54 research outputs found

    Laplacian Distribution and Domination

    Get PDF
    Let mG(I)m_G(I) denote the number of Laplacian eigenvalues of a graph GG in an interval II, and let γ(G)\gamma(G) denote its domination number. We extend the recent result mG[0,1)γ(G)m_G[0,1) \leq \gamma(G), and show that isolate-free graphs also satisfy γ(G)mG[2,n]\gamma(G) \leq m_G[2,n]. In pursuit of better understanding Laplacian eigenvalue distribution, we find applications for these inequalities. We relate these spectral parameters with the approximability of γ(G)\gamma(G), showing that γ(G)mG[0,1)∉O(logn)\frac{\gamma(G)}{m_G[0,1)} \not\in O(\log n). However, γ(G)mG[2,n](c+1)γ(G)\gamma(G) \leq m_G[2, n] \leq (c + 1) \gamma(G) for cc-cyclic graphs, c1c \geq 1. For trees TT, γ(T)mT[2,n]2γ(G)\gamma(T) \leq m_T[2, n] \leq 2 \gamma(G)

    k-Tuple_Total_Domination_in_Inflated_Graphs

    Full text link
    The inflated graph GIG_{I} of a graph GG with n(G)n(G) vertices is obtained from GG by replacing every vertex of degree dd of GG by a clique, which is isomorph to the complete graph KdK_{d}, and each edge (xi,xj)(x_{i},x_{j}) of GG is replaced by an edge (u,v)(u,v) in such a way that uXiu\in X_{i}, vXjv\in X_{j}, and two different edges of GG are replaced by non-adjacent edges of GIG_{I}. For integer k1k\geq 1, the kk-tuple total domination number γ×k,t(G)\gamma_{\times k,t}(G) of GG is the minimum cardinality of a kk-tuple total dominating set of GG, which is a set of vertices in GG such that every vertex of GG is adjacent to at least kk vertices in it. For existing this number, must the minimum degree of GG is at least kk. Here, we study the kk-tuple total domination number in inflated graphs when k2k\geq 2. First we prove that n(G)kγ×k,t(GI)n(G)(k+1)1n(G)k\leq \gamma_{\times k,t}(G_{I})\leq n(G)(k+1)-1, and then we characterize graphs GG that the kk-tuple total domination number number of GIG_I is n(G)kn(G)k or n(G)k+1n(G)k+1. Then we find bounds for this number in the inflated graph GIG_I, when GG has a cut-edge ee or cut-vertex vv, in terms on the kk-tuple total domination number of the inflated graphs of the components of GeG-e or vv-components of GvG-v, respectively. Finally, we calculate this number in the inflated graphs that have obtained by some of the known graphs

    Vertex-Edge and Edge-Vertex Parameters in Graphs

    Get PDF
    The majority of graph theory research on parameters involved with domination, independence, and irredundance has focused on either sets of vertices or sets of edges; for example, sets of vertices that dominate all other vertices or sets of edges that dominate all other edges. There has been very little research on ``mixing\u27\u27 vertices and edges. We investigate several new and several little-studied parameters, including vertex-edge domination, vertex-edge irredundance, vertex-edge independence, edge-vertex domination, edge-vertex irredundance, and edge-vertex independence

    A Greedy Partition Lemma for Directed Domination

    Get PDF
    A directed dominating set in a directed graph DD is a set SS of vertices of VV such that every vertex uV(D)Su \in V(D) \setminus S has an adjacent vertex vv in SS with vv directed to uu. The directed domination number of DD, denoted by γ(D)\gamma(D), is the minimum cardinality of a directed dominating set in DD. The directed domination number of a graph GG, denoted Γd(G)\Gamma_d(G), which is the maximum directed domination number γ(D)\gamma(D) over all orientations DD of GG. The directed domination number of a complete graph was first studied by Erd\"{o}s [Math. Gaz. 47 (1963), 220--222], albeit in disguised form. In this paper we prove a Greedy Partition Lemma for directed domination in oriented graphs. Applying this lemma, we obtain bounds on the directed domination number. In particular, if α\alpha denotes the independence number of a graph GG, we show that αΓd(G)α(1+2ln(n/α))\alpha \le \Gamma_d(G) \le \alpha(1+2\ln(n/\alpha)).Comment: 12 page

    Irredundant sets, Ramsey numbers, multicolor Ramsey numbers

    Full text link
    A set of vertices XVX\subseteq V in a simple graph G(V,E)G(V,E) is irredundant if each vertex xXx\in X is either isolated in the induced subgraph G[X]G[X] or else has a private neighbor yVXy\in V\setminus X that is adjacent to xx and to no other vertex of XX. The \emph{mixed Ramsey number} t(m,n)t(m,n) is the smallest NN for which every red-blue coloring of the edges of KNK_N has an mm-element irredundant set in a blue subgraph or a nn-element independent set in a red subgraph. The \emph{multicolor irredundant Ramsey number} s(t1,,tl)s(t_{1},\ldots,t_{l}) is the minimum rr such that every ll-coloring of the edges of the complete graph KrK_{r} on rr vertices has a monochromatic irredundant set of size sis_{i} for certain 1il1\leq i\leq l. Firstly, we improve the upper bound for the mixed Ramsey number t(3,n)t(3,n), and using this result, we verify a special case of a conjecture proposed by Chen, Hattingh, and Rousseau for m=4m=4. Secondly, we obtain a new upper bound for s(3,9)s(3,9), and using Krivelevich's method, we establish an asymptotic lower bound for CO-irredundant Ramsey number of KNK_{N}, which extends Krivelevich's result on s(m,n)s(m,n). Thirdly, we prove a lower bound for the multicolor irredundant Ramsey number by a random and probability method which has been used to improve the lower bound for multicolor Ramsey numbers. Finally, we give a lower bound for the irredundant multiplicity.Comment: 23 pages, 1 figur

    Linear-Time Algorithms for Edge-Based Problems

    Get PDF
    There is a dearth of algorithms that deal with edge-based problems in trees, specifically algorithms for edge sets that satisfy a particular parameter. The goal of this thesis is to create a methodology for designing algorithms for these edge-based problems. We will present a variant of the Wimer method [Wimer et al. 1985] [Wimer 1987] that can handle edge properties. We call this variant the Wimer edge variant. The thesis is divided into three sections, the first being a chapter devoted to defining and discussing the Wimer edge variant in depth, showing how to develop an algorithm using this variant, and an example of this process, including a run of an algorithm developed using this method. The second section involves algorithms developed using the Wimer edge variant. We will provide algorithms for a variety of edge parameters, including four different matching parameters (connected, disconnected, induced and 2-matching), three different domination parameters (edge, total edge and edge-vertex) and two covering parameters (edge cover and edge cover irredundance). Each of these algorithms are discussed in detail and run in linear time. The third section involves an attempt to characterize the Wimer edge variant. We show how the variant can be applied to three classes of graphs: weighted trees, unicyclic graphs and generalized series-parallel graphs. For each of these classes, we detail what adaptations are required (if any) and design an algorithm, including showing a run on an example graph. The fourth chapter is devoted to a discussion of what qualities a parameter has to have in order to be likely to have a solution using the Wimer edge variant. Also in this chapter we discuss classes of graphs that can utilize the Wimer edge variant. Other topics discussed in this thesis include a literature review, and a discussion of future work. There are plenty of options for future work on this topic, which hopefully this thesis can inspire. The intent of this thesis is to provide the foundation for future algorithms and other work in this area

    Protecting a Graph with Mobile Guards

    Full text link
    Mobile guards on the vertices of a graph are used to defend it against attacks on either its vertices or its edges. Various models for this problem have been proposed. In this survey we describe a number of these models with particular attention to the case when the attack sequence is infinitely long and the guards must induce some particular configuration before each attack, such as a dominating set or a vertex cover. Results from the literature concerning the number of guards needed to successfully defend a graph in each of these problems are surveyed.Comment: 29 pages, two figures, surve
    corecore