869 research outputs found

    A machine-learning approach to predict postprandial hypoglycemia

    Get PDF
    Background For an effective artificial pancreas (AP) system and an improved therapeutic intervention with continuous glucose monitoring (CGM), predicting the occurrence of hypoglycemia accurately is very important. While there have been many studies reporting successful algorithms for predicting nocturnal hypoglycemia, predicting postprandial hypoglycemia still remains a challenge due to extreme glucose fluctuations that occur around mealtimes. The goal of this study is to evaluate the feasibility of easy-to-use, computationally efficient machine-learning algorithm to predict postprandial hypoglycemia with a unique feature set. Methods We use retrospective CGM datasets of 104 people who had experienced at least one hypoglycemia alert value during a three-day CGM session. The algorithms were developed based on four machine learning models with a unique data-driven feature set: a random forest (RF), a support vector machine using a linear function or a radial basis function, a K-nearest neighbor, and a logistic regression. With 5-fold cross-subject validation, the average performance of each model was calculated to compare and contrast their individual performance. The area under a receiver operating characteristic curve (AUC) and the F1 score were used as the main criterion for evaluating the performance. Results In predicting a hypoglycemia alert value with a 30-min prediction horizon, the RF model showed the best performance with the average AUC of 0.966, the average sensitivity of 89.6%, the average specificity of 91.3%, and the average F1 score of 0.543. In addition, the RF showed the better predictive performance for postprandial hypoglycemic events than other models. Conclusion In conclusion, we showed that machine-learning algorithms have potential in predicting postprandial hypoglycemia, and the RF model could be a better candidate for the further development of postprandial hypoglycemia prediction algorithm to advance the CGM technology and the AP technology further.11Ysciescopu

    Patterns Detection in Glucose Time Series by Domain Transformations and Deep Learning

    Full text link
    People with diabetes have to manage their blood glucose level to keep it within an appropriate range. Predicting whether future glucose values will be outside the healthy threshold is of vital importance in order to take corrective actions to avoid potential health damage. In this paper we describe our research with the aim of predicting the future behavior of blood glucose levels, so that hypoglycemic events may be anticipated. The approach of this work is the application of transformation functions on glucose time series, and their use in convolutional neural networks. We have tested our proposed method using real data from 4 different diabetes patients with promising results.Comment: 7 pages, 7 figures, 3 table

    A deep learning approach to diabetic blood glucose prediction

    Full text link
    We consider the question of 30-minute prediction of blood glucose levels measured by continuous glucose monitoring devices, using clinical data. While most studies of this nature deal with one patient at a time, we take a certain percentage of patients in the data set as training data, and test on the remainder of the patients; i.e., the machine need not re-calibrate on the new patients in the data set. We demonstrate how deep learning can outperform shallow networks in this example. One novelty is to demonstrate how a parsimonious deep representation can be constructed using domain knowledge

    Hybrid Deep Learning Algorithm for Insulin Dosage Prediction Using Blockchain and IOT

    Get PDF
    This paper addresses the problem of predicting insulin dosage in diabetes patients using the PSO-LSTM, COA-LSTM, and LOA-LSTM algorithms. Accurate insulin dosage prediction is crucial in effectively managing Diabetes and maintaining blood glucose levels within the desired range. The study proposes a novel approach that combines particle swarm optimization (PSO) with the long short-term memory (LSTM) model. PSO is used to optimize the LSTM's parameters, enhancing its prediction capabilities specifically for insulin dosage. Additionally, two other techniques, COA-LSTM and LOA-LSTM, are introduced for comparison purposes. The algorithms utilize a dataset comprising relevant features such as past insulin dosages, blood glucose levels, carbohydrate intake, and physical activity. These features are fed into the PSO-LSTM, COA-LSTM, and LOA-LSTM models to predict the appropriate insulin dosage for future time points. The results demonstrate the effectiveness of the proposed PSO-LSTM algorithm in accurately predicting insulin dosage, surpassing the performance of COA-LSTM and LOA-LSTM. The PSO-LSTM model achieves a high level of accuracy, aiding in personalized and precise insulin administration for diabetes patients. By leveraging the power of PSO optimization and LSTM modeling, this research improves the accuracy and reliability of insulin dosage prediction. The findings highlight the potential of the PSO-LSTM algorithm as a valuable tool for healthcare professionals in optimizing diabetes management and enhancing patient outcomes

    A Data-Driven Approach to Predict Carbohydrate Counting Errors in Diabetes Management

    Get PDF
    Carbohydrate counting, which refers to estimating the carbohydrate content in meals, is critical for determining mealtime insulin doses and maintaining healthy blood glucose levels in persons with type 1 diabetes (T1D). However, carbohydrate counting errors (i.e., over-or under-estimation of carbohydrate intake) are very common amongst patients and are often a source of poor glycemic control. Fortunately, the prevalence of personal health data from wearable medical devices like continuous glucose monitors (CGMs) and insulin pumps provide unique opportunities for understanding and predicting health management outcomes. In this study, we use adverse glycemic events following meal intakes as a proxy for identifying carbohydrate counting errors, then use supervised machine learning models to predict these carbohydrate counting errors. Our dataset includes an average of 161-days of CGM and insulin pump data from 34 patients with T1D. Using a total of 13 features from both datasets, we observed the highest prediction accuracy of 70.5% with a multilayer perceptron (MLP) classifier compared to a baseline model that only yielded 61% accuracy. This work provides a framework for the development of more data-driven tools that leverage personal health data for decision-support to improve health outcomes for people with T1D

    Gramáticas evolutivas para la predicción de hipoglucemias en diabetes

    Get PDF
    Trabajo de Fin de Grado en Ingeniería Informática, Facultad de Informática UCM, Departamento Ingeniería del Software e Inteligencia Artificial, Curso 2021/2022. https://github.com/ABSysGroup/jeco/tree/TFG_GE4HYPODiabetic patients have to manage their blood sugar correctly to prevent complications. One such complication is hypoglycemia or low blood sugar, which occurs when the blood glucose concentration goes below a certain threshold. A hypoglycemic episode needs to be rectified before it becomes harmful and can be a very distressing situation for the patient. The main goal of this study is to program Structured Grammatical Evolution and Dynamic Structured Grammatical Evolution algorithms and use them to generate models for the prediction of hypoglycemic episodes in patients with diabetes. The algorithms will be used to obtain a white-box model made up of if-then-else statements that given some input data, comprised of the blood glucose and exercise readings of the patients from the previous 2 hours, optimizes a logical relation between these variables. The resulting formula will be able to determine if the patient is going to have a hypoglycemic episode in a 30, 60, 90 and 120 minutes prediction horizon.Los pacientes con diabetes deben controlar correctamente su nivel de azúcar en sangre para evitar complicaciones. Una de estas complicaciones es la hipoglucemia o nivel bajo de azúcar en sangre, que ocurre cuando la concentración de glucosa en la sangre cae por debajo de cierto umbral. Un episodio de hipoglucemia debe corregirse antes de que se vuelva dañino y puede ser una situación muy angustiosa para el paciente. El objetivo principal de este estudio es programar los algoritmos de Gramáticas Evolutivas Estructuradas y Gramáticas Evolutivas Estructuradas Dinámicas, y utilizarlos para generar modelos de predicción de episodios hipoglucémicos en pacientes con diabetes. Los algoritmos se utilizarán para obtener un modelo de caja blanca formado por sentencias if-then-else que, dados unos datos de entrada, compuestos por el nivel de la glucosa en sangre y las lecturas de datos de ejercicio de los pacientes de las 2 horas anteriores, optimiza una relación lógica entre estas variables. La fórmula resultante se usa para determinar si el paciente va a tener un episodio de hipoglucemia en un plazo de 30, 60, 90 y 120 minutos.Depto. de Ingeniería de Software e Inteligencia Artificial (ISIA)Fac. de InformáticaTRUEunpu

    In-Silico Evaluation of Glucose Regulation Using Policy Gradient Reinforcement Learning for Patients with Type 1 Diabetes Mellitus

    Get PDF
    In this paper, we test and evaluate policy gradient reinforcement learning for automated blood glucose control in patients with Type 1 Diabetes Mellitus. Recent research has shown that reinforcement learning is a promising approach to accommodate the need for individualized blood glucose level control algorithms. The motivation for using policy gradient algorithms comes from the fact that adaptively administering insulin is an inherently continuous task. Policy gradient algorithms are known to be superior in continuous high-dimensional control tasks. Previously, most of the approaches for automated blood glucose control using reinforcement learning has used a finite set of actions. We use the Trust-Region Policy Optimization algorithm in this work. It represents the state of the art for deep policy gradient algorithms. The experiments are carried out in-silico using the Hovorka model, and stochastic behavior is modeled through simulated carbohydrate counting errors to illustrate the full potential of the framework. Furthermore, we use a model-free approach where no prior information about the patient is given to the algorithm. Our experiments show that the reinforcement learning agent is able to compete with and sometimes outperform state-of-the-art model predictive control in blood glucose regulation

    STOCHASTIC SEASONAL MODELS FOR GLUCOSE PREDICTION IN TYPE 1 DIABETES

    Full text link
    [ES] La diabetes es un importante problema de salud mundial, siendo una de las enfermedades no transmisibles más graves después de las enfermedades cardiovasculares, el cáncer y las enfermedades respiratorias crónicas. La prevalencia de la diabetes ha aumentado constantemente en las últimas décadas, especialmente en países de ingresos bajos y medios. Se estima que 425 millones de personas en todo el mundo tenían diabetes en 2017, y para 2045 este número puede aumentar a 629 millones. Alrededor del 10% de las personas con diabetes padecen diabetes tipo 1, caracterizada por una destrucción autoinmune de las células beta en el páncreas, responsables de la secreción de la hormona insulina. Sin insulina, la glucosa plasmática aumenta a niveles nocivos, provocando complicaciones vasculares a largo plazo. Hasta que se encuentre una cura, el manejo de la diabetes depende de los avances tecnológicos para terapias de reemplazo de insulina. Con la llegada de los monitores continuos de glucosa, la tecnología ha evolucionado hacia sistemas automatizados. Acuñados como "páncreas artificial", los dispositivos de control de glucosa en lazo cerrado suponen hoy en día un cambio de juego en el manejo de la diabetes. La investigación en las últimas décadas ha sido intensa, dando lugar al primer sistema comercial a fines de 2017, y muchos más están siendo desarrollados por las principales industrias de dispositivos médicos. Sin embargo, como dispositivo de primera generación, muchos problemas aún permanecen abiertos y nuevos avances tecnológicos conducirán a mejoras del sistema para obtener mejores resultados de control glucémico y reducir la carga del paciente, mejorando significativamente la calidad de vida de las personas con diabetes tipo 1. En el centro de cualquier sistema de páncreas artificial se encuentra la predicción de glucosa, tema abordado en esta tesis. La capacidad de predecir la glucosa a lo largo de un horizonte de predicción dado, y la estimación de las tendencias futuras de glucosa, es la característica más importante de cualquier sistema de páncreas artificial, para poder tomar medidas preventivas que eviten por completo el riesgo para el paciente. La predicción de glucosa puede aparecer como parte del algoritmo de control en sí, como en sistemas basados en técnicas de control predictivo basado en modelo (MPC), o como parte de un sistema de supervisión para evitar episodios de hipoglucemia. Sin embargo, predecir la glucosa es un problema muy desafiante debido a la gran variabilidad inter e intra-sujeto que sufren los pacientes, cuyas fuentes solo se entienden parcialmente. Esto limita las prestaciones predictivas de los modelos, imponiendo horizontes de predicción relativamente cortos, independientemente de la técnica de modelado utilizada (modelos fisiológicos, basados en datos o híbridos). La hipótesis de partida de esta tesis es que la complejidad de la dinámica de la glucosa requiere la capacidad de caracterizar grupos de comportamientos en los datos históricos del paciente que llevan naturalmente al concepto de modelado local. Además, la similitud de las respuestas en un grupo puede aprovecharse aún más para introducir el concepto clásico de estacionalidad en la predicción de glucosa. Como resultado, los modelos locales estacionales están en el centro de esta tesis. Se utilizan varias bases de datos clínicas que incluyen comidas mixtas y ejercicio para demostrar la viabilidad y superioridad de las prestaciones de este enfoque.[CA] La diabetisés un important problema de salut mundial, sent una de les malalties no transmissibles més greus després de les malalties cardiovasculars, el càncer i les malalties respiratòries cròniques. La prevalença de la diabetis ha augmentat constantment en les últimes dècades, especialment en països d'ingressos baixos i mitjans. S'estima que 425 milions de persones a tot el món tenien diabetis en 2017, i per 2045 aquest nombre pot augmentar a 629 milions. Al voltant del 10% de les persones amb diabetis pateixen diabetis tipus 1, caracteritzada per una destrucció autoimmune de les cèl·lules beta en el pàncrees, responsables de la secreció de l'hormona insulina. Sense insulina, la glucosa plasmàtica augmenta a nivells nocius, provocant complicacions vasculars a llarg termini. Fins que es trobi una cura, el maneig de la diabetis depén dels avenços tecnològics per a teràpies de reemplaçament d'insulina. Amb l'arribada dels monitors continus de glucosa, la tecnologia ha evolucionat cap a sistemes automatitzats. Encunyats com "pàncrees artificial", els dispositius de control de glucosa en llaç tancat suposen avui dia un canvi de joc en el maneig de la diabetis. La investigació en les últimes dècades ha estat intensa, donant lloc al primer sistema comercial a finals de 2017, i molts més estan sent desenvolupats per les principals indústries de dispositius mèdics. No obstant això, com a dispositiu de primera generació, molts problemes encara romanen oberts i nous avenços tecnològics conduiran a millores del sistema per obtenir millors resultats de control glucèmic i reduir la càrrega del pacient, millorant significativament la qualitat de vida de les persones amb diabetis tipus 1. Al centre de qualsevol sistema de pàncrees artificial es troba la predicció de glucosa, tema abordat en aquesta tesi. La capacitat de predir la glucosa al llarg d'un horitzó de predicció donat, i l'estimació de les tendències futures de glucosa, és la característica més important de qualsevol sistema de pàncrees artificial, per poder prendre mesures preventives que evitin completament el risc per el pacient. La predicció de glucosa pot aparèixer com a part de l'algoritme de control en si, com en sistemes basats en técniques de control predictiu basat en model (MPC), o com a part d'un sistema de supervisió per evitar episodis d'hipoglucèmia. No obstant això, predir la glucosa és un problema molt desafiant degut a la gran variabilitat inter i intra-subjecte que pateixen els pacients, les fonts només s'entenen parcialment. Això limita les prestacions predictives dels models, imposant horitzons de predicció relativament curts, independentment de la tècnica de modelatge utilitzada (models fisiològics, basats en dades o híbrids). La hipòtesi de partida d'aquesta tesi és que la complexitat de la dinàmica de la glucosa requereix la capacitat de caracteritzar grups de comportaments en les dades històriques del pacient que porten naturalment al concepte de modelatge local. A més, la similitud de les respostes en un grup pot aprofitar-se encara més per introduir el concepte clàssic d'estacionalitat en la predicció de glucosa. Com a resultat, els models locals estacionals estan al centre d'aquesta tesi. S'utilitzen diverses bases de dades clíniques que inclouen menjars mixtes i exercici per demostrar la viabilitat i superioritat de les prestacions d'aquest enfocament.[EN] Diabetes is a significant global health problem, one of the most serious noncommunicable diseases after cardiovascular diseases, cancer and chronic respiratory diseases. Diabetes prevalence has been steadily increasing over the past decades, especially in low- and middle-income countries. It is estimated that 425 million people worldwide had diabetes in 2017, and by 2045 this number may rise to 629 million. About 10% of people with diabetes suffer from type 1 diabetes, characterized by autoimmune destruction of the beta-cells in the pancreas, responsible for the secretion of the hormone insulin. Without insulin, plasma glucose rises to deleterious levels, provoking long-term vascular complications. Until a cure is found, the management of diabetes relies on technological developments for insulin replacement therapies. With the advent of continuous glucose monitors, technology has been evolving towards automated systems. Coined as "artificial pancreas", closed-loop glucose control devices are nowadays a game-changer in diabetes management. Research in the last decades has been intense, yielding a first commercial system in late 2017 and many more are in the pipeline of the main medical devices industry. However, as a first-generation device, many issues still remain open and new technological advancements will lead to system improvements for better glycemic control outputs and reduced patient's burden, improving significantly the quality of life of people with type 1 diabetes. At the core of any artificial pancreas system is glucose prediction, the topic addressed in this thesis. The ability to predict glucose along a given prediction horizon, and estimation of future glucose trends, is the most important feature of any artificial pancreas system, in order to be able to take preventive actions to entirely avoid risk to the patient. Glucose prediction can appear as part of the control algorithm itself, such as in systems based on model predictive control (MPC) techniques, or as part of a monitoring system to avoid hypoglycemic episodes. However, predicting glucose is a very challenging problem due to the large inter- and intra-subject variability that patients suffer, whose sources are only partially understood. These limits models forecasting performance, imposing relatively short prediction horizons, despite the modeling technique used (physiological, data-driven or hybrid approaches). The starting hypothesis of this thesis is that the complexity of glucose dynamics requires the ability to characterize clusters of behaviors in the patient's historical data naturally yielding to the concept of local modeling. Besides, the similarity of responses in a cluster can be further exploited to introduce the classical concept of seasonality into glucose prediction. As a result, seasonal local models are at the core of this thesis. Several clinical databases including mixed meals and exercise are used to demonstrate the feasibility and superiority of the performance of this approach.This work has been supported by the Spanish Ministry of Economy and Competitiveness (MINECO) under the FPI grant BES-2014-069253 and projects DPI2013-46982-C2-1-R and DPI2016-78831-C2-1-R. Moreover, with relation to this grant, a short stay was done at the end of 2017 at the Illinois Institute of Technology, Chicago, United States of America, under the supervision of Prof. Ali Cinar, for four months from 01/09/2017 to 29/12/2017.Montaser Roushdi Ali, E. (2020). STOCHASTIC SEASONAL MODELS FOR GLUCOSE PREDICTION IN TYPE 1 DIABETES [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/136574TESI

    Feature Selection for Blood Glucose Level Prediction in Type 1 Diabetes Mellitus by Using the Sequential Input Selection Algorithm (SISAL)

    Get PDF
    Feature selection is a primary exercise to tackle any forecasting task. Machine learning algorithms used to predict any variable can improve their performance by lessening their computational effort with a proper dataset. Anticipating future glycemia in type 1 diabetes mellitus (DM1) patients provides a baseline in its management, and in this task, we need to carefully select data, especially now, when novel wearable devices offer more and more information. In this paper, a complete characterization of 25 diabetic people has been carried out, registering innovative variables like sleep, schedule, or heart rate in addition to other well-known ones like insulin, meal, and exercise. With this ground-breaking data compilation, we present a study of these features using the Sequential Input Selection Algorithm (SISAL), which is specially prepared for time series data. The results rank features according to their importance, regarding their relevance in blood glucose level prediction as well as indicating the most influential past values to be taken into account and distinguishing features with person-dependent behavior from others with a common performance in any patient. These ideas can be used as strategies to select data for predicting glycemia depending on the availability of computational power, required speed, or required accuracy. In conclusion, this paper tries to analyze if there exists symmetry among the different features that can affect blood glucose levels, that is, if their behavior is symmetric in terms of influence in glycemia.This work has been sponsored by the Spanish Ministry of Economy and Competitiveness through 387 the PERSEIDES (ref. TIN2017-86885-R) and CHIST-ERA (ref. PCIN-2016-010) projects; by MINECO grant BES-2015-071956 and by the European Commission through the H2020-ENTROPY-649849 EU Project. The authors would like to thank to the Endocrinology Department of the Morales Meseguer and Virgen de la Arrixaca hospitals of the city of Murcia (Spain)

    Machine Learning Approach for Care Improvement of Children and Youth with Type 1 Diabetes Treated with Hybrid Closed-Loop System

    Get PDF
    Type 1 diabetes is a disease affecting beta cells of the pancreas and it’s responsible for a decreased insulin secretion, leading to an increased blood glucose level. The traditional method for glucose treatment is based on finger-stick measurement of the blood glucose concentration and consequent manual insulin injection. Nowadays insulin pumps and continuous glucose monitoring systems are replacing them, being simpler and automatized. This paper focuses on analyzing and improving the knowledge about which Machine Learning algorithms can work best with glycaemic data and tries to find out the relation between insulin pump settings and glycaemic control. The dataset is composed of 90 days of recordings taken from 16 children and adolescents. Three Machine Learning approaches, two for classification, Logistic Regression (LR) and Random Forest (RL), and one for regression, Multivariate Linear Regression (MLR), have been used for the purpose. Specifically, the pump settings analysis was performed based on the Time In Range (TIR) computation and comparison consequent to pump setting changes. RF and MLR have shown the best results, while, for the settings’ analysis, the data show a discrete correlation between changes and TIRs. This study provides an interesting closer look at the data recorded by the insulin pump and a suitable starting point for a thorough and complete analysis of them
    corecore