8,243 research outputs found

    Using big data for customer centric marketing

    Get PDF
    This chapter deliberates on “big data” and provides a short overview of business intelligence and emerging analytics. It underlines the importance of data for customer-centricity in marketing. This contribution contends that businesses ought to engage in marketing automation tools and apply them to create relevant, targeted customer experiences. Today’s business increasingly rely on digital media and mobile technologies as on-demand, real-time marketing has become more personalised than ever. Therefore, companies and brands are striving to nurture fruitful and long lasting relationships with customers. In a nutshell, this chapter explains why companies should recognise the value of data analysis and mobile applications as tools that drive consumer insights and engagement. It suggests that a strategic approach to big data could drive consumer preferences and may also help to improve the organisational performance.peer-reviewe

    Artificial Intelligence for Global Health: Learning From a Decade of Digital Transformation in Health Care

    Get PDF
    The health needs of those living in resource-limited settings are a vastly overlooked and understudied area in the intersection of machine learning (ML) and health care. While the use of ML in health care is more recently popularized over the last few years from the advancement of deep learning, low-and-middle income countries (LMICs) have already been undergoing a digital transformation of their own in health care over the last decade, leapfrogging milestones due to the adoption of mobile health (mHealth). With the introduction of new technologies, it is common to start afresh with a top-down approach, and implement these technologies in isolation, leading to lack of use and a waste of resources. In this paper, we outline the necessary considerations both from the perspective of current gaps in research, as well as from the lived experiences of health care professionals in resource-limited settings. We also outline briefly several key components of successful implementation and deployment of technologies within health systems in LMICs, including technical and cultural considerations in the development process relevant to the building of machine learning solutions. We then draw on these experiences to address where key opportunities for impact exist in resource-limited settings, and where AI/ML can provide the most benefit.Comment: Accepted Paper at ICLR 2020 Workshop on Practical ML for Developing Countrie

    Mobile Big Data Analytics in Healthcare

    Get PDF
    Mobile and ubiquitous devices are everywhere around us generating considerable amount of data. The concept of mobile computing and analytics is expanding due to the fact that we are using mobile devices day in and out without even realizing it. These mobile devices use Wi-Fi, Bluetooth or mobile data to be intermittently connected to the world, generating, sending and receiving data on the move. Latest mobile applications incorporating graphics, video and audio are main causes of loading the mobile devices by consuming battery, memory and processing power. Mobile Big data analytics includes for instance, big health data, big location data, big social media data, and big heterogeneous data. Healthcare is undoubtedly one of the most data-intensive industries nowadays and the challenge is not only in acquiring, storing, processing and accessing data, but also in engendering useful insights out of it. These insights generated from health data may reduce health monitoring cost, enrich disease diagnosis, therapy, and care and even lead to human lives saving. The challenge in mobile data and Big data analytics is how to meet the growing performance demands of these activities while minimizing mobile resource consumption. This thesis proposes a scalable architecture for mobile big data analytics implementing three new algorithms (i.e. Mobile resources optimization, Mobile analytics customization and Mobile offloading), for the effective usage of resources in performing mobile data analytics. Mobile resources optimization algorithm monitors the resources and switches off unused network connections and application services whenever resources are limited. However, analytics customization algorithm attempts to save energy by customizing the analytics process while implementing some data-aware techniques. Finally, mobile offloading algorithm decides on the fly whether to process data locally or delegate it to a Cloud back-end server. The ultimate goal of this research is to provide healthcare decision makers with the advancements in mobile Big data analytics and support them in handling large and heterogeneous health datasets effectively on the move

    Data Science and Ebola

    Get PDF
    Data Science---Today, everybody and everything produces data. People produce large amounts of data in social networks and in commercial transactions. Medical, corporate, and government databases continue to grow. Sensors continue to get cheaper and are increasingly connected, creating an Internet of Things, and generating even more data. In every discipline, large, diverse, and rich data sets are emerging, from astrophysics, to the life sciences, to the behavioral sciences, to finance and commerce, to the humanities and to the arts. In every discipline people want to organize, analyze, optimize and understand their data to answer questions and to deepen insights. The science that is transforming this ocean of data into a sea of knowledge is called data science. This lecture will discuss how data science has changed the way in which one of the most visible challenges to public health is handled, the 2014 Ebola outbreak in West Africa.Comment: Inaugural lecture Leiden Universit

    The Digital Transformation and Disruptive Technologies: Challenges and Solutions for the Electricity Sector in African Markets

    Get PDF
    The rise of disruptive technologies is profoundly transforming systems of production and management across sectors and industries, but primarily in wealthy countries. This paper considers how disruptive technologies could help improve power sector reform and development in African markets. In particular, it explores the role that might be played by the Internet of Things, cloud computing, and advanced analytics. After reviewing current trends in disruptive technologies, the paper illustrates the application of key elements with use cases in the areas of power infrastructure planning, power sector operations, and off-grid electrification. Finally, the paper looks at context-specific challenges to the widespread implementation of disruptive technologies. While disruptive technologies offer innovative ways of tackling some of the main challenges of traditional approaches to power sector development, their widespread adoption hinges on a concerted effort across public and private players to lend support to key aspects such as improved broadband connectivity, a vibrant startup scene and surrounding technology ecosystem, or simply the right to Internet access
    corecore