1,361 research outputs found

    Ultrasound segmentation using U-Net: learning from simulated data and testing on real data

    Full text link
    Segmentation of ultrasound images is an essential task in both diagnosis and image-guided interventions given the ease-of-use and low cost of this imaging modality. As manual segmentation is tedious and time consuming, a growing body of research has focused on the development of automatic segmentation algorithms. Deep learning algorithms have shown remarkable achievements in this regard; however, they need large training datasets. Unfortunately, preparing large labeled datasets in ultrasound images is prohibitively difficult. Therefore, in this study, we propose the use of simulated ultrasound (US) images for training the U-Net deep learning segmentation architecture and test on tissue-mimicking phantom data collected by an ultrasound machine. We demonstrate that the trained architecture on the simulated data is transferrable to real data, and therefore, simulated data can be considered as an alternative training dataset when real datasets are not available. The second contribution of this paper is that we train our U- Net network on envelope and B-mode images of the simulated dataset, and test the trained network on real envelope and B- mode images of phantom, respectively. We show that test results are superior for the envelope data compared to B-mode image.Comment: Accepted in EMBC 201

    Computational Dynamic Features Extraction from Anonymized Medical Images

    Get PDF
    Images depict clearer meaning than written words and this is reason they are used in a variety of human endeavors, including but not limited to medicine. Medical image datasets are used in medical environment to diagnose and confirm medical disorders for which physical examination may not be sufficient. However, the medical profession's ethics of patient confidentiality policy creates barrier to availability of medical datasets for research; thus, this research work was able to solve the above stated barrier through anonymization of sensitive identity information. Furthermore, the Content Based Image Retrieval (CBIR) using texture as the content was developed to overcome the challenge of information overloading associated with data retrieval systems. Images acquired from various imaging modalities and placed into Digital Imaging and Communications in Medicine (DICOM) formats were obtained from several hospitals in Nigeria. The database of these images was created and consequently anonymized, then a new anonymized database was created. On anonymized images, feature extraction was done using textures as content and the content was considered for the implementation of retrieval system. The anonymized images were tested in DICOM view to see if all files were successfully anonymized; the result obtained was 100%. A texture retrieval test was performed, and the number of precisely returned search images using the Similarity Distance Measure formulae resulted in a significant reduction in image overload. Thus, this research work solved the problem of non-availability of datasets for researchers in medical imaging field by providing datasets that can be used without violating law of patient confidentiality by the interested parties. It also solves the problem of hackers obtaining useful information about patients’ datasets. The CBIR using texture as content also enhances and solves the problem of information overloading

    Expanding the medical physicist curricular and professional programme to include Artificial Intelligence

    Get PDF
    Purpose: To provide a guideline curriculum related to Artificial Intelligence (AI), for the education and training of European Medical Physicists (MPs). Materials and methods: The proposed curriculum consists of two levels: Basic (introducing MPs to the pillars of knowledge, development and applications of AI, in the context of medical imaging and radiation therapy) and Advanced. Both are common to the subspecialties (diagnostic and interventional radiology, nuclear medicine, and radiation oncology). The learning outcomes of the training are presented as knowledge, skills and competences (KSC approach). Results: For the Basic section, KSCs were stratified in four subsections: (1) Medical imaging analysis and AI Basics; (2) Implementation of AI applications in clinical practice; (3) Big data and enterprise imaging, and (4) Quality, Regulatory and Ethical Issues of AI processes. For the Advanced section instead, a common block was proposed to be further elaborated by each subspecialty core curriculum. The learning outcomes were also translated into a syllabus of a more traditional format, including practical applications. Conclusions: This AI curriculum is the first attempt to create a guideline expanding the current educational framework for Medical Physicists in Europe. It should be considered as a document to top the sub-specialties' curriculums and adapted by national training and regulatory bodies. The proposed educational program can be implemented via the European School of Medical Physics Expert (ESMPE) course modules and - to some extent - also by the national competent EFOMP organizations, to reach widely the medical physicist community in Europe.Peer reviewe

    DIPPAS: A Deep Image Prior PRNU Anonymization Scheme

    Get PDF
    Source device identification is an important topic in image forensics since it allows to trace back the origin of an image. Its forensics counter-part is source device anonymization, that is, to mask any trace on the image that can be useful for identifying the source device. A typical trace exploited for source device identification is the Photo Response Non-Uniformity (PRNU), a noise pattern left by the device on the acquired images. In this paper, we devise a methodology for suppressing such a trace from natural images without significant impact on image quality. Specifically, we turn PRNU anonymization into an optimization problem in a Deep Image Prior (DIP) framework. In a nutshell, a Convolutional Neural Network (CNN) acts as generator and returns an image that is anonymized with respect to the source PRNU, still maintaining high visual quality. With respect to widely-adopted deep learning paradigms, our proposed CNN is not trained on a set of input-target pairs of images. Instead, it is optimized to reconstruct the PRNU-free image from the original image under analysis itself. This makes the approach particularly suitable in scenarios where large heterogeneous databases are analyzed and prevents any problem due to lack of generalization. Through numerical examples on publicly available datasets, we prove our methodology to be effective compared to state-of-the-art techniques
    • …
    corecore