3 research outputs found

    Quadrature Phase-Domain ADPLL with Integrated On-line Amplitude Locked Loop Calibration for 5G Multi-band Applications

    Get PDF
    5th generation wireless systems (5G) have expanded frequency band coverage with the low-band 5G and mid-band 5G frequencies spanning 600 MHz to 4 GHz spectrum. This dissertation focuses on a microelectronic implementation of CMOS 65 nm design of an All-Digital Phase Lock Loop (ADPLL), which is a critical component for advanced 5G wireless transceivers. The ADPLL is designed to operate in the frequency bands of 600MHz-930MHz, 2.4GHz-2.8GHz and 3.4GHz-4.2GHz. Unique ADPLL sub-components include: 1) Digital Phase Frequency Detector, 2) Digital Loop Filter, 3) Channel Bank Select Circuit, and 4) Digital Control Oscillator. Integrated with the ADPLL is a 90-degree active RC-CR phase shifter with on-line amplitude locked loop (ALL) calibration to facilitate enhanced image rejection while mitigating the effects of fabrication process variations and component mismatch. A unique high-sensitivity high-speed dynamic voltage comparator is included as a key component of the active phase shifter/ALL calibration subsystem. 65nm CMOS technology circuit designs are included for the ADPLL and active phase shifter with simulation performance assessments. Phase noise results for 1 MHz offset with carrier frequencies of 600MHz, 2.4GHz, and 3.8GHz are -130, -122, and -116 dBc/Hz, respectively. Monte Carlo simulations to account for process variations/component mismatch show that the active phase shifter with ALL calibration maintains accurate quadrature phase outputs when operating within the frequency bands 600MHz-930MHz, 2.4GHz-2.8GHz and 3.4GHz-4.2GHz

    A low-power dynamic comparator for low-offset applications

    No full text
    The final publication is available at Elsevier via https://doi.org/10.1016/j.vlsi.2019.07.001. © 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/In this paper, a low-power method for double-tail comparators is introduced. Using the proposed method, the power consumption of the pre-amplifier which is the dominant part is reduced considerably. Thanks to this method, the pre-amplifier is not able to draw more than required amount of power, therefore, the power is saved. Post layout and corner simulation results show the power consumption is reduced by about 40%. Moreover, several Monte-Carlo (M) simulations suggest the proposed method results in about 20% offset reduction at the cost of 5% area and 10% speed degradation
    corecore