a known infection. This radius was initially 125 ft

(38 m) to remove asymptomatic trees that had been exposed to the disease. The radius was

increased in 1998 to 1,900 ft (579 m) as the initial radius did not remove enough trees to

slow disease spread (Gottwald et al., 2001). In 2006, the ten year eradication program was

abandoned once the disease was deemed endemic, after becoming widespread in commercial

and residential citrus trees (Gottwald, 2007). A total of $1 billion USD had been spent on

the program.

Management of disease epidemics is most successful when the scale of control matches

the scale of the epidemic (Gilligan et al., 2007). Outbreaks have inherent spatial and

temporal scales of spread, and control strategies that match these scales are the most

effective. However, plants can be cryptically infected—where the host is infectious before

symptoms appear—making estimation of future spread challenging (Thompson et al., 2016).

Coupled with delays in disease reporting due to the high costs of surveillance (Parnell

et al., 2014) as well as uncertainty surrounding rates of spread, determining this scale of

management can be problematic. Also for these reasons, early detection of a new invasion

is unlikely, but rapid deployment of resources is necessary for successful disease control
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(Cunniffe et al., 2015). Successful management is therefore costly, and so decision makers

require robust decision making processes.

1.2 Model-based disease management decisions

Increasingly, mathematical models are used to predict the impacts of disease, and

assess potential management across human, animal and plant diseases (Thompson and

Brooks-Pollock, 2019). Quantitative methods can be used to assist decision making by

improved descriptive analysis of outbreaks, risk factors and response needs, as well as

through forecasting and optimisation of interventions (Morgan, 2019). As examples, models

of outbreaks have informed ebola vaccination campaigns in humans (Bellan et al., 2015),

animal culling during the UK foot and mouth epidemic (Keeling et al., 2001), management

of citrus canker in Florida (Gottwald and Irey, 2007), and of ash dieback in the UK (DEFRA,

2014a).

1.2.1 Simulation models

Models that simulate the expected course of an epidemic and explicitly capture the effects

of interventions can quantify the impact of a potential management strategy (Lofgren et al.,

2014). These simulation models, as we will refer to them, are designed to accurately forecast

disease progression under a number of intervention scenarios being considered by a decision

maker. As a result, simulation models have become important tools for assessing policy

decisions relating to real-time management responses, as well as to increased preparedness

for future threats. This allows decision makers to examine ‘what if’ scenarios, with all

possible information available about disease impacts and uncertainty. However, to capture

enough realism to be useful for guiding policy, simulation models must often be very complex

(Basu and Andrews, 2013; Savary and Willocquet, 2014). This complexity ensures that the

simulation model incorporates the many factors impacting on patterns and rates of epidemic

spread, for example spatial heterogeneity and variation in host susceptibility (Keeling and

Rohani, 2008; Anderson et al., 1986; Smith et al., 2002).

The complexity of simulation models can limit the extent to which management can

be optimised. With many possible interventions that can be combined and potentially

vary in space, time or according to disease risk, it becomes computationally infeasible to

unambiguously determine the optimal strategy. This problem with optimisation in high-

dimensional space is known as Bellman’s ‘curse of dimensionality’ (Bellman, 1957). As a

result, for most simulation models the only viable option is to test a small subset of plausible

management strategies. This ‘strategy testing’ approach may be able to scan over a single
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parameter, but the set of strategies to test cannot span the entire space of control options.

This makes it difficult to have high confidence in the best-performing strategy.

The approach is nevertheless commonly used to inform policy decisions across human,

animal and plant disease management. In human health, Jit et al. (2008) assess potential

vaccination policies for human papillomavirus (HPV) in the UK, testing strategies that vary in

vaccine coverage, age at vaccination, and whether the vaccine is given to boys as well as girls.

The economic analysis carried out by Jit et al. (2008) was used by the Department of Health

to inform decisions about distribution of the HPV vaccine. Similarly, models of Ebola virus

disease outbreaks in west Africa have been used to assess potential interventions including

hygienic burial and contact-tracing (Pandey et al., 2014), and more recently vaccination

strategies for health care workers (Robert et al., 2019). In animal epidemiology, models

were used to inform the response to the 2001 foot-and-mouth disease (FMD) outbreak

(Keeling, 2005). The simulation model developed (Keeling et al., 2001) was used to assess

different animal culling strategies, and later potential vaccination strategies (Keeling et al.,

2003; Tildesley et al., 2006). Finally, in plant disease, simulation models have been used

to assess potential host removal strategies for tree diseases of citrus (Cunniffe et al., 2014;

Cunniffe et al., 2015; Hyatt-Twynam et al., 2017; Adrakey et al., 2017; Craig et al., 2018),

and sudden oak death (Cunniffe et al., 2016).

In human disease outbreaks, for which modelling has played a prominent role, integration

into the decision-making process can be slow because models are often built in reaction

to ongoing epidemics (Rivers et al., 2019). The problem is amplified in plant disease

management where limited funding, a lack of data, and poor surveillance means pathogens

and their spread characteristics are almost always only identified once the disease is well-

established. As a result, simulation models used in plant disease often simply show that it

is too late for effective widespread eradication to remain a realistic proposition. This was

the case with citrus canker in Florida (Gottwald and Irey, 2007), ash dieback in the UK

(DEFRA, 2014b), and sudden oak death in California (Cunniffe et al., 2016). However, these

models—and plant disease modellers in general—have said very little about how smaller-

scale management, designed to achieve local goals rather than widespread eradication, could

be made to be effective. Whilst studies might say what cannot be achieved, these simulation

models have not been used to study what is still possible, for example through localised

control or management to protect valuable resources.

1.3 Sudden oak death

The disease case study we will use throughout this thesis is the sudden oak death (SOD)

epidemic in California. SOD is caused by the oomycete Phytophthora ramorum, which can
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infect a very broad host range. Hosts most notably affected by the pathogen include oak,

tanoak, larch, bay laurel and rhododendron, but over 100 plant species are susceptible to the

disease (Grünwald et al., 2012). The disease effects vary depending on the host, but broadly

split into two groups: lethal trunk infections and non-lethal foliar infections (Rizzo and

Garbelotto, 2003). In tanoak and oak species the disease causes large cankers to form on the

main stem, eventually leading to tree death. On ‘spreader species’, including rhododendron

and bay laurel, P. ramorum can infect the host and sporulate, but this does not lead to host

death. The pathogen spreads predominantly through short-distance rain splash dispersal of

spores, but spores can be dispersed over longer distances by turbulent air currents, rivers

and streams, or when carried by animals or human activity (Grünwald et al., 2012).

The disease was first detected in California in 1995 and has since spread widely along

the west coast of the USA as shown in Figure 1.1 (Rizzo and Garbelotto, 2003; Meentemeyer

et al., 2011). It has significantly impacted the nursery trade, and devastated populations

of coast live oak and tanoak in California. SOD is currently found in areas covering over

2,000 km2 in California (Grünwald et al., 2019), with an estimated $135M USD loss in

property values attributed to the disease (Kovacs et al., 2011). In 2001 an isolated outbreak

was identified in Curry County, Oregon, and in 2009 the pathogen was discovered in the

UK where it is causing extensive mortality of larch (Brasier and Webber, 2010). In the UK

the disease is known as ramorum disease or sudden larch death. The European and North

American outbreaks are caused by different lineages of the pathogen, designated NA1 and

NA2 for the North American, and EU1 and EU2 for the European pathogens (Grünwald et al.,

2012). In 2016 the EU1 lineage was discovered in Oregon forests, which is problematic as it

is of a different mating type to the NA1 and NA2 lineages (Grünwald et al., 2019). Whilst

sexual reproduction of the pathogen has not yet been observed, this could lead to the much

more rapid evolution of more aggressive forms of the pathogen.

1.3.1 Control of sudden oak death

Multiple scales of management are possible in any attempt to control SOD spread.

For protection of individual high-value trees, for example at the urban-wildland interface,

protective chemicals can be applied through sprays or by trunk injection (Garbelotto and

Schmidt, 2009). At the landscape scale, the only management that has proved effective

is the removal of hosts (Hansen et al., 2008). Modelling work has shown that state-wide

eradication of SOD in California has long been impossible (Cunniffe et al., 2016). The

method used by Cunniffe et al. (2016) to demonstrate this was to use a complex spatially-

explicit simulation model of SOD spread, and test a number of state-wide management

strategies: an example of the strategy testing approach we introduced earlier. They showed

that the most effective strategies prioritised control at the epidemic wavefront, but needed
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Figure 1.1: The current state of SOD spread in California and Oregon. Counties in California with
confirmed SOD infestations are quarantined (shown in red in (a)). A partial quarantine
of Curry county in Oregon has been implemented, as shown in (b).

to have been implemented much earlier in the epidemic for widespread control to have been

possible.

Despite eradication being unachievable, smaller-scale local management can still be

beneficial. Since the Oregon outbreak was discovered in 2001, the disease has been actively

managed, with $22.7M USD spent on identifying and treating infested sites (Grünwald et al.,

2019). The management has been effective at slowing the spread of the infestation and

containing the disease within Curry county (Figure 1.1(b)), with 2028 and 2038 being the

estimated years of arrival into Coos county with and without control, respectively (Oregon

Department of Forestry, 2019). In some locations in Oregon, control has shown that local

eradication, whilst difficult, is possible (Hansen et al., 2019). These less ambitious local

goals remain practically-relevant and achievable, but mathematical models have had little to

say about how to deploy such management.

One reason for this may be that the objective of local management is less clear than

that of eradication, and will vary depending on the wider forest management goals in each

region. Local goals could involve slowing disease spread or protection of valuable resources

(either particular hosts or regions), for example protecting culturally and ecologically

important tanoak populations or slowing spread into national parks. These objectives must

be considered alongside wider goals such as fire risk management and conservation. To date

simulation models have only considered large-scale eradication goals, but how can models
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be used to optimise local control? What strategies should decision makers deploy to manage

SOD and protect local resources?

1.3.2 Models of sudden oak death

Many different models have been built to capture aspects of SOD spread. In this thesis

we focus on SOD management strategies, and therefore require dynamic models that capture

the drivers of disease spread into new regions and how these drivers are affected by possible

management interventions. Much of SOD modelling, at least to start with, focussed on

building risk maps. These maps show which areas are most likely to become infected, with

the potential to be used to allocate control resources appropriately. Meentemeyer et al.

(2004) used an expert informed, rule-based model to find high risk areas in California, based

on weighted combinations of host distribution, temperature and moisture data. Later work

by Kelly et al. (2007) compared environmental niche models like the model in Meentemeyer

et al. (2004), with other classifiers including logistic regression and support vector machines,

and similar models have been used in Oregon (Václavík et al., 2010). All these risk models

predict the chance of future spread, but not the dynamics of those invasions into new regions.

These models cannot therefore be used to investigate the dynamics of disease spread, and

importantly what effect control would have on disease progression.

Further development of these ecological niche models incorporated dispersal estimation

into the risk mapping (Meentemeyer et al., 2008). This in effect increases the risk of invasion

in areas close to known infestations. Whilst this still did not capture the dynamics of the

system, it begins to capture these dynamic effects. Models were also being developed to

model the spread of P. ramorum in the UK. Analysis of susceptible host movement in the

UK nursery trade showed a similarity to small-world and scale-free networks, suggesting

that identifying and targeting key nodes in the network could manage the disease more

effectively (Pautasso et al., 2008; Jeger et al., 2007). Harwood et al. (2009) developed a

stochastic network model to capture the full dynamics of pathogen spread across the whole

of the UK. The simulations however, did not directly model different host species, so could

not be used to model the differing effects on multiple species, nor were they fitted to data.

Larger scale models of SOD spread seek to capture invasion dynamics at the landscape

scale. Meentemeyer et al. (2011) developed a model of SOD invasion to predict spread

across California through to 2030. This model was later used to assess different control

strategies (Cunniffe et al., 2016). Another similar model (Tonini et al., 2018) integrates with

the LANDIS-II forest simulation model (Scheller et al., 2007), designed to simulate forest

disturbances. However for reasons of computational efficiency, as well as pragmatism in

making very large scale predictions, both of these landscape scale models group host species

together. In Meentemeyer et al. (2011) each simulation grid cell has a ‘host index’ that
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captures the susceptibility and infectivity of the host composition in that cell. In LANDIS-II

the disease model can only remove all hosts in a cohort of a given age in each cell. This

means that small scale changes to host structure cannot be captured easily. However, both of

these models capture sufficient dynamics to assess management strategies at the landscape

scale.

Models of disease at the smaller scale of a forest stand are very limited in number. Brown

and Allen-Diaz (2009) use ‘stand reconstruction’ to predict mortality within a forest stand.

By looking for dead trees and symptomatic hosts in study plots, they estimate mortality rates

and use these to predict future changes to stand structure. Again, dynamics are not captured

here. Cobb et al. (2012) developed a differential equation model of SOD spread within a

forest stand, capturing both invasion dynamics and differing mortality and infection rates by

species and age class. In its current form this model does not include controls, but sufficient

host dynamics are included that, with changes to the model, management strategies could

be tested.

1.4 Aims and overview of the thesis

In this thesis, we seek to develop methods for using mathematical models to optimise

local SOD management. More broadly, we aim to develop frameworks that can be used to

optimise control on complex simulation models, improving on the strategy testing approach

currently widely used. We will make use of the mathematical field of optimal control theory:

a method for optimising time-dependent controls of dynamical systems. We will couple the

predictive power of simulation models with mathematical results from applying optimal

control theory, elevating abstract mathematical results into practical management strategies

in a framework that could be used for policy.

We begin in the next chapter with an introduction to optimal control theory, and how

it can be used to optimise time-dependent control strategies. In Chapter 3, we will apply

this to a simple example case of protecting a high value region from a spreading epidemic,

as a proxy for SOD invading an economically or culturally important region. This will

demonstrate the optimisation capabilities of optimal control theory, but also its limitations

for real-world practical management as a result of the simplicity of the underlying models.

We will then develop frameworks for coupling such optimal control results with simulation

models in Chapter 4, using the predictive capabilities of simulation models to account

for inaccuracies in the optimal control model. We show that model predictive control—a

framework incorporating feedback between a simulation model and a simpler, approximate

model—finds the best disease management strategies. The feedback framework is applied to

the problem of tanoak protection in Chapters 5 and 6, showing that the framework provides
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robust strategies that limit the impacts of the worst-case scenario epidemics. In Chapter 7,

we apply optimal control theory to the protection of a valuable region, Redwood National

Park, showing how complex, spatially resolved control strategies can be identified. In the

Discussion (Chapter 8) we explain how our frameworks could be used to improve plant

disease outbreak responses, and where there are avenues for further study. Overall the work

demonstrates how the frameworks we develop allow the insights of optimal control theory

to be applied in a practical setting, with relevance to disease management across human,

animal and plant health. Our unique contribution is to couple disease models with optimal

control theory and systems engineering to find practical local management strategies for

SOD.
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2Optimal control theory

2.1 Introduction

In Chapter 1 we highlighted how the optimisation of plant disease management can

be mathematically and computationally challenging. In this chapter we will introduce the

mathematical field of optimal control theory (OCT), and how it can be used to optimise

epidemiological controls. Poorly designed management strategies can lead to expensive

failures of control, for example as happened with Dutch elm disease in the UK in the 1970s

(Tomlinson and Potter, 2010), and with citrus canker in Florida in the 2000s (Gottwald,

2007). OCT provides a framework for finding time-dependent, optimal strategies for simple

models, which could be used to systematically generate potential management strategies

for use in the real-world. Alongside expert-informed strategies this could enable a more

mathematically robust system for making disease management policy decisions.

In this chapter we review the use of OCT in the epidemiology literature. We first describe

the formulation of the optimal control problem, and give an overview of the mathematical

background. We focus here on a review of applications of OCT in epidemiology and related

fields, rather than the underlying mathematical theory. To set the scene for analysing a

simple disease model in the next chapter, we then describe two main numerical methods

that are commonly used to find solutions to the optimal control problem.

2.2 Background

Optimal control theory (OCT) is the field of mathematics concerned with finding time-

varying inputs to dynamical systems, optimised to maximise (or minimise) some performance

metric. Whilst the standard approach applies to ODEs, the dynamical system could also be a

system of PDEs, or difference equations. The system is controlled by an input variable, or

combination of variables, that can be varied from outside the system to adjust the dynamics.

The field developed as an extension to the calculus of variations, with roots also in classical

control theory, random processes, and linear and nonlinear programming (Bryson, 1996). In

the 1950s, Bellman developed dynamic programming, a method for finding optimal controls

by recursively solving smaller problems (Bellman, 1957). These methods struggle to solve

realistic problems because of the ‘curse of dimensionality’, where, as the number of state and
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control variables increases, the memory required to solve the recursive problem becomes

impractical.

Later work by Pontryagin et al. (1962) extended work from the calculus of variations to

find a necessary condition for the maximising path. Since whether an individual control-state

trajectory satisfies the condition can be tested, this method avoids the ‘curse of dimensionality’

with the Bellman equation. There is no need to recurse over the entire state space. The

necessary condition is contained in Pontryagin’s famous ‘maximum principle’, the main

theory underlying much of OCT. We will now summarise this principle as it applies to ODEs,

but we do not describe the mathematics here. Further details can be found in Lenhart and

Workman (2007) or Hocking (1991).

The maximum principle relates to a differential equation system for a state vector x,

described as follows:

ẋ(t) = f(x(t),u(t), t); x(0) = x0; t ∈ [0, T ] (2.1)

where u(t) is a time dependent control vector. The control function u(t) must be chosen in

order to maximise the objective function J :

J = Ψ(x(T )) +
∫ T

0
L(x(t),u(t), t) dt (2.2)

where Ψ is a salvage term at the final time T , or payoff function, and L is the Lagrangian of

the problem. The overall optimisation problem is therefore:

max
u(t)

Ψ(x(T )) +
∫ T

0
L(x(t),u(t), t) dt (2.3a)

subject to ẋ(t) = f(x(t),u(t), t) (2.3b)

x(0) = x0 (2.3c)

where the state dynamics are constraints to the maximisation problem.

The maximum principle states that if u∗(t) and x∗(t) are optimal for this system, then

there must exist an adjoint system of variables λ(t) such that:

H(t,x∗(t),u(t),λ∗(t)) ≤ H(t,x∗(t),u∗(t),λ∗(t)) (2.4)

for all time t ∈ [0, T ]. The Hamiltonian H is given by:

H(t,x(t),u(t),λ(t)) = L(x(t),u(t), t) + λ(t) · f(x(t),u(t), t) (2.5)
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and the adjoint system satisfies:

λ̇(t) = −∂H(t,x(t),u(t),λ(t))
∂x (2.6a)

λ(T ) = ∂Ψ(x(T ))
∂x . (2.6b)

The adjoint system is a set of time-dependent variables that are equivalent to Lagrange

multipliers. In economic terms they are shadow prices, representing the cost in the objective

function associated with a change in the relevant state variable. This is useful in the

maximisation problem as, through maximisation of the Hamiltonian, the adjoint system

sets the relative importance of the control functions. The terminal constraint in the adjoint

system is known as the transversality condition.

This maximum principle can then be used to find solutions to the optimisation problem

described above. In Example 1 we illustrate this problem formulation for a simple SIR model,

before reviewing how OCT has been used in epidemiology in the next section.

Example 1: Setting up a simple SIR optimal control problem.

As a more concrete illustration of how the problem formulation can be applied in an

epidemiological setting, we here formulate the optimal control problem for a simple

SIR model. The model tracks numbers of susceptible and infectious individuals, and the

control consists of removing infected hosts (roguing). The state system (Equation 2.1

previously) is given by:

Ṡ = −βSI (2.7a)

İ = βSI − µ(t)I (2.7b)

where β is the infection rate, and µ(t) is the time dependent roguing rate. In the

mathematical formulation this is u(t).

We seek to find an optimal roguing strategy (µ∗(t)) that minimises the number of

infected hosts after the final time T , combined with the total cost of roguing. The

objective we choose is given by:

J = I(T ) +
∫ T

0
cµ(t)I dt (2.8)

where c is the relative cost of roguing. Comparing with Equation 2.2, the salvage

term is I(T ), and the Lagrangian is the roguing cost cµ(t)I. Note here that this is a

minimisation problem, but the framework is exactly the same as for the maximisation

problem considered previously, apart from the Hamiltonian being minimised when the

control is optimal.
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The Hamiltonian is formed by introducing adjoint variables for each state in the

system. We define these as λS and λI for S and I respectively. Using Equation 2.5 the

Hamiltonian is found to be:

H = cµ(t)I + λS(−βSI) + λI(βSI − µ(t)I) . (2.9)

Using Equation 2.6(a), differentiating the Hamiltonian with respect to each state

variable gives the dynamics of the adjoint variables:

λ̇S = λSβI − λIβI (2.10a)

λ̇I = −cµ(t) + λSβS − λI (βS − µ(t)) . (2.10b)

The optimal control problem is completed by the transversality constraints. These give

the terminal time conditions for the adjoint variables. Using Equation 2.6(b) and the

payoff term we have already defined, these are given by:

λS(T ) = 0 (2.11a)

λI(T ) = 1 . (2.11b)

This completes the formulation of the optimal control problem. We have a state

system with initial conditions, an adjoint system with terminal conditions, and a Hamil-

tonian that is minimised when the roguing strategy is optimal. We will demonstrate

how to numerically solve this problem in Example 2 later in the chapter.

2.3 OCT within epidemiology

When deciding how to manage human, animal or plant epidemics, public health or

environmental decision makers must take into account economic constraints. OCT optimises

control strategies whilst ensuring adherence to constraints and minimisation of total costs,

and is therefore a potentially useful tool for designing epidemic interventions. Successful

disease control relies on applying the most effective control methods at the correct time, and

at a sufficient level. OCT is an effective tool for balancing disease management objectives

with economic and logistic constraints, provided that the overall goal of the management

program is well defined. OCT has been applied to models of many diseases, including HIV

(Kirschner et al., 1997), mosaic virus in Jatropha curcas plants (Al Basir et al., 2017), and

sudden oak death (Ndeffo Mbah and Gilligan, 2010b). In this section we will review how

OCT has developed within the field of epidemiology, discussing outstanding limitations and

problems. The OCT literature is extensive, and so we will focus on the key areas relevant to

this thesis.
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Early work & general principles

Early work using OCT on epidemiological models was carried out by Sethi and Staats

(1978), who optimised levels of vaccination and treatment in simple SEIR type models. The

work is analytic and finds cases where the control can be classified as ‘bang-bang’. Bang-

bang controls occur when the state dynamics and the Lagrangian, and so the Hamiltonian

(Equation 2.5), are linear in the control functions. The Hamiltonian is then maximised (or

minimised) by controls that switch between their maximum and minimum values, giving

the so-called bang-bang strategies, where each control is either on or off. In bang-bang

strategies there are often important switching times, when some or all of the controls switch

from on to off or vice versa. These strategies have arisen repeatedly in disease control, for

example by Forster and Gilligan (2007) for a plant disease spreading through an agricultural

landscape, and Panetta and Fister (2003) for cancer drug treatments.

As OCT was increasingly used within epidemiology, the underlying models increased

in complexity. Behncke (2000) developed models with more complex forms of control,

including vaccination, quarantine and screening, and health-promotion campaigns. The

wider range of interventions modelled are more realistic than those used in previous studies,

but the models are analytic and abstract in nature. The models used a general infection

interaction f(S, I), so that the results are valid in the general case for frequency or density

dependence, or any other interaction term. As well as this, the effects of screening and

health-promotion campaigns are also included through generic functions, so do not capture

any specific method of control. However, the control strategies found here do introduce the

important concept of ‘front-loading’, where additional resources are allocated early in the

epidemic when control can be more effective. The importance of this early timing of control

for successful management has also been shown for control of sudden oak death (Cunniffe

et al., 2016).

Bioeconomics

Throughout its history, OCT has been closely connected with the field of economics (Weber

and Kryazhimskiy, 2011), for example in fisheries economics (Clark and Munro, 1975).

Consideration of economics is important for optimising epidemiological controls (Perrings

et al., 2014), since interventions must be cost-effective, and resources are often limited. In

one study, OCT was used to find cost-effective human papillomavirus vaccination strategies

(Brown and White, 2011), showing how time-dependent strategies can be found that balance

the costs of administering vaccines with the costs of treating infected individuals. In plant

epidemiology, a recent study shows how control strategies for vector transmitted diseases

can balance multiple economic costs (Bokil et al., 2019), including control costs, yield loss
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and long-term costs from insecticide use. Work on sudden oak death has shown how OCT

can find an optimal balance when allocating limited resources between surveillance and

eradication measures (Ndeffo Mbah and Gilligan, 2010a).

Bioeconomic studies, such as the ones considered in the previous paragraph, rely on

a clearly defined objective of control, with all costs quantified in the same units. By

setting the relative contributions for each cost term, for example surveillance, vaccination

and treatment costs, the objective function chosen defines what is to be considered cost-

effective. Epanchin-Niell (2017) argues that in bioinvasion management a key gap in current

understanding is how to value environmental benefits, such as ecosystem services and

biodiversity, alongside the costs and effectiveness of controls. The same difficulties are

present in the epidemiological literature, but improved valuation and consideration of these

services in determining control strategies are urgently required (Boyd et al., 2013). Choosing

an objective function that balances costs meaningfully is important, since the choice of the

objective function can make significant changes to the optimal strategy (Probert et al., 2016).

In human disease, cost-effectiveness analyses are often based on quality adjusted life years

(Whitehead and Ali, 2010). A similar concept could perhaps be used for plant and animal

diseases, including calculations of yield losses (Savary et al., 2012; Savary et al., 2019) as

well as effects on welfare, biodiversity and tourism for example (Boyd et al., 2013).

State of the art and outstanding questions

As the use of OCT in epidemiology progressed, the complexity of the underlying control

models increased to capture more realism and ask more applied questions. As examples,

OCT has been used in models of vector-borne diseases applied to malaria (Blayneh et al.,

2009), vaccination rates against Clostridium difficile in a hospital setting (Stephenson et al.,

2017), and, as previously mentioned, balancing of detection and eradication controls for

sudden oak death (Ndeffo Mbah and Gilligan, 2010a). Despite the additional complexity

and realism, the underlying models in these and other studies are still relatively simplistic,

and cannot be expected to capture complex realistic dynamics. OCT results have therefore

rarely been tested in the field.

Occasionally, though, OCT results have been tested using more complex models to relax

the assumptions in the simplistic OCT models. Forster and Gilligan (2007) find that in a

mean field epidemic model a switching strategy is optimal. Forster and Gilligan also test

their mean field results on a spatial contact process model, and find that if the switch time is

not known precisely then the OCT strategy can be worse than a simple constant strategy.

Another study finds optimal control strategies for chlamydia, and tests the non-spatial results

on a spatial network simulation (Clarke et al., 2013). The strategies found using OCT result
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in rapidly switching controls that perform much worse in the simulation model than in the

OCT model. For effective control in the real world, in this study the OCT model should be

constrained to avoid these rapid switches. Whilst a few examples do test OCT results on

more realistic systems, this is far from the norm, and understanding how epidemiological

OCT results can be mapped to more realistic models, or even the real world, is a significant

gap in the literature.

Within plant epidemiology, the effect of space is highly important in both modelling

the spread of disease, and designing effective management strategies (Ostfeld et al., 2005;

Plantegenest et al., 2007). Some OCT studies have used simple metapopulation models

to capture some element of spatial dynamics. Ndeffo Mbah and Gilligan (2014) optimise

control on a one-dimensional lattice, showing that optimal control tracks the wavefront of a

spreading epidemic. An alternative approach to finding optimal spatial strategies is to use

partial differential equation (PDE) models, as used by Neilan and Lenhart (2011) for a model

of rabies in raccoons. Other studies resort to significantly simplified epidemiological models

and optimisations, for example Epanchin-Niell and Wilen (2012) use a nearest neighbour

spread model. The spread model is formulated as an inequality system, allowing the control

optimisation to be carried out using integer programming. Spatial control strategies can be

difficult to optimise, but use of simpler models could result in strategies that are not robust

when additional realism is included. Without explicit testing of the OCT strategies on a

realistic spatial model, how can a policy maker be sure the strategies are robust?

2.4 Optimisation methods

There are many numerical methods for solving the optimisation problem described in

Equations 2.3 (p. 28). These methods can be grouped into two main classes: indirect

and direct methods. Indirect methods find roots of the necessary condition given by the

Pontryagin maximum principle, i.e. state-control trajectories that satisfy the necessary

condition. Direct methods on the other hand, find a sequence of controls that minimise the

objective function without using the adjoint system (Betts, 2010). We will briefly describe

a formulation using each of these methods, but refer to Betts (2010) for a comprehensive

discussion of numerical methods for optimal control problems. Example 2 continues the

previous example, showing how the system can be optimised using the direct and indirect

methods.

2.4.1 Indirect formulation

Indirect methods construct the necessary conditions given by the Pontryagin maximum

principle for the system in question. This involves forming the Hamiltonian and the adjoint
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system. The necessary conditions are then used to find an expression for u∗(t) in terms of

the optimal state (x∗(t)) and the adjoint (λ(t)). This can be used to solve for x∗(t) and λ(t)

with the boundary conditions, finally allowing u∗(t) to be calculated. The process effectively

optimises the system, then discretises to solve for the optimal control.

More specifically, since the initial conditions for the state system, and the terminal

conditions for the adjoint system are known (Equations 2.3c and 2.6b, p. 28), then the

necessary conditions become a two point boundary problem. This state-adjoint system

will be solved when the control function is optimal (u∗(t)). The forward-backward sweep

method (FBSM) is a simple numerical algorithm for solving this formulation of the optimal

control problem (Lenhart and Workman, 2007). The method is described in Algorithm 1.

The FBSM is based in the necessary conditions for optimality. This means that the results

are closely connected to the underlying mathematics of the optimal control theory. This can

help to give more insight into the meaning of the resulting controls, since the underlying

dynamics that influence the control are analytically described. In some cases this may help

to make general statements about the nature of optimal control that could lead to a rule

of thumb. For example, Sethi and Staats (1978) showed that there can be at most a single

switch in the optimal strategy, a general statement that could not be found from numerical

solutions. There are however, a number of limitations to using the indirect formulation.

Firstly, this close connection to the optimality conditions means that significant work is

necessary to set up the optimisation problem. The Hamiltonian, adjoint dynamics, and

transversality conditions must all be derived. This can be mathematically challenging, and is

inherently inflexible since the equations must be derived for each new problem (Betts, 2010).

Further to this, there can be issues with the convergence of the FBSM. The convergence can

be highly sensitive to the initial guess for the optimal control, and the method may never

converge to a solution (Betts, 2010).

Algorithm 1: The forward-backward sweep method (FBSM) algorithm from Lenhart and Workman
(2007), for solving optimal control problems using the indirect formulation.

1. Make an initial estimate for the control function, u(t).

2. Using this control and the initial state condition x(0) = x0, solve the state system
forward in time.

3. Using the adjoint terminal condition (Equation 2.6b), and the values for control and
state, solve the adjoint system backwards in time.

4. Update the control u(t) using the new state and adjoint values, by maximising the
Hamiltonian.

5. Check for convergence. If the system has not converged to an optimal control, return
to step 2 using the updated control.
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2.4.2 Direct formulation

The direct formulation differs from the indirect in that it does not rely on the derivation

of the Hamiltonian or adjoint system. Direct formulation methods discretise the dynamic

system first, and then optimise the discretised variables, rather than optimising using the

optimality conditions. One method for solving a direct formulation problem is the direct

transcription process. This method discretises the state and control in time, and treats

the values of the state and control at these discrete times as optimisation variables in a

nonlinear programming (NLP) problem. Within the NLP problem, the state dynamics and

initial conditions are included as constraints on the NLP variables, and the optimisation is

carried out to maximise (or minimise) the objective value.

It may seem excessive to be directly optimising all the state variables, but because each

variable only directly influences variables that are close in time, the problem becomes large

but sparse. This sparsity can be exploited by numerical optimisation routines, and is often

simpler to solve than a small, dense problem in which the state is not discretised and

optimised (Betts, 2010). The state dynamics constraints are constructed as a discretisation

of the state ODE system, often using an implicit Runge-Kutta scheme. For example, following

the standard approach in Betts (2010), if the state-control system is discretised on M grid

points, the NLP variables are given by:

yT = (x1,u1, . . .xM ,uM ) . (2.12)

Using an Euler discretisation scheme, the state ODEs (ẋ = f(x,u, t)) can be approximated

by the following NLP constraints:

0 = xk+1 − xk − hkfk ≡ c(y) . (2.13)

The NLP variables y are then optimised subject to the constraints c(y) using an NLP solver.

The advantages of the direct over the indirect formulation are in its flexibility and

robustness. Since the Hamiltonian and adjoint are not required, and gradients can be

estimated using finite differences, the method can be used for any system without analytic

derivatives. Furthermore, there is extensive literature and software available for solving

large, sparse NLP problems. This means the optimisations can be fast, efficient and robust.

Whilst the method does still require an initial guess for both the control and the state

variables, the NLP problem has a much larger region of convergence than the root finding

in indirect methods (Betts, 2010). Note that neither the direct nor the indirect method

guarantee a globally optimal solution, and using different initial estimates of the optimal

control in the optimisation process can converge to different solutions. Different solutions

can be compared to find the optimal strategy.

2.4 Optimisation methods 35



Example 2: Applying the indirect and direct formulations to the simple SIR model.

In Example 1 we formulated the optimal control problem for roguing in a simple SIR

model. Here we will numerically solve this problem, using both indirect and direct

methods. First, as a reminder, the optimal control problem was given by:

min
µ(t)

J = I(T ) +
∫ T

0
cµ(t)I dt (2.14a)

subject to Ṡ = −βSI (2.14b)

İ = βSI − µ(t)I . (2.14c)

We use the initial conditions of S(0) = 99 and I(0) = 1, and the parameterisation

β =0.1 host−1 t−1, c = 1.2, and we set a maximum roguing rate µmax of 3 t−1.

Indirect method

First we solve the problem above using the FBSM described in Algorithm 1. In Example 1

we derived the adjoint system dynamics and terminal conditions, and the Hamiltonian.

The FBSM solves the state dynamics forward in time from the initial conditions, then

uses this state to solve the adjoint dynamics backwards in time from the terminal

conditions. The adjoint dynamics were given by:

λ̇S = λSβI − λIβI (2.15a)

λ̇I = −cµ(t) + λSβS − λI (βS − µ(t)) . (2.15b)

The state and adjoint values are then used to minimise the Hamiltonian from

Equation 2.9. Because the Hamiltonian is linear in the controls, it is minimised by the

following control:

µ(t) =

0 if λI < c

µmax if λI > c .

(2.16)

Note that if λI = c the the control is singular, and undefined by the equations we have

derived here. In some cases singular controls can be derived, but here this will not be

necessary. We use an initial estimate of the roguing strategy to start the iterative FBSM.

Here we use zero control at all times, i.e. µ(t) = 0. The results in Figure 2.1 show

the converged solution, finding that the optimal control is bang-bang and switching.

Control is maximal for approximately 90 % of the time. After this the benefits from

roguing infected hosts are outweighed by the costs of control, and no further roguing

is carried out.
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Figure 2.1: Solution to the optimal roguing problem using the FBSM approach. Control is
initiated at zero, and in 39 iterations converges to a switching, bang-bang control as
shown in (a). (b) and (c) show the state and adjoint systems corresponding to the
optimal control.

Direct method

Next we will show the solution to the same problem using the direct transcription

method. First the state system and control must be discretised. Discretising onto M + 1

grid points, we have the following variables to optimise:

yT = (S0, I0, µ0, . . . SM , IM , µM ) (2.17)

where:

Si = S(t = iT/M) ; Ii = I(t = iT/M) ; µi = µ(t = iT/M) ; (2.18)

i ∈ {0, . . . ,M} . (2.19)

The state dynamics are included as constraints to the minimisation. For simplicity

we here use an Euler integration step between grid points:

Sk+1 = Sk + T

M
(−βSkIk) (2.20a)

Ik+1 = Ik + T

M
(βSkIk − µkIk) . (2.20b)

These equality constraints, as well as the initial conditions, are included in the minimi-

sation of the objective, which is also discretised:

J = IM +
M−1∑
j=0

cµjIj
T

M
. (2.21)
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The Python minimize function from the SciPy library (Jones et al., 2001–) is used

to perform the optimisation, and the results are shown in Figure 2.2. Both methods

converge to the same optimal solution, but there are numerical inaccuracies in the

direct method because of the simple discretisation scheme chosen here.
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Figure 2.2: Solution to the optimal roguing problem using the direct transcription approach.
Dashed lines show the indirect solution found previously. Numerical inaccuracies
in the Euler approximation used lead to small differences between the methods,
but both approaches converge on the same solution. The direct method loses some
accuracy, but does not require computation of the adjoint system or the Hamiltonian.

The numerical inaccuracies are due to the simple Euler discretisation, here used for

illustration. In later chapters we use more accurate integration schemes, and as we will

show in the next chapter, these significantly reduce the numerical differences between

the methods. Also note that this scenario is meant purely to illustrate the methods;

control starts unrealistically fast at t = 0 with a short time horizon that may not be

useful for a real epidemic. In practice, the objective would also take into account the

number of removed individuals. Due to the switching function for the optimal control

(Equation 2.16), the optimal strategy will be bang-bang. However, switches may not be

seen when using different timescales for control.
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2.5 Conclusions

In conclusion, OCT has allowed epidemiology to optimise control strategies whilst taking

economic factors into account. Strategies often involve bang-bang solutions, where control

is either maximal or minimal, leading to policies with precise switching times when priorities

change. For finding these optimal strategies, there are two distinct classes of numerical

method: the indirect method that is more closely connected to the underlying mathematics

but that requires more analysis, and the direct method that is more flexible and robust but

provides less insight.
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3A simple case: protecting a high
value region

3.1 Introduction

Whilst established diseases can be difficult or impossible to eradicate (e.g. Gottwald and

Irey, 2007), local control to protect high value resources can still be effective (e.g. Hansen

et al., 2019). The sudden oak death (SOD) epidemic in California cannot be controlled at

the landscape scale (Cunniffe et al., 2016), but there are still highly valuable local resources

that could be protected from the disease. This includes commercially valuable timber stocks

and areas important ecologically or for tourism, such as national parks. Optimally allocating

limited control resources could significantly improve protection of valuable regions, and

we seek here to answer how to characterise these optimal strategies. In this chapter we

will investigate how the optimal control methods introduced in the previous chapter can be

applied to a relatively simple metapopulation model of disease invasion into a high value

region. We will use the direct and indirect optimisation methods described in the previous

chapter to find time-dependent roguing strategies that best protect the high value region.

In this chapter we use OCT to find an optimal time varying allocation of limited control

resources, balancing control in a buffer region and a high value region. We will show how

these controls can be optimally deployed to minimise disease in the high value region. We

show that two main strategies arise: one prioritising control in the high value region, and

the other switching prioritisations during the course of the epidemic. The sensitivity of the

control strategy to the model parameterisation is tested, and we show that OCT results do

not always remain effective when parameters are not known accurately. We use the optimal

strategies to compare the direct and indirect numerical optimisation approaches, finding

that the direct method is more robust and reliable.

3.2 Methods

In this section we will develop a relatively simple deterministic model that captures

the dynamics of a pathogen threatening to invade a high value region. The model will

incorporate control through removal of infected hosts, and we will set up an optimal control

problem to determine where limited resources should be allocated to this control over time.
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The optimisation problem will be solved using both the direct and indirect formulations

described in the previous chapter.

3.2.1 Invasion model

The model abstracts the situation of an invading pathogen by splitting the host landscape

into three regions: a generally infested area where the disease is well established, a buffer

region in which the disease has not yet established, and a high value region that is to be

protected. To reduce the number of state variables and parameters the infested region

is modelled as a source of external inoculum, generating a constant force of infection on

the buffer region. The buffer and high value regions are modelled as well-mixed patches,

meaning the only spatial component is the between-patch coupling. An SIR model, in which

hosts can be susceptible to the disease (S), infected by the disease and infectious (I), or

removed by the disease or control (R), is used for the epidemic dynamics (Keeling and

Rohani, 2008). As the model is based on SOD dynamics, removal represents both death

caused by the pathogen, and roguing as part of the disease management. This roguing is the

control method that will be optimised. Note that we do not model any spread caused by

the implementation of roguing, for example through use of infected tools or movement of

infected material. A schematic of the model is shown in Figure 3.1.

Each patch has a fixed population size (NB and NV for the buffer and high value regions

respectively including susceptible, infected and removed hosts) that is constant over time:

NB = SB(t) + IB(t) +RB(t) (3.1a)

NV = SV (t) + IV (t) +RV (t) (3.1b)

where the subscripts B and V refer to the buffer and high value patches respectively. The

two patches are linked by a coupling constant ε. The within-patch transmission rate is given

by β, leading to the following system of ODEs:

ṠB = −FSB − βIBSB − εβIV SB (3.2a)

İB = FSB + βIBSB + εβIV SB − µIB − fB(t)ηIB (3.2b)

ṠV = −βIV SV − εβIBSV (3.2c)

İV = βIV SV + εβIBSV − µIV − fV (t)ηIV (3.2d)

The external force of infection from the infested region is given by F . The infectious period

of the disease in the absence of control is given by 1/µ, and hosts are removed by roguing at

a rate η. The time dependent control inputs fB(t) and fV (t) are the proportion of infected

hosts that are being controlled at that time in the buffer and high value regions respectively.
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Figure 3.1: Schematic of the invasion model used in this chapter. (a) shows the spatial structure. A
generally infested area (GIA) provides a source of inoculum, generating a constant force
of infection on an uninvaded buffer region (B). The infection can then in turn invade the
high value region (V). The goal of control is to protect this high value region. Within
each region the epidemic follows SIR dynamics as shown in (b), where hosts move from
susceptible to infected and are removed by the disease or through control. The dashed
line indicates that the number of infected hosts influences the infection rate.

Throughout, we scale time by the infectious period such that the disease induced removal

rate µ is equal to one. The meanings and default values of all parameters and variables are

given in Table 3.1.

3.2.2 Optimal control problem

The objective of control in this system is to protect the high value region from infection.

Optimisation of the roguing strategy should minimise the impact of the pathogen in the high

value region. We choose an objective of minimising the number of infected and removed

hosts at the terminal time T . The population size is constant in each region, so this is

equivalent to maximising the number of healthy and susceptible hosts that are retained in

the high value region. We impose a restriction on the number of hosts that can be rogued

per unit time to capture the economic and logistical limitations of disease management. The

maximum expenditure rate, or number of hosts that can be rogued at any time across both

patches, is given by M . This gives the following optimal control problem:

min
fi(t)

J = NV − SV (T ) i = B, V (3.3a)

subject to fB(t)IB(t) + fV (t)IV (t) ≤M ∀t (3.3b)

0 ≤ fi(t) ≤ 1 i = B, V (3.3c)

where the state dynamics are given by Equations 3.2.
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Table 3.1: Table of parameter and variable meanings and default values. Ranges are given where
appropriate. The parameters were chosen to cover a range of epidemic sizes, with the
default parameters giving a reasonably large epidemic under control as shown in Figure 3.2
on p. 48.

Symbol Meaning Default value [value range]

β Infection rate [0.001–0.004] host−1 t−1

F External force of infection 0.0 t−1 [0.0–0.01] t−1

ε Coupling between regions 0.3

µ Pathogen-induced death rate 1.0 t−1

η Roguing rate 0.2 t−1 [0.01–3] t−1

NB Number of hosts in the buffer region 500

NV Number of hosts in the high value region 100

SB Number of susceptible hosts in the buffer region [0, NB ]

SV Number of susceptible hosts in the high value region [0, NV ]

IB Number of infected hosts in the buffer region [0, NB ]

IV Number of infected hosts in the high value region [0, NV ]

fB(t) Proportion of infected hosts in buffer region rogued at
time t

[0, 1]

fV (t) Proportion of infected hosts in high value region rogued
at time t

[0, 1]

M Maximum expenditure rate 10 hosts [10−5–50] hosts

J Objective function Equation 3.3a

In the absence of the budget constraint it might be expected that control would be

maximal at all times, treating all infected hosts in both regions throughout the epidemic. We

verified that this is indeed the case for the default parameters. We might therefore expect

that, with the constraint, the optimal strategy would prioritise control in the more important

region—the high value region—and allocate any remaining resources to the buffer region.

We will test this hypothesis using the OCT framework introduced in the previous chapter, and

use this simple system to compare the direct and indirect OCT frameworks. The following

sections formulate the two versions of the optimal control problem.
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3.2.3 Indirect formulation

In the indirect formulation, the Pontryagin maximum principle is used to set up an adjoint

system and a Hamiltonian that is minimised along the optimal control path. The adjoint

system (λ) dynamics and Hamiltonian H are defined by the following equations:

λ̇ = −∂H
∂x (3.4a)

H = λ · ẋ (3.4b)

where x is the state system, defined for this system in Equations 3.2. The terminal conditions

of the adjoint system are defined from the payoff function Ψ(T ):

λ(T ) = ∂Ψ(T )
∂x . (3.5)

For this system the payoff function is equal to the objective function J , and so all adjoints

terminate at zero, apart from λSV
which has a final value of −1. This completes the two

point boundary value problem, with the state fixed at the initial time, and the adjoint fixed

at the final time, allowing us to use the FBSM algorithm introduced in the previous chapter

(Algorithm 1, p. 34). As explained before, this solves the state equations forward in time,

then the adjoint equations backwards in time, before updating the control function by

minimising the Hamiltonian pointwise. This is repeated until the control converges.

Defining the state and adjoint as follows:

x =
(
SB IB SV IV

)T
(3.6a)

λ =
(
λSB

λIB
λSV

λIV

)T
(3.6b)

the Hamiltonian is then given by:

H = (λIB
− λSB

) (F + βIB + βεIV )SB − λIB
IB (µ+ fBη)

+ (λIV
− λSV

) (βIV + βεIB)SV − λIV
IV (µ+ fV η)

(3.7a)

= g(x,λ)− λIB
ηIBfB − λIV

ηIV fV , (3.7b)

where:

g(x,λ) = (λIB
− λSB

) (F + βIB + βεIV )SB − λIB
IBµ

+ (λIV
− λSV

) (βIV + βεIB)SV − λIV
IV µ .

(3.7c)

The function g(x,λ) is therefore independent of the control, showing that the Hamil-

tonian is linear in each control function. In the control update step the control inputs are

chosen so as to minimise the Hamiltonian at each time. Since the Hamiltonian is linear in

the control this leads to bang-bang control, where control is either maximal or minimal. To
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take into account the budget constraint, the Hamiltonian is minimised by solving a linear

programming problem at each time point subject to the constraint. This specifies the new

control at each time point which is then used in the next iteration of the FBSM algorithm.

The adjoint dynamics are derived from this Hamiltonian using Equation 3.4a. These are

found to be:

λ̇SB
= (λSB

− λIB
) (F + βIB + βεIV ) (3.8a)

λ̇IB
= (λSB

− λIB
)βSB + (λSV

− λIV
)βεSV + λIB

(µ+ fBη) (3.8b)

λ̇SV
= (λSV

− λIV
) (βIV + βεIB) (3.8c)

λ̇IV
= (λSV

− λIV
)βSV + (λSB

− λIB
)βεSB + λIV

(µ+ fV η) . (3.8d)

This completes the necessary equations for using the FBSM algorithm.

Mixed constraint

In the above analysis the budget constraint was only used when minimising the Hamilto-

nian; we did not consider the constraint when constructing the adjoint equations. Mixed

state/control constraints such as this can be difficult to handle in optimal control problems

(Hartl et al., 1995). To verify that not including the constraint is valid, we here show that by

introducing a penalty function for exceeding the maximum budget, the constrained problem

reduces to the form given above, provided that the Hamiltonian minimisation is subject to

the constraint. The approach taken here is similar to one used by Sage (1968, Chapter 4).

The budget constraint is given by h:

h(x, f , t) = fBIB + fV IV −M ≤ 0 . (3.9)

Let us define a new state variable y with the following dynamics:

ẏ = h2θ(h) (3.10a)

y(0) = 0 (3.10b)

where θ(·) is the Heaviside step function (with θ = 1 for h ≥ 0). This term is zero when the

constraint is adhered to, and is positive when there is constraint violation. We then add to

the objective function a penalty term based on this state variable:

J = (NV (T )− SV (T )) + 1
2Cy(T )2 (3.11)
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where C is a positive constant. The minimal value of the second term is zero, corresponding

to no constraint violation. Defining a new adjoint variable λy for y, the Hamiltonian is now

given by:

H = g(x,λ)− λIB
ηIBfB − λIV

ηIV fV + λyh
2θ(h) . (3.12)

The adjoints for the susceptible classes are unchanged, but the infected class adjoints are

affected. These, and the dynamics of λy are now given by:

λ̇y = 0 (3.13a)

˙λIB
= (λSB

− λIB
)βSB + (λSV

− λIV
)βεSV + λIB

(µ+ fBη)− 2λyhθ(h)fB (3.13b)

λ̇IV
= (λSV

− λIV
)βSV + (λSB

− λIB
)βεSB + λIV

(µ+ fV η)− 2λyhθ(h)fV . (3.13c)

Whilst this system could be solved without imposing the constraint when minimising the

Hamiltonian, all the magenta terms in the above equations are zero when the chosen

controls adhere to the budget constraint. This means that when imposing this constraint

on Hamiltonian minimisation, the adjoint equations previously used are correct without

considering the constraint. The simpler solution is therefore used to find the optimal control

satisfying the constraint.

3.2.4 Direct formulation

The setup for the direct formulation is considerably simpler than for the indirect case,

since no derivation of the Hamiltonian or adjoint system is required. The handling of

constraints is also much simpler. We use the BOCOP package (v.2.0.5) to generate and solve

the NLP problem (Team Commands, Inria Saclay, 2017). The state dynamics (Equations 3.2)

are coded in C++, and the package discretises the system using a fourth order Runge-Kutta

method (direct transcription approach, as described in the previous chapter). The NLP

problem is solved using the software Ipopt (Wächter and Biegler, 2006), which implements

an interior point optimisation method.

3.3 Results

3.3.1 Optimal strategies

For most parameter sets, the optimal strategy found using either the direct or indirect

approach prioritises control in the high value region (Figure 3.2). The maximum control

is allocated to the high value region, up to the maximum expenditure rate M , and any

remaining resources are allocated to the buffer region. For some parameter sets however,

the optimal strategy is a switching strategy (Figure 3.3). Early in the epidemic it is optimal

to prioritise the buffer region, but it becomes optimal to switch back to prioritising the
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Figure 3.2: The general strategy that is found in the majority of cases prioritises control in the high
value region. Here the default parameters are used, with 5 hosts initially infected in the
buffer region and an infection rate of 0.005 host−1 t−1. (a) shows the proportion of hosts
being treated in each region over time, with the number of hosts being treated shown in
(b). The strategy allocates as many resources as possible to the high value region, before
spending the remainder in the buffer region. After around 3 time units the number of
infected hosts in the high value region exceeds the maximum expenditure M , and not all
can be treated. (c) shows the disease progress curve and (d) the proportion removed for
each region.
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Figure 3.3: An alternative switching strategy is found for some parameters. The default parameters
are used here with 5 hosts initially infected in the buffer region, an infection rate of
0.0028 host−1 t−1, and a maximum expenditure rate of 5 hosts. (a) and (b) show the
proportion and number treated over time in each region. For approximately the first 6
units of time, the buffer region is prioritised, before switching to prioritising the high value
region. The disease progress curves and proportion removed are shown in (c) and (d).
(e) shows the force of infection in the high value region from inside and outside the same
region under the optimal control strategy. The switch time is not simply when the force of
infection from within becomes greater than that from outside the high value region.

48 Chapter 3 A simple case: protecting a high value region



high value region later. This strategy is a bang-bang control since the maximum budget is

allocated to the buffer region, before switching to the maximum budget being allocated to

the value region. However, the control expenditure and proportion of hosts treated vary

smoothly to maximise this budget. For the ranges of parameters we considered here, we do

not see strategies where priorities switch multiple times when budgets are limiting.

A naive expectation might be that the strategy switch is caused by the region generating

the larger force of infection on the high value region, i.e. the region dominating the infectious

pressure is prioritised for control. However, the driver for switching priorities is not simply

the force of infection on the high value region. As shown in Figure 3.3(d), the force of

infection from within the high value region can be smaller than that from the buffer region

at all times, but a switch is still optimal. The switching strategy is found for intermediate

values of the infection rate (Figure 3.4). Low values of the infection rate are easy to manage,

and so can be controlled simply by treating in the high value region. High infection rates give

epidemics that spread rapidly, and so the more important value region must be prioritised to

keep the epidemic under control there. At intermediate levels though, the disease spreads

slowly enough to allow reduction of infectious pressure by treating in the buffer region, but

quickly enough that this reduction of pressure from the buffer is necessary.

3.3.2 Formulation comparison

The switch time, if there is one, can easily be extracted from an optimised solution, and

so can be used to compare the direct and indirect approaches. Figure 3.4(a) shows that in

general the two methods agree, but for some parameters the indirect FBSM does not find an

optimal switching strategy where the direct method does. As shown in Figure 3.4(b), the

direct method is more accurate as the switching strategy is optimal. Because of the difficulties

with convergence using the indirect approach, the FBSM can in practice converge on

suboptimal solutions more frequently than the direct method. Note here that the differences

in epidemic cost are small for this simple system, but do show numerical differences in the

control strategies between the methods. In reality here the additional costs associated with

strategy switching would likely outweigh the benefits in epidemic cost.

Other convergence issues are also seen with the FBSM, causing significantly slower

convergence than using the direct method. For example, the optimisation underlying the

strategy in Figure 3.2 takes 11.7 s using the direct approach, whereas for the same time

resolution the indirect approach takes 98 s. Both measurements were made using a 4.0 GHz

Intel Core i7-4790K with 32 GB of RAM. In many cases the FBSM also fails to converge to a

solution.
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Figure 3.4: Using the optimal switch time to compare the direct and indirect approaches. The default
parameters are used with 5 hosts initially infected in the buffer region. (a) shows the
switch time found by the direct (BOCOP) and indirect (FBSM) methods. Switching
strategies are found at intermediate infection rates. The values of R0 in the value region
corresponding to the values of β are also shown. Whilst R0 is here always below 1,
transmission will be increased because of spread in the buffer region. In most cases
the switch times found using the two methods agree, although in some cases the direct
method finds an optimal switch where the indirect method does not. (b) shows a scan
over the switch time for one of these cases. The optimal switch time is at 6.0 time units,
with an associated epidemic cost of 23.20. For this value of β, the FBSM does not find a
switch whereas BOCOP identifies the correct switch time of 6.0 units.

3.3.3 Parameter sensitivity

In this section we test the sensitivity of the switching strategies to parameterisation of

the model. The effects of the maximum expenditure rate M and the control rate η are

shown in Figure 3.5. In these cases, as control becomes more effective either through an

increased budget or faster treatment, the intermediate range over which a switching strategy

is optimal shifts to higher values of the infection rate. The control is more effective and

so the epidemic is easier to control, shifting the switching strategies to faster spreading

epidemics with higher infection rates.

Figure 3.6 shows the response of the switch time from the direct optimisation to the

infection rate, the number of infected hosts initially in the buffer region, and the external

force of infection. At low levels of initial infection and external force of infection, the

switch strategy is optimal at intermediate infection rates, as found previously. As the rate of

invasion in the buffer is increased, through more initial infection or a higher external force

of infection, the range of infection rates over which a switching strategy is optimal decreases.

For high rates of invasion in the buffer region a switching strategy is not optimal because

50 Chapter 3 A simple case: protecting a high value region



the disease spreads faster in the buffer, and so control is less effective there than in the high

value region. Note that for some values of the external force of infection, optimal strategies

with additional switches are found.
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Figure 3.5: Effect of the control budget and control rate on the optimal switch time, using default
parameters and one initially infected host in the buffer region. (a) and (b) show the effect
of infection rate combined with the maximum budget and removal rate respectively. As
control becomes more effective the range of infection rates over which a switch is optimal
is shifted to higher values. The shape in (a) is caused by a change in regime between
parameters where maximum control is possible and where the maximum expenditure rate
is limiting.
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Figure 3.6: Sensitivity of the optimal strategy to the rate of infection spread, using the direct method
and default parameters. (a) shows the switch time as a function of the infection rate
and the initial number of infected hosts in the buffer region. (b) shows the effect of the
infection rate and the external force of infection on the buffer region, with a single initially
infected host in the buffer region. The grey region shows cases where multiple switches
are identified. For both (a) and (b), as the epidemic invades faster in the buffer region
(moving up the y axes) the switching strategy becomes less beneficial. The shape of the
response is affected by where the maximum expenditure rate becomes limiting, with the
budget becoming more limiting towards the upper right corners. A diagonal line separates
regimes where maximum control is possible from cases where the maximum expenditure
rate is limiting. Cases A, B and C are highlighted in (b), and control expenditure and
disease progress curves are shown for each of these in (c), (d) and (e). Case A finds a
switch but as the budget is not limiting, it has no effect. In case B the budget is limiting so
the single switch at approximately t = 8 has an effect. In case C there is an additional
switch early in the epidemic, but since the budget is not limiting at that point it has no
effect. Only the switch from buffer to value prioritisation at around t = 5 has an effect.
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3.3.4 Testing robustness

Finally, we test how these optimal strategies perform when the underlying model is not

known accurately. We introduce a systematic error into the infection rate of the model used

to optimise the control strategy. The resulting optimal control specifies an expenditure over

time (fi(t)Ii(t) for each region) which is applied to a model with the correct infection rate.

The results are shown in Figure 3.7. Larger errors in the infection rate lead to worse control

of the epidemic. For large underestimates of the infection rate, the optimised control is

worse than simply allocating the full budget to the high value region, with no treatment in

the buffer region. The optimised control strategies lead to wasted resources that could be

better allocated to the other region (Figure 3.7(c)).
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Figure 3.7: Effect of incorrect parameterisation on the optimal control performance. Control is
optimised using an incorrect infection rate, and the budget allocations applied to the
correct model. The baseline parameters use the default values, with an infection rate of
0.0028 host−1 t−1 and a maximum expenditure rate of 5 hosts, the same values as used
for the switching strategy in Figure 3.3. (a) shows the epidemic cost as the percentage
error in the infection rate is varied. Larger errors lead to worse performance, and can
be worse than the simple strategy of full allocation to the high value region (shown in
(b)). (c) shows the wasted control resources using an infection rate overestimated by
20 %. Here too much control is allocated to the high value region that cannot be spent,
and so is wasted. Similarly, not enough resources are allocated when the infection rate is
underestimated, also leading to wasted control resources.
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3.4 Discussion

In this chapter we have shown how OCT can be used to find time-dependent control

strategies. We have shown how OCT identifies less intuitive strategies, for example the

switching strategy here. For the simple model considered here these optimal strategies could

have been identified by an exhaustive scan over switch times, but for more complex models

with more complex switching strategies this will not generally be true. Whilst the setting in

this chapter was highly simplified, we can already see some of the potential limitations of

these more complex strategies for practical use. Although not included in our analysis, there

are additional costs associated with changing policy during an epidemic, i.e. switching region

priorities in this chapter, and these costs must be balanced with the benefit to epidemic

control. These costs could be included in the OCT objective function, for example by adding

a term penalising rapidly changing controls.

We showed how the optimal control strategy changed as various model parameters

were adjusted, in particular investigating the sensitivity of the control switching time to the

infection rate, control efficacy (through the maximum budget and removal rate parameters),

and the rate of invasion in the buffer region (through the initial level of infection and the

external force of infection). This showed how more effective control results in switching

strategies being optimal for faster spreading epidemics, and if the epidemic spreads too

quickly in the buffer then all resources must be focussed on the value region. We did not

test how the connectivity between the two regions (ε) impacts the control but the results

are likely to follow the same pattern. With increased connectivity the disease will spread

faster into the value region, and so resources should switch to prioritising the value region

faster. With decreased connectivity control can focus for longer on reducing inoculum from

the buffer region. Similar to the dependence on infection rate, there is likely to be an

intermediate range of connectivity values where switching strategies are optimal.

We have also shown how incorrect parameterisation can lead to less effective disease

management, and in such cases it may even be better to use the simplest possible strategy

rather than use OCT at all. Consideration of these uncertainties when determining the

optimal strategy is important (Epanchin-Niell and Hastings, 2010). A study by Carrasco et al.

(2009) showed that when controlling invasive species, the optimal strategy when parameters

are known precisely is not always optimal when parameter uncertainty is introduced. In

these cases it is important to find a robust strategy that can handle any uncertainty present.

The strategies we have identified are similar to those found in other plant disease studies,

despite our unusual objective of protecting a single region. For example, Ndeffo Mbah and

Gilligan (2011) found that disease management across sub-populations is most efficient when

a switching strategy is employed, first allocating resources to the more infected group and
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later switching to treat the less infected group. A similar strategy is found by Ndeffo Mbah

and Gilligan (2010b) for management of sudden oak death. Similar switching strategies

have also been found more broadly for: management of invasive species (Carrasco et al.,

2009), distribution of prophylactic vaccines in a spatially structured population (Keeling

and Shattock, 2012), and switching between immunisation and palliative care during an

epidemic when resources are limited (Klepac et al., 2012).

The type of control strategy identified here, a bang-bang switching control, can be

sensitive to precise knowledge about the optimal switch time. Forster and Gilligan (2007)

showed that when applying control optimised using a mean-field model of an epidemic to

a spatially-explicit model, errors in the switch time can lead to performance that is worse

than a simple constant strategy. Similarly, we showed here that incorrect parameterisation

can lead to ineffective disease management. The accuracy of the underlying model used for

optimisation is limiting the practical applicability of the resulting strategies.

In this chapter we also compared the direct and indirect formulations for solving the

optimal control problem. We found that the direct method in some cases finds superior

switching strategies, and is also more robust and reliable than the indirect method. This

means that the direct method is more likely to converge, whereas convergence using the

indirect approach can be highly sensitive to parameters. The direct method is also simpler to

implement, particularly when considering constraints that mix state and control variables.

Other studies have also found that the direct method is more robust and reliable (Betts,

2010), but results from the indirect method can be more accurate when they do converge

(Rao, 2009). In this chapter the accuracy of the direct and indirect approaches has been

comparable when both methods converge, but if additional accuracy is required the results

from the direct method could be used to initialise an indirect method (Von Stryk and Bulirsch,

1992). The purpose of this thesis is to find robust and practical management strategies, and

so the direct approach is most appropriate. Overall, we will therefore use the direct method

going forward in this thesis.

3.5 Conclusions

We have shown that switching strategies can be important when considering manage-

ment strategies to protect a specific high value region. Direct approaches to numerically

optimising the strategy perform better than indirect approaches, giving faster and more

reliable convergence and more accurate results. However, the optimal strategies do not

always perform well when there is inaccuracy in the parameters underlying the model. New

frameworks are needed to make use of the OCT results when accounting for uncertainties

and complexities in the real world.
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4Applying optimal control theory to
complex models

4.1 Introduction

In the previous chapters we have introduced OCT and shown how it can be used to find

the best disease management strategies to protect a high value region. However, because of

the mathematical complexity of finding these optimal strategies, major simplifications to

the system as modelled are required to allow progress to be made using OCT. There is no

standard for putting the results from these mathematically motivated simplifications into

practice, nor for assessing the impact of the model simplifications on predictive accuracy. As

a result, it is often unclear how these strategies would perform if adopted by policy makers.

In this chapter we will investigate frameworks for translating OCT results into practical and

realistic management policies1.

Robust policy decisions clearly require accurate predictions of future disease dynamics.

Increasingly, complex simulation models incorporating detailed representations of disease

transmission processes are used to assess the potential impact of a given intervention strategy

(Lofgren et al., 2014). To ensure accurate epidemic predictions, simulation models designed

to aid decision making must often capture highly complex dynamics (Savary and Willocquet,

2014). As we discussed in Chapter 1, this often makes optimisation of control strategies

infeasible—particularly when control measures can vary over time, in space or according

to disease risk—because of Bellman’s ‘curse of dimensionality’ (Bellman, 1957). For most

simulation models the only viable option is then to evaluate a small subset of ‘user-defined’

plausible strategies that remain fixed during the epidemic, potentially scanning over a single

parameter such as a culling radius. We refer to this approach as ‘strategy testing’. Using this

approach makes it difficult to have high confidence in the best-performing strategy, since

with no framework for choosing it, the set of strategies under test is very unlikely to span

the entire space of control options. This makes it unlikely that the true optimum will be

found.

1This chapter is based on work published in Bussell et al. (2019). All code is available at https://github.com/
ehbussell/Bussell2018Model
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Simulation models accurately capture the dynamics of the real system but are often

impossible to optimise. In this chapter we ask whether and how the optimisation capabilities

of OCT might be combined with the accurate predictions made by simulation models, to

give improved management strategies. What framework should be applied to make practical

use of OCT? This chapter will set the foundations for the methodology to be applied to

real-world systems in the following chapters. In Section 4.2 we describe two methods from

control systems engineering for applying OCT results to simulation models: open-loop and

model predictive control. A network epidemic model is described in Section 4.3 which

allows us to showcase these frameworks, and we illustrate the potential benefit of using

OCT alongside simulation models in Section 4.4. We seek to answer how, under current

computational constraints, results from OCT can be applied whilst maintaining the realism

required for practical application.

4.2 Frameworks for practical optimal control

In Chapter 2 we reviewed the history and use of OCT in epidemiology, but OCT has been

applied widely beyond this, particularly in engineering and economics (Bertsekas, 2001).

In mathematical biology, OCT has been used to optimise control of vector-borne diseases

(Blayneh et al., 2009) and sudden oak death (Ndeffo Mbah and Gilligan, 2010a) for example,

and more recently to control complex, agent-based models (ABMs; An et al., 2017), a type

of model that simulates the individual behaviour of autonomous agents. An et al. (2017)

suggest the use of a model that approximates the dynamics of the ABM, designed to be

simple enough to allow mathematical analysis of the optimal control. A suitable approximate

model is chosen and fitted either to real data, or to synthetic data from the ABM. The OCT

results from the approximating model are then mapped onto the ABM to be tested in a

process referred to as ‘lifting’. This process of applying OCT to an approximate model and

lifting the results to a complex ABM could also apply to the optimisation of detailed epidemic

simulation models. The topic of this chapter is essentially to test the performance of this

process. We now describe two possible frameworks from control systems engineering based

on this control lifting approach.

4.2.1 Open-loop control

The first method is the simplest application of control lifting, and the framework implicitly

suggested by An et al. (2017). Control is optimised on the approximate model once using

the initial conditions of the simulation model. The resulting optimal control strategy is lifted

to the simulator and applied for the full simulation run time (Figure 4.1). Other potential

control strategies can be assessed against the OCT strategy by applying all strategies to the

simulation model, possibly repeatedly to account for stochasticity in the simulation model.
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Figure 4.1: Open-loop and model predictive control (MPC) frameworks. In (a) the model hierarchy
is shown, with optimised controls from the approximate model directly lifted to the
simulation model. The real system is in green, the models and fitting processes are in
blue, and the control framework is in orange. Without the orange dashed feedback loop,
this is open-loop control. MPC resets the state of the approximate model at regular update
times, before re-optimising and lifting controls to the simulation model until the next
update time. (b) shows how this works for open-loop control. The simulation model and
approximate model match at the initial time, and control is based on the predicted spread.
The predicted spread deviates from the simulation over time. In MPC, as shown in (c), at
regular update times the approximate model is reset to match the simulation, ensuring
the deviation remains small.

The optimisation gives a single, time dependent strategy for all simulation realisations, and

so does not incorporate any feedback. It is therefore referred to as ‘open-loop’ control, as

it is fully specified by the simulation initial conditions and the trajectory predicted by the

approximate model. Use in epidemiology is uncommon, although Clarke et al. (2013) use

OCT in an approximate model to find optimal levels of Chlamydia screening and contact

tracing which are then mapped onto a network simulation.

4.2.2 Model predictive control

Open-loop control requires the approximate model to remain accurate over the timescale

of the entire epidemic. However, for tractability the approximate model must necessarily

omit many heterogeneities present in the simulation model, such as spatial effects and risk

structure. When strategies resulting from OCT are then applied to the simulation model

or to the real system, the disease progress curve is likely to deviate systematically from

the trajectory predicted by the approximate model. Model predictive control (MPC) is an
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optimisation technique incorporating system feedback that can take such systematic errors

in the approximate model into account (Camacho and Bordons, 1995; Lee, 2011).

With MPC, both the approximate and simulation models are run concurrently. Optimal

strategies are still lifted from the approximate model to the simulation, but at regular update

times the values of the state variables in the approximate model are reset to match those

in the simulation. The control is then re-optimised using the new initial conditions in the

approximate model, and the new control strategy is applied to the simulation until the

next update time. Running the approximate and simulation models concurrently, with

multiple time-limited optimisations per realisation, ensures that the approximate model and

control strategy closely match each individual simulation realisation (Figure 4.1(c)). These

multiple optimisations are computationally costly but remain tractable, unlike performing

optimisation on the full simulation model.

MPC has had some use within the epidemiological literature, the majority being for

control of drug applications for single individuals rather than control of epidemics at the

population level. Examples include finding management strategies for HIV that are robust

to measurement noise and modelling errors (Zurakowski and Teel, 2006; David et al.,

2011), and control of insulin delivery in patients with diabetes (Hovorka et al., 2004).

These studies highlight the benefits of MPC for robust control, i.e. control that remains

effective despite system perturbations. However, only one study concentrates on epidemic

management (Sélley et al., 2015). In that study, Sélley et al. develop a pairwise ODE model

as an approximation of an epidemic on a network. Time-dependent control is optimised on

this model, and applied using an MPC framework. Crucially though, the control is applied

to the approximate model rather than to an individual-based network simulation. This

means the practical results of the strategy are not tested. In the bioinvasion literature, Simas

et al. (2019) apply MPC to the control of invasive golden mussels in rivers in Brazil. The

underlying model used by Simas et al. (2019) is a fitted polynomial that tracks the numbers

of 10 species of fish, and the effect of controlling the golden mussel on the fish population.

Again, the control is not applied to a more complex model to test how the strategy would

perform in practice.

4.3 Controlling an epidemic spreading on a network

As an illustrative example which demonstrates open-loop and MPC for epidemic manage-

ment, we use a stochastic SIR network model including host demography and risk structure,

and vaccination as a control method (Figure 4.2). The model is deliberately kept simple

to show how the underpinning idea is broadly applicable across plant, animal and human

diseases. Whilst the model and its parameters are arbitrary and do not represent a specific
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Figure 4.2: (a) The network used for the simulation model, including region labels. The epidemic
is seeded in the red node in region A, and can spread between connected nodes (grey
lines). (b) Diagram of host states and transitions. For transition rates see Table 4.1 on
p. 64. Hosts are classed as susceptible (S), infected (I), vaccinated (V ), or removed (R).

disease, we use it to represent a scenario in which a simulation model has already been

fitted to a real disease system; the network model is therefore used here as a proxy for a

potentially very detailed simulation model. The model itself includes features abstracted

from metapopulation or network epidemic models as routinely used for plant, animal and

human diseases (e.g. Rowthorn et al., 2009; Keeling et al., 2001; Keeling and Gilligan, 2000;

Margosian et al., 2009; Bansal et al., 2007).

Both the open-loop and MPC frameworks require an approximate model with which

optimisation using OCT is possible. The size of the system has a significant impact on the

tractability of solving the optimal control problem, but complex dynamics can also make

finding numerical solutions difficult and there is no clear way to know a priori whether a

solution will be possible. In this chapter we will use two different levels of approximation to

assess how this approximate model should be chosen. The resulting strategies using both

open-loop and MPC will also be compared with a strategy testing approach as a baseline, in

which a limited number of plausible interventions that do not vary during the epidemic are

tested on the simulation model.
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4.3.1 Simulation model

In the simulation model, infection spreads stochastically across a network of nodes.

Nodes are positioned randomly in three separate regions, with 20 nodes in regions A and

C, and 15 nodes in region B (Figure 4.2(a)). The nodes are positioned such that no two

nodes are closer than a predetermined threshold, here 0.2 spatial units. This threshold

avoids very high connectivity between any pair of nodes. The connectivity between nodes

within a region is calculated using an exponential kernel with a scale parameter α of 0.2

units (σij = e−dij/α) where dij is the distance between nodes i and j. Between regions,

three connections are made between pairs of nodes in regions A and B, and B and C, with

a coupling value of 0.1β for each. This is approximately equal to the average coupling

between pairs of nodes within either of the two larger regions, A and C. There are no direct

connections between regions A and C. Note that this network is arbitrary, and is used simply

as an illustrative scenario.

Each node initially contains a total of 30 hosts, stratified into high and low risk groups

with different infection rates. High risk hosts are both more susceptible to the disease, as

well as more infectious once infected. On average 10% of hosts within each node start in

the high risk group. To give heterogeneity across the network the exact number of high risk

hosts for each node is chosen using a binomial trial. Each individual host can be in one of

three active states: susceptible (S), infected (I) or vaccinated (V ), or removed (R) by the

disease (Figure 4.2(b)). The infection can spread between individuals within nodes and

between connected nodes. The net rate of infection of risk group r in node i is given by:

Sri
∑
j

βσij
(
ρrHIHj + ρrLILj

)
, (4.1)

where S and I are numbers of susceptible and infected hosts respectively, and β is the

transmission rate. Throughout superscripts refer to the risk group (high: H, low: L), and

subscripts identify the node. For example, SH
3 represents the total number of high risk

susceptibles in node 3. In addition, we use N to refer to the total number of active hosts

that could be controlled, such that NH
3 is the number of susceptible, infected and vaccinated

high risk hosts in node 3. The sum in Equation 4.1 is over all connected nodes including the

focal node itself, with the relative transmission rate into node i from node j given by σij ,

and risk structure given by the 2× 2 matrix ρ, where ρ =
(
ρHH ρHL

ρLH ρLL

)
.

Mass vaccination is the only intervention we consider, with the potential to target based

on both risk group and region, but randomised across host infection status (e.g. the vaccine

is given to all hosts but is only effective on susceptibles). This could represent, for example,

vaccine-laden baits distributed to wild animals, or chemicals sprayed onto plants. For

simplicity in the example model considered here, vaccinated hosts are not susceptible
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to infection, i.e. the vaccine is totally effective, and the vaccine does not wane over the

timescales considered. Logistical and economic constraints are included through a maximum

total vaccination rate (ηmax) that can be divided between risk groups and regions. Since only

susceptible hosts are affected by the vaccine, within each group susceptibles are vaccinated

at rate fηmaxS/N , where f is the proportion of control allocated to that group, and N is the

total group population.

Trajectories are simulated using the Gillespie direct method (Gillespie, 1977). The

possible events are host birth and death, infection, vaccination, and removal and recovery of

infected hosts (Figure 4.2(b)). These events and the associated rates are given in Table 4.1.

Parameters, as specified in Table 4.2, were chosen to give a large epidemic under no control

intervention, spreading across all three regions. Typical simulation trajectories with no

control are shown in Figure 4.3.
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Figure 4.3: Twenty typical simulation model trajectories with no control. Host dynamics are shown
for each risk group (high and low) and for each region in (a). In (b) the dynamics are
shown across the whole landscape for each risk group. Green and red lines represent
susceptible and infected hosts respectively.
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Table 4.1: Possible events in the simulation model with associated rates.

Event State Change Rate

Birth ∅ → Sri bNr
i

Death {Sri , Iri , V ri } → ∅ dNr
i

Infection Sri → Iri Sri
∑
j

∑
r′ βσijρ

rr′
Ir

′

j

Vaccination Sri → V ri fri ηmaxS
r
i /N

r
i

Removal Iri → ∅ µIri

Recovery Iri → Sri νIri

Table 4.2: Parameter values used for simulation model trajectories. Note that the units of time are
arbitrary.

Meaning Parameter Default Value

Birth Rate b 0.01 t−1

Death Rate d 0.01 t−1

Maximum Vaccination Rate ηmax 200 hosts t−1

Removal Rate µ 0.5 t−1

Recovery Rate ν 0.25 t−1

Risk Coupling
(
ρHH ρHL

ρLH ρLL

)
( 1.0 0.008

0.008 0.016 )

Spatial Coupling σ see text

Transmission Rate β 2.5 host−1 t−1

Optimal allocation of vaccination resources minimises the epidemic cost J , defined

here as representing the disease burden of the epidemic across all infected hosts over the

simulation time (T ):

J =
∫ T

t=0
I(t)dt , (4.2)

where I is the total number of infected hosts across the network. In common with the

particular control we consider and the risk and spatial structures, this simple choice of

objective function was made merely to illustrate our methods, but as we later show in

Chapters 6 and 7, the framework generalises immediately to more complex settings.

4.3.2 Approximate models

Exhaustive optimisation of control using the simulation model across space, risk group

and time would clearly be impossibly computationally expensive, since optimisation by

region involves optimising 6 vaccination rates at every time point. To make optimisation

feasible we use an approximate model, as described in Section 4.2. To assess how the choice

of approximation affects the control, we consider two different deterministic approximate

models of the simulator. The first model is purely risk structured, factoring out all spatial
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information and leaving one high risk and one low risk population group. This model is

therefore based on the assumption that all nodes are spatially well-mixed with each other,

and so we refer to it as the risk-based model.

The second approximate model is more complex, as it is still deterministic and risk

structured, but also groups hosts by region. The model is therefore split into three regions,

with two risk classes but no spatial structure within each region. Spatial dynamics are

included between but not within the three regions, essentially assuming that nodes are

spatially well-mixed within each region. This maintains enough simplicity to obtain optimal

control results. For example, this could represent optimising control across countries, but not

at the regional level within countries. We refer to this model as the space-based approximate

model.

Risk-based approximate model

This model factors out all spatial information from the simulations, and approximates the

resulting risk structure using a set of ordinary differential equations. The ODE system has

one equation for each of the six host states: susceptible, infected and vaccinated in the

high risk (SH, IH, V H), and low risk groups (SL, IL, V L). The state values are mapped from

the simulations simply by summing all hosts in that state across the whole network (e.g.

Sr =
∑
i S

r
i , where i is the node). For risk group r, the full system of equations is given by:

Ṡr = bNr − dSr − Sr
(
ρ̂rHIH + ρ̂rLIL)− frηmaxS

r

Nr
+ νIr ; r = L,H (4.3a)

İr = − dIr + Sr
(
ρ̂rHIH + ρ̂rLIL) − µIr − νIr ; r = L,H (4.3b)

V̇ r = − dV r + frηmaxS
r

Nr
; r = L,H (4.3c)

where ρ̂ is a 2× 2 matrix giving the approximated risk structure, i.e. the rate at which each

risk group infects each other risk group. This must be calculated by a model fitting step

(see Section 4.3.3), since the exact spatial structure is not modelled. Heterogeneity in the

risk structure across the network, and averaging across nodes, means that the simulation

risk structure does not capture the correct dynamics in the approximate model. All other

parameters are specific to individual hosts and so can be used directly from the simulation

model.

Space-based approximate model

This model includes regional spatial information as well as risk structure. This gives 18

possible states: susceptible, infected and vaccinated across risk groups (high and low),
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and regions (A, B and C). The states here are summed across nodes within a region

(e.g. SrA =
∑
i∈A S

r
i ). For risk group r ∈ {H,L}, and region X ∈ {A,B,C}, the system of

differential equations is given by:

ṠrX = bNr
X − dSrX − SrX

∑
X′∈

{A,B,C}

σ̃XX′
(
ρ̃rHIH

X′ + ρ̃rLIL
X′

)
− frXηmaxS

r
X

Nr
X

+ νIrX

(4.4a)

İrX = − dIrX + SrX
∑
X′∈

{A,B,C}

σ̃XX′
(
ρ̃rHIH

X′ + ρ̃rLIL
X′

)
− µIrX − νIrX

(4.4b)

V̇ rX = − dV rX + frXηmaxS
r
X

Nr
X

. (4.4c)

The 3× 3 matrix σ̃ approximates spatial coupling between regions, and ρ̃ is again a 2× 2

matrix giving the approximated risk structure (but note that the parameters will be different

from the risk-based model).

4.3.3 Model fitting

The approximate models both have parameters that must be fitted to the simulation

model output. This ensures the dynamics of the simulation are captured as accurately as

possible given the simplifications made in the approximate models. For both models we

use maximum likelihood estimation (MLE) to fit the parameters (Aldrich, 1997). States

must be mapped between the simulation model and the approximate models. As described

previously, the simulation states are simply summed across all nodes in the network for each

risk group in the risk-based model, and by region for the space-based approximate model.

To fit the risk-based model the 4 parameters in ρ̂ must be chosen. The likelihood is

defined as the probability of observing a set of simulation realisations, given a parameter set

in the approximate model. Maximising the likelihood finds the best fitting set of parameters.

The likelihood is computed as the product of contributions from 200 realisations of the

simulation model with no interventions (i.e. no control is implemented). Since all events

occur with exponentially distributed waiting times, each individual event within a realisation

occurring after a time δt contributes a factor δLi to the likelihood:

δLi = rke−
∑

riδt . (4.5)

The ri are the rates of all possible events, and rk is the rate of the event that actually

occurs. This δLi is the probability of observing that event given the rates of all events, which

are calculated from Equations 4.3. The full likelihood is the product of all δLi across all

realisations. This overall likelihood is then maximised by varying the elements of ρ̂ using the
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Figure 4.4: Fits to simulation data for the risk-based model. Dashed lines show the risk model, and
faded lines show 20 of the simulation runs. Green and red lines represent susceptible and
infected hosts respectively.

L-BFGS-B algorithm (Byrd et al., 1995), as implemented in the SciPy library (Jones et al.,

2001–).

The same fitting procedure is used to fit ρ̃ and σ̃ in the space-based model. Here there are

a total of 13 parameters, but we set ρ̃HH to one to ensure identifiability (since the infection

rate is proportional to the product of ρ̃ and σ̃). To simplify estimation, we also set the

coupling between regions A and C (σ̃AC and σ̃CA) to zero, as well as from B into A and

from C into B. This is because when seeded in A, the epidemic spreads from A to B to C,

and backward spread is negligible. This leaves a total of 8 parameters to fit.

Fits to simulation data are shown for the risk-based model in Figure 4.4, and in Figure 4.5

for the space-based model. The risk model captures the median risk dynamics well. The

highly stochastic nature of spread between regions however, means the deterministic spatial

model does not necessarily capture the timings of introductions accurately. This effect is due

to stochastic fade outs after introduction events, as well as negative covariance between

susceptible and infected hosts, leading to reduced infection rates in the stochastic simulations

(Keeling and Rohani, 2008, pp. 227–229 and pp. 238–240). For now we continue to use

MLE despite this limitation, but we show in Appendix A that alternative fitting methods do

not change our results.
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Figure 4.5: Fits to simulation data for the space-based model. Dashed lines show the space-based
model, and faded lines show 20 of the simulation runs. Green and red lines represent
susceptible and infected hosts respectively. We note that the approximate dynamics are
faster than those in the simulations. This effect is explained in the text and does not affect
our results.

To verify the optimisation we generated profile likelihood plots (Bolker, 2008), shown

in Figure 4.6. The profile likelihood of a given parameter θ scans over values of θ. At each

value θ is fixed, and all other parameters are re-fitted, maximising the likelihood subject to

the fixed value of θ. This is carried out for each parameter in each model. This shows the

maximum possible likelihood for each parameter value, increasing confidence that the fitting

process has found the correct maximum. A confidence interval can be constructed from the

log-likelihood ratio statistic, finding the likelihood at which there is a 95 % probability of

difference between the models. This corresponds to:

2 log
{
π̂

π

}
≤ χ2

0.95(1) (4.6)

where π̂ is the maximum likelihood, and π is the profile likelihood, and these are compared

with the 95th percentile of the chi-squared distribution with one degree of freedom. All profile
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Figure 4.6: Profile likelihood analysis for: (a) the risk-based approximate model, and (b) the space-
based approximate model. The offsets (1.137 × 106 for (a) and 9.583 × 105 for (b)) must
be added to all values on the y axes. The profile for every parameter crosses the 95%
confidence interval threshold, ensuring identifiability of each parameter. In all cases
maximum likelihood estimates from the unconstrained optimisation coincide with the
maximum along the profile.

likelihoods cross this threshold, meaning that the parameters are practically identifiable

(Raue et al., 2009).

4.3.4 Control scenario testing

We test six different control scenarios, which compare strategy testing of controls based

purely on the simulation model (scenarios 1 and 2, ‘user-defined’) with open-loop and MPC

applied using both of our approximate models (scenarios 3 to 6):

1. ‘High’: exclusively vaccinate high risk individuals

2. ‘Split’: partition control resources between high and low risk groups based on an

optimisation performed in advance using the simulation model only

3. ‘Risk OL’: open-loop control using the risk-based approximate model

4. ‘Risk MPC’: MPC using the risk-based approximate model

5. ‘Space OL’: open-loop control using the space-based approximate model

6. ‘Space MPC’: MPC using the space-based approximate model

The optimal constant allocation for the ‘Split’ strategy was found by running many

simulation model realisations for each of a range of partition values, similar to the approach

used by Cunniffe et al. (2015). The partition values specify the proportion of resources that

are allocated to each risk group. We selected the value that gave the lowest mean epidemic
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cost. The six strategies are assessed by repeatedly running the simulation model under each

control scenario.

Optimisation in scenarios 3 to 6 is carried out using BOCOP v2.0.5 (Team Commands,

Inria Saclay, 2017), as described in Chapter 3. We implement open-loop and MPC using

Algorithm 2. When lifting the resulting controls to the simulation model, resources are

allocated such that all non-removed individuals within the targeted group have an equal

probability of being vaccinated. With the risk-based model, resources are allocated across all

nodes and active individuals in the targeted risk group are selected randomly, although the

vaccine is only effective on susceptible hosts. In the space-based model resources are spread

over nodes in the targeted region. Again, the probability of selecting any single active host is

constant. This amounts to weighting the resource allocated to a particular node by its total

population.

To fully compare open-loop and MPC we must run the simulations repeatedly to account

for stochasticity. We do this using both approximate models as well as with the naive ‘High’

and ‘Split’ strategies that do not use OCT. As described before, the ‘High’ strategy allocates all

control resources to the high risk group. The ‘Split’ strategy uses an optimisation performed

in advance using the simulation model. By running the simulation model repeatedly and

allocating different resource proportions to the high and low risk groups, the optimal constant

ratio can be found by minimising the mean objective value (Figure 4.7). The proportion that

gives the lowest mean objective value is found to be 63% to the high risk group, with the

rest used to vaccinate low risk individuals. As shown in Figure 4.7 the optimum occurs in a

very broad minimum, so the precise value of the optimal split is uncertain. Since the precise

value has little effect on the epidemic cost (hence the broad minimum), we simply use 63%

as a representative value.

Algorithm 2: MPC and open-loop algorithms. Open-loop simulates for the full time (i.e. step 2–6),
whereas MPC re-optimises the control at the update times (step 2–7 with repeated loops
back to step 4).

1. Fit simulation model to real data

2. Set initial conditions for simulation model

3. Fit approximate model to simulation data

4. Initialise approximate model at current simulator state

5. Optimise control on approximate model

6. Lift control to simulation model and simulate forward

7. If MPC then at next update time go to step 4
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Figure 4.7: Scan of objective values for 1000 simulations, varying the proportion of control that is
allocated to the high risk group. Remaining control is allocated to the low risk group. The
optimal allocation to the high risk group is shown by the vertical dashed line, and is found
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4.4 Results

4.4.1 OCT strategies

We first look at the OCT results from optimisation on the two approximate models. The

optimal vaccination strategy in the risk-based approximate model exclusively vaccinates high

risk hosts early in the epidemic (Figure 4.8(a)). The strategy then switches to vaccinating

both high and low risk hosts, with the majority of control resources allocated to the low

risk group. There is then a further switch to vaccinating the low risk group exclusively. The

optimal strategy in the space-based model shows a very similar allocation to risk groups

across time (Figure 4.8(b)), but shifts these allocations across regions as the epidemic

spreads through the network (Figure 4.8(c)). This allows the control to track the progress of

the epidemic, and hence target control more effectively. The spatial strategies are therefore

more complex than the risk-based controls.

4.4.2 Strategy testing

Next we compare the different control scenarios applied to the simulation model. This

could give a more realistic indication of performance in the real world, since the simulation

model is a more accurate representation of reality. First we compare the strategies resulting

from the open-loop and MPC frameworks. The open-loop framework uses the same control
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Figure 4.8: Comparison of optimal control strategies in the approximate models. (a) shows the
optimal allocation of control resources to high and low risk groups in the risk-based
approximate model. (b) shows the equivalent for the space-based approximate model.
This allocation is broken down further in (c), showing the distribution across regions and
risk groups for the space-based model.

strategy (as described in the previous section) for every realisation of the simulation model.

Since the simulations are stochastic, the epidemic will be different in each realisation but

the time-dependent control is the same each time. The MPC framework can update the

control dependent on how the individual realisation has progressed. Each realisation will

therefore have a different control strategy. Figure 4.9(a) shows the control strategy for a

single realisation using open-loop and MPC with the space-based model. Figures 4.9(b)

and (c) show the corresponding disease progress curves in the simulation alongside the

predictions made by the approximate model. We can see that the MPC framework changes

the control allocations to account for deviations from the predicted behaviour. By resetting

and re-optimising the approximate model the control strategy is tailored to the individual

realisation. This allows the MPC framework to keep the number of infected hosts significantly

lower than with the open-loop framework (note the different y axis scales on Figure 4.9(b)

and (c)).

For each control scenario we run the simulation model 250 times to generate a distribu-

tion of objective values (Figure 4.10). The ‘Split’ strategy leads to lower objective values, and

hence improved control, compared to the ‘High’ strategy. Using the risk-based approximate

model improves the epidemic management further, but with little difference between the

open-loop and MPC frameworks. Adding space into the approximate model improves control
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Figure 4.9: In (a) the control allocation is shown for a single space-based MPC run, with the corre-
sponding open-loop allocation indicated by the black dotted line. The simulations chosen
are the 60th percentiles of the epidemic cost distributions for the open-loop and MPC runs.
Panels (b) and (c) are repeated from Figure 4.1. (b) shows the total number of infected
individuals under a single run of space-based open-loop control. Control is based on the
prediction of the approximate model starting from the initial conditions. (c) shows the
number of infected individuals in the simulation and space-based approximate model
corresponding to the MPC control carried out in (a). Here the prediction is reset to match
the simulation at every update time (0.5 time units) and the control is re-optimised. By
repeatedly correcting for differences between short-term model predictions and realised
numbers of infected individuals—rather than relying on a potentially increasingly inaccu-
rate prediction made at the initial time—MPC gives better predictions of the simulation
state as well as improved control when compared to open-loop (note different y axis
scales).

further again, leading to the smallest epidemic costs when the spatial MPC framework is

used.

The results here demonstrate the management improvements that can be achieved

by combining OCT with both open-loop and MPC frameworks. The key results of the

OCT analyses are the control switching times. Using the switching controls from either

approximate model with open-loop control gives lower epidemic costs than the naively

chosen ‘user-defined’ strategies. The feedback present in the MPC controllers allows further

reductions to the epidemic cost. By re-evaluating the timing of the switches during the

epidemic, and potentially including additional switches, the control can respond more closely

to the exact trajectory of the current simulation realisation (Figure 4.9). This gives control
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Figure 4.10: Results of different control optimisation schemes on the illustrative simulation model.
Spatial MPC performs best, showing an improvement over both open-loop and user-
defined strategies.

that is more robust to uncertainty and systematic errors in the approximate model, and

hence performs better on the complex simulation model.

In the risk-based strategies there is little difference between open-loop and MPC. This is

because the precise timing of the switch from high to low risk group vaccination does not

significantly affect the epidemic cost. Figure 4.11 shows simulation objectives scanning over

this switch time, where control vaccinates exclusively high risk hosts until the switch time,

then only low risk hosts after the switch. These simulations lead to a broad minimum in

the objective, showing that small changes to the switch time have little effect. The timings

of disease introduction into regions B and C are highly variable between simulation runs

(Figure 4.3). The potential for additional switches in the space-based approximate model

gives more flexibility for the MPC controller to respond to this variability, and so spatial MPC

shows a significant improvement over open-loop which cannot adapt to perturbations. The

performance of the control is closely linked to the accuracy of the approximate model. In our

example, spatial dynamics are clearly important because of the timing of spread between

regions, and so the more informed controls of the spatial model outperform the risk-based

strategies.

74 Chapter 4 Applying optimal control theory to complex models



0 1 2 3 4 5
Risk Switch Time / a.u.

0

200

400

600

800

1000

1200

1400

1600

Ep
id

em
ic

 C
os

t

Median
Mean

10 30 50 70 90

Distribution Deciles

Figure 4.11: Scan over switch time showing distribution of objective values for 1000 simulations at
each time. The switch time specifies when the control stops vaccinating only high risk
hosts, and starts vaccinating only low risk hosts. Deciles in the objectives are shown by
the gradient in colour. Whilst the switch time does affect performance, the precise timing
does not vary the epidemic cost significantly.

4.4.3 Parameter robustness

The MPC framework is expected to provide improved control regardless of the exact form

taken by the model or objective function. However, this does rely on using an appropriately

accurate approximate model so that the OCT results are based on realistic dynamics. We

tested a range of arbitrary but reasonable parameter sets, and in all cases the spatial MPC

framework performs best in this network model. To illustrate this in a concrete setting we

explore systematic adjustments to the risk structure used in the simulation model.

The risk structure is defined by the matrix ρ, which in the standard simulation model is

given by:

ρ =
(
ρHH ρHL

ρLH ρLL

)
=
(

1.0 0.008

0.008 0.016

)
(4.7)

We make the system more homogeneous or more heterogeneous by respectively doubling or

halving ρHL, ρLH and ρLL. That is, the two alternative matrices used are:

ρhom =
(

1.0 0.016

0.016 0.032

)
(4.8a)

ρhet =
(

1.0 0.004

0.004 0.008

)
. (4.8b)
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Using these values we then scale the transmission rate parameter β, such that the mean

epidemic cost under no control is within 1% of that using the standard risk structure.

The values were found to be β = 1.49 and β = 4.30 for the more homogeneous and

heterogeneous cases respectively, compared with β = 2.5 for the default risk structure. The

value of ρHH is left equal to one without loss of generality since the whole matrix is scaled

by β. The means we only vary the relative transmission rates.

For each new ρ matrix, we rerun the full analysis described above, assessing the same six

control scenarios with refitted approximate models. Two main effects can be investigated

using this analysis. Firstly, the ordering in performance of the six control scenarios can be

compared with the ordering using the default risk structure, ρ. Secondly the performance of

each strategy can be compared with the same strategy using ρ. We now look at each of these

in turn.

For ρhom, the more homogeneous case, we find that the order of the control scenarios is

unchanged (Figure 4.12). As before we find that spatial MPC leads to the best performance,

as found for the default ρ. The more heterogeneous case results in a different ordering of

control strategy performance (Figure 4.13). The ordering of the ‘user-defined’ and risk-based

strategies is as before, but when the risk structure is more heterogeneous (i.e. using ρhet)

the spatial open-loop scenario leads to worse performance than the risk-based strategies.

This is because for this parameter set and approximate model, the resulting strategies cannot

respond to the variability in timing of the epidemic invading a new region, meaning that

control is then targeted at the wrong regions. Importantly though, the spatial MPC strategy

reduces average epidemic costs below those of all other strategies. Here the feedback

strategy can greatly improve disease management, despite the limitations of the standard

open-loop approach. This is similar to the effect seen by Forster and Gilligan (2007), where

inaccuracies in the switch times lead to ineffective control, but here the feedback loop has

mitigated this issue, ensuring that the OCT results are still beneficial.

We now consider the second effect, namely relative performance of each strategy under

the different risk structures (Figure 4.14). For ρhom, the ‘user-defined’ and risk-based

strategies have higher epidemic costs than were found with the default risk structure, ρ. This

is because with a more homogeneous system, risk is less important and so the risk-based

strategies are less powerful. Using ρhet the risk-based strategies perform relatively better

because of the increased importance of risk structure in the simulations. There is little

change in epidemic cost for the spatial open-loop strategy using all three risk structures.
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Figure 4.12: Results of control optimisation scenarios with alternative, more homogeneous risk
structure ρhom.
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Figure 4.13: Results of control optimisation scenarios with alternative, more heterogeneous risk
structure ρhet.
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Figure 4.14: Mean performance of each control strategy using all three risk structures.

4.5 Discussion

In this chapter we have described the open-loop and MPC frameworks for applying

results from OCT to complex, simulation models. Using an illustrative network model we

have demonstrated how both frameworks can find strategies that are an improvement over

‘user-defined’ policies. The feedback loop in the MPC framework improves control further, by

ensuring the simulation and approximate models are always closely aligned. In this section

we will discuss some of the limitations and outstanding questions about the frameworks,

and how the resulting controls might be applied in practice.

4.5.1 Applying and testing OCT

In this chapter we aimed to find methods for putting OCT results into practice. We

focussed on how OCT can be used—when coupled with a simulation model using the open-

loop or MPC frameworks—to optimise control in a complex system. The lifting of results to

a simulation model that captures more realism allows the control based on the assumptions

in the approximate model to be tested. This testing of OCT results is vital to ensure that

the mathematical results are at all applicable in the real world. We here tested a single

simulation model, and also tested robustness to the risk structure. Other similar spatial

networks showed comparable results, but we have not systematically tested sensitivity to

spatial structure or connectivity between regions. As discussed in Chapter 3, this connectivity

is likely to affect the switching times—in this chapter switches between risk groups and
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between regions. Further investigation into this dependence could provide insight on how

enforcing changes to connectivity can impact the efficacy of control interventions.

Coupling OCT with simulation models allows the design of strategies which make the

most out of both systems: OCT brings mathematical rigour and optimisation of time-

dependent controls, whilst simulation models allow for highly accurate predictions of future

spread. The simulation model we used here was a stochastic network model, but in principle

any model that can accurately evaluate control strategies for the system in question could be

used. The example in this chapter showed that the OCT strategies from the approximate

model performed well on the simulation. However, in general it can be difficult to know

when an OCT approach is likely to be effective, and whether to apply the open-loop or

MPC framework. When the simulation model accurately captures real-world dynamics, the

ultimate test to answer these questions is to compare them when applied to the simulation

model, as we have done in this chapter.

4.5.2 Robust framework

As well as knowing whether open-loop or MPC will be more effective, choosing an

appropriate approximate model can be challenging. Our results show that the choice of

approximate model affects the performance of both open-loop and MPC strategies. Here

we have found a suitable approximate model in an ad hoc manner, by testing two potential

models. Clearly other choices could have been made though; for example the patch model

from Chapter 3 would also have been appropriate. However, exhaustively testing all possible

options is unlikely to be feasible, so modelling decisions must be made to determine what

approximations are likely to be valid and how much complexity is necessary. In some cases,

for example when parameters are very uncertain or the system is highly stochastic, simpler

models may actually fit better than more complex models, and result in better control.

A more accurate model may give better predictions, and hence control that is closer

to the true optimum, but simpler models are often sufficient (Thompson and Hart, 2018).

Accuracy must be balanced with added complexity and optimisation constraints. It may not

always be clear whether the complexity of a model will be prohibitive in solving the optimal

control problem. The number of state and control variables is the main factor affecting

tractability, but complex dynamics can also influence convergence. An advantage of the

direct optimisation approach is that adjoint and Hamiltonian equations do not have to be

derived for each model. This can speed up the testing of a plausible approximate model.

As well as this, the open-loop and MPC frameworks can be applied to any simulation and

approximate models. The only requirement is that there is a mapping of states and controls

between the two models.
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The frameworks are also agnostic to the form of the objective function. The choice of

objective function can significantly impact optimal control strategies (Probert et al., 2016),

and in this chapter we chose a very simple objective. However, the frameworks immediately

extend to other choices of objective function. An advantage of OCT is the ability to balance

multiple costs as shown, for example, by Brown and White (2011) and Bokil et al. (2019).

In Chapter 6 we show how objectives can be used that balance economic, cultural, and

ecological management goals.

The feedback in the MPC framework ensures the approximate model and optimised

control match the simulation realisation, making the system robust to differences between

the models. Whilst exhaustive testing of alternative simulation model parameterisations

is beyond the scope of this study, we have shown that the performance of MPC is robust

to one type of re-parameterisation in Section 4.4.3. We have assumed throughout that an

accurate simulation model of the real system in question can be built, and that a single

set of parameters can be fitted for the chosen deterministic approximate model. In reality,

parameters for plant diseases models are often fitted to limited data using Bayesian methods,

leading to parameter distributions (e.g. Kleczkowski and Gilligan, 2007; Parry et al., 2014).

This could mean that fitting a single deterministic model may be challenging. The lack of

data and the huge potential losses from plant disease (Savary et al., 2019) mean that robust

decision making in the face of uncertainty is vital. The continued surveillance in the update

steps of MPC could allow robustness to this type of parameter uncertainty: an important

question we will address in Chapter 6. The continued surveillance could also incorporate

improved knowledge of parameters as the simulation proceeds (Thompson et al., 2018).

4.5.3 Practical implementation

The feedback in MPC requires continued surveillance of the system to assess the state

of the epidemic. Both open-loop and MPC are known as feed-forward controllers, since

control is optimised using predictions of the future dynamics. Accurate predictions can avoid

continuous or very frequent surveys which may be expensive or logistically challenging.

However, the repeated updates in the feedback loop of MPC improve these predictions and

hence the performance of the control. Whilst each update improves control, the associated

surveillance could be expensive, and so surveillance costs must be balanced with the benefits

of improved disease management. This could be done by varying the update frequency or

the intensity of surveillance, both of which we analyse in more detail in Chapter 6.

We have shown in this chapter that open-loop and MPC frameworks are able to transfer

optimal control results to more realistic simulations and so to practical application, but the

complexity of the resulting strategies does raise the issue of communicability of results. With

complex feedback strategies between two models, one complex in structure and the other
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mathematically complex, the overall result is no longer simple to explain. Also, adoption by

stakeholders could be prevented in practice by the plausibility of changing control strategy

so frequently. However, the ultimate proof of performance is in the strategy testing technique

using the simulation model. If potential strategies can be evaluated by stakeholders for

real-world implementation using a complex model, as was the case for HPV (Choi et al.,

2010) and citrus diseases (Cunniffe et al., 2015) for example, then the open-loop and MPC

frameworks can simply be added as an alternative strategy for evaluation. Future research

must therefore focus on improving the accuracy of simulation models, and analysing their

reliability, so that simulations can be used to establish conclusively the benefit of these

complex OCT based strategies.

4.6 Conclusions

OCT can be used to find effective control strategies for complex systems by applying

OCT to an approximate model of the simulation. Results can then be lifted to the simulation

for evaluation. In open-loop the optimised controls are used over the full simulation time,

whereas with MPC a feedback loop updates the approximate model, and so the optimal

control, at regular intervals. At these update times the initial conditions of the approximate

model are set to the current state of the simulation model, and control is re-optimised and

lifted to the simulation. Feedback allows control to closely match individual simulation

realisations, improving control over open-loop. MPC provides an effective framework for

identifying optimal control strategies.
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5Modelling tanoak decline in mixed
species forest stands

5.1 Introduction

Throughout this work we have developed methods for evaluating and optimising disease

management. In this chapter we will begin to apply these methods to a real-world case study:

the control of the Phytophthora ramorum outbreak in the United States. We introduced

P. ramorum and the current status of sudden oak death (SOD) epidemics in Chapter 1, and

in this chapter we will focus on building a model of SOD within individual 20 ha mixed

species forest stands. In the next chapter we will use this model to optimise strategies for

stand-level disease management. Whilst widespread eradication of SOD in California is now

impossible (Cunniffe et al., 2016), localised control within a stand for example, can still be

effective at slowing disease spread (Hansen et al., 2019). Extensive control in Oregon is

containing the spread within Curry county, with 2028 and 2038 being the estimated years

of arrival into Coos county, with and without control respectively (Oregon Department of

Forestry, 2019). Local controls can be particularly effective when management objectives

are focussed on protection of high value resources with cultural, ecological or economic

importance: the type of optimisation problem considered in Chapter 3. In these cases control

does not necessarily require global eradication, allowing management effort to be highly

targeted.

In this chapter we will look at what management goals are appropriate for SOD spread

in mixed species stands, in particular for protecting a culturally important species: tanoak.

Informed by these goals, we will develop a model that captures the dynamics of tanoak

decline and potential control measures against SOD. This model will be based on work by

Cobb et al. (2012), but adapted and reparameterised to realistically model host dynamics in

a mixed species stand1.

5.1.1 The tanoak tree

The tanoak, Notholithocarpus densiflorus syn. Lithocarpus densiflorus, is a medium sized

Californian tree related to the American chestnut. Tanoak is present from along the western

1All code for this chapter is available at https://github.com/ehbussell/MixedStand
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Figure 5.1: (a) Map showing the spatial range of tanoak in California and Oregon. Tanoak is found
in the red areas. Data from: PlantMaps (2019). (b) Photograph of tanoak decline due to
sudden oak death in Humboldt county, California from 2006. Source: Valachovic (2006).
(c) Photograph of tanoak acorns, an important source of food for northern Californian
Native Americans. Source: Wikimedia Commons (2004).

coast of California near Santa Barbara, up into southwestern Oregon (see Figure 5.1)

(Tappeiner et al., 1990). Tanoak grows most effectively in humid conditions with seasonal

precipitation. It grows from sea level up to elevations of 1,500 m and can thrive on soils less

suitable for conifers. However, its higher moisture requirements mean it is found more often

on northern slopes than southern slopes (Tappeiner et al., 1990). Bowcutt (2013) writes

about the importance of the tanoak tree to Native American tribes in California. In this

study Bowcutt explains that mature trees are heavy producers of acorns, which are highly

valued by indigenous tribal people. The acorns are an important source of food for northern

Californian Native American tribes, as much now as historically, with only salmon eaten in

greater quantities. The thick shell and high tannin content mean the acorns can be stored for

years, and hence for thousands of years they have been used as the basis for trade between

tribes. Bowcutt emphasises that the tree is used by Native American tribes for much more

than just nutrition though, with fishing nets, baskets and medicines made using tanoak bark

and wood.

Tanoak is found alongside coast redwood (Sequoia sempervirens) across coastal Califor-

nian forests, and is believed to be highly important to these ecosystems (Noss, 2000). As
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well as their cultural importance, tanoaks provide habitat and a vital winter food source

for a variety of wildlife in these forests, including fishers and owls (Long et al., 2018). The

winter food source is particularly important given the more unpredictable and less nutritious

crops from redwood trees. Damaged—and even sometimes healthy—tanoak trees resprout

prolifically (Tappeiner et al., 1990). This, and abundant seed production, could explain why

tanoak is so ubiquitous alongside redwood, as it competitively excludes other species that

could live in redwood forests (Ramage et al., 2011). This resprouting also ensures that the

population regenerates after the forest fires that are common in this region (McDonald and

Tappeiner, 2002; Ramage et al., 2010).

5.1.2 Effects of sudden oak death

The spread of P. ramorum is a significant threat to tanoak, having caused drastic declines

in populations that, if continued, could lead to the extinction of this important species

(McPherson et al., 2010). Tanoak trees of all ages are highly susceptible to SOD and have a

very high mortality from the disease (Davis et al., 2010). In most other species susceptible

to SOD such as coast live oak, bole infection—where the infection spreads to the trunk—

requires a secondary foliar host (Rizzo et al., 2005). As tanoak is the only species for which

stems, twigs and foliage can all be infected, bole infection does not require such a secondary

host and can therefore occur more rapidly and more frequently (Rizzo and Garbelotto, 2003).

Tanoak infected with P. ramorum has a mortality rate of 6 % per year, with infection leading

to eventual tree death in at least 50 % of cases (McPherson et al., 2010). Some report net

mortality is likely to approach 100 % (Ramage and O’Hara, 2010). Field studies have also

found that mortality increases with tree size, meaning the larger trees that produce more

acorns are disproportionately affected (Cobb et al., 2012).

Maloney et al. (2005) use 120 study sites to track the establishment of SOD in coastal

redwood forests dominated by redwood, tanoak and California bay laurel (Umbellularia

californica). Whilst redwood trees are not affected by SOD, they find that the presence of bay

laurel is a key factor in the decline of tanoak due to the disease. P. ramorum can sporulate

prolifically on bay trees but the host is not killed by the disease (Davidson et al., 2008).

Maloney et al. (2005) state that the differing host mortalities due to SOD could lead to

dramatic shifts in forest composition. These compositional changes can have far-reaching

consequences and knock-on effects. For example, tree deaths due to SOD increase levels of

dry wood in forests, and so there are greater fuel loads leading to greater risk of forest fire

(Forrestel et al., 2015). SOD reduces the numbers of large trees, which reduces the amount

of CO2 captured by the forest. Management of SOD to retain larger tanoak can help manage

carbon emissions (Twieg et al., 2017), and these wider reaching implications make effective

disease interventions even more important.
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5.1.3 Predicting disease progression

Mathematical models can be used to predict the future spread of disease, and hence

inform control strategies. In Chapter 1 we reviewed models of SOD (Section 1.3.2, p. 23),

with models grouped largely into risk maps, landscape scale models, and smaller-scale

models of forest stands. Our aim here is to optimise dynamic controls within a forest stand,

with the specific goal of protecting tanoak populations. We therefore require a stand-level

dynamic model, capturing the drivers of disease invasion rather than just risk factors, that can

model disease impacts on tanoak. At this scale the landscape models of Meentemeyer et al.

(2011) and Tonini et al. (2018) are inappropriate, since they do not explicitly model effects

on different hosts. The differential equation model developed by Cobb et al. (2012) captures

invasion dynamics and differing mortality and infection rates by species and tanoak age class

within a stand. Whilst in its current form this model does not include controls, this is the

only dynamic model at the stand level which explicitly models differences between hosts

species, so we use this model to investigate the optimisation of local control strategies.

5.1.4 Key questions

In this and the following chapter, we will seek to answer the following key questions:

1. How can the model from Cobb et al. (2012) be adapted to allow optimisation of

time-dependent disease management strategies?

2. How should time-dependent controls be deployed under resource constraints to best

preserve the valuable tanoak population in coastal redwood forests?

3. How do these strategies compare with current recommended practice?

4. How robust and reliable are these control results? In particular, how do these strategies

perform when information about the epidemiological parameters and the pathogen

distribution is incomplete throughout the epidemic?

The first of these questions is the focus of the remainder of this chapter.
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5.2 Mixed species forest dynamics

The epidemiological model in Cobb et al. (2012) was designed to investigate the medium-

and long-term effects of sudden oak death on the host composition of mixed species, 20 ha

forest stands. As we will use this model structure extensively, we will refer to this model

as the Cobb model from now on. The trees present in the forest stands considered are

tanoak, bay laurel and redwood. The authors were primarily interested in the decline of

overstorey tanoak, here defined as trees over 10 cm d.b.h. (diameter at breast height), and

the initial host compositions in the stand that lead to the eventual extinction of tanoak. The

model was parameterised using data from longitudinal field studies conducted over 5 years

and across 110 P. ramorum invaded plots and 95 uninvaded plots, all of area 500 m2. The

epidemiological model is then used to assess how the forest structure in similar plots will

change over the next 100 years, under scenarios with varying initial host proportions. The

model is used to find a threshold initial level of tanoak in the forest, above which disease

progression leads to elimination of large tanoaks. This is found to be around 8 %, under a

specific initial age structure. We will now describe the formulation of the model, as described

in Cobb et al. (2012), in more detail.

5.2.1 Model description

The model tracks the stem density dynamics of three different host species or groups:

redwood, bay laurel and tanoak. The redwood group is also used to represent all species that

are not susceptible to P. ramorum infection, which for the stands considered is predominantly

coast redwood. Bay laurel is a ‘spreader’ species that can be infected and is highly infectious,

but does not itself suffer any significant effects from the disease. Tanoak however, is highly

susceptible to P. ramorum infection and disease induced mortality is high, particularly in

older and larger trees. This age dependence, and the importance of overstorey tanoak, drove

the authors to divide the tanoak class into separate age groups in order to capture the effects

of disease on the older trees. Four different age groups were created with the two oldest

groups corresponding to the overstorey tanoak. This was deemed to capture the changes in

susceptibility with age in enough detail, whilst also keeping the model as simple as possible.

As differing effects on older trees are less important for the other hosts, and to reduce model

complexity, the other host groups are not divided into age classes. The model tracks natural

host demography, with natural mortality and seed recruitment rates for each host class.

Recruitment depends on the amount of empty space available for seedling establishment,

with each tanoak age class weighted to occupy differing amounts of space per stem. Over

time tanoak hosts progress through the age classes. See Figure 5.2(a) for an overview of the

different classes and possible transitions.
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Figure 5.2: Diagram describing Cobb model host structure. (a) shows the possible host states and
transitions. Only bay and tanoak are epidemiologically active, with the tanoak age classes
grouped into small (tanoak 1 and 2) and large (tanoak 3 and 4) categories. (b) shows
the spore deposition kernel described in Cobb et al. (2012), with 50 % of spores landing
within the same cell and the other 50 % spread over the neighbouring 4 cells.
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The model is spatial with hosts positioned on a grid in square cells each of area 500 m2.

Recruitment and age transitions occur within a single cell, with density-dependence in the

recruitment rates based on the available space in the cell. This corresponds to an assumption

that seed dispersal between cells is negligible. This is reasonable since the heavy acorns

predominantly fall under the crown of the tree (Tappeiner et al., 1990). Infection dynamics

are therefore the only interaction between cells. Infected hosts exert infectious pressure

on susceptible hosts within the same cell and in the 4 adjacent cells. Infectious spores are

distributed such that 50 % land within the same cell, and the other 50 % are distributed

across the adjacent cells (Figure 5.2(b)). Bay and all age classes of tanoak are susceptible,

and are infectious once infected without a latent period. There is little information available

on latent P. ramorum infections, but evidence suggests progression to inoculum production

happens quickly (within a few months; Davidson et al., 2005). This level of latency is

insignificant over the time period we have considered (100 years).

The model is formulated as a system of ODEs resulting in 11 differential equations per

cell. We use S to indicate healthy hosts, I to indicate infected hosts, and subscripts to

indicate species (1: tanoak, 2: bay, 3: redwood), age class (1–4 where applicable), and cell

location (x), following the notation used in Cobb et al. (2012) and as shown in Figure 5.2(a).

The resulting equations for cell x and age class i are:

Ṡ1,i,x = δ1,i [B1,xEx + rα1,iI1,i,x]− d1,iS1,i,x − Λ1,i,xS1,i,x + µ1I1,i,x

+ [1− δ1,i] ai−1S1,i−1,x − [1− δ4,i] aiS1,i,x

(5.1a)

İ1,i,x = −α1,iI1,i,x − d1,iI1,i,x + Λ1,i,xS1,i,x − µ1I1,i,x

+ [1− δ1,i] ai−1I1,i−1,x − [1− δ4,i] aiI1,i,x

(5.1b)

Ṡ2,x = b2 (S2,x + I2,x)Ex − d2S2,x − Λ2,xS2,x + µ2I2,x (5.1c)

İ2,x = −d2I2,x + Λ2,xS2,x − µ2I2,x (5.1d)

Ṡ3,x = b3S3,xEx − d3S3,x (5.1e)

where tanoak dynamics are given by equations 5.1a and 5.1b, bay dynamics by 5.1c and 5.1d,

and redwood dynamics by 5.1e (recall that all hosts in this class cannot become infected).

All parameter meanings and symbols are given in Table 5.1. The delta function at the start

of equation 5.1a, δ1,i, is equal to one for the smallest age class, and zero otherwise. This

ensures that recruitment is always to the smallest age class. The other delta functions ensure

only possible age transitions occur.
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Table 5.1: Parameter values used in Cobb et al. (2012). Parameter values marked with an asterisk
are set in model initialisation to impose dynamic equilibrium. See Section 5.2.2 for a full
description. Tanoak age classes are grouped by diameter at breast height (d.b.h.).

Parameter Symbol Default Value

Infection rate tanoak to tanoak (1 cm to 2 cm d.b.h.) β1,1 0.33 year−1

tanoak to tanoak (2 cm to 10 cm d.b.h.) β1,2 0.32 year−1

tanoak to tanoak (10 cm to 30 cm d.b.h.) β1,3 0.30 year−1

tanoak to tanoak (>30 cm d.b.h.) β1,4 0.24 year−1

bay to tanoak β12 1.46 year−1

bay to bay β2 1.33 year−1

tanoak to bay β21 0.30 year−1

Natural mortality rate tanoak (1 cm to 2 cm d.b.h.) d1,1 0.006 year−1

tanoak (2 cm to 10 cm d.b.h.) d1,2 0.003 year−1

tanoak (10 cm to 30 cm d.b.h.) d1,3 0.001 year−1

tanoak (>30 cm d.b.h.) d1,4 0.032 year−1

bay d2 0.02 year−1

redwood d3 0.02 year−1

Recruitment rate tanoak total cell x B1,x Equation 5.3

tanoak (1 cm to 2 cm d.b.h.) b1,1 0.0 year−1

tanoak (2 cm to 10 cm d.b.h.) b1,2 0.007 year−1

tanoak (10 cm to 30 cm d.b.h.) b1,3 0.02 year−1

tanoak (>30 cm d.b.h.) b1,4 0.073 year−1

bay b2 *

redwood b3 *

Disease induced
mortality rate

tanoak (1 cm to 2 cm d.b.h.) α1,1 0.019 year−1

tanoak (2 cm to 10 cm d.b.h.) α1,2 0.022 year−1

tanoak (10 cm to 30 cm d.b.h.) α1,3 0.035 year−1

tanoak (>30 cm d.b.h.) α1,4 0.14 year−1

Tanoak age transition
rate

(1 cm to 2 cm d.b.h.) to (2 cm to 10 cm d.b.h.) a1 0.142 year−1

(2 cm to 10 cm d.b.h.) to (10 cm to 30 cm d.b.h.) a2 0.2 year−1

(10 cm to 30 cm d.b.h.) to (>30 cm d.b.h.) a3 0.05 year−1

Recovery rate tanoak µ1 0.01 year−1

bay µ2 0.1 year−1

Recruitment
suppression weight

species i Wi 1

tanoak age class i w1,i *

Resprouting
probability

tanoak r 0.5

Spore proportion within cell f0 0.5

between cell f1 0.125

Force of infection tanoak age class i, cell x Λ1,i,x Equation 5.4a

bay, cell x Λ2,x Equation 5.4b
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The recruitment rates are density dependent as they depend on the space available for

colonisation in each cell, Ex. The empty space in cell x is given by:

Ex = max({0, 1−W1

4∑
i=1

w1,i (S1,i,x + I1,i,x)−W2 (S2,x + I2,x)−W3S3,x}) , (5.2)

with the maximum function ensuring that Ex cannot be negative. The species suppression

weights Wj—which are assumed to all be equal to 1—give the relative area colonised,

and hence unavailable for seedling recruitment, by each species per capita. The tanoak

suppression weights w1,i give different relative space occupations for each age class. These

suppression weights capture actual space occupied as well as seedling suppression by other

means, for example by blocking sunlight. The tanoak recruitment rate is made up of each

individual recruitment from each age class, but all seedlings enter at the smallest age class.

The tanoak recruitment rate, B1,x, in Equation 5.1a is given by:

B1,x =
4∑
i=1

b1,i (S1,i,x + I1,i,x) (5.3)

so that recruitment is from all age classes, with seed production rates that are independent

of infection status. Note that the tanoak natural mortality rates (d1,i) are highest for the

largest size class. Whilst many factors contribute to the age dependence of mortality, this is

commonly seen for other tree species (e.g. Hurst et al., 2011) and a potential factor is the

vigour of the tree. Larger and older trees grow slower because of nutrient constraints and

mechanical abrasion due to wind, making the tree more vulnerable to stresses (Yang et al.,

2003).

Finally we describe the force of infection terms Λ in Equations 5.1:

Λ1,i,x = f0

β1,i

4∑
j=1

I1,j,x + β12I2,x

+f1
∑

y∈N(x)

β1,i

4∑
j=1

I1,j,y + β12I2,y

 (5.4a)

Λ2,x = f0

β21

4∑
j=1

I1,j,x + β2I2,x

 +f1
∑

y∈N(x)

β21

4∑
j=1

I1,j,y + β2I2,y

 (5.4b)

where β12 is the rate of infection from bay to tanoak, β21 from tanoak to bay, and β2 within

bay. The infection rate within tanoak is given by β1,i, meaning each age class has a different

susceptibility to infection from other tanoaks. Overall however, tanoak age classes do not

vary in susceptibility to infection from bay, nor in the rate of infecting bay. Hence, β12 and

β21 do not depend on age class. This is a simplification due to a lack of data. The parameters

f0 and f1 give the proportion of spores deposited within and between cells respectively,

where the sum over cells N(x) is over the four cells adjacent to x.

In Cobb et al. (2012) and also throughout this chapter, the infection dynamics are

initialised in the centre of a 20 by 20 grid (any one of the four central cells). Infection starts
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in the bay population and the smallest tanoak age class, with 50 % of these hosts starting

infected. When all 3 species are present (bay, tanoak and redwood) the proportions are

taken from those used in Cobb et al. (2012) for mixed species forest stands. This corresponds

to 40 % tanoak, 16 % bay, and 44 % redwood. The initial amount of empty space is found by

initialising the model in dynamic equilibrium, see Section 5.2.2. The state variables track

stem density in arbitrary units. The model is parameterised from the study plots in Cobb

et al. (2012) which have an average tanoak density of 561 ha−1. The stem densities from the

model can therefore be scaled such that the initial stem density is 1,400 ha−1, since tanoak

makes up 40 % of the forest composition.

Conclusions using the model

Cobb et al. (2012) used this model to predict forest structure changes over the next 100 years.

They found that in forests with the spreader species bay present, overstorey tanoak (defined

as the two largest age classes in the model) declines to near extinction (Figure 5.3(a)).

Further to this, the authors showed that in forests with no bay present, only when tanoak

makes up less than 8 % of the initial stand composition is the pathogen unable to become

established (Figure 5.3(b) and (c)). The Cobb study does not consider control strategies

for managing tanoak decline but later studies do consider this using an updated version of

the model (Ross, 2013). This R package, called SODDr, simulates the same dynamics but

using a discrete time version of the model. The reason given for making the model discrete

was to allow simpler inclusion of stochasticity and to improve model fitting, although both

of these are possible with the continuous time version. The SODDr model has been used

in conjunction with field studies to investigate the effectiveness of understorey vegetation

thinning before and after an SOD disease outbreak (Cobb et al., 2017). Another study

used SODDr to forecast the effect of bay removal and tanoak thinning on forest conditions

(Valachovic et al., 2017a), and other recent work has looked at the impact of putative host

resistance and tolerance using SODDr (Cobb et al., 2019). Whilst these controls are all either

one-off interventions or natural resistance rather than the time-dependent control we will

consider, this body of work indicates how the model is being used to ask questions about

optimal disease management.

5.2.2 Model analysis

We aim to use the Cobb model to drive the open-loop and MPC optimisation frameworks

developed in the previous chapter. This will help identify long-term, time-dependent control

strategies that conserve tanoak populations in mixed species stands. More importantly, we

use the Cobb model to test how reliable and robust the frameworks are to a realistic disease

scenario, testing handling of uncertainties in both parameters and observations. To ensure
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Figure 5.3: Dynamics of the Cobb model, parameterised as in Cobb et al. (2012). The three plots
correspond to the three subplots in Figure 4 in Cobb et al. (2012). (a) shows dynamics
for a stand with bay, tanoak and redwood present, where large tanoaks decline to near
extinction over 100 years. (b) shows the dynamics with no bay present and tanoak making
up 80 % of the initial composition. Here large tanoak declines but does not near extinction.
In (c) however, with 8 % tanoak, there is no decline in the large tanoak population.

that our results are reliable we first analysed the Cobb model in more detail, to validate our

own implementation and confirm results realistically capture the real-world spatial spread of

SOD. To do this we tested our own Python implementation of the Cobb model versus SODDr

as well as the original Berkeley Madonna (BM) code used to generate the figures in Cobb

et al. (2012), which was provided to us directly by the lead author. In doing this we found

some unphysical features of the Cobb model which required correction before we used the

model, most importantly spore deposition patterns and implausible seedling parameters.

Spore deposition

We first analyse an error in the spore deposition pattern, resulting in spores deposited equally

over the source cell and adjacent cells. This affects parameters f0 and f1 in Table 5.1, and

means more spores are deposited than produced.

The paper explains that 50 % of spores fall within the same cell, and the other 50 % are

distributed over the four nearest neighbour cells. However, in both the BM code and the

SODDr code the infectious pressure between cells is not distributed in this ratio. In the BM

code the source cell and each of the four nearest neighbours receive 100 % of the source

cell’s spores. In Equation 5.4 this corresponds to both f0 and f1 equal to 1.0, and hence a
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clearly unrealistic 500 % of spores are deposited. In other words, an infection source cell

provides the same force of infection to itself, and to each of its adjacent cells. Whilst these

are just scaling coefficients, the effect of this error is to increase the spread rate, and also

change the shape of the dispersal kernel. With the error the kernel is flat over the source

cell and nearest neighbours rather than decreasing with distance as intended by the original

authors.

The spore deposition error is partially fixed in the SODDr implementation where f0

equals 0.5 and f1 equals 0.125 however, the between cell spores are deposited over the 8

nearest neighbours rather than 4. This leads to 150 % of spores deposited, again physically

impossible. The corrected deposition should use f0 =0.5 and f1 =0.125, over 4 nearest

neighbours. The effect of this is to significantly slow the rate of disease spread, and in turn

forest composition changes, when compared with the results from the paper (Figure 5.4).

In our implementation the realism of the spore deposition is improved further, by

introducing an exponential dispersal kernel. This thin-tailed shape of kernel is more realistic

for pathogens spread by small-scale splash dispersal (Skelsey and Garrett, 2013), as is the

case for P. ramorum. The same proportion of spores (50 %) are deposited within the source

cell as used in Cobb et al. (2012), corresponding to f0 = 0.5. The other 50 % are distributed

according to an exponential kernel with a scale parameter of 10 m. The kernel is normalised

so that total spore deposition across all cells is 100 %. The spore deposition between cells

becomes proportional to:

exp (−dij/σ) , (5.5)

where dij is the distance from source cell to target cell, and σ is the scale parameter. The

choice of 10 m as a scale parameter is somewhat arbitrary, although consistent with distances

of splash dispersal found for P. ramorum (Davidson et al., 2005), and equal to the mean

dispersal distance used by Cobb et al. (2012). This also falls within the 95 % credible

interval found for short scale transmission by Meentemeyer et al. (2011), although they

used a Cauchy type kernel and the best estimate of the dispersal scale was 20 m. We here

use a smaller value to capture very local spread from splash dispersal, particularly given

reports suggest that these larger scale models of SOD tend to overestimate disease spread

(Valachovic et al., 2017b).

Model initialisation

A further problem with the Cobb model is the parameterisation and initialisation of the

system, which leads to unrealistically high recruitment rates and suppression weights for the

smallest tanoak age class. This affects parameters b1,1 and w1,1 in Table 5.1.
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Figure 5.4: Change in dynamics when dispersal in the model is correctly parameterised, with realistic
spore deposition. (a) shows the original dynamics using the implementation from Cobb
et al. (2012). In (b) the dispersal kernel is corrected, using an exponential kernel to
distribute spores across cells. This leads to significantly slower dynamics unless other
parameters are rescaled. (c) shows the same corrected dynamics, but over a timescale of
300 years. This shows how the pattern of dynamics is unchanged by correcting the spore
deposition, but the timescale is affected.

The age specific tanoak suppression weights, w1,i, are fixed such that one quarter of the

space occupied by tanoak is allocated to each age class. With the initial age distribution

used in the BM code this corresponds to the youngest age class, the seedlings, suppressing

recruitment the most. This is clearly unrealistic, since seedlings occupy the least space. We

choose to make the more realistic assumption that suppression scales directly with basal

area. Whilst this is relatively simplistic, it does at least ensure that smaller stems occupy less

physical space. In the paper the initial age distribution, empty space and recruitment rates

are set by running the model over 1000 years and finding parameters that give approximate

dynamic equilibrium. In the BM code this leads to the highest recruitment rate in the smallest

age class. In other words, the tanoak seedlings produce the most seeds. This is despite the

paper claiming that recruitment rates are found under the condition that seed production

increases with age.

To fix the initialisation, we solve for the dynamic equilibrium analytically. By setting

infection rates to zero, we find the initial empty space and age distribution that gives

dynamic equilibrium. We use the recruitment rates from Cobb et al. (2012), but set the
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recruitment rate of the smallest age class to zero. More specifically, in the disease-free case

Equations 5.1a for tanoak in a single cell become:

Ṡ1,1 =
( 4∑
i=1

b1,iS1,i

)
E − d1,1S1,1 − a1S1,1 (5.6a)

Ṡ1,2 = a1S1,1 − d1,2S1,2 − a2S1,2 (5.6b)

Ṡ1,3 = a2S1,2 − d1,3S1,3 − a3S1,3 (5.6c)

Ṡ1,4 = a3S1,3 − d1,4S1,4 . (5.6d)

By setting the left hand side of these equations to zero we impose dynamic equilibrium

within tanoak. With the condition that b1,1 is zero, i.e. the recruitment rate of seedlings,

these are solved to find the empty space and S1,2, S1,3, and S1,3 in terms of S1,1:

E = d1,1 + a1

b1,2A2 + b1,3A3 + b1,4A4
(5.7a)

S1,2 = A2S1,1 (5.7b)

S1,3 = A3S1,1 (5.7c)

S1,4 = A4S1,1 (5.7d)

where

A2 = a1

a2 + d1,2
(5.8a)

A3 = a2A2

a3 + d1,3
(5.8b)

A4 = a3A3

d1,4
. (5.8c)

To find S1,1 we fix the initial proportions of each host type, with p1, p2 and p3 representing

the proportion of hosts that are tanoak, bay or redwood respectively. This gives that:

S1,1 = p1(1− E)
1 +A2 +A3 +A4

. (5.9)

Finally, we fix the recruitment rates of bay and redwood such that those hosts are also in

dynamic equilibrium. Namely:

b2 = d2/E (5.10a)

b3 = d3/E . (5.10b)

Reparameterisation

What effects do these errors have on the model dynamics and conclusions from the 2012

paper? The dominant effect is the change in rate of spatial spread due to the error in spore

deposition. This significantly affects the timescale of SOD invasion, slowing it beyond what
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is considered reasonable for SOD within stands (Figure 5.4). Whilst there is a lack of data

covering spatial invasion rates at the scale of an individual forest stand, the timescales in

Cobb et al. (2012) are broadly consistent with expectations. McPherson et al. (2010) found

infection rates within stand of around 10 % per year in tanoak. Plots were 90 % infected after

approximately 10 years, but the plots have an average size of 1,234 m2 whereas the stand

we are modelling is 200,000 m2. In the original Cobb model the 500 m2 cells adjacent to the

source cell reach 90 % infection after approximately 8 years, consistent with the findings in

McPherson et al. (2010). P. ramorum is known to spread locally via rain splash at distances

of up to 20 m (Davidson et al., 2005), but can be carried much further in rare long distance

dispersal events (Meentemeyer et al., 2011). For within stand spread we will consider only

the short scale spread which corresponds to the invasion reaching the edge of the modelled

20 ha plot after ten to twenty years. This is again consistent with the timescale found in the

original Cobb model, where infection reaches 5 % at the stand edge after 15 years.

With this confidence in the broad timescales in Cobb et al. (2012), we scale the infection

rates in our reparameterised model with fixed dispersal and recruitment to match the original

timescale of invasion found in Cobb et al. (2012). We use the time at which the population

of small tanoak increases above the large tanoak population (crossover time) to define the

rate of invasion. All infection rates in the corrected model are then scaled by the same factor

so that relative rates are kept the same, but the rate of invasion matches that of the original

Cobb model implementation (Figure 5.5). This ensures that the dynamics are correct, with a

realistic kernel distribution, whilst matching the generally accepted spread rates for SOD.

Our choice for defining the timescale using the crossover time was made for simplicity but is

arbitrary. This structural change to forest composition is important ecologically. However,

since the results show that the best fit is very close to the original at all times, other choices

would not give very different results. We note that we also test parameter sensitivity in the

next section.

A summary of all the parameter changes made based on the corrections described here is

given in Table 5.2.
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Table 5.2: Summary of changes made to Cobb model to correct unrealistic aspects of its paramete-
risation. The corrected spore deposition uses an exponential dispersal kernel with scale
parameter, σ =10 m.

Issue Parameters
affected

Original Corrected

Spore deposition f0 1.0 0.5

f1 1.0 ∝ exp (−dij/σ)

(also over other cells
in the landscape)

Recruitment
suppression weights

w1,i 1/4 of space for each Space proportional
to basal area

Recruitment b1,1 Chosen to give dynamic
equilibrium (≈ 0.055)

0.0

Initial conditions S1,i(0) Chosen to give dynamic
equilibrium

Equations 5.7–5.9
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Figure 5.5: Effects of correcting parameterisation and spore deposition kernel, and matching times-
cales. (a) shows the original dynamics in Cobb et al. (2012), with the crossover time
labelled. The crossover time is the time until the large tanoak population falls below
the small tanoak population, and is the metric we have chosen to measure the timescale
of the epidemic. In (b) we show the corrected and scaled dynamics, with the epidemic
timescale matched to that in (a). This is matched by scaling the infection rates, with the
effect of this scaling factor on the crossover time shown in (c). Using the scaled model
and following disease introduction at t = 0 to the centre cell, (d) shows the distance from
the source to the epidemic wavefront, here defined as the furthest cell with an infected
stem density above 0.05. After a short transient (~5 years to 10 years), the epidemic wave
travels at a constant speed. (e) shows the spatial distribution of infected hosts in the
simulation model, 15 years after introduction.

5.2 Mixed species forest dynamics 99



5.2.3 Model sensitivity

Cobb et al. (2012) state that their model is ‘designed to illustrate biotic factors affecting

decline in tanoak populations invaded by P. ramorum and not to predict precise timescales

for extinction’. To confirm that the Cobb model is still realistic after our reparameterisation,

we test how sensitive the dynamics are to the exact parameters chosen. The aim here

is to make sure that the general model dynamics, if not the exact numeric results, are

unchanged for reasonable perturbations in the parameters. We will demonstrate that

whilst the precise dynamics are complex, the overall trends in tanoak decline are robust to

reparameterisation.

To test sensitivity we randomly perturb all parameters in Table 5.1 from the base parame-

ter set. As described before, the empty space, tanoak suppression weights, initial conditions,

and bay and redwood recruitment rates are calculated to give dynamic equilibrium for each

reparameterisation. Using the perturbed parameter set, we run a forward simulation with no

control to predict the future decline of tanoak. Each parameter is perturbed with a normally

distributed error, with standard deviation equal to 25 % of the parameter value. A truncated

normal distribution is used to ensure that parameters are not made negative, which would

be biologically unrealistic. This process is carried out for 200 perturbed parameter sets. The

results are shown in Figure 5.6.
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Figure 5.6: Sensitivity of the model dynamics to parameterisation. Solid lines show the dynamics with
the baseline parameters. The dotted lines show the median from 200 random parameter
perturbations, and the shaded areas show the 5th and 95th percentiles of the distribution.
For clarity small tanoak and redwood are shown in (a), and large tanoak and bay in (b).
In all cases there is significant decline of large tanoak. Note that whilst there is variation,
the overall pattern of host compositional changes remains unchanged.
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These results show that whilst there is variation in the predicted dynamics, the overall

trends are highly consistent. Large tanoak is always predicted to decline significantly over

the timescale considered, with smaller tanoak taking up a larger proportion of the tanoak

age distribution. Bay and redwood are generally expected to increase in numbers, and

certainly increase relative to the tanoak population. This sensitivity analysis confirms that

the dynamics and main trend found in Cobb et al. (2012) are robust, despite the lack of data

for accurate parameterisation.

5.3 Discussion

In this chapter we have corrected, developed and analysed a stand-level (20 ha) model of

SOD-induced tanoak decline, based on a version originally formulated by Cobb et al. (2012).

We have improved the realism of the model through changes in the transmission kernel,

and reparameterisation of the initial conditions and seedling recruitment rates. P. ramorum

spreads spatially by splash dispersal. In the corrected model, the spatial transmission kernel

is implemented as a negative exponential, thin-tailed kernel, as is commonly used in the

literature to model fine-scale processes such as splash dispersal (Skelsey and Garrett, 2013).

Whilst other models use fat-tailed kernels to capture long-distance dispersal of P. ramorum

(e.g. Meentemeyer et al., 2011; Harwood et al., 2009), these models make predictions at

much larger scales than those considered here. In addition to this, as the stand-level model

is deterministic, a fat-tailed kernel would lead to significantly higher—and unrealistic—rates

of spatial spread unless the length scale of dispersal was highly restricted.

Our change to the kernel corrects the unrealistic spore deposition pattern in the original

model. The corrections to the recruitment rates ensure that hosts in the seedling class do

not produce seeds, as well as ensuring that seedlings correctly colonise less physical space

than older trees. We have therefore fixed a pair of problems that were present in the original

implementation. The necessity of these major corrections to the model could bring into

question the validity of the rest of the model. However, the model is parameterised on

data from a large and long-term network of plots—undoubtedly the most complete dataset

for SOD impacts at the stand level. The parameter fits for the demographic processes are

unchanged by the model corrections, and so the corrected model and parameterisation can

be used with confidence. The model has also been used repeatedly in the literature (e.g.

Cobb et al., 2017; Valachovic et al., 2017a; Cobb et al., 2019), and the timescales of tanoak

decline are consistent with other studies (McPherson et al., 2010; Davidson et al., 2005), as

discussed on page 96. When coupled with both our extensive testing and correcting of the

original code, we can therefore be confident in the conclusions made and the underlying

model dynamics. The particular parameterisation is of little importance, since we have

demonstrated that the host composition dynamics are robust to parameter perturbations.
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Since the dynamics of pathogen spread are largely insensitive to the exact paramete-

risation, and the improved transmission kernel only significantly affects the timescale of

invasion, it could be asked why these corrections to the model are necessary at all. Firstly,

the corrections are necessary for completeness. The model we have implemented has more

realistic parameters than the original implementation, and by not imposing an artificially

severe truncation in pathogen dispersal, results in more realistic patterns of spread. More

importantly though, these corrections could have an effect on the dynamics under a disease

management intervention. As we will explore in more detail in the following chapter, the

optimal control strategy is likely to depend on the pattern of spread (Hyatt-Twynam et al.,

2017) which is in turn affected by the choice of transmission kernel. The recruitment rate

corrections are likely to affect the age distribution of tanoak after control strategies are

carried out. It is therefore important that the underlying model is as accurate as possible

before conclusions can be made about optimal control strategies.

Despite the large dataset underpinning the original publication of the model, there are

data limitations that affect the model structure. There is very little data tracking the size

progression of bay laurel and redwood trees. There is sufficient data to parameterise the

four age classes within tanoak, but without additional data it is difficult to test whether the

results are sensitive to the number of age classes implemented. The main difference between

age classes is the higher pathogen-induced mortality for the oldest class. The change in

this parameter through the four age classes suggests that fewer age classes would not be

sufficient. It seems unlikely that additional classes would change this structure significantly,

but there is little data to support this.

Other parameters in the model are somewhat arbitrary, for example the scale of dispersal.

This is again due to a lack of data; here a lack of detailed infection timings at a fine

spatial scale that would allow parameterisation of a small-scale transmission kernel. Other

parameters from the original model could vary between plot locations, and the justification

for the relative infection rates in Cobb et al. (2012) is minimal. We have demonstrated

that these parameterisations have little impact on the overall dynamics, but they could

have an impact on interpretation. Optimal control results must be interpreted taking these

uncertainties into account, and tested for robustness, if the results are to be used in the real

world. However, the current parameterisation does offer a plausible baseline for which the

potential impact of OCT can be assessed, in time perhaps motivating the data collection

necessary for further model parameterisation.
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5.4 Conclusions

In this chapter we analysed and tested a model of SOD spread within a 20 ha forest

stand, with a focus on the decline of overstorey tanoak. The model has been reparameterised

to more realistically capture spatial spread, whilst maintaining the previously fitted rate

of invasion. Having justified the underlying dynamics, the model will be used to answer

questions about optimising disease control in the next chapter.
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6Optimising stand-level disease
control to protect tanoak

6.1 Introduction

In the previous chapter we implemented a model of stand-level SOD dynamics. We adap-

ted the Cobb model (Cobb et al., 2012) to incorporate realistic spatial dispersal properties,

and reparameterised it to ensure the invasion timescales were still realistic. We now have a

simulation model representative of SOD spread within a mixed species forest stand. In this

chapter, we ask how control strategies can be optimised using this model, addressing the key

question of how time-dependent controls should be deployed to best protect tanoak. As in

Chapter 4, we will require an approximate model to optimise control since the simulation

model is too complex. We will then use the open-loop and MPC frameworks we previously

developed to integrate control strategies into the simulation model, and demonstrate the

importance of continued surveillance for effective control.

Using our optimal control frameworks we will explore which control methods are most

effective, and how deployment should vary over time. Most importantly, we will look at the

effects of parameter and observational uncertainty on control efficacy, testing under which

conditions MPC outperforms open-loop1.

6.2 Stand-level disease control

In this section we describe the methodology for optimising control in the mixed stand

model. We develop a non-spatial approximate model of the dynamics, incorporating thinning,

roguing, and protectant controls. These are then optimised and applied using the open-loop

and MPC frameworks. It is first necessary to quantify the effectiveness of a given strategy by

defining the purpose of control in this system.

1All code for this chapter is available at https://github.com/ehbussell/MixedStand
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6.2.1 Management objectives

As described in Section 5.1, it is important to retain tanoak in the forest stand due to

its high cultural and ecological value. We therefore investigate strategies for specifically

protecting tanoak, aiming to maintain a population of healthy overstorey tanoak trees in the

stand over the medium- to long-term. Following the timescales in Cobb et al. (2012) we

look at preventing decline of tanoak over a time horizon (T ) of 100 years. Since the focus of

the control is to ensure tanoak still exists in the future, we treat this as a terminal objective

function. By this, we mean that the goal is to maximise the number of healthy overstorey

tanoak trees at the end of the time horizon—i.e. after 100 years—rather than integrated

over that time period.

This objective does not capture everything that is important to maintaining a healthy

forest though. A control strategy that protects overstorey tanoak to the detriment of all

other trees is clearly suboptimal, and this should be accounted for in the objective function.

Trees in forests are important for wildlife habitats and food sources, recreational uses and

carbon fixation (Swiecki and Bernhardt, 2013), and maintaining diversity ensures that these

and other important ecosystem services are provided (Cadotte et al., 2011; Gamfeldt et al.,

2013). Beyond this, diverse forests are more resilient to other disease threats (Keesing et al.,

2010); there is little point to a control strategy that protects tanoak from SOD but makes the

forest vulnerable to attack from another pathogen. The management goal must therefore

capture a balance between protection of tanoak, and continued host diversity for provision

of ecosystem services. The balance between these two objectives, however, will depend on

the overall local management goals for the forest stand in question and economic valuation

of the ecosystem services (Thompson et al., 2011).

There are many possible measures of diversity that could be used as part of the manage-

ment objective. One measure that is very popular in the ecological literature is the Shannon

index (Magurran, 2004, pp. 106–108). The Shannon index originates in information theory,

based on the idea that diversity is a measure of the expected information content when

observing the species of a random individual. The Shannon index H ′ is calculated using this

equation:

H ′ = −
∑
i

pi ln pi (6.1)

where pi is the proportion of individuals in species i. It measures both species richness and

species evenness, so is suited to our application in which the number of different species and

evenness across species are both important. The Shannon index can be transformed into a

value with more biological meaning: the effective number of species (ENS). This measures
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how many equally common species would be required to achieve the same level of diversity,

and for the Shannon index H ′ is given by:

ENS = exp(H ′) . (6.2)

We seek a control scheme that maintains ecosystem services. The relationship between

biodiversity and ecosystem services is complex (Maes et al., 2012) but the two are most

often positively correlated, particularly when the services provided are carbon sequestration

and biomass production as in forestry (Paul et al., 2020). We therefore use the Shannon

index measure of biodiversity as a proxy for ecosystem services. To maintain ecosystem

services it is important that diversity is maintained throughout the simulation time. This

ensures that further diversity is not lost in wildlife and other plant life during the epidemic.

We therefore choose this to be an integrated metric, integrated over the full time horizon

T . Overall then, our management objective is made up of a terminal term corresponding

to preserving healthy large tanoak, and an integrated term to maintain maximum diversity

across all times. The mathematical form of the objective is given by:

J = γ1 (S1,3(T ) + S1,4(T ))− γ2

(∫ T

t=0

∑
i

pi ln pi dt
)

(6.3)

where S1,3 and S1,4 are the densities of healthy tanoak in the third and fourth age classes

respectively, and γ1 and γ2 are the weights associated with the tanoak retention and diversity

conservation objectives respectively. There is an arbitrary choice in the balance between

these two terms, which must be chosen by a policy maker or forest manager. In our case the

weights are set such that in the disease free case, the contribution of the tanoak retention

and biodiversity terms to the overall objective function are equal to 1 and 0.25 respectively.

Whilst this is an arbitrary choice, we scan over the relative diversity benefit (γ2) later in

Section 6.3.2.

6.2.2 Control methods

Many different methods are recommended for controlling the spread of P. ramorum

(Swiecki and Bernhardt, 2013). However, the methods can be grouped into three main

classes: roguing, thinning and protecting. Roguing methods are based on finding and

removing infected hosts, whereas thinning methods remove hosts regardless of infection

status. Removal of hosts, either through thinning or roguing, is the only control that has been

effective at the landscape scale (Hansen et al., 2008). Management recommendations made

by the U.S. Forest Service highlight removal of the spreader species bay as very important for

effective control (Swiecki and Bernhardt, 2013), but also recommend removal of infected

hosts.
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Whilst host removal is the only effective method at the landscape scale, protection

methods could also be useful at the smaller scales of a single forest stand. These methods

apply chemicals to uninfected trees to reduce their susceptibility to the disease. For SOD

the main protectants used are phosphonates, that are approved for use on oak and tanoak

species. The treatment only works as a preventative measure but it is recommended for

protecting individual hosts (Lee et al., 2010). Reports of the effectiveness of phosphonate

treatment vary, but most studies suggest it does slow infection (Swiecki and Bernhardt,

2013). Application by bark-spray or trunk injection is reported to be effective for up to

around two years (Garbelotto and Schmidt, 2009), but evidence is lacking for the impact on

host susceptibility. There are also conflicting reports about its efficacy, with some studies

finding little effect of treatment (Kanaskie et al., 2011). Here we will assume a mild effect

of 25 % reduction in susceptibility.

Roguing controls can be applied separately to infected small tanoak, large tanoak and

bay laurel. The hosts are removed and do not resprout, consistent with application of a

herbicide to the stump as is often recommended (Swiecki and Bernhardt, 2013). Thinning

removes hosts of all infection status, and can be applied separately to small tanoak, large

tanoak, bay and redwood. Protection can only be applied to small and large tanoaks, and

only to susceptible hosts. These hosts are moved into new protected class with the same

demographic dynamics (i.e. there is a protected class P1,i for each age class i of tanoak). The

protected classes have reduced susceptibility (by 25 %) but return to the susceptible class at

a rate of 0.5 year−1. This corresponds to an average time of 2 years before protection wanes.

Given the lack of evidence for the rate of loss of protection, we here use an exponentially

distributed time until immunity wanes for simplicity. Table 6.1 summarises all the control

methods and their effects.

Budget constraint

For each of the 9 controls in Table 6.1, we seek a time-varying control parameter fi(t)

between zero and one, indicating the level of control i that minimises the management

objective function. To model economic and logistic constraints we limit the total expenditure

per unit time, where this is the product of the number of hosts controlled and the cost of

that control method. The mathematical form of this constraint is given by:∑
i

(fiηiXi) ci ≤ B (6.4)

where Xi is the stem density of the controlled hosts. For example, for roguing of small

tanoak Xi would be (I1,1 + I1,2). The term in brackets is therefore the rate of removal of

hosts for each control. The relative cost of each control is given by ci (measuring the cost
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Table 6.1: Possible control methods implemented in the stand-level model. There are three main
groups of control: roguing, thinning and protecting, and these can be targeted at different
host groups. Approximate costs of each control are taken from Kovacs et al. (2011), but
roguing costs are increased to account for additional costs of identification and removal of
unstable diseased trees.

Control State changes Rate ηI / year−1 Cost ci / a.u.

Rogue small tanoak I1,1–2 → ∅ 0.25 3000

Rogue large tanoak I1,3–4 → ∅ 0.25 6000

Rogue bay I2 → ∅ 0.25 6000

Thin small tanoak {S, I, P}1,1–2 → ∅ 1.0 250

Thin large tanoak {S, I, P}1,3–4 → ∅ 1.0 500

Thin bay {S, I}2 → ∅ 1.0 500

Thin redwood S3 → ∅ 1.0 500

Protect small tanoak S1,1–2 → P1,1–2 0.25 200

Protect large tanoak S1,3–4 → P1,3–4 0.25 200

of treatment per unit host density in arbitrary units) and the maximum budget is given by

B. Whilst the costs are chosen somewhat arbitrarily because of a lack of data, the scales

are informed by the results of Kovacs et al. (2011). We include higher costs for roguing to

capture the additional costs with identification and removal of unstable infected trees.

6.2.3 Approximate model

Optimisation of the chosen management objective using all nine time-dependent controls

is computationally infeasible using the full spatial model. To allow progress we use an

approximate model and lift control results from this simpler optimisation back to the

simulation model, using the methods described in Chapter 4. Here we choose to make the

approximate model non-spatial, so as to significantly reduce the state-space for optimisation.

Further approximations could be possible, for example grouping together the age classes

within the small and large tanoak groups. To ensure that we can lift demographic parameters

directly from the simulation model however, we only change the spatial structure of the

model. The approximate model therefore assumes that all hosts in the forest stand are

well-mixed.

As all other features of the model are retained, the form of the equations is very similar

to that of the simulation model (Equations 5.1a) so we will not repeat them here. The only

difference is that in the approximate model the dependence on cell (x) of the states and

empty space (E) has been dropped. The form of the force of infection terms is simpler since

infection no longer spreads between cells. The infection rates in the non-spatial approximate
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model cannot be lifted from the simulation model, since the approximate model now assumes

infection comes from all infected hosts in the stand rather than just those in the immediate

spatial vicinity. The force of infection terms in the approximate model into tanoak and bay

laurel are therefore:

Λ̃1,i = β̃1,i

4∑
j=1

I1,j + β̃12I2 (6.5a)

Λ̃2 = β̃21

4∑
j=1

I1,j + β̃2I2 (6.5b)

where the sum is over tanoak age classes, and β̃ indicates infection parameters that need to

be fitted to the simulation model.

Fitting infection rates

The seven infection rates β̃ are the only parameters that must be fitted to the simulation

model. The approximate model cannot capture the heterogeneous mixing present in the

simulation model, however, the approximated dynamics may be accurate enough to give

effective control strategies when optimised. We use the method of least squares to match the

simulation and approximate models, as both models are deterministic. To fit the parameters,

the simulation model is used to run a single trajectory with no control interventions. For the

fitting process we use the same initial conditions as described in the previous chapter, with

infection seeded in the centre of a 20 by 20 grid of cells. The disease progress curves of this

simulation realisation are then used as the baseline for fitting the approximate model. For

a trial set of β̃ parameters and an approximate model trajectory, we calculate the sum of

squares as the sum of squared deviations between the simulation and approximate disease

progress curves for each age class of tanoak, and for bay, at time points throughout the

trajectory. The β̃ parameters are then optimised by minimising this total summed squared

error (SSE). For a set of time points ti, and where approximate model states are signified

with a tilde, the equation for SSE is given by:

SSE =
∑
i

 4∑
j=1

(
I1,j(ti)− Ĩ1,j(ti)

)2 +
(
I2(ti)− Ĩ2(ti)

)2

 (6.6)

where the dependence on cell in the simulation terms has been dropped to indicate an

average over all cells in the landscape, for example:

I1,j(t) =
∑
x I1,j,x(t)
Ncells

. (6.7)

An average is used so that the approximate model tracks stem density in the same units as

the simulation model.
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In the simulation model, infectious pressure is dominated by sporulation from bay laurel.

This makes estimation of all ‘within-tanoak’ infection rates (β1,i) difficult, as from the

simulation data they are individually unidentifiable. We therefore use a two stage fitting

process. For the first stage, all infection rates in the simulation model related to bay (β2, β12,

and β21) are set to zero. This makes bay epidemiologically inactive, but maintains the same

demographic dynamics. The simulation model is run using these parameters, and the SSE is

minimised to find the within tanoak-infection rates.

In the second fitting stage all infection rates are fitted, with bay epidemiologically active

again. The within-tanoak rates relative to β1,1 from the first stage are used as a constraint to

ensure the identifiability of these rates. This means a single within-tanoak rate is fitted in

stage 2, with all other within-tanoak rates fixed relative to this using the results from stage

1. This stage also fits the bay infection rate, and the cross-species infection rates.

As can be seen in Figure 6.1, despite lacking any spatial component, the approximate

model can very closely capture the uncontrolled dynamics of the simulation model. However,

the approximate model should also fit as accurately as possible when control strategies

are introduced. In Figure 6.2, the fit of the approximate model is tested under constant

control strategies using fixed control rates. It is clear that roguing at the same rate is more

effective in the approximate model. This is because of the difference in mixing between the

approximate and simulation models. The effect is small for thinning and protecting, but

the same level of roguing in the approximate and simulation models gives very different

dynamics.

Empirical parameterisation of control

Roguing is less effective in the simulation model because of an imposed spatial structure in

the non-spatial control strategy. Roguing in the simulation model removes infected hosts

from the core and edge of the spreading epidemic. Removal of hosts from the core has

little effect on the rate of epidemic spread, since they are not near the wavefront. In the

non-spatial model however, all hosts are well-mixed, so removal of infected hosts has a

larger effect.

As a simple correction for this difference in roguing effectiveness, we investigate a simple

scaling of the roguing rate in the approximate model. To test the plausibility of a single

scaling rate for all approximate roguing controls, both models are run with constant roguing

strategies. Roguing of small tanoak, large tanoak and bay are all set to occur at the same rate

for the whole simulation, and this rate is varied between simulations. In the approximate

model, the control rate is scaled by a single parameter which is also varied, and we analyse

the difference in the final number of healthy large tanoak after 100 years between the
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Figure 6.1: Fitting of the approximate model to match the output of the simulation model. (a) shows
the overall stem density for each species class, with the dashed line showing the fitted
approximate model. The fit is carried out by matching the disease progress curves as
shown in (b).

simulation and approximation (Figure 6.3). To minimise the deviation across a range of

control rates, the value of the scaling parameter is optimised. We optimise the deviation in

the number of large healthy tanoak, since this is the primary objective of the control and

must therefore be captured as accurately as possible. The optimisation minimised the sum

of squared errors (SSE) over the range of control rates.

The results in Figure 6.3 show that a single scaling factor can largely eliminate the

deviation under constant roguing strategies. We do not expect this scaling to ensure that

the approximate model is always closely aligned to the simulation model, particularly once

control strategies are time-varying. The approximate model simply cannot capture the

heterogeneities in host mixing. This scaling does however go some way to ensuring that

control strategies from the approximate model perform well on the simulation model.

6.2.4 Control frameworks and lifting

In Chapter 4 we introduced the open-loop and MPC control frameworks. These same

frameworks are tested here. To aid convergence, the controls inputs fi are constrained in

the optimisation to be held constant over 5 year stages. The main difference from Chapter 4

in applying the control frameworks is how controls are lifted from the approximate model to

the simulation model. The budget constraint is a mixed constraint that couples the control
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Figure 6.2: Testing of approximate model under constant control strategies. The rows from top to
bottom show dynamics under constant roguing, thinning, and protecting strategies. The
left plots show overall host dynamics, and the right plots show the infected host dynamics.
The roguing and protecting strategies control at the maximum rates from Table 6.1,
whereas the thinning strategy controls at 10 % of the maximum rate. The approximate
model fits well under constant thinning and protecting strategies, but less well under a
constant roguing strategy.
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Figure 6.3: Empirical scaling of approximate model control rates to match simulation output. (a)
shows the difference in the final number of large healthy tanoak as a function of the
constant roguing rate, for a number of control rate scaling factors. The optimal value
minimises the sum of squared errors (SSE) over all rates, as shown in (b), and is found
to be 0.682 (3 s.f.). (c) and (d) show the dynamics with the newly scaled approximate
control rates, under a constant roguing strategy. The approximate model now fits the
overall host dynamics well, but to do this slightly overestimates the level of infection.

inputs (fi) with the state of the system (Xi). When the control inputs are lifted to the

simulation model, there is no guarantee of the states being exactly the same, and so the

expenditure by the control will not be the same. This can mean that direct lifting of the

control inputs will lead to the budget being exceeded. When the budget is exceeded, the

control inputs are multiplied by a factor to reduce the overall expenditure to meet the budget

constraint. This avoids imposing a priority amongst control methods which would have
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to be chosen arbitrarily. In mathematical terms, the corrected control inputs (f ′i) from the

approximate model depend on the state in the simulation (Xi) in the following way:

f ′i = fi
B∑

j (fjηjXjcj)
. (6.8)

This is only the case when the budget is exceeded, otherwise the control inputs fi are used

directly. We do not correct for under-allocation of resources, i.e. control inputs not spending

the entire budget, since this could lead to extra control not accounted for in the approximate

model. In practice correcting for this would lead to extra resources allocated to thinning,

and hence removal of more healthy trees than is necessary.

6.3 Results

6.3.1 Optimal strategies

We first show the optimal strategies found using OCT on the approximate model. The

strategies are lifted to the simulation model using the methods described above for both

open-loop and MPC frameworks. Note that here control starts 6 years after the initial

conditions used for fitting. This is to allow time for the disease to become established,

making detection of the epidemic more likely. The initial conditions are therefore found by

running the simulation model with no control for 6 years.

Open-loop strategies

The open-loop framework carries out control optimisation on the approximate model, and

this strategy is then lifted to the simulation for the full duration of the epidemic. The strategy

found using OCT when applied to the simulation is shown in Figure 6.4(a). The strategy

focusses on thinning of bay, followed by thinning of redwood, early in the epidemic. Roguing

is carried out throughout the epidemic but at a rate which increases towards the end. This

is because late in the simulation infection re-emerges, so roguing uses more of the budget

than anticipated by the approximate model. There are more infected hosts in the simulation,

so it costs more to remove them. This can also be seen in Figure 6.4(b), where towards

the end of the epidemic in the simulation, there is a decline in the tanoak numbers. This

is not captured by the approximate model that anticipates tanoak numbers continuing to

increase.

The open-loop strategy carries out a large amount of thinning early in the epidemic. As

can be seen in Figure 6.5(a), this severely impacts the stand diversity. Over the course of the

epidemic though, the diversity in the simulation returns to close to its initial value. In the

approximate model diversity is not expected to recover as much. This reduction in diversity
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Figure 6.4: Optimal allocation of control resources using the approximate model. (a) shows the
allocation over time to each control method using the open-loop framework. Control
proportions (fi) are fixed over 5 year intervals, but as the number of hosts changes during
each interval, this leads to variable expenditure over the 5 years. Greyed out control
methods in the legend are not used in either strategy. Heavy thinning of bay and then
redwood is carried out early in the epidemic, with protectant controls only used once
resource intensive thinning has been completed. In (b) the corresponding host dynamics
are shown for both the simulation and approximate models. The approximation degrades
towards the end of the epidemic, leading to unanticipated tanoak decline in the simulation.
The blue bar highlights the difference between the approximate and simulation models
in the density of large tanoak. (c) shows the MPC resource allocation, updated every 20
years, with a similar pattern to the open-loop strategy. However, additional thinning is
carried out after each update later in the epidemic to manage the bay population. The
corresponding host dynamics in (d) show that MPC repeatedly resets the approximate
model trajectory, allowing more informed control decisions. This minimises the tanoak
decline seen using open-loop, and gives a much lower error in the estimate of large tanoak
stem density (blue bar).
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is balanced though, by the retention of tanoak in the stand. As shown in Figure 6.5(b), the

approximate model expects the control strategy to restore the full tanoak population, and

increase it above its initial value. It is able to do this in the approximate model as disease is

eliminated early, and healthy tanoak can grow into the space made available by the thinning

of bay and redwood. This does not happen in the simulation model however, where the late

re-emergence results in rapid decline of large healthy tanoak over the final 20 years. Despite

this, the open-loop strategy shows a significant improvement over the dynamics under no

control intervention. The strategy slows the spread of disease, keeping tanoak in the forest

population for an additional 80 years.

MPC strategies

In the MPC framework the approximate and simulation models are run concurrently, with

the approximate model reset to match the simulation and re-optimised at regular update

steps. These updated controls are then lifted to the simulation model going forward until

the next update time. We first test the MPC framework with updates every 20 years. For the

first 20 years the control is exactly the same as the open-loop strategy (Figure 6.4(c)), since

it is lifted from the same optimisation. After this, though, updates result in increased levels

of thinning. In particular, after the updates at 60 and 80 years there is significant thinning

of bay. This is to stem increased infection in bay, and keep the late disease re-emergence

under control. As can be seen in Figure 6.4(d), the updates ensure the approximate model

dynamics more closely match the simulation, compared to under open-loop control. The

extra thinning of bay slows the disease re-emergence and there is less decline in tanoak

numbers.

Figure 6.5(a) and (b) show the diversity and tanoak retention under MPC. MPC is

more damaging to diversity than open-loop. Although the approximate model incorrectly

still expects tanoak numbers to increase after each update, keeping the model close to the

simulation dynamics does improve control. The MPC framework retains approximately 60 %

of the original tanoak population after 100 years. Open-loop only retains 15 %. Figure 6.5(c)

shows that both control frameworks significantly reduce the amount of empty space in the

forest stand by removing trees (note that empty space does not map directly to physical space

since it depends on seedling suppression, for example by light and water requirements). To

control the disease the tree density is approximately halved, but this is still consistent with

observed stand densities (Cobb et al., 2012). Figure 6.5(d) compares the objective function

values for open-loop, MPC, no control, and without any disease. We can see that MPC lowers

diversity performance slightly compared to open-loop, but in doing this retains significantly

more tanoak.
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Figure 6.5: Comparing performance of the open-loop and MPC frameworks. (a) shows the effect of
control on the biodiversity in the forest stand, presented as the effective number of equally-
common species. Any control—be it optimised via open-loop or MPC—is damaging to
diversity, but MPC in fact has a slightly larger impact. The simulation and approximate
model dynamics are shown, with the approximate model resetting every 20 years under
MPC. (b) shows the stem density of healthy large tanoak over time, with significant
decline under no control. The open-loop strategy slows tanoak decline, but MPC is more
effective. (c) shows the changes to empty space in the forest stand caused by the control.
In (d) the overall performance of the strategies as measured by the objective function is
shown. MPC is slightly more damaging to diversity than open-loop, but this is balanced
by retaining significantly more healthy tanoak.
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Since the updates in MPC improve control, an important question is how often to update

the approximate model. Figure 6.6(a) shows the effect of changing the update period on

the objective. We can see that as updates are made more frequent, control performance

generally improves. This is because the approximate model can more closely match the

simulation and hence appropriate control decisions can be made. There is, however, a dip

in performance at update periods of around 50 years. This is due to the precise timing of

the updates. The late disease re-emergence occurs after around 80 years. Update periods of

around 50 years will not update close to this outbreak, and so the MPC framework cannot

respond to that unexpected increase in infection. This results in ineffective control.

Figures 6.6(b) and (c) show the MPC control for update periods of 5 and 100 years

respectively. The low frequency update corresponds to open-loop control. We can see that

the main difference as update frequency increases, is additional continued thinning of bay.

This results in less roguing being required later in the epidemic.
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Figure 6.6: Effect of the MPC update period on control performance. (a) shows the objective value
as a function of how often the MPC re-optimises control. Reducing the time until the
next update generally improves control, although update periods of around 50 years
perform worse than expected. This is because these periods do not update close to the late
outbreak, and therefore miss the unexpected increase in infection. (b) and (c) show the
control allocations for update periods of 5 and 100 years respectively. The low frequency
control here corresponds to open-loop control. The high frequency control results in more
continued thinning than in the low frequency control.
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6.3.2 Robust control

In this section we test the robustness of the results so far. In particular, we analyse

how parameter choices affect the control strategies selected by the open-loop and MPC

frameworks, and their performance. We then investigate how the open-loop and MPC

frameworks handle uncertainty in parameters and imperfect state estimation, i.e. not carrying

out perfect sampling of the forest stand at the MPC update steps. These robustness analyses

are important since the data available for fitting within-stand dynamics is limited.

Budget sensitivity

First we analyse the effect of the budget constraint. The maximum expenditure was chosen

arbitrarily, so how much effect does it have on the optimal control strategy? Figure 6.7

shows that in general the control strategy does not depend strongly on the budget. Across

all budgets apart from the very smallest, largely the same set of control methods is used. As

the budget increases, open-loop can allocate more resources to thinning, and with improved

control both frameworks increase resources allocated to protection. It can also be seen that

performance generally increases with increasing budget as might be expected. Kinks in this

trend are due to some levels of control leading to a closer fit between the simulation and

approximation, and hence improved control. At very high budgets control performance

starts to degrade with budget. This is because in these cases the control is very effective

in the approximate model, and so less control is carried out resulting in worse control in

the simulation. As explained on page 112, under-allocation of resources is not corrected

for, although in this case the problem arises because a higher proportion of the available

resources is allocated to protective controls. This results in less resource allocated to roguing,

and hence less effective control.

Interestingly, at very low budgets—where neither control framework is very effective—we

see thinning of small tanoak. In these cases there are not enough resources to control the

disease effectively with roguing of tanoak alone. The next best option in this case is thinning

of small tanoak, which reduces infection but also reduces numbers of healthy tanoak. This is

therefore only chosen as a control method when roguing alone is not enough, and only in

small amounts.
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Figure 6.7: Effect of resource budget on control. (a) shows overall allocation of resources to each
control method as a function of the maximum budget. Left hand bars show the results
for open-loop, right hand bars for MPC. We can see that MPC generally allocates more to
thinning, and requires less roguing. (b) shows the corresponding simulation objectives for
the open-loop and MPC frameworks. Control generally improves as the budget increases.
Interestingly, at the lowest budget resources are allocated to thinning of small tanoak, as
shown in (c).

Diversity benefit sensitivity

Next we test the sensitivity of the control strategies to the relative importance of biodiversity

conservation and tanoak retention. By default, the diversity benefit is chosen such that in

the disease free case, the diversity term will be 25 % of the tanoak retention term in the

objective function (as described in Section 6.2.1). In Figure 6.8 the control allocations and

performance are shown, scanning over relative diversity benefit from 0 to 100 %. It can

be seen that, unsurprisingly, the best protection of tanoak, using both open-loop and MPC

frameworks, is possible when there is no diversity benefit. As the diversity benefit increases,

open-loop allocates fewer resources to thinning, and performance degrades. MPC on the
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Figure 6.8: Changes in control strategy and performance as the relative benefit of diversity is changed.
(a) shows overall allocation of resources to each control method as the diversity benefit
is varied. (b) shows the stem density of large healthy tanoak retained in the stand.
Low diversity benefits result in more thinning, but improved retention of tanoak in the
open-loop case. MPC is able to respond to changes in diversity and retain tanoak for all
values of the diversity benefit.

other hand, is able to adapt and maintains high levels of tanoak protection through to the

highest diversity benefits.

In Figure 6.9 we compare the control strategies and host dynamics with no diversity

benefit, and the highest level of benefit. We can see that when there is no benefit to diversity

protection, high levels of thinning are carried out that remove all bay and redwood trees.

This leads to very effective disease control but for many forest managers and conservationists

this would be an unacceptable cost to slow decline of a single important species Noss (2000).

This demonstrates why diversity should be accounted for in the management objective. At

the highest diversity benefit all species are retained in the system, but under open-loop

control the disease is not controlled well towards the end of the epidemic. The same patterns

are seen with the MPC framework, but the updates allow tanoak retention whilst also

preserving diversity.
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Figure 6.9: Open-loop control and host dynamics are shown for low diversity benefit ((a) and (b))
and high diversity benefit ((c) and (d)). Additional thinning is carried out when diversity
benefits are low, resulting in complete removal of all bay and redwood trees. Similar
strategies are seen using the MPC framework.

Parameter sensitivity

We next analyse the sensitivity of the control strategies to the underlying model parame-

terisation. As in Section 5.2.3, all parameters from Table 5.1 were randomly perturbed

using a truncated normally distributed error with standard deviation of 25 %. For each

perturbed parameter set the approximate model was re-fitted, and control optimised using

both the open-loop and MPC frameworks. The control strategies are compared across

parameter sets by visualising the proportion of the budget that is allocated to each control

class (thinning, roguing and protecting) over time. By sorting the parameter sets according
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Figure 6.10: Sensitivity of the open-loop control strategy to parameterisation. Each row corresponds
to a single random parameter perturbation, with the rows ordered by the objective
value under open-loop control. (a) shows the change in objective from the baseline
parameterisation, with negative values shown in orange signalling worse epidemics. (b),
(c) and (d) show the allocation of control resources over time to thinning, roguing and
protecting control methods respectively. All strategies carry out thinning early in the
epidemic, with roguing throughout and protection only after thinning is carried out.

to the objective function value, we test for any systematic differences in control strategy, for

example variation in thinning intensity with epidemic size.

Figure 6.10 shows the ordered control strategies using the open-loop framework. There

is a very clear shared structure to all control strategies, with thinning always carried out

early in the epidemic. Roguing is used throughout, and protection is only used once resource-

intensive thinning has lowered bay and redwood densities enough for disease suppression

and tanoak promotion in the approximate model. There is no strong systematic pattern to

the strategies once ordered by objective value.

Figure 6.11 shows similar results using the MPC framework. Here we can clearly see the

additional thinning carried out over the course of the epidemic for many of the parameter

sets. The strategies remain similar in structure, with most of the thinning carried out early

in the epidemic, roguing throughout, and protection after the initial thinning regime. The

difference in objective is here calculated relative to the baseline MPC strategy. Once again,

there is little systematic structure when ordered by objective.
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Figure 6.11: Sensitivity of the MPC strategy to parameterisation. As in Figure 6.10, the control
allocations are shown ordered by objective value, but here using the MPC framework
updating every 20 years. Additional thinning is seen compared to open-loop, but no
strong systematic pattern is seen.

Parameter uncertainty

In reality, precise values of infection rates are never known. These parameters are often

fitted to limited data with Bayesian techniques, giving a probability distribution of values

(e.g. Kleczkowski and Gilligan, 2007; Parry et al., 2014; Thompson et al., 2018; Cunniffe

et al., 2014). In this section we test how the open-loop and MPC frameworks handle this

type of uncertainty in the system dynamics. Uncertainty is introduced by sampling values

from a distribution of infection rates for each species in the simulation model. What benefit

does feedback in the MPC framework have when the approximate model cannot accurately

capture the dynamics of each individual realisation?

The parameter distribution is chosen to be normal (truncated so that infection parameters

remain positive), and the standard deviation for each infection rate is set to 40 % of the

parameter value. The approximate model is re-fitted to an ensemble of 200 simulations

(Figure 6.12(a) and (b)), with each simulation using a set of infection rates drawn from the

distribution. The approximate model uses the same roguing rate scaling factor as previously

found (Section 6.2.3, page 111).
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Figure 6.12: The effect of parameter uncertainty on control performance. The approximate model is
fitted to an ensemble of simulation runs without control, with infection rate parameters
drawn from a truncated normal distribution. (a) shows the ensemble and fitted infected
tanoak dynamics, and (b) the ensemble and fitted infected bay dynamics. (c) shows the
distribution of objective values using open-loop and MPC across 200 draws of simulation
parameters. The absolute improvement of the MPC strategy over open-loop is shown in
(d), as a function of the open-loop objective. The MPC framework performs well in the
worst-case scenarios, improving control to the largest extent when open-loop performs
badly. Four individual cases have been highlighted in panels (c) and (d). Further details
for each of these, highlighting how rates of spread drive the differences in performance,
are shown in Appendix B.1, p. 185.

To test control on these parameter distributions, the fitted approximate model is used

to run the open-loop and MPC frameworks for a single draw of infection rates from the

distribution. This is repeated for 200 draws from each distribution. The distribution of

the resulting objective values under the open-loop and MPC frameworks shows that MPC

improves the worst-case scenarios, i.e. the MPC updates are most beneficial when the disease

is hardest to manage (Figure 6.12(c)). The open-loop framework gives a distribution of

objectives with a worse minimum value than MPC. The continued surveillance of MPC

generally improves control, but the greatest improvements are seen when the epidemic is

difficult to control, making the open-loop framework ineffective (Figure 6.12(d)). When

objective values are high, and so the epidemic is easy to control, there is little difference
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between open-loop and MPC. MPC is therefore useful for limiting the worst-case scenarios

under parameter uncertainty, highlighting the importance of continued surveillance when

disease progression cannot be predicted accurately.

In the open-loop case there is a large peak at very low objective values. In these cases

the control strategy fails to manage the epidemic and almost all tanoak is lost. The peak is

less prominent in the MPC case since the updates allow control to respond to unexpected

changes. This can result in more intermediate performance because outbreaks can be caught

at an earlier stage.

Observational uncertainty

The re-optimisation of control in the MPC framework requires accurate information about the

current state of the forest at each update step, i.e. every 20 years by default. However, full

forest stand surveys are expensive: a cost that is not accounted for in the budget constraint.

We test here whether the intensity of these update surveys can be reduced whilst maintaining

effective control, and whether open-loop strategies can ever outperform MPC with low

quality surveillance.

At each MPC update time a proportion of the forest stand is sampled. The measured

state is then used as the initial condition in the approximate model for re-optimisation of the

control. For the sampling, each cell in the simulation model is split into 500 1 m2 discrete

units. Surveillance at update times is then carried out by observing a fixed number of units

in each cell across the landscape, without replacement. The infection status of tanoak and

bay hosts is determined randomly, with probabilities matching the proportion of that host

that is infected.

As the proportion of area sampled decreases, the uncertainty in the outcome of MPC

increases (Figure 6.13(a)). The median performance of MPC also decreases. This is because

as less of the forest is sampled, there is a higher chance that infected hosts will be missed

during surveillance, and so the rate of disease spread will be underestimated. We introduce

a fixed cost per unit area sampled for the update step surveys, and negate the objective

function value as a measure of management benefits. The overall cost is then given by:

cost = k1Np− k2J (6.9)

where k1 and k2 are arbitrary constants, N is the number of surveys carried out surveying

a proportion p of the forest, and J is the management objective function. The choice

of constants k1 and k2 is arbitrary, and must be carried out by a forest manager since it

balances management and surveillance costs with diversity and tanoak retention benefits.

We here choose, as an example, k1 = 10 and k2 = 45. As the proportion of the stand that
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Figure 6.13: (a) shows the objective value when there is observational uncertainty at MPC updates.
The uncertainty is modelled as random sampling of a proportion of the forest stand area.
Shaded areas show the 5th to 95th percentiles of the objective values. In (b) the costs
associated with control and update surveys are shown. Surveillance costs increase as
surveillance becomes more intensive, but the benefits of improved control (negative
costs) also increase. (c) shows the corresponding overall cost under observational
uncertainty, including costs for MPC update surveys. Reduced costs of less intensive
surveying must be balanced with less effective control when there is uncertainty about
the pathogen extent.

is surveyed increases, so too do the surveillance costs (Figure 6.13(b)). The disease costs

however, reduce with more tanoak retained as a result of more informed and effective

control strategies.

Balancing these two costs results in an optimal level of surveillance effort (Figure 6.13(c)).

The precise location of this optimum depends on the balance between tanoak retention,

biodiversity conservation, and surveillance costs: a decision that must be made in the

context of local forest management goals. It is clear however, that some level of continued

surveillance and re-optimisation through the MPC framework is necessary for effective

control. It can also be seen that to minimise the 95th percentile a higher intensity of

surveillance is required. This would represent the control policy of a highly risk-averse

manager.
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6.3.3 Refined optimal strategy

When the approximate model was parameterised, the roguing rate was scaled so that

the model matched the simulation as accurately as possible under control. So as not to bias

results, no assumptions were made about the form of the control, and the scaling was carried

out using a constant roguing rate. Now that the optimal strategy has been found, we are in

a position to re-consider this scaling to parameterise the best possible fitting approximate

model. Whilst in most real applications of open-loop and MPC this would not be possible

due to uncertainties in the simulation model, lack of data or stochasticity for example, here

we can test the performance of a refined, optimal approximate model.

The roguing rate in the approximate model was rescaled using the open-loop control

strategy found in Section 6.3.1. This ensures the approximate model fits best under the type

of control that will be optimal. As before in Figure 6.3, the roguing rate was scaled to best

match the final number of tanoaks in the simulation model. As shown in Figure 6.14(a) this

gives a much lower scaling factor than was previously obtained.

When this new approximate model is optimised, the control strategy found is very similar

to the previous open-loop strategy (Figure 6.14(b)). As with the open-loop framework,

control initially focusses on thinning of bay then redwood, with additional roguing. The

refined approximate model fits the simulation much better than previously and so the control

using the refined approximate model is more effective than either the open-loop or MPC

strategies found previously (Figure 6.14(d)). As a result of the increased control efficacy, the

strategies are different after the initial phase of control. Where previously further roguing

was required, using the refined model additional resources can be used for protection.

Since the approximate model fits better, there is little benefit to the repeated updates of

the MPC framework, and so MPC using the newly parameterised model is only a marginal

improvement over open-loop (Figure 6.14(c)).

This refined model demonstrates how effective optimal control can be if the system

is modelled perfectly. However, in the real world the approximate model is unlikely to

capture the disease dynamics as precisely, and so suboptimal control frameworks such as

open-loop and MPC must be used. We see here that the refined model shows only a modest

improvement in control over the suboptimal MPC framework, suggesting that MPC can be

used to design effective control strategies.
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Figure 6.14: Rescaling the roguing rate in the approximate model to find a refined optimal strategy.
(a) shows the optimisation of the new roguing rate scaling factor, chosen to minimise
the deviation in final tanoak numbers between approximation and simulation. The
optimal scaling factor under the open-loop control strategy was found to be 0.168 (3 s.f.),
compared with the previous scaling of 0.682 (3 s.f.) using constant controls. (b) shows
the open-loop control strategy found using this newly parameterised model, with the
state dynamics shown in (c). The approximate model matches the simulation dynamics
very closely. This allows improved disease management, as shown in (d). The newly
scaled frameworks outperform the previous strategies.

6.4 Discussion

In this chapter we have seen how the frameworks developed in Chapter 4 can be applied

to a real-world scenario: control of sudden oak death in forest stands. As we found in

Chapter 4 in a more theoretical setting, the feedback in the MPC framework improves

management, and leads to more robust control. In this section we will discuss how these

results relate to practical management of SOD.
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6.4.1 Practical application of management strategies

Current advice for management of SOD centres around removal of the spreader species,

bay laurel, as well as infected tanoak and bay, and susceptible tanoak close to known

infections (California Oak Mortality Task Force, 2014). Application of protective chemical

treatments is also recommended for high value trees that are close to infections and known

not to be currently infected (Lee et al., 2010). The strategies found in this chapter using OCT

are broadly similar in nature to these recommendations. We have found that thinning of bay

laurel is very important to the success of disease management, echoing results of previous

modelling studies (Cobb et al., 2017; Ndeffo Mbah and Gilligan, 2010b). Management

advice from the US Forest Service (Swiecki and Bernhardt, 2013) also suggests removal of

bay trees, and even complete area-wide removal of bay in some cases. Area-wide removal is

only recommended when bay is a minor forest component or consists of only small trees, and

only when this removal is consistent with other management goals. We found that roguing

of tanoak is more important than roguing of infected bay, as thinning would reduce the bay

population density sufficiently for disease control. Our results show that with continued

surveillance and careful optimisation of controls, disease can be successfully managed. This

can be done whilst maintaining a bay population which may be ecologically important.

However, when biodiversity benefits are less important, control is always easier and more

effective with additional removal of bay laurel.

Application of chemical protectants is only recommended in practice for individual

high value trees close to known infections (California Oak Mortality Task Force, 2014).

However, the strategies we have found deploy significant protection resources. In fact, the

protectant application only has a very minor effect on the performance of the strategies (see

Appendix B.2, p. 190), and is unlikely to be cost-effective. Our formulation of the budget

constraint implements a maximum expenditure where a fixed amount of money is put aside

for SOD control, rather than minimising total costs. This captures governmental allocation

of money for SOD control. In our model, when the optimal levels of roguing and thinning do

not use the entire budget, the surplus can be allocated to protectant application. In practice

though, control methods will also be individually assessed for cost-effectiveness, and given

the limited effect of the protectant strategies it seems unlikely that they would be used.

A possible limitation of the strategies we have found is their complexity. Control inputs

were held constant over 5 year stages so that resources do not have to be continually moved,

but the strategies are nevertheless still complex in their time dependence and relative

allocations to multiple control methods. However, the findings of our results could still be

useful. Building up an intuition about what drives the optimal strategy could lead to more

practical advice. For example, in the open-loop and MPC strategies thinning of bay is carried
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out early before switching to thinning of redwood. These species are reduced to a threshold

density that OCT has identified as sufficiently low to suppress pathogen spread, and promote

tanoak restoration. This type of insight about optimal densities of different species in mixed

stands over the course of an epidemic could provide actionable advice for foresters.

6.4.2 Choosing management goals

The complexity of the optimal strategies found comes in part from balancing multiple

costs and benefits: tanoak retention, biodiversity conservation, control expenditure and

surveillance costs. The valuation of the cultural and ecological benefits against more direct

economic costs is a difficult decision that must be taken by forest managers. These decisions

must be made in the context of the local area, as well as other forest management goals such

as fire reduction and timber production (Cobb et al., 2017). Decisions about management

goals however, either locally or through larger scale regulation, can lead to conflicts that

may impact the effectiveness of control (Alexander and Lee, 2010). The value of tanoak

retention must be balanced carefully with the wider impacts of the control on the forest.

As well as valuation, the formulation of the different cost functions is important. Here,

we used a metric for biodiversity conservation which was integrated over time and so ensures

biodiversity is conserved at all times. This captures the importance of continued biodiversity

for wildlife habitats, but also avoids introducing edge effects, for example thinning very late

in the epidemic to meet a biodiversity target. Both the biodiversity and tanoak objectives

introduce a dependence on the chosen time horizon of 100 years, but the tanoak objective

only depends on the amount of tanoak at the final time. This final time dependence is

appropriate for a restoration-type management goal, such as ensuring a resource is available

in the future. There is still a flexibility in the form of the objective function chosen, and the

precise choice of objective does impact disease control (Probert et al., 2016).

The chosen time horizon of 100 years is appropriate for analysing structural changes

to the forest, including tanoak restoration and biodiversity effects. However, our results

are also robust to changes in this time horizon. Extending the final time out beyond the

duration of the epidemic to 200 years results in MPC retaining a tanoak population twice as

large as under open-loop control (see Appendix B.3, p. 191). Furthermore, control in the

short term is similar under a much shorter time horizon of 20 years. Decision makers may

optimise control for short-term benefits rather than future tanoak restoration and biodiversity

conservation. Despite this, control strategies are similar with focus still on thinning of bay

laurel early in the epidemic (see Figure B.8, Appendix B.3, p. 193).

It is also important to consider the effect of the control strategies on the forest. Whilst the

effects of the disease can be devastating—particularly to tanoak populations—the optimal
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control strategies remove large numbers of trees, including trees that would not have died

from the disease. This could be more damaging to the forest ecosystem than the disease

effects would have been, particularly given the simplistic modelling approach for ecosystem

services and the difficulty of valuing tanoak restoration against biodiversity. Alexander and

Lee (2010) write that one land manager who supported removal of tanoak and bay laurel

feared an outcome of ‘destroy the village to save it’. A difficult problem for forest managers

is when control should be abandoned, as has been done in the ‘Generally Infested Area’ in

Oregon (Hansen et al., 2019).

6.4.3 Continued surveillance and re-optimisation

We have shown that by repeated surveillance and re-optimisation of control, the dama-

ging effects of the worst-case scenarios of pathogen spread can be limited. As found by

Cobb et al. (2017), disease control is only effective when there is long-term commitment

to management projects. However, effort put into this long-term surveillance has to be

cost-effective. With imperfect surveillance introducing observational uncertainty, an optimal

balance between survey costs and epidemic control was found. Other modelling studies of

SOD have also found that resource constraints lead to a trade off between detection and

control (Ndeffo Mbah and Gilligan, 2010a; Cunniffe et al., 2016). However, our analysis

does not incorporate the risk of disease re-emergence. Our model is deterministic, so also

does not capture stochastic re-introductions. Furthermore, the state of the epidemic in the

wider region will impact the risk of re-emergence through potentially increasing inoculum

pressure, for example from the advancing wavefront of other epidemics in the local vicinity.

Forest managers must take into account these other factors in determining optimal levels of

surveillance as well as in designing controls, but regardless we have shown that vigilance to

disease progression is important. Alongside this vigilance must be a willingness to adapt

control measures, re-optimising control to suit the current state of the epidemic and changing

local management goals.

6.4.4 Robust control

We showed in Section 6.3.2 that the general form of the optimal control strategy is

robust to changes in parameterisation. In all cases a period of thinning is carried out before

protection starts, and roguing is carried out throughout the epidemic. However, the relative

performance, both in parameter sensitivity and parameter uncertainty studies, can vary

significantly. In Figure 6.12 we saw that, under high levels of parameter uncertainty, some

epidemics become much easier to control, and others much harder. In the open-loop case

this leads to a split in the distribution of objective values into those where initial control
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manages the disease, and those where re-emergence leads to significant loss of tanoak. This

shows how a poorly designed strategy can lead to significant disease impacts.

In testing robustness we showed that the MPC framework is able to mitigate the effects

of the most damaging epidemics, improving management performance in the worst-case

scenarios. MacCleery (2015) states that a major barrier to US Forest Service management

is the opposition to adaptive management, in which ongoing monitoring is used to update

management advice. This is seen as too ‘experimental’ and increases short-term risk, but

imposing fixed interventions means strategies cannot be adapted based on what is seen

‘on the ground’. Here we have shown a clear benefit to the ongoing surveillance and re-

optimisation of control, with MPC as a possible formal framework for adapting strategies.

However, even the simpler open-loop framework still significantly slowed tanoak decline,

and slowing pathogen spread is still a useful goal allowing time to prepare for ecosystem

impacts (Cobb et al., 2013).

6.5 Conclusions

In this chapter we have optimised strategies for slowing, or even halting, pathogen-

induced decline of tanoak in mixed species forest stands. OCT was used to find optimal

time-dependent deployment of thinning, roguing, and protectant control resources. The

strategies found are broadly consistent with current expert advice: focussing on thinning of

bay laurel and roguing of infected trees. However, the strategies we found show significant

time dependence. Continued surveillance and re-optimisation of the control strategy by

using the MPC framework improves control performance. MPC leads to robust strategies

that can effectively respond to unanticipated disease dynamics and system uncertainties,

and so manage SOD to protect valuable tanoak trees whilst also conserving biodiversity.
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7Optimising spatial strategies to
protect Redwood National Park

7.1 Introduction

In this chapter we will extend the optimal control methods we have developed to manage

SOD in a more complex, spatial setting. So far our application of OCT has identified strategies

that are non-spatial, in the case of protecting tanoak in forest stands in Chapter 6, or of

limited spatial detail, e.g. the metapopulation models of Chapters 3 and 4. Here we extend

the setting of pathogen spread to a continuous landscape and show how OCT can be used

to find spatially complex strategies that can more effectively control the spread of SOD.

These optimal spatial strategies can vary in time and across 120 metapopulation cells in the

landscape, allowing significantly increased spatial resolution in the control strategies. Plant

disease management is most effective when the scale of control matches the scale of the

epidemic (Gilligan et al., 2007; Gilligan and Bosch, 2008; Cunniffe et al., 2015), meaning

that necessarily control must depend on the pattern of invasion. Spatially optimising control

can target key locations that could link multiple regions (Minor and Gardner, 2011), or

that if infected would lead to large epidemics (Hyatt-Twynam et al., 2017). Prioritising

management based on host risk can improve management of plant diseases (Cunniffe et al.,

2016), but also more broadly of animal (Tildesley et al., 2006) and human diseases (Fraser

et al., 2004). How can OCT be used to design these strategies?

As a case study, we use the 2010 SOD invasion along Redwood Creek, near to Redwood

National Park in California. We will investigate how OCT can be used to identify spatial

strategies that are designed to protect the national park from the impacts of SOD. The

methodology we employ could be applied equally well to, for example: other plant diseases

threatening important natural or commercial hosts, diseases threatening commercial animals

or human diseases invading novel environments. With widespread control of SOD impossible

(Cunniffe et al., 2016), designing the most effective strategies to protect valuable resources

is essential. The strategies we identify will be compared with the control that was actually

carried out in practice, a simple 100 m cull radius. We demonstrate the benefit of using OCT

for strategy design1.

1All code for this chapter is available at https://github.com/ehbussell/RedwoodCreekAnalysis
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7.1.1 Redwood Creek sudden oak death outbreak

Redwood National Park is located on the coast of northwestern California, just south of

the Oregon border (Figure 7.1(a)). The park was established in 1968 to protect redwoods

from extensive logging, and the combined Redwood National and State Parks (RNSP) now

contain 45 % of old-growth (never been harvested) redwood forest in California (National

Park Service, 2019). As well as redwoods, the parks preserve the ecosystem and natural

biodiversity, conserving flora, fauna and natural features such as rivers and streams (National

Park Service, 2019). The area is also of importance to northwestern Californian Native

Americans, with Hoopa and Yurok tribal lands nearby. Redwood Creek is a river passing

through the national park, from the southern boundary up to Orick (Figure 7.1(b)).

In May 2010, stream baiting near Orick identified the presence of P. ramorum for the first

time, over 80 km north of the nearest Californian SOD infestation (Valachovic et al., 2013a).

Stream baiting places mesh bags containing rhododendron leaves that are susceptible to

infection by the pathogen in rivers and streams. The leaves are periodically tested in the

laboratory for P. ramorum presence and replaced with new leaves. The 2010 detection

near Orick confirmed that the pathogen causing SOD was present, but the location of the

inoculum source could have been anywhere within the 80,937 ha watershed of Redwood

Creek (Valachovic et al., 2013a). Because of the importance of the region—due to the

proximity of RNSP, tribal lands and USDA Forest Service lands—a large surveillance effort

was carried out to identify the source, including additional stream baiting. In July 2010 one

potential source was coincidentally found and confirmed as a small infestation in a residential

area across several private properties in Redwood Valley (Figure 7.1(b)) (Valachovic et al.,

2013a).

Subsequent control of the infestation involved collaborations between public, private

and tribal land managers, and resulted in changes to legislation to offset some of the

management costs for commercial landowners (Valachovic et al., 2013a). The management

carried out removed all detected infected trees, and all tanoak and bay laurel within 100 m

of the infected trees (Valachovic et al., 2013a). This level of management was based on

experimental treatments in southern Humboldt county (Valachovic et al., 2010; Valachovic

et al., 2013b) and on experiences from management in Oregon (Goheen et al., 2010). Over

150 ha were treated with funding from a number of collaborators but, despite the scale of

the treatment efforts, weather conditions conducive to the pathogen and the short cull radius

ultimately hampered the effectiveness of control (Valachovic et al., 2013a). The disease was

discovered inside the national park in two locations in 2014 near Bridge Creek and Bond

Creek (Stark et al., 2014). Management continues with the aim to protect the national park

from further infestations.
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Figure 7.1: Redwood Creek study area and SOD outbreak, with map background showing hill shading
and natural vegetation colours. (a) shows the counties with confirmed SOD infestations
in 2010. The red box in (a) shows the study region around the southern tip of Redwood
National Park in California, shown in more detail in (b). The national park is close to
Yurok and Hoopa tribal lands. In 2010, SOD was detected through stream baiting of
Redwood Creek near Orick. The infestation was later located at Cookson Ranch (red cross
south of the national park). In 2014 the disease was found inside the national park at
Bridge and Bond Creeks, shown by the red dots. The region over which simulations are
carried out in this chapter is shown by the dashed red box.

7.1.2 Aims and key questions

In this chapter we will investigate how to use OCT to design spatial strategies to protect

Redwood National Park. Using the open-loop framework previously developed, we will test

the strategies on a complex, spatially-explicit model of SOD spread at the landscape scale,

and compare the strategies with the 100 m buffer scheme that was used in practice. We seek

to answer two main questions:

1. How can OCT be used to design optimal spatial strategies to protect a high value

region?

2. For the Redwood Creek case study, how do the strategies identified using OCT compare

with the management that was carried out in practice?
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We start by describing the simulation model used in this chapter, and which approximate

models are appropriate for spatial optimisation. Using reduced resolution ODE models of

the SOD invasion, we optimise objectives to protect the national park whilst also varying the

relative benefit of protecting hosts outside the park. We compare the strategies and their

wider effects on the surrounding regions. This chapter can be considered an extension of

the simple two-patch model in Chapter 3 to continuous landscapes, applied to the Redwood

Creek infestation.

7.2 Simulation model

In Chapter 1 (Section 1.3.2, p. 23) we reviewed models of SOD spread. Two models

captured SOD dynamics at the landscape scale, the scale appropriate for modelling the

invasion into Redwood National Park. The first model by Meentemeyer et al. (2011) was

fitted to data and shown to capture spread across California, and has subsequently been

used to assess potential large scale management efforts (Cunniffe et al., 2016). The second

model by Tonini et al. (2018) is similar in structure, but as it is integrated with the forest

simulation model LANDIS-II (Scheller et al., 2007), the scope for complex control strategies

of the form we consider is limited. We therefore use a reimplementation of the model from

Meentemeyer et al. (2011) in this chapter. The controls implemented by Cunniffe et al.

(2016) include area-wide removal of susceptible and infected hosts, and test a number of

prioritisation strategies, but the controls are only implemented across the entire state. The

controls at this scale are ineffective, or at least require infeasible levels of host removal,

but the model was not used to investigate whether local controls could be used to protect

local regions. Here we will use this model on a smaller scale, modelling the infestation near

Redwood National Park.

7.2.1 Model structure

The model is a stochastic, spatially-explicit, raster-based simulation, with each simulation

cell containing a number of host units that each represent hosts susceptible to SOD. When

conditions are conducive to pathogen sporulation, infected hosts produce inoculum—P.

ramorum spores—that are distributed according to a dispersal kernel and can infect suscep-

tible host units across a heterogeneous landscape. Conduciveness depends on the host

type, temperature and moisture conditions, and time of year. In the form described by

Meentemeyer et al. (2011), the model does not include host demography, and individual

species of host are not tracked separately but are instead combined into one amalgamated
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class of host. Host units can be susceptible or infected (Figure 7.2(a)). As described in

Meentemeyer et al. (2011) an infected cell i infects cell j at time t at rate:

ψijt = β (χt(fi)mitcitIit) (χt(fj)mjtcjtSjt/Nmax)Kji (7.1)

where:

• β is the overall maximum spore production rate from each infected host unit;

• χt(fi) is a seasonal indicator variable for hosts of type fi, either 0 or 1 dependent on

whether hosts in cell i are able to infect and be infected at time t;

• mit and cit measure how conducive the weather conditions are for pathogen sporula-

tion (moisture and temperature respectively) for cell i at time t, each between 0 and

1;

• Iit and Sit are the numbers of infected and susceptible host units in cell i at time t;

• Nmax is the maximum number of host units in any cell; and

• Kji is the dispersal kernel giving the probability of a spore travelling from cell i to cell

j.

The dynamics are simulated using the Gillespie direct method (Gillespie, 1977), giving sto-

chastic simulations. Note that in the original implementation a discrete time approximation

was made for computational ease, an approximation we do not make here because of the

smaller study region. All parameter and variable meanings and default values are given in

Appendix C.1.

We use a spatially restricted subset of the same host landscape used by Meentemeyer et al.

(2011), in which each 250 m× 250 m cell is given a localised host index value that combines

abundance and susceptibility across all hosts in the cell. This index is then discretised to give

a number of host units per cell, with a maximum of 100 in any cell (Figure 7.2(c)). Since

the hosts are conducive to pathogen sporulation at different times of the year, each cell is

classified as predominantly redwood and tanoak, or mixed evergreen forest. This forest type

mask sets the seasonal indicator variable for each cell (χt(fi)). Redwood/tanoak forest can

infect and is able to be infected for the first 28 weeks of the year. Mixed evergreen forests

are suitable for the pathogen from week 7 through to week 28.

Model fits by Meentemeyer et al. (2011) indicate infected host units produce spores

at a rate of 4.55 wk−1 (Cunniffe et al., 2016), which are distributed in space according to
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Figure 7.2: The simulation model capturing the spread of SOD into Redwood National Park. The
hosts transition between susceptible and infected, as shown in (a). Infected hosts produce
inoculum which is then distributed according to the kernel shown in (b), a combination
of a long- and short-ranged Cauchy kernel. In (c) the host landscape around the south
of the national park is shown, with the red cross indicating the initial infection site and
the black line marking the edge of the national park (NP). (d)–(g) plot the median level
of infection across 100 realisations of the simulation model over 30 years. The colour
indicates the proportion of hosts infected, and the transparency indicates the host density.
(h) and (i) show the disease progress curves across the landscape and just in the national
park respectively. The deciles of the distributions and the median are shown in each case.
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the dispersal kernel found by Meentemeyer et al. (2011). The kernel is a combination of 2

Cauchy type kernels, giving the probability of a spore dispersing a distance d:

K(d) = γ

(
N1

1 + (d/α1)2

)
+ (1− γ)

(
N2

1 + (d/α2)2

)
(7.2)

where γ = 0.9947 is the proportion of dispersal events distributed according to the short

range kernel, α1 = 20.57 m is the short range kernel scale, and α2 = 9.504 km is the long

range kernel scale (Figure 7.2(b)). The constants N1 and N2 are normalising constants for

the two kernels in the expression reported here. Infection is seeded in the cell corresponding

to Cookson Ranch, where the initial infestation was found, with that cell starting fully

infected. Overall, simulating the model around the southern tip of Redwood National

Park leads to widespread infection over 30 years (Figure 7.2(d)–(g)). The pathogen tends

to spread more to the west where conditions are more conducive to pathogen spread

(Figure 7.3(a)–(b)).

7.2.2 Sporulation conditions

The simulation model used by Meentemeyer et al. (2011) uses the forest type mask that

varies pathogen suitability in space and time, and weather data (mit and cit in Equation 7.1)

that also varies by cell and each week. This gives rise to the increased spread to the west

seen in Figure 7.2(d)–(g). Since we will be approximating the simulation model using

an ODE system, removing this time dependence would make the ODEs simpler and make

convergence using OCT easier. It would also improve the computational efficiency of running

the simulation model. We tested what effect averaging these time-dependent variables has

on the simulations, generating a single time-independent scaling factor for each cell that

captures the effects of temperature, moisture and forest type (Figure 7.3).

To calculate the average, we take for each cell i the root mean square value of the

weather and forest type mask over time:

Mi =

√∑
t (χt(fi)mitcit)2

Nt
(7.3)

where Nt is the number of time points. The root mean square is used because in the infection

rate (Equation 7.1) these terms appear in the susceptible and infected terms, and so are

effectively squared. Taking a simple mean leads to significantly lower levels of infection.

Since the kernel is very short ranged, taking this local average is a good approximation, since

in reality the value is not squared but multiplied by the value in another cell. To understand

why this is necessary, consider a single cell with conduciveness equal to 0.5 for half of each

year, and zero otherwise. Whilst using the mean conduciveness of 0.25 leads to a relative

infection rate of 0.0625 (0.252), the actual mean relative infection rate is 0.125 (0.52 for
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Figure 7.3: Accounting for varying weather and forest type in the simulation model. In (a) the forest
type around the national park is shown, with regions of mixed evergreen forest, and
redwood and tanoak areas. The redwood/tanoak forest is susceptible and can sporulate
for the first 28 weeks of the year. Mixed evergreen forests are unsuitable for the pathogen
until the 7th week of the year, and become unsuitable again after the 28th week. (b) shows
the average mask across the region, with weather and forest type averaged over time.
The weather and forest type are more suitable for the pathogen closer to the coast. In (c)
the effect of averaging the weather and forest type mask is shown. The lines show the
medians of 250 simulation realisations. The full simulation has weekly varying weather,
and differences in pathogen suitability due to forest type. Averaging just the weather
over time, or averaging both the weather and forest type suitability over time, does not
significantly affect the simulation dynamics. We therefore use the averaged weather
and forest type mask for simulations going forward, because of the increased speed of
simulation.

half the year, and zero otherwise). The root mean square gives the correct relative infection

rate.

It is clear that the redwood/tanoak forest nearer the coast is generally more suitable for

the pathogen, because of both the weather and forest type mask (Figure 7.3(a)–(b)). We ran

250 simulations over 18 years using the full weekly weather and forest type, averaging just

the weather, and averaging both the weather and forest type over time. Whilst averaging

these effects over time does reduce within year variation, it does not have a large effect on

the median simulation dynamics (Figure 7.3(c)). We therefore use the averaged weather

and forest type mask for simulations in this chapter.

7.3 Approximate model

7.3.1 Reduced resolution model

We require an approximate model of the simulation dynamics which must be simple

enough to allow optimisation using OCT, but with enough spatial detail to allow spatially

resolved strategies to be identified. As mentioned in Chapter 4, the main factor affecting

convergence in OCT is the number of variables that must be optimised. As spatial detail is
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added this increases the number of state and control variables, but also increases the spatial

resolution of the control strategy. We therefore seek an approximate model that captures

as much spatial detail as possible whilst remaining optimisable. We propose using reduced

resolution ODE models of the simulation, which are raster-based ODE approximations of the

dynamics on a grid of a larger spatial scale (Figure 7.4(a)–(b)). The host landscape used is an

aggregated version of the simulation host landscape, with each cell in the approximate model

using the average host density of the 250 m simulation cells contained within it. A buffer

region is included in the simulation model around the approximate landscape (Figure 7.4(a)).

This ensures that any edge effects from infection leaking around the managed region are

accounted for. This more realistically models the effect of inoculum pressure from outside

the area under management.

The ODE approximation follows the same susceptible-infected dynamics as the simulation

model, with dispersal across the landscape according to a different kernel. Since the

approximate model uses grid cells of a different scale to the simulation and is deterministic,

the same kernel cannot be lifted from the simulation. We use the averaged weather and

forest type mask to modulate the susceptibility and infectiousness of each cell, with the

average now calculated for each cell in the aggregated landscape. The ODE system for

susceptible (S̃) and infected (Ĩ) hosts in aggregated cell i is therefore given by:

˙̃Si = −β̃MiS̃i
∑
j

(
kijMj Ĩj

)
(7.4a)

˙̃Ii = β̃MiS̃i
∑
j

(
kijMj Ĩj

)
(7.4b)

where β̃ is the infection rate to be fitted, kij is the kernel also to be fitted, Mi is the averaged

weather and forest type mask, and the sum is over all aggregated cells in the landscape.

7.3.2 Metrics for comparison

To choose the most appropriate resolution for the approximate model, by testing the

quality of fit and plausibility of control optimisation, we require metrics that can compare

the approximate model with simulations across different resolutions. This will ensure that

we can assess different resolution approximate models using a single consistent metric.

There are three obvious choices of scale for comparing a single approximate model with

simulations:

Landscape scale: total infection across the landscape;

Aggregated scale: simulation data aggregated to the approximate model resolution;

Divided scale: approximate model data resampled down to the 250 m simulation scale.
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For clarity, in a simulation the number of infected host units in cell i is given by Ii(t). This

is the divided scale. At the landscape scale the numbers are simply summed over all cells

(
∑
i Ii(t)). At the aggregated scale the numbers are summed over the set of cells contained

within the aggregated cell j (Aj):

Ĩj =
∑
i∈Aj

Ii (7.5)

To calculate the number of hosts at the divided scale from the approximate model, the

hosts are homogeneously distributed across simulation cells contained within the aggregated

cell:

Ii = Ĩj
Nj

∀i ∈ Aj (7.6)

where Nj is the number of simulation cells contained within aggregated cell j.

For comparing across different resolutions, the aggregated scale cannot be used since

this will be a different absolute scale for each approximate model. The landscape and

divided scales can be used to compare across resolutions, though. The metric we choose for

comparison is the root mean square error (RMSE) between the simulation and approximate

model disease progress curves (DPCs). This metric is a scaled version of the summed squared

errors (SSE) used in previous chapters. We use the RMSE in preference to the SSE because

the value is more meaningful for comparison, since it is measured in the same units as

disease progression. At the landscape scale, the RMSE for the landscape DPCs is used. At the

divided and aggregated scales the RMSE is calculated over DPCs for each cell over 30 years

with a time step of 2 weeks.

7.3.3 Fitting

We fit two forms of kernel (kij in Equation 7.4), an exponential type:

k1
ij ∝ exp (−dij/σ1) , (7.7)

and a Cauchy type kernel:

k2
ij ∝

1
1 + (dij/σ2)2 , (7.8)

where dij is the distance between cell centres for cells i and j, and σ1 and σ2 are scale

parameters for the two forms of kernel. Whilst other forms of kernel could be considered—for

example an exponential power distribution as considered by Skelsey and Garrett (2013) that

can capture both short- and fat-tailed shapes—there was little difference in fit between the

exponential and Cauchy kernel models. We therefore only consider these possibilities. The

scale parameters and infection rate (β̃) are fitted by minimising the RMSE at the aggregated

scale using the Nelder-Mead simplex algorithm (Gao and Han, 2012) from the SciPy library

(Jones et al., 2001–). This scale is used to maintain spatial information whilst avoiding
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repeated resampling operations that would be required to calculate the metric at the divided

scale.

The fitted dynamics match the simulation very closely at the landscape scale (Fi-

gure 7.4(c)), with the largest errors spatially close to the infection introduction site (Fi-

gure 7.4(d)–(f)). In spatial pattern, all reduced resolution models capture the increased

spread to the west where weather and forest type conditions are more suitable for the

pathogen (Figure 7.5). Fitted parameters for each approximate model are given in Appen-

dix C.2.
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Figure 7.4: Approximating the simulation model with a reduced resolution model. The simulation host
landscape in (a) includes a buffer to eliminate edge effects. The red box shows the region
approximated by the reduced resolution host landscape, shown using a 2,500 m resolution
in (b). The ODE approximate model is fitted to the simulation model by matching DPCs
for each cell in the approximate model, here shown for the 2,500 m resolution model with
a Cauchy kernel. In (c) the simulation and approximate disease progress curves across
the whole landscape are shown, with the approximate model capturing the dynamics well.
In (d) the root mean square error (RMSE) for each cell at the scale of the simulation is
shown (divided metric). The largest errors are seen close to the initial seed infection. (e)
shows the disease progress curves for a single 250 m cell far from the initial seed infection,
capturing the dynamics well. (f) shows the same for a cell close to the initial infection.
The low resolution approximate model cannot precisely capture the number of hosts in
each 250 m cell, and so the dynamics are captured less well.
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Figure 7.5: Comparing disease spread across approximate model resolutions. The top row shows
infection spread in the 2,500 m resolution approximate model after 10, 20, and 30 years.
The second and third rows show the same for the 1,500 m and 250 m resolution models
respectively. All model resolutions capture the same pattern of spread, with infection first
spreading towards the coast.
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7.4 Control and optimisation

7.4.1 Control methods

In the simulation and reduced resolution approximate models, we implement control

methods that remove infectious or susceptible hosts at a continuous rate. Optimising control

finds a partition between removing susceptible hosts and infected hosts across the landscape,

in order to achieve an objective. The roguing control method removes infectious hosts, and

the thinning method removes healthy, susceptible hosts. The time-dependent variables ui(t)

and vi(t), each between 0 and 1, give the level of thinning and roguing respectively in cell i

of the approximate model. With η as the rate of removal, the approximate model dynamics

become:

˙̃Si = −β̃MiS̃i
∑
j

(
kijMj Ĩj

)
− ui(t)ηS̃i (7.9a)

˙̃Ii = β̃MiS̃i
∑
j

(
kijMj Ĩj

)
− vi(t)ηĨi . (7.9b)

We impose a simple constraint on the thinning and roguing levels:∑
i

(ui(t) + vi(t)) ≤ 1 ∀t , (7.10)

where the sum is over all cells in the approximate model. This means the total control rate η

is partitioned into thinning and roguing, and across all cells in the approximate model. This

captures the logistical constraint of limited resources to allocate to particular locations in

the landscape. Note that the constraint here is on intensity of control, not the number of

hosts removed. This captures the difficulty of resource location; control resources allocated

to cells with fewer hosts to remove still have to be moved to that location. This constraint

is simpler in form than those used in previous chapters. By separating the state from

the control constraint, convergence when optimising the control is significantly improved.

Controls are lifted from the approximate model to the simulation model as expected, with

control homogeneously applied across simulation cells contained within each approximate

model cell. As before, disease is seeded at Cookson ranch, and control starts after 3 years of

uncontrolled spread to allow the infestation to establish.

7.4.2 Objective function

We use an objective function that maximises the number of susceptible hosts at the final

time T = 30 years, with a weight for each cell in the approximate model landscape. The

weight for hosts inside the national park is equal to 1. For cells that are partially outside the

park, this weight is multiplied by the proportion inside the national park. We test different
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Figure 7.6: The different objective functions under test. (a), (b) and (c) show the Total, NP and
Mixed objective functions respectively.

objectives, varying the weight of hosts outside the national park. The overall objective is

given by:

J = f1
∑
i

piSi(T ) + f2
∑
i

(1− pi)Si(T ) (7.11)

where f1 and f2 are the weights for hosts inside and outside the national park respectively,

and pi is the proportion of cell i that is inside the national park.

We test three different objectives (Figure 7.6). The Total objective uses f2 = 1 so that

all hosts across the landscape are weighted equally. The NP objective only considers the

national park, with f2 = 0. Finally, the Mixed objective uses f2 = 0.5, as a balance between

the first two objectives.

7.4.3 Large scale optimisation

Despite reducing the resolution of the approximate model, the optimisation problem is

still very large. For a 2.5 km resolution approximate model, there are 120 cells each with

two state variables and two control variables. Discretising the 30 year time period into 120

steps, each step representing 7 weeks as infection is only possible for 28 weeks of the year,

gives approximately 58,000 variables to optimise using the direct method. The software

used in previous chapters to carry out the direct optimisation, BOCOP (Team Commands,

Inria Saclay, 2017), is unable to handle problems of this size. For the optimisations in this

chapter we use the optimiser underlying BOCOP directly, Ipopt (Wächter and Biegler, 2006),

and generate the non-linear programming (NLP) problem ourselves.

The calculation of the NLP jacobian, i.e. the derivative of the NLP constraints with respect

to the NLP variables, is the limiting factor in using BOCOP for large scale optimisation,

since BOCOP uses automatic numerical differentiation to calculate this derivative. Since we

are able to compute the equations and hence the derivative exactly, we implement exact
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derivatives in our interface to Ipopt. This allows for faster convergence and lower memory

usage. We describe the formulation of the NLP problem in Appendix C.3 and the optimisation

details in Appendix C.4. Despite these improvements in optimisation, the highest resolution

for which optimisation is successful is the 2.5 km resolution approximate model.

7.4.4 Buffer strategy

We compare the optimal spatial strategies with the control that was carried out in

practice. Once the source of infection was located along Redwood Creek, a 100 m radius

buffer control was implemented. Any infected hosts that are detected are removed along

with all susceptible hosts within 100 m. To implement this strategy using our model, within

each cell all host units are assigned a random position. At the end of each year, surveillance

is carried out and infected hosts are detected according to a Bernoulli trial with probability

of success p = 0.7, following the same method used by Cunniffe et al. (2016). These

detected hosts and any hosts within 100 m are then removed, following the strategy used in

practice.

7.5 Results

7.5.1 Resolution testing

We first describe the results of resolution testing: assessing different resolution approxi-

mate models. We use the RMSE metric at both the landscape and divided scales to compare

across resolutions. Under no control, resolutions from 250 m to 2.5 km all perform simi-

larly at the landscape scale, with the Cauchy kernel giving slightly lower metric values

(Figure 7.7(a)). At the divided scale higher resolution models perform better, as predicti-

ons are more accurate since host density information is available at a finer spatial scale.

RMSE values are much lower at the landscape scale because errors in host numbers in any

individual cell are averaged out across the landscape.

To ensure the approximate models fit when control strategies are implemented, we also

test the approximate models under an optimised non-spatial control strategy. A non-spatial

strategy is used so that exactly the same control can be used across all resolution models.

The strategy is optimised as described in Section 7.4 using the 2.5 km resolution model

and the Total objective function, with the added constraint that control is allocated evenly

across the landscape. The resulting control carries out thinning first, before switching to

roguing (Figure 7.7(c)). Under this control strategy all resolutions fit closely to simulations

realised under the same strategy (Figure 7.7(b)). High and low resolution models match the

simulation disease progress curves well and once again the largest errors are seen close to

the introduction site (Figure 7.7(d)–(e)).
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Figure 7.7: Using the RMSE metric the different resolution approximate models can be tested. In
(a) the landscape and divided metrics are shown for the exponential and Cauchy kernel
under no control. The Cauchy kernels show a slightly better fit across all resolutions, with
higher resolution approximate models fitting better. Under a non-spatial control strategy,
all resolutions fit approximately the same and, since the level of infection is lower, fit
better than under no control, as shown in (b). The control strategy is shown in (c). The
landscape disease progress curves are shown in (d), and the divided RMSE metric across
the landscape for the 2,500 m Cauchy model under control is shown in (e).

We choose to use the 2.5 km resolution approximate model for the optimisations in the

rest of this chapter. This resolution provides enough spatial detail to capture the increased

spread to the west and allow spatially resolved control strategies, and also fits well to

simulation data. Whilst higher resolution models provide improved fits, for resolutions

higher than 2.5 km the optimal control problem is not tractable using our methods. Later in

this chapter we will compare the resulting optimal control using this approximate model

with that from a lower, 5 km resolution model, and show that control is improved by the

additional spatial detail in the 2.5 km model.
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7.5.2 Optimal spatial control

The control strategies optimised using the 2.5 km resolution approximate model are

applied to the simulation model using the open-loop framework described in previous

chapters. Using the NP objective, the optimal strategy initially rogues at the disease intro-

duction site alongside heavy thinning in the highly pathogen conducive region to the west

(Figure 7.8(d)–(e)). Thinning is then carried out more generally outside the national park,

with intensive roguing inside the park. The disease progress curves across the landscape

and inside the national parks (Figure 7.8(b) and (c)) show low levels of infection, and the

approximate model matches the average landscape dynamics. Median simulation dynamics

show significant loss of host outside the national park, but the park itself is well protected

(Figure 7.8(f)). Note though, that significant amounts of infection spread around the edge

in the buffer region where management is not carried out.

The NP objective protects Redwood National Park, but at a significant cost to the surroun-

ding region. An alternative strategy, the Mixed objective, weights protection of hosts outside

the national park by half as much as those inside (Figure 7.9(a)). The optimal strategy

under this objective still thins to the west, but uses roguing rather than thinning in the east

(Figure 7.8(d)–(e)). This results in higher levels of infection (Figure 7.8(b)–(c)), but retains

more healthy host in the north east of the region. As with the NP objective, infection does

spread around the buffer region.

We next analyse the performance of the control strategy that was carried out in practice,

the 100 m buffer. The buffer strategy keeps levels of infection much lower than the previous

strategies, because these hosts are directly detected and removed every year. In some cases

the buffer strategy successfully manages the epidemic, keeping levels of infection very low

and with few hosts removed (Figure 7.10(b)–(c)). In many cases though, the buffer of 100 m

is not sufficient to control the spread and, whilst overall infection levels remain low, a large

number of hosts are eventually removed in the national park. This means that the median

simulation dynamics show large numbers of hosts removed across the landscape, but the

strategy does still protect many hosts in the north east of the region.

7.5 Results 151



NP Objective

0 10 20 30
Time / yrs

0.0

0.1

0.2

0.3

0.4

Pr
op

or
tio

n 
of

 h
os

ts
 in

fe
ct

ed

Total

Simulation
Approximation

0 10 20 30
Time / yrs

0.0

0.1

0.2

0.3

0.4

Pr
op

or
tio

n 
of

 h
os

ts
in

fe
ct

ed
 o

r r
em

ov
ed

National park

THINNING

t=3

ROGUING

SIMULATION

t=5 t=10 t=15 t=20 t=25 t=30

0.00 0.25 0.50 0.75 1.00
Objective weighting

10 30 50 70 90

0.00

0.05

0.10

Th
in

ni
ng

in
te

ns
ity

0.00

0.05

0.10

R
og

ui
ng

in
te

ns
ity

0.0

0.5

1.0

Pr
op

or
tio

n
in

fe
ct

ed

(a) (b) (c)

(d)

(e)

(f)

Figure 7.8: Optimal control strategy using the NP objective. (a) shows the objective raster, with
control optimised to maximise the number of healthy hosts in the national park after
30 years. The simulation and approximate model disease progress curves across the
landscape are shown in (b), and the proportion of hosts infected or removed within the
national park only in (c). These DPCs do not include the buffer region in the simulation
model. The control strategy is shown in (d) and (e), with thinning initially focussed
near the coast on the west, and roguing focussed in the national park. (f) The median
proportion of hosts infected in the simulations show a reduction in hosts across the
landscape apart from in the national park. The colour indicates the proportion of hosts
infected, and transparency indicates the host density. There is little infection spread inside
the managed area, but infection does spread around the edge in the buffer region.
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Figure 7.9: (a) The Mixed objective protects the national park, but with some value given to hosts
outside. The disease progress curves across the landscape are shown in (b), and the
proportion of hosts infected or removed within the national park only in (c). There is
more disease than using the NP objective. The control strategy shown in (d) and (e) only
thins in the environment conducive to sporulation. More roguing than thinning is carried
out to the east, leading to more infection but also more host retained ((f)).
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Figure 7.10: To implement the 100 m buffer strategy, a detected class is included, as shown in (a).
Once per year infected hosts are detected by a Bernoulli trial with probability of success
p = 0.7. The 100 m buffer removes detected hosts, and all hosts within 100 m of the
detection once every year, as illustrated by the red circular buffer. The strategy keeps
levels of infection low ((b)) as it directly removes these hosts, but can lead to high
numbers of hosts removed in the national park ((c)). As shown in (d), large numbers of
hosts are removed across the landscape.

7.5.3 Comparing strategies

The different control strategies vary in the pattern of hosts saved across the landscape

(Figure 7.11(a)). The NP and Mixed objectives very effectively protect the national park,

whereas without control spatially optimised to protect it, the non-spatial and 100 m buffer

strategies cannot protect the national park effectively. In the cases where it fails to control

the spread, the 100 m buffer strategy also results in more hosts culled than any of the other

strategies (Figure 7.11(b)). Whilst this strategy does not remove many hosts early in the

epidemic, if disease persists then very large areas of host may need to be controlled. Under

the OCT strategies however, more hosts are removed pre-emptively, but this does result in

improved disease management.

The OCT strategies (Total, NP, Mixed and Non-Spatial) all show a similar time dependence

in allocation to thinning or roguing controls (Figure 7.11(c)), but with dependence on spatial

location. Initially control is split between both methods. Thinning dominates the start of

the epidemic, before switching to roguing after approximately 10 years. On average, the

highest number of hosts outside the national park are protected by the Mixed strategy

(Figure 7.11(d)). Hosts within the national park are best protected by the NP strategy, with

the Mixed strategy finding a good balance of protection both in and out of the park.
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Figure 7.11: Comparison of all control strategies. In (a) the proportion of hosts saved relative to
simulations under no control are shown for each strategy, with the national park outlined
in black. (b) shows the area of host culled for each strategy, and (c) shows the levels of
thinning and roguing for each of the OCT strategies. (d) and (e) give the area of host
saved inside and outside the national park respectively. Horizontal lines indicate the
median, and vertical lines span the 25th to 75th percentiles. In some cases the 100 m
buffer strategy contains the epidemic and saves the most hosts, but can also result in
culling large numbers of hosts. The NP and Mixed strategies protect the national park
most effectively. Note that the OCT strategies are mostly capped with a maximum area
saved. This is because the removal of trees by the control intervention limits the area
of forest it is possible to save. The lower limits indicate the maximum rate of invasion
under the control strategy.
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7.5.4 Resolution choice

We here test how appropriate our choice of the 2.5 km resolution approximate model

was. The motivation for this choice was that this model is the highest resolution for which

the NLP optimisation is tractable. Higher spatial resolution allows more spatially detailed

strategies, and hence improved protection of the national park. Figure 7.12 compares

control performance of the 2.5 km model with a 5 km resolution model. Control in the lower

resolution model is less spatially resolved around the national park. This leads to fewer

hosts saved, both inside and outside the national park. It is clear that for effective control

a higher resolution model is preferable, and so within our methodological limitations the

2.5 km resolution approximate model is best.
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Figure 7.12: Comparison of optimal control using the 2.5 km and 5 km approximate models. (a)
shows the proportion of hosts saved by each OCT control strategy using the 2.5 km
resolution approximate model (i.e. repeats part of Figure 7.11(a)), with the same for the
5 km model shown in (b). (c) and (d) show the area of host saved inside and outside
the national park respectively, for each model and for each spatial OCT strategy. The
higher resolution 2.5 km model saves more hosts on average because the control can be
more spatially detailed, and hence it protects the national park better.
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7.6 Discussion

In this chapter we have shown how spatially optimised strategies can protect valuable

regions from disease. Using OCT to inform spatial control improves disease management,

and better protects Redwood National Park from SOD than the control that was actually

applied. The optimal strategies make use of epidemiological features which were ignored by

the management carried out in practice. In particular, the optimal spatial strategies focus

on thinning controls in areas where weather conditions are most conducive to pathogen

spread.

7.6.1 Spatial optimisation

To allow for spatial optimisation of control, we used a reduced resolution deterministic

model approximating the dynamics of the fully spatially-explicit simulation model. Capturing

the full spatial detail of the simulation model results in a model for which optimisation

is not tractable. In a similar setting, work by Epanchin-Niell and Wilen (2012) optimised

spatial strategies for control of invasive species, but with much greater simplifications to the

model dynamics. To allow spatial optimisation, Epanchin-Niell and Wilen (2012) reduce the

underlying spread model to an integer problem where cells are either invaded or not, and the

species potentially spreads to nearest neighbour cells in each time step. In Chapters 3 and 4

we simplified spatial dynamics by modelling the system with two or three metapopulations.

By applying large-scale direct optimisation to the spatial optimisation problem, we have

significantly reduced the simplifications that are necessary, and extended the optimal control

to a discretised continuous landscape. This means that the resulting strategies are driven

more closely by real-world dynamics, and so will be more effective if applied in practice.

In testing the strategies on a fully spatially-explicit model—by applying the control lifting

framework used in Chapters 4 and 6—we have demonstrated how these strategies would

perform in reality, and shown that they outperform the management that was actually

applied.

The constraint we used in this chapter partitioned control resources between thinning

and roguing across the landscape. We did not use a constraint limiting the number of hosts

controlled, as we used in Chapters 3 and 6 for example, because for an NLP problem of

this scale these mixed constraints slow convergence. Including a mixed constraint could

change the optimal strategy, but the general spatial structure of control, and the partitioning

between thinning and roguing is unlikely to be significantly different. The optimal spatial

strategies we found here show similar features to the results of previous chapters. We see a

switching strategy that switches from thinning in a region that would threaten the national

park, to prioritising roguing within the park. This is very similar to the switching strategies
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found in Chapter 3, where a buffer region was first prioritised, before switching to control in

the high value region.

Other methods exist for finding an optimal spatial control, including using OCT on PDE

models of disease spread rather than the ODE approximate models we have used here. PDE

models have been used previously to model plant disease epidemics (e.g. White and Gilligan,

2006). Reaction-diffusion type models can be used to capture the spatio-temporal dynamics

of disease spread, and OCT can be applied to the resulting model to optimise spatial controls.

For example, work by Neilan and Lenhart (2011) optimised spatial deployment of rabies

vaccines to wild raccoons. They also found that optimal strategies make use of landscape

features, in their case taking advantage of natural barriers to spread. Miyaoka et al. (2019)

also optimise a PDE model of disease spread, there a model of Zika virus spread and optimal

vaccine deployment. Whilst these studies use OCT to find spatial strategies, similar to

the optimisations we have carried out, neither study tests the results on a more detailed

simulation model. The advantage of our approach is that the effectiveness of the control can

be shown under more realistic conditions, and control is designed to protect a high value

region. Here we showed that the OCT strategies are still effective at protecting Redwood

National Park under the stochastic spread in the simulation model.

7.6.2 Spatial resolution

We optimised spatial controls in this chapter using a 2.5 km resolution approximate

model. This key choice of resolution was a balance between increasing spatial detail and a

tractable optimisation problem. With the optimiser and NLP problem we use here, a higher

resolution model is not solvable. We showed however, that lower resolution models result

in less effective optimal spatial controls because of the lack of spatial detail. Whilst higher

resolution models would be preferable, and could be used with sufficient computational

resources, we here use the highest resolution model possible with our setup.

7.6.3 Practical implementation

Using the simulation model to test the OCT results allows potential practical outcomes

of strategies to be compared. The OCT strategies tested here perform best on average, and

protect the whole region against the very worst epidemics, where the 100 m buffer strategy

results in removal of very large numbers of hosts. However, the strategies do result in large

scale removal of hosts across the landscape. In the reduced resolution approximate model

this extensive control is required to manage disease, but in the stochastic simulation—and

by extension the real world—this may not be absolutely necessary. Implementing large scale

removal can be difficult, particularly if centralised management leads to conflicts with local

landowners who may rely on the forest for income (Alexander and Lee, 2010). Opposition
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from affected parties can impact on deployment of control, as was the case with citrus canker

(Gottwald, 2007). As shown by the testing of the 100 m buffer strategy, in some cases the

disease does not spread rapidly and considerably lower levels of control are sufficient.

Deciding on the scale of control to carry out, or when to switch to larger scale control, is

a difficult problem, particularly when estimates of future epidemic size can be very uncertain

(Neri et al., 2014). With citrus canker, choosing this scale incorrectly eventually led to

failure of control (Gottwald, 2007). Our models have shown that the more extensive OCT

strategies perform better than the 100 m buffer on average, but there is a trade-off between

implementing simpler controls more rapidly, and carrying out the optimal strategy with

more knowledge of the system (Thompson et al., 2018). Whilst these decisions must be

made in collaboration with policy makers and landowners, we have demonstrated that larger

scale control is necessary to give the most effective control on average. For comparison,

management of the isolated outbreak in Oregon treated approximately 2,510 ha of land

between 2001 and 2015, costing $5000–15000 per hectare (Goheen et al., 2017). The

total area of the approximate model we consider here is 75,000 ha, so the level of control

necessary is extensive.

We have not accounted in our model for the importance of Redwood Creek. P. ramorum

can spread through the watercourse, and this could lead to increased rates of spread

into the national park. It could also allow for more effective surveillance and control

strategies that prioritise areas along the river. Our work in this chapter has shown how

the pathogen suitability of the landscape can influence optimal strategies, here through

prioritising thinning where the weather is most conducive to pathogen spread. Similar

methods could improve control when additional spread through the river is taken into

account, but additional data would be necessary to fully inform this type of strategy. There

is currently little information about the rate of P. ramorum spread through watercourses.

The broader message of the OCT strategies here though, is that management at larger

scales is necessary to be sure of effective disease control. The 100 m buffer was clearly too

short to protect Redwood National Park. This is consistent with work by Cunniffe et al.

(2016) that found the optimal radius of treatment to be 187.5 m, but their result does depend

on how regions are prioritised for treatment and the risk aversion of the decision maker.

We also see in our results the benefit of front-loading identified by Cunniffe et al. (2016),

i.e. allocating additional control resources earlier in the epidemic. Thinning resources in

all OCT strategies are carried out early during management, in order to slow the spread of

infection in the most susceptible regions. The control is carried out ahead of the epidemic

wavefront in anticipation of future spread. The 100 m buffer strategy, on the other hand,

is purely reactive to the ongoing epidemic, and as a result must try to catch up with the
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epidemic wavefront. The benefit of this concept of front-loading has also been seen in other

optimal control theory studies (Behncke, 2000).

7.6.4 MPC

A further extension to this work would be to include the feedback framework of MPC

developed in Chapter 4 and used in Chapter 6. This could help to tailor the OCT strategies

to disease progression, reducing levels of control when the epidemic is slow to spread. As

we discussed previously, the 100 m buffer strategy shows that lower levels of control can be

sufficient. The MPC framework could help adapt to an individual epidemic, to increase or

decrease control intensity as required. Similar to the results in Chapter 4, this could improve

control under the stochasticity of the simulation model. Allowing parameter inference

between MPC update times could further improve control by updating the approximate

model as the epidemic proceeds (Thompson et al., 2018).

7.7 Conclusions

In conclusion, this chapter has demonstrated the extension of the optimal control methods

we have developed to optimising spatial strategies. These optimal spatial strategies can

protect high value regions threatened by disease more effectively. The OCT strategies

perform better on average than the control that was actually carried out, and protect against

the worst-case scenario epidemics. The approaches we use here improve the resolution

at which plant disease management strategies can be optimised compared with previous

studies (c.f. Forster and Gilligan, 2007), and allow for more detail in the underlying spread

model (c.f. Epanchin-Niell and Wilen, 2012).
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8Discussion

8.1 Thesis Summary

The threat from plant disease epidemics to the natural environment is severe (Freer-

Smith and Webber, 2017), but mathematical models can be used to help design and optimise

management strategies to better control spread (Lofgren et al., 2014; Cunniffe et al., 2015).

The complexity of the simulation models used to inform policy however (e.g. DEFRA, 2014a),

limits the extent to which dynamic controls can be optimised. For such models, multiple

controls that vary in space and time can only be optimised through strategy testing: where

a limited number of simple, plausible interventions are tested using a simulation model.

In this thesis, our aim was to develop frameworks to aid optimisation of these simulation

models, applied to the case study of determining effective and practical local management

of SOD.

In Chapter 3 we showed how OCT can be applied to a simple model of a disease invading a

highly valuable region. We found that in general it is best to prioritise control in the valuable

region, but that switching strategies can perform better under certain parameter values.

We tested direct and indirect numerical methods for solving the optimal control problem,

showing that the direct method is accurate and more reliable than the indirect approach.

The optimal strategy was not necessarily robust though, with significant errors when spread

parameters were not known precisely. This motivates—at least in part—the problem solved

in Chapter 4, where we developed a framework for applying optimal control results to

complex simulation models. By using a feedback framework, model predictive control

(MPC), we showed how the predictive power of simulation models can be coupled with

insights from OCT obtained from approximate models to find effective disease management

strategies.

In Chapters 5 and 6 we applied this framework to the practical question of how to control

SOD in a newly invaded forest stand in order to protect valuable tanoak. This objective for

local control is important, since widespread eradication of SOD is now impossible (Cunniffe

et al., 2016), and so smaller-scale local goals that remain achievable and protect valuable

resources are of interest. We showed how MPC finds strategies that align with management

advice from the US Forest Service, but with additional important time dependence. The

MPC framework finds strategies that are robust to parameter and observational uncertainty,
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showing the greatest improvement in control in the worst-case scenarios. Finally, in Chapter 7

we applied OCT to spatial optimisation of control strategies to protect Redwood National

Park from SOD invasion. We showed how the strategies that perform best make use of

epidemiological features, such as prioritising control where weather conditions are most

conducive to pathogen spread. The OCT informed management performs better than the

100 m buffer strategy that was actually applied. Again, we showed that the OCT strategies

limit the impacts of disease in the worst-case scenarios.

8.2 Contributions and limitations

8.2.1 Optimal control theory

The overarching theme of this thesis is how to apply OCT to the problem of disease

management, determining which control methods are most appropriate and how, when

and where they should be deployed. The time-dependent strategies identified using OCT

allow deployment of different control resources as an epidemic progresses. This switching,

either between control methods or changing where control is applied, ensures that the

optimal strategy is used at all times, allowing management to respond to changing risk

(Hyatt-Twynam et al., 2017) and to always match the scale of the epidemic (Gilligan et al.,

2007). We have shown how this improves management, echoing the results of other OCT

and plant disease modelling studies (e.g. Forster and Gilligan, 2007; Ndeffo Mbah and

Gilligan, 2011), as well as for other disease systems (Keeling and Shattock, 2012; Klepac

et al., 2012), and control of invasive species (Carrasco et al., 2009).

Many different methods can be used to solve these optimal control problems, and we

have tested both direct and indirect approaches. We tested the indirect forward-backward

sweep method and the direct transcription method, chosen as they are both widely used to

solve OCT problems. We did not test other approaches, such as multiple shooting methods,

since the direct transcription method was sufficiently accurate, robust and reliable for the

models considered here. Whilst the indirect methods do allow for more mathematical

insight through analytic descriptions of the optimal control, applying the direct methods

here allowed us to reliably and robustly solve larger problems where convergence of indirect

methods would be limiting. The optimisation approaches we used allowed us to optimise

deployment of many different control methods, with OCT identifying which of 9 different

controls is optimal for control in a mixed stand.

Ultimately this led to optimising control of a fully spatial system around Redwood

National Park, allowing the question of where control resources should be deployed to be

answered with sufficiently resolved spatial strategies. Other studies have also optimised
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similar spatial management strategies, for example work by Epanchin-Niell and Wilen

(2012). The model used by Epanchin-Niell and Wilen (2012) though, required significant

simplification to allow optimisation, with a discrete nearest-neighbour spread model in which

cells are either invaded or not. Our work on the other hand, only reduced the resolution of

the model to be optimised. Different approaches apply OCT to PDE models of disease spread,

for example work by Neilan and Lenhart (2011), Christley et al. (2016), and Miyaoka et al.

(2019). The reaction-diffusion type models used by these studies solve a similar problem to

the problem of Chapter 7, and the work by Miyaoka et al. (2019) finds strategies that are

significantly more spatially resolved than ours. These approaches could be used to extend

our models, but importantly, none of these studies test results on more realistic models. Also,

there is more scope with metapopulation type models to incorporate long distance dispersal,

so that disease can still invade a fragmented landscape. Whether an ODE or PDE model is

used for optimisation however, the simplifications made in these approximate models—to

spatial structure for example—necessitate robustness testing of the optimal strategies.

This testing of OCT strategies can result in poor performance when there is uncertainty

about parameters or the system is highly complex, as we showed in Chapters 3 and 4. Work

by Forster and Gilligan (2007) showed that knowing the precise optimal time for a switch

in an OCT strategy is important, and that inaccuracies can lead to management that is

worse than using a much simpler strategy. Similarly, Carrasco et al. (2009) showed for

control of invasive species that the optimal strategy is not always robust once parameter

uncertainty is introduced. This and our comparisons of the open-loop and MPC strategies

highlight the importance of simulation models for making accurate disease forecasts. For

informing practical control, realistic complex models are needed to test and assess potential

interventions. When data is limited though, these simulation models may not be as accurate

as is required for policy. An advantage of a simulation model however, is that uncertainties

can be included, for example through sampling from a parameter distribution (e.g. Cook

et al., 2008; Parry et al., 2014; Cunniffe et al., 2015).

8.2.2 Optimising complex systems

Our approach to optimising complex simulation models was to start with a simpler

approximate model for which the optimal control problem is more tractable: an approach

commonly used in applications of OCT to engineering such as chemical plant control (Lee,

2011). The biggest factor affecting the size, and hence difficulty, of the optimal control

problem is the spatial resolution of the model. To reduce the size of the state-space, we

factored out space either completely in Chapter 6, into metapopulations in Chapters 3 and

4, or used reduced resolution models in Chapter 7. These approaches retain spatial detail

when required for the problem at hand, allowing OCT to give the most spatially resolved
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strategies possible. However, as with most OCT models, these approximations do lead to

differences between the approximate model and the complex simulation model used for

testing, and our solutions have limited spatial detail.

The MPC framework for disease control we have developed accounts for these inaccu-

racies in the approximate model. Other studies have considered MPC for disease control

(Sélley et al., 2015), as well as for other applications such as chemical plants and the

fields of manufacturing and aerospace (Qin and Badgwell, 2003). However, ours is the

first study to apply the full system, with approximate and simulation models, to practical

disease management questions. The feedback strategies allow the insights of OCT to be

applied, whilst also adapting control to each epidemic realisation, and lead to improved

control over an open-loop application of OCT results. We have demonstrated that MPC is

a suitable framework for asking how to deploy control, showing in multiple scenarios that

MPC provides the best strategies.

The main benefit of MPC is in the robustness of the framework to stochasticity, parameter

uncertainty and imperfect surveillance. We have shown that adapting control through MPC

handles these complexities, and minimises the risk of large-scale failures. We explained in

Chapter 1 how poorly designed management strategies have led to the failure of control for

dutch elm disease, citrus canker, and ash dieback. The strategies we have identified could

limit failures such as these through adapting control. We have shown that MPC is of the most

benefit during the most damaging epidemics. In Chapter 6 we saw that under parameter

uncertainty MPC provides the greatest benefit in the worst-case scenarios. Similarly, the OCT

strategies in Chapter 7 improve control in the worst-case epidemics. Finding robust control

strategies is vital for effective decision making.

8.2.3 Objectives for disease management

Assessing strategies for potential policy decisions requires a clear quantification of

the management goals; decision makers must ask why control is needed. For SOD, and

arguably for management of plant diseases in the natural environment more generally, the

consideration of solely large scale objectives has limited the utility of mathematical models.

Here we have made progress by using management goals that focus on local disease control,

prioritising protection of high value resources whether they be particular species or particular

regions. These local goals have been shown to be achievable in the field (Hansen et al.,

2019), and are still beneficial because of the high value of forest resources (UK government,

2018). Our frameworks apply the predictive power of simulation models and the insights

of OCT to these management goals, and we have demonstrated the effectiveness of the

resulting strategies.
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The objective we used in Chapter 6 combined the goals of protecting tanoak and conser-

ving biodiversity. This highlighted the importance of considering wider management goals

when optimising disease control, since the choice of objective impacts on optimal strategies

(Probert et al., 2016). However, our inclusion of biodiversity was still fairly simplistic, and

other goals such as fire management and timber value were not accounted for. Nevertheless,

we showed how goals such as these can alter the optimal control strategy, avoiding complete

removal of bay and redwood. Similarly, in Chapter 7 control was optimised to protect

the national park. But the objective did not account for the proximity of tribal lands, or

commercially valuable stands. Whilst there is more scope in plant disease, as opposed

to human or animal health, to protect one area or host at the detriment of others, wider

implications must still be considered. This only highlights further the importance of the

simulation model for assessing the resulting strategies. Any OCT informed strategies can

be compared with other plausible interventions using the strategy testing approach. This

allows the utility of the OCT informed strategies to be demonstrated as we did throughout

this thesis, but also allows other consequences to be considered even when not formally

included in the objective function. The simulation model can be used as a proxy for the real

world, to illustrate the wider impacts of disease and control.

8.2.4 Practical management

In this thesis we have answered the questions of which control methods to use, and

where, when, how and why to deploy these for disease management. Combining these

solutions allows practical management advice. Using the frameworks we have developed

for practical advice requires a fine balance between the realism of the simulation model,

the level of approximation for optimising control, the choice of objective function and the

constraints on the system. If all of these are aligned correctly then the resulting control

strategies could provide practical and realistic advice.

The strategies we have found for local SOD management are arguably highly complex; the

strategies show much time-dependence with many control switches and require a hierarchy

of models. In their current form these results are unlikely to inform disease management in

the real world because of the practical barriers to implementing such complex strategies.

The results could still be of use though, through development of rules of thumb (e.g.

Parnell et al., 2015; Hyatt-Twynam et al., 2017), or greater understanding of the drivers

behind the optimal strategy. This could include optimal bay densities for thinning in mixed

stands, or identification of areas that should be thinned and areas that should be rogued

when protecting a valuable region. Information such as this could help inform practical

management.

8.2 Contributions and limitations 165



The variable level of surveillance in Chapter 6 allows a decision maker to vary the

complexity of the MPC framework to suit the local disease risk. Regular updates are more

important when there is a high risk of disease re-emergence, and when optimal control

strategies are highly sensitive to changes in the system. We showed that in the mixed stand

case the form of the optimal control was not sensitive to parameter changes, but because of

the fine balance between tanoak retention and biodiversity conservation, small changes in

the strategy did affect performance.

Alongside the complexity of the optimal strategies, there is the question of when the more

complex MPC strategy is required. We showed the benefit of MPC when the approximate

model degrades in accuracy, but also showed in Chapter 6 that when the approximate model

closely matches the simulation throughout the epidemic (Section 6.3.3, p. 129), there is

little benefit to MPC over open-loop. The benefit of MPC is to account for inaccuracies

when the approximate model is unable to capture the full simulation dynamics, but how

complex should the approximate model be? Here we made the approximate model as

complex as possible whilst ensuring the optimisation was still tractable, but more systematic

methods could be developed. The biggest problem with MPC more broadly, is the need of

an underlying model (Camacho and Bordons, 1995). This model must be simple enough

to optimise but complex enough to capture the main disease characteristics. If there

is significant variation or stochasticity in the real world, then the surveillance and re-

optimisation of MPC will be necessary regardless of the quality of the approximate model.

8.3 Scope for future work

There is scope in future work to extend the complexity of the underlying approximate

models. In particular, our approximate models either factor out the heterogeneity of space

entirely by assuming well-mixed dynamics (Chapters 5 and 6), or include only a restricted

resolution via metapopulation approximations (Chapters 4 and 7). However, in all cases

well-mixing is assumed at some level. There is a wide body of work showing how spatial

heterogeneities can be handled empirically by using non-linear incidence functions to better

approximate spatial dynamics (e.g. Liu et al., 1986; Clarke et al., 2013; Chowell et al., 2016a;

Chowell et al., 2016b). However, since these forms are highly empirical, it is important to

ensure they fit simulation dynamics well under different time-dependent control strategies.

Doing so adaquately under the full range of possible controls with a single approximation

might even prove impossible, as we found for the approximate model in Chapter 6 where

control rates had to be scaled to match the control scheme. We also found that such

complexity in the underpinning model can hinder optimisation convergence, particularly

when derivatives are calculated through automatic differentiation, as was the case when the

package BOCOP was used in Chapters 4 and 6.
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Although here we used both network and structured metapopulation models for simu-

lations, alternative approaches to modelling space could be used, both in the approximate

model and the simulation model. For example, PDE type models as discussed in Section 8.2.1

(e.g. White and Gilligan, 2006; Neilan and Lenhart, 2011; Miyaoka et al., 2019) could be

used as approximate models, potentially allowing for higher resolution spatial strategies

because there would be no requirement to quantise space. Alternatively, the spatial detail of

the simulation model could be improved by using individual-based models (e.g. Cook et al.,

2008; Cunniffe et al., 2015), capturing the dynamics of each host individually, although

this could be overly detailed. This would also allow the raster approximation we used in

Chapter 7 to be tested, determining the appropriate resolution of the simulation model.

We have only tested a limited set of optimisation approaches in this thesis. In particular,

we have used deterministic OCT to find robust control strategies for simulation models

that in some cases were stochastic. It would be interesting to extend these analyses to use

stochastic OCT (Bertsekas, 2001), and to compare the resulting optimal strategies with

the deterministic analogues. Stochastic OCT can find more robust control strategies by

incorporating noise into the differential equations, but this does significantly increase the

complexity of the problem and only certain forms of noise can be included. In Chapter 6 we

touched on optimising multiple objectives, there combining tanoak retention and biodiversity

conservation. This could be extended to explicitly analyse multi-objective controls, including

wider disease impacts such as fire risk and CO2 capture in the OCT objective. However,

combining multiple objectives meaningfully can be difficult (Probert et al., 2016).

It would also be interesting to investigate optimisation approaches other than OCT.

Reinforcement learning (RL) is a field of machine learning concerned with computational

agents learning actions to maximise rewards, and has many parallels with OCT (Recht,

2019). Where OCT determines the optimal strategy based on a model of the dynamics, RL

approaches learn the underlying model whilst optimising the objective function. Recent

advances have shown that RL can solve very large problems, most notably defeating a

human professional player at the game of Go, for which exhaustive searching of solutions is

infeasible (Silver et al., 2016). Using these approaches could find novel strategies in complex

simulation models, solving problems with significantly more spatial detail for example.

The approach has recently been shown to be effective in a proof of concept application to

control of foot and mouth disease in animals (Probert et al., 2019). The disadvantage of

this approach is a lack of understanding of how the decisions are made. This could hamper

translation into policy.

We emphasised throughout this thesis the importance of robust control strategies, i.e.

strategies that under stochasticity and uncertainty still ensure effective disease management.

There is scope to extend this further in our work to more formally optimise robust strategies.
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The strategies we have developed could be further tested under parameter uncertainties,

potentially including estimation of parameters (Parry et al., 2014), as well as more precise

estimates as the epidemic progresses (Thompson et al., 2018). Another potential avenue

would be to use Robust MPC (Bemporad and Morari, 1999), an approach that explicitly

accounts for uncertainty in the controller by testing worst-case scenarios. This could provide

guarantees of management performance under defined levels of uncertainty, limiting the

worst-case scenarios in a more formal framework than we have so far considered.

Finally, our work could be applied to other disease systems where control may be more

effective than is now possible with SOD, for example management of the ongoing epidemic

of olive quick decline syndrome in southern Europe caused by Xylella fastidiosa (Sicard

et al., 2018), or to diseases with major food security implications such as cassava brown

streak disease in East Africa (Legg et al., 2011) or maize lethal necrosis (Hilker et al.,

2017). Additional real-world complexities could also be included into the models, for

example the effects of human behaviour and non-compliance with disease management.

Our spatial optimisations could be extended to a landscape of individual decision makers

with contrasting management goals similar to the systems considered by Epanchin-Niell

et al. (2010) and Milne et al. (2015) for example. Management could then be optimised to

provide incentives and dis-incentives to align individual goals with the aim of wider disease

management.

8.4 Concluding remarks

The setting of this thesis has been to combine methods from the fields of mathematics,

biology and systems engineering. We have made progress in the difficult problem of

optimising controls in complex epidemiological simulation models that capture enough

realism to inform policy. The frameworks we have developed go some way to building

robust decision making processes for plant disease control, but our work is only a start to

applying approaches from systems engineering to epidemiology. There is still much scope to

build more complex, more robust, and more rigorous approaches. With increasing disease

threats, the effects of climate change, and a growing and increasingly global population, the

significance and necessity of improving these methods is clear.
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AAppendix to Chapter 4

A.1 Alternative fitting methods for network model

The best-fitting spatial deterministic model leads to disease progress curves in regions

B and C that rise more quickly than the mean of the stochastic simulations, although the

epidemic size within each region closely matches the simulations. This is because it is

impossible for a deterministic model where the rates are fitted via maximum likelihood to

adequately capture the dynamics of an epidemic in which the following three conditions are

satisfied:

1. there is initially no infection;

2. there is a very small force of infection into the region (i.e. movement into the region is

very restricted);

3. there are relatively fast within-region dynamics once disease has entered.

These conditions are true inside regions B and C and so we see reduced rate of spread

in the stochastic case. This effect is due to stochastic fade outs after introduction events,

as well as negative covariance between susceptible and infected hosts, leading to reduced

infection rates in the simulations (Keeling and Rohani, 2008, pp. 227–229 and pp. 238–240).

Figure A.1 demonstrates that this effect is seen in the simplest case of a metapopulation

model with no risk structure. The rates are directly lifted from simulation to approximation

to show the effect is purely due to the difference between deterministic and stochastic

analogues. We also tested that our fitting procedures give these same values (data not

shown).

The spatial approximate model could be extended and improved to account for these

effects, for example by making use of moment closure techniques (Keeling, 1999) or

nonlinear force of infection terms (Roy and Pascual, 2006) as used by Clarke et al. (2013)

and Stroud et al. (2006), but we here focus on simplicity. Despite the limitations of the

deterministic models, our proposed control frameworks allow the resulting controls to be

used practically and successfully, particularly when approximating models are repeatedly

reset. Since the benefits of the control frameworks should not depend on the exact fitting

process used, we also fitted both approximate models by minimising the sum of squared
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Figure A.1: Illustration of increased rate of spread in deterministic models when coupling is small.
In this figure we use a 3 patch metapopulation model, with well-mixed dynamics within
regions and coupling between regions A and B, and B and C. There is no risk structure. (a)
shows the difference in peak infection time for deterministic and stochastic versions of the
model with identical rates. Positive values indicate the deterministic model peaks earlier.
Dots give the mean of 1000 stochastic simulations, with error bars showing the 95th
percentile. (b) shows median stochastic dynamics and deciles in red, and deterministic
disease progress curve in black, for a high coupling value (10−4). The same is shown in
(c) for a low coupling value (10−5)
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errors from the simulation disease progress curves. For the risk-based model the following

sum of squared errors was minimised:

SSE =
∑
i,j

(
∆IH

i (tj)
)2 +

(
∆IL

i (tj)
)2

(A.1)

where ∆Ir
i (tj) is the difference in the number of infected hosts in risk group r between the

approximate model and simulation realisation i at time tj . The sum is over all simulation

realisations and across 51 times over the simulation time. The equivalent SSE function was

used for the spatial approximate model, but summing differences for each region as well.

Using this alternative fitting process did not change the ordering of control strategies as seen

in Figure 4.10 in the main text (Figure A.2).
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Figure A.2: Results of different control optimisation schemes on the illustrative simulation model
using approximate models fitted by minimising SSE. Spatial MPC still performs best.
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BAppendix to Chapter 6

B.1 Parameter uncertainty scenarios

In Figure 6.12(c)–(d) in Chapter 6, reproduced for convenience in Figure B.1 below,

4 scenarios were highlighted to show the differences between open-loop and MPC under

different parameter sets.

Scenario 1 Open-loop performs badly, MPC is significantly better.

Scenario 2 Average open-loop performance, moderate improvement by using MPC.

Scenario 3 Good performance using open-loop, marginal decrease in performance using

MPC

Scenario 4 Good performance using open-loop, marginal increase in performance using

MPC

Figures B.2–B.5 and the captions describe the situation in each scenario, explaining what

drives the differences in performance.
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Figure B.1: Repeat of Figure 6.12(c)–(d) from Chapter 6. (c) shows the distribution of objective
values using open-loop and MPC across 200 draws of simulation parameters. (d) shows
the absolute improvement of the MPC strategy over open-loop, as a function of the
open-loop objective.
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Figure B.2: Scenario 1. For each scenario, the open-loop control strategy and host dynamics are
shown in (a) and (b), and the same for MPC in (c) and (d). The blue bars to the right
of (b) and (d) highlight the difference between the simulation and approximate models
in the number of large tanoak at the final time. (e) shows the large tanoak dynamics
when there is no control compared with the baseline parameter case. Here, open-loop
performs poorly because the disease spreads quickly, leading to significant tanoak decline
in the first 20–40 years. (e) shows decline is faster than in the baseline case. In MPC, the
framework can respond to this early decline and keep the disease under control.
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Figure B.3: Scenario 2. Here, under open-loop the approximate model slowly degrades and leads to
differences between the simulation and approximate models. The control is relatively
effective, but is not informed by the correct simulation state. Under MPC the approximate
model is kept much closer to the simulation, leading to more informed control and better
performance. (e) shows that tanoak decline under no control is similar to the baseline
case.
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Figure B.4: Scenario 3. The disease is slow to spread, and therefore relatively easy to control. The
approximate model stays close to the simulation under both open-loop and MPC as there
are only small amounts of disease spread. The different thinning regime under MPC leads
to slightly worse retention of tanoak than under open-loop, but the difference is very
small. (e) shows that tanoak decline under no control is slower than in the baseline case.
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Figure B.5: Scenario 4. The disease is very easy to control, leading to minimal roguing under both
frameworks. The thinning of redwood under MPC is better informed after the update
time at 20 years, and so promotes additional recovery of tanoak. Here both frameworks
increase the size of the tanoak population above the pre-disease introduction level. (e)
shows that tanoak decline under no control is much slower than in the baseline case.
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B.2 Efficacy of protectant methods

In Section 6.4.1 we stated that the protectant methods are unlikely to be applied in

practice since they have a very small effect on the overall objective. We here verify this by

running the MPC strategy with and without the protectant methods, as shown in Figure B.6.

The protectant application marginally increases the objective function, but the effect is

negligible.
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Figure B.6: Under the MPC framework, applying protectant methods does not have a significant effect
on the control performance. (a) and (b) show the control and host dynamics under the
standard MPC framework. (c) and (d) show the same but where the protectant method is
not applied. Note that control expenditure, in particular for roguing, is not the same since
the number of hosts has changed. (e) shows the objective function for MPC with and
without protectant methods. The total objective values are 0.7996 (4 s.f.) and 0.7938
(4 s.f.) with and without protectant application respectively.
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B.3 Time horizon robustness

The 100 year time horizon was chosen to be long enough to capture tanoak decline and

show the differences between the open-loop and MPC frameworks. We here extend the time

horizon by 5 MPC update periods to 200 years to verify that the difference between the

frameworks is robust in the longer term. This longer time horizon is arbitrary but chosen

as the disease has been eradicated by this time. We tested other end points to ensure the

conclusions are consistent (data not shown). Figure B.7 shows the control strategies and host

dynamics for both open-loop and MPC over this longer time horizon of 200 years. The MPC

framework does show tanoak decline from late re-emergence, but this is delayed compared

to open-loop. After 200 years, the disease has been eradicated and tanoak populations are

recovering under both open-loop and MPC. However, the retained tanoak population is twice

as large under the MPC framework.

We also test how robust the control strategies are to shorter time horizons. While a

time horizon of 100 years is appropriate for considering tanoak restoration and biodiversity

effects, decision makers may not optimise strategies over such a long time period. We

optimised control over a time horizon of 20 years, as shown in Figure B.8. As with the longer

time horizon, control still initially focusses on thinning of bay laurel. The control strategy

looks very similar to the first 20 years of the optimal control using the 100 year time horizon,

with a slight delay to thinning of redwood. This is because over the short term making space

for tanoak regrowth is less important than managing infection levels.

B.3 Time horizon robustness 191



0 50 100 150 200
Time / yrs

0

5

10

15

C
on

tro
l E

xp
en

di
tu

re

0 50 100 150 200
Time / yrs

0.00

0.05

0.10

0.15

0.20

0.25

0.30

St
em

 d
en

si
ty

Small Tanoak
Large Tanoak

Bay
Redwood

Simulation Approximate model Update times

0 50 100 150 200
Time / yrs

0

5

10

15

C
on

tro
l E

xp
en

di
tu

re

0 50 100 150 200
Time / yrs

0.00

0.05

0.10

0.15

0.20

0.25

0.30

St
em

 d
en

si
ty

(a)

(b)

(c)

(d)

Thin Tan (Small)
Thin Tan (Large)
Thin Bay

Thin Red
Rogue Tan (Small)
Rogue Tan (Large)

Rogue Bay
Protect Tan (Small)
Protect Tan (Large)

Figure B.7: Open-loop and MPC control strategies, and host dynamics, using a time horizon of 200
years. (a) and (b) are the control strategy and host dynamics for open-loop, (c) and (d)
show the same for MPC. MPC slows down the tanoak decline seen using the open-loop
framework and retains more tanoak.
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Figure B.8: Open-loop control strategy and host dynamics using a time horizon of 20 years. The
optimal strategy over a short time horizon is similar to 100 year time horizon results with
a delay to thinning of redwood.
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CAppendix to Chapter 7

C.1 Parameter and variable values

Table C.1: Table of parameter and variable meanings and default values.

Symbol Meaning Default value

β Maximum spore production rate from each infected host unit 4.55 wk−1

γ Proportion of dispersal events distributed using short range

kernel

0.9947

α1 Scale parameter for short range kernel 20.57 m

α2 Scale parameter for long range kernel 9.504 km

η Maximum total control rate 50 km2 year−1

χ(fi(t)) Indicator for pathogen conduciveness in cell i of forest type fi

at time t

0 or 1

mit Pathogen conduciveness due to moisture for cell i at time t [0, 1]

cit Pathogen conduciveness due to temperature for cell i at time t [0, 1]

Mi Averaged pathogen conduciveness due to weather and forest

type mask for cell i

[0, 1]

Nmax Maximum number of host units in any single simulation cell 100

Sit Number of susceptible host units in simulation cell i at time t [0, Nmax]

Iit Number of infected host units in simulation cell i at time t [0, Nmax]

Kji Probability of spore dispersal from cell i to cell j [0, 1]

β̃ Fitted infection rate in approximate model -

S̃i Number of susceptible hosts in aggregated cell i in approximate

model

-

Ĩi Number of infected hosts in aggregated cell i in approximate

model

-

kij Dispersal kernel between cells i and j in approximate model [0, 1]

ui(t) Thinning intensity at time t in cell i of the approximate model [0, 1]

vi(t) Roguing intensity at time t in cell i of the approximate model [0, 1]
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C.2 Approximate model fitting results

Table C.2: Table of approximate model fitted parameters. All values are give to 3 significant figures.

Exponential kernel Cauchy kernel

Resolution (m) β̃1 (host−1 t−1) σ1 (m) β̃2 (host−1 t−1) σ2 (m)

250 0.617 1090 0.0787 41.0

500 0.156 1100 0.022 91.6

1000 0.0392 1060 0.00626 189

1500 0.0164 1110 0.003 299

2000 0.00856 1220 0.00175 404

2500 0.00506 1310 0.00116 506

5000 0.000944 1830 0.000383 1420

C.3 Problem formulation

Here we show how the non-linear programming problem (NLP) was formulated for

optimising spatial control to protect Redwood National Park in Chapter 7. The raster based

disease system is described by 2 ODEs for each cell in the landscape:

Ṡi = −β̃MiSi
∑
j

(kijMjIj)− ui(t)ηSi (C.1a)

İi = β̃MiSi
∑
j

(kijMjIj)− vi(t)ηIi (C.1b)

where the variables are as described in Chapter 7. As explained in Chapter 2, the direct

method discretises the system of ODEs and optimises these variables subject to constraints

that impose the correct dynamics. In our case, for a system of N cells discretised on a grid

of M + 1 time points, the vector of NLP variables to optimise is given by:

yT =
(
S0

0 , I
0
0 , u

0
0, v

0
0 , . . . S

0
N , I

0
N , u

0
N , v

0
N ,

S1
0 , I

1
0 , u

1
0, v

1
0 , . . . S

1
N , I

1
N , u

1
N , v

1
N ,

. . . SMN , I
M
N , uMN , v

M
N

) (C.2)

where subscripts indicate the cell and superscripts indicate the time point.

Constraints must now be formulated to impose the dynamics of the ODE system on

these NLP variables. Because of the size of the NLP problem, we use a simple midpoint
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discretisation method. For an ODE system ẋ = f(t, x(t)), the implicit midpoint method is

given by:

xn+1 = xn + hf

(
tn + h

2 ,
1
2(xn + xn+1)

)
(C.3)

where h is the step size, such that tn = t0 + nh, and xn is the approximation of x(tn) (Betts,

2010, p. 100).

For our system, applying the midpoint method results in the following state dynamics

constraints:

Sn+1
i = Sni − h

[
β̃

1
2
(
Sni + Sn+1

i

)∑
j

MiMjkij
1
2
(
Inj + In+1

j

)
+ η

1
2
(
uni + un+1

i

) 1
2
(
Sni + Sn+1

i

)] (C.4a)

In+1
i = Ini + h

[
β̃

1
2
(
Sni + Sn+1

i

)∑
j

MiMjkij
1
2
(
Inj + In+1

j

)
− η 1

2
(
vni + vn+1

i

) 1
2
(
Ini + In+1

i

)]
.

(C.4b)

Alongside the initial condition constraints, and bounds on the control variables, these form

the full constraint system for the NLP problem. These constraints are differentiated with

respect to the NLP variables to give the Jacobian of the problem, and differentiated again to

form the Hessian.

C.4 Problem optimisation

The NLP variables are optimised to maximise the number of healthy hosts at the final

time, with a varying weight for each cell. In terms of the NLP variables, this objective

function is given by:

J =
∑
i

WiS
M
i (C.5)

where the weight for cell i is given by Wi, and time point M is at the final time.

The problem is optimised using Ipopt (Wächter and Biegler, 2006), an open source

interior point optimiser designed for large-scale non-linear optimisation. The constraint

system, objective function, and their derivatives are implemented in C++ as an interface to

the Ipopt software.
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