49,384 research outputs found

    Machine Learning For Planetary Mining Applications

    Get PDF
    Robotic mining could prove to be an efficient method of mining resources for extended missions on the Moon or Mars. One component of robotic mining is scouting an area for resources to be mined by other robotic systems. Writing controllers for scouting can be difficult due to the need for fault tolerance, inter-agent cooperation, and agent problem solving. Reinforcement learning could solve these problems by enabling the scouts to learn to improve their performance over time. This work is divided into two sections, with each section addressing the use of machine learning in this domain. The first contribution of this work focuses on the application of reinforcement learning to mining mission analysis. Various mission parameters were modified and control policies were learned. Then agent performance was used to assess the effect of the mission parameters on the performance of the mission. The second contribution of this work explores the potential use of reinforcement learning to learn a controller for the scouts. Through learning, these scouts would improve their ability to map their surroundings over time

    Input variable selection in time-critical knowledge integration applications: A review, analysis, and recommendation paper

    Get PDF
    This is the post-print version of the final paper published in Advanced Engineering Informatics. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2013 Elsevier B.V.The purpose of this research is twofold: first, to undertake a thorough appraisal of existing Input Variable Selection (IVS) methods within the context of time-critical and computation resource-limited dimensionality reduction problems; second, to demonstrate improvements to, and the application of, a recently proposed time-critical sensitivity analysis method called EventTracker to an environment science industrial use-case, i.e., sub-surface drilling. Producing time-critical accurate knowledge about the state of a system (effect) under computational and data acquisition (cause) constraints is a major challenge, especially if the knowledge required is critical to the system operation where the safety of operators or integrity of costly equipment is at stake. Understanding and interpreting, a chain of interrelated events, predicted or unpredicted, that may or may not result in a specific state of the system, is the core challenge of this research. The main objective is then to identify which set of input data signals has a significant impact on the set of system state information (i.e. output). Through a cause-effect analysis technique, the proposed technique supports the filtering of unsolicited data that can otherwise clog up the communication and computational capabilities of a standard supervisory control and data acquisition system. The paper analyzes the performance of input variable selection techniques from a series of perspectives. It then expands the categorization and assessment of sensitivity analysis methods in a structured framework that takes into account the relationship between inputs and outputs, the nature of their time series, and the computational effort required. The outcome of this analysis is that established methods have a limited suitability for use by time-critical variable selection applications. By way of a geological drilling monitoring scenario, the suitability of the proposed EventTracker Sensitivity Analysis method for use in high volume and time critical input variable selection problems is demonstrated.E
    • 

    corecore