1,471 research outputs found

    Tunable Balun Low-Noise Amplifier in 65nm CMOS Technology

    Get PDF
    The presented paper includes the design and implementation of a 65 nm CMOS low-noise amplifier (LNA) based on inductive source degeneration. The amplifier is realized with an active balun enabling a single-ended input which is an important requirement for low-cost system on chip implementations. The LNA has a tunable bandpass characteristics from 4.7 GHz up to 5.6 GHz and a continuously tunable gain from 22 dB down to 0 dB, which enables the required flexibility for multi-standard, multi-band receiver architectures. The gain and band tuning is realized with an optimized tunable active resistor in parallel to a tunable L-C tank amplifier load. The amplifier achieves an IIP3 linearity of -8dBm and a noise figure of 2.7 dB at the highest gain and frequency setting with a low power consumption of 10 mW. The high flexibility of the proposed LNA structure together with the overall good performance makes it well suited for future multi-standard low-cost receiver front-ends

    An Op-Amp Approach for Bandpass VGAs With Constant Bandwidth

    Get PDF
    Two approaches to implement variable gain amplifiers based on Miller op-amps are discussed. One has true constant bandwidth while the other has essentially reduced bandwidth variations with varying gain. Servo-loops and ac coupling techniques with quasi floating gate transistors are used to provide a bandpass response with very low cutoff frequency in the range of hertz. In practice, one of the schemes is shown to have bandwidth variations close to a factor two while the second one has true constant bandwidth over the gain tuning range. Experimental results of test chip prototypes in 180-nm CMOS technology verify the theoretical claims

    A Fully-Integrated Reconfigurable Dual-Band Transceiver for Short Range Wireless Communications in 180 nm CMOS

    Get PDF
    © 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.A fully-integrated reconfigurable dual-band (760-960 MHz and 2.4-2.5 GHz) transceiver (TRX) for short range wireless communications is presented. The TRX consists of two individually-optimized RF front-ends for each band and one shared power-scalable analog baseband. The sub-GHz receiver has achieved the maximum 75 dBc 3rd-order harmonic rejection ratio (HRR3) by inserting a Q-enhanced notch filtering RF amplifier (RFA). In 2.4 GHz band, a single-ended-to-differential RFA with gain/phase imbalance compensation is proposed in the receiver. A ΣΔ fractional-N PLL frequency synthesizer with two switchable Class-C VCOs is employed to provide the LOs. Moreover, the integrated multi-mode PAs achieve the output P1dB (OP1dB) of 16.3 dBm and 14.1 dBm with both 25% PAE for sub-GHz and 2.4 GHz bands, respectively. A power-control loop is proposed to detect the input signal PAPR in real-time and flexibly reconfigure the PA's operation modes to enhance the back-off efficiency. With this proposed technique, the PAE of the sub-GHz PA is improved by x3.24 and x1.41 at 9 dB and 3 dB back-off powers, respectively, and the PAE of the 2.4 GHz PA is improved by x2.17 at 6 dB back-off power. The presented transceiver has achieved comparable or even better performance in terms of noise figure, HRR, OP1dB and power efficiency compared with the state-of-the-art.Peer reviewe

    Reconfigurable time interval measurement circuit incorporating a programmable gain time difference amplifier

    Get PDF
    PhD ThesisAs further advances are made in semiconductor manufacturing technology the performance of circuits is continuously increasing. Unfortunately, as the technology node descends deeper into the nanometre region, achieving the potential performance gain is becoming more of a challenge; due not only to the effects of process variation but also to the reduced timing margins between signals within the circuit creating timing problems. Production Standard Automatic Test Equipment (ATE) is incapable of performing internal timing measurements due, first to the lack of accessibility and second to the overall timing accuracy of the tester which is grossly inadequate. To address these issue ‘on-chip’ time measurement circuits have been developed in a similar way that built in self-test (BIST) evolved for ‘on-chip’ logic testing. This thesis describes the design and analysis of three time amplifier circuits. The analysis undertaken considers the operational aspects related to gain and input dynamic range, together with the robustness of the circuits to the effects of process, voltage and temperature (PVT) variations. The design which had the best overall performance was subsequently compared to a benchmark design, which used the ‘buffer delay offset’ technique for time amplification, and showed a marked 6.5 times improvement on the dynamic range extending this from 40 ps to 300ps. The new design was also more robust to the effects of PVT variations. The new time amplifier design was further developed to include an adjustable gain capability which could be varied in steps of approximately 7.5 from 4 to 117. The time amplifier was then connected to a 32-stage tapped delay line to create a reconfigurable time measurement circuit with an adjustable resolution range from 15 down to 0.5 ps and a dynamic range from 480 down to 16 ps depending upon the gain setting. The overall footprint of the measurement circuit, together with its calibration module occupies an area of 0.026 mm2 The final circuit, overall, satisfied the main design criteria for ‘on-chip’ time measurement circuitry, namely, it has a wide dynamic range, high resolution, robust to the effects of PVT and has a small area overhead.Umm Al-Qura University

    Quasi-digital low-dropout voltage regulators uses controlled pass transistors

    Get PDF
    This article presents a low quiescent current output capacitorless quasi-digital CMOS LDO regulator with controlled pass transistors according to load demands. The pass transistor of the LDO is broken up to two smaller sizes based on a breakup criterion defined here, which considers the maximum output voltage variations to different load current steps to find the suitable current boundary for breaking up. This criterion shows that low load conditions will cause more output variations and settling time if the pass transistor is used in its maximum size. Therefore, using one smaller transistor for low load currents, and another one larger for higher currents, is the best trade-off between output variations, complexity, and power dissipation. The proposed LDO regulator has been designed and post-simulated in HSPICE in a 0.35 µm CMOS process to supply a load current between 0-100 mA while consumes 7.6 µA quiescent current. The results reveal 46% and 69% improvement on the output voltage variations and settling time, respectively.Postprint (published version

    A 19.5 Ghz 5-bit digitally programmable phase shifter for active antenna arrays

    Get PDF
    This paper presents the design of a new phase shifter to be used in a receiver of active antenna array operating in the range from 17 GHz to 22 GHz. Beamforming is achieved by controlling the phase of the signal in each radiant element. In this context, the phase shift is obtained by the combination of a quadrature signal generator (QSG) and a variable gain amplifier (VGA). This work is focused on the design of a VGA which has a set of dummy transistors to keep the input and output impedance constant. The phase shifter is digitally programmable using a 5-bit word. The system was laid out using a 65 nm CMOS process, and the physical post-layout results show that the phase shifter achieves root mean square errors of 4.5° for the phase and 0.79 dB for the gain at a frequency of 19.5 GHz. A comparative analysis with other recently published phase shifters shows that the proposed phase shifter presents a good compromise between power consumption and accuracy

    A 5-Gb/s 66 dB CMOS variable-gain amplifier with reconfigurable DC-offset cancellation for multi-standard applications

    Get PDF
    This paper proposes a variable gain amplifier (VGA) with reconfigurable DC-offset cancellation (DCOC) for multi-standard applications. In this design, a cell-based design method and some bandwidth extension technologies are adopted to achieve a high data rate and a wide gain control range simultaneously. In addition, the DCOC having a tunable lower-cutoff frequency can make an optimum compromise between BER and SNR according to the specified baseband standard. The measurements show that the VGA achieves a gain control range from −6 dB to 60 dB, a bandwidth beyond 3 GHz, and a tunable lower-cutoff frequency from 0 to 300 kHz. When entering a 2 23 −1 pseudo-random bit sequence signal at 5 Gb/s, the VGA consumes 17 mW from a 1.2-V supply and the output data peak-to-peak jitter is less than 40 ps. The VGA is fabricated in a 90-nm CMOS process with a chip size (including all pads) of 0.52×0.5 mm 2

    A 0.1–5.0 GHz flexible SDR receiver with digitally assisted calibration in 65 nm CMOS

    Get PDF
    © 2017 Elsevier Ltd. All rights reserved.A 0.1–5.0 GHz flexible software-defined radio (SDR) receiver with digitally assisted calibration is presented, employing a zero-IF/low-IF reconfigurable architecture for both wideband and narrowband applications. The receiver composes of a main-path based on a current-mode mixer for low noise, a high linearity sub-path based on a voltage-mode passive mixer for out-of-band rejection, and a harmonic rejection (HR) path with vector gain calibration. A dual feedback LNA with “8” shape nested inductor structure, a cascode inverter-based TCA with miller feedback compensation, and a class-AB full differential Op-Amp with Miller feed-forward compensation and QFG technique are proposed. Digitally assisted calibration methods for HR, IIP2 and image rejection (IR) are presented to maintain high performance over PVT variations. The presented receiver is implemented in 65 nm CMOS with 5.4 mm2 core area, consuming 9.6–47.4 mA current under 1.2 V supply. The receiver main path is measured with +5 dB m/+5dBm IB-IIP3/OB-IIP3 and +61dBm IIP2. The sub-path achieves +10 dB m/+18dBm IB-IIP3/OB-IIP3 and +62dBm IIP2, as well as 10 dB RF filtering rejection at 10 MHz offset. The HR-path reaches +13 dB m/+14dBm IB-IIP3/OB-IIP3 and 62/66 dB 3rd/5th-order harmonic rejection with 30–40 dB improvement by the calibration. The measured sensitivity satisfies the requirements of DVB-H, LTE, 802.11 g, and ZigBee.Peer reviewedFinal Accepted Versio

    Design methods for 60GHz beamformers in CMOS

    Get PDF
    The 60GHz band is promising for applications such as high-speed short-range wireless personal-area network (WPAN), real-time video streaming at rates of several-Gbps, automotive radar, and mm-Wave imaging, since it provides a large amount of bandwidth that can freely (i.e. without a license) be used worldwide. However, transceivers at 60GHz pose several additional challenges over microwave transceivers. In addition to the circuit design challenges of implementing high performance 60GHz RF circuits in mainstream CMOS technology, the path loss at 60GHz is significantly higher than at microwave frequencies because of the smaller size of isotropic antennas. This can be overcome by using phased array technology. This thesis studies the new concepts and design techniques that can be used for 60GHz phased array systems. It starts with an overview of various applications at mm-wave frequencies, such as multi-Gbps radio at 60GHz, automotive radar and millimeter-wave imaging. System considerations of mm-wave receivers and transmitters are discussed, followed by the selection of a CMOS technology to implement millimeter-wave (60GHz) systems. The link budget of a 60GHz WPAN is analyzed, which leads to the introduction of phased array techniques to improve system performance. Different phased array architectures are studied and compared. The system requirements of phase shifters are discussed. Several types of conventional RF phase shifters are reviewed. A 60GHz 4-bit passive phase shifter is designed and implemented in a 65nm CMOS technology. Measurement results are presented and compared to published prior art. A 60GHz 4-bit active phase shifter is designed and integrated with low noise amplifier and combiner for a phased array receiver. This is implemented in a 65nm CMOS technology, and the measurement results are presented. The design of a 60GHz 4-bit active phase shifter and its integration with power amplifier is also presented for a phased array transmitter. This is implemented in a 65nm CMOS technology. The measurement results are also presented and compared to reported prior art. The integration of a 60GHz CMOS amplifier and an antenna in a printed circuit-board (PCB) package is investigated. Experimental results are presented and discussed

    Design of CMOS transimpedance amplifiers for remote antenna units in fiber-wireless systems.

    Get PDF
    La memoria de la tesis doctoral: Diseño de Amplificadores de Transimpedancia para Unidades de Antena Remota en Sistemas Fibra-Inalámbrico, se presenta en la modalidad de compendio de Publicaciones. A continuación, se expone un resumen del contexto, motivation y objetivos de la tesis.A lo largo de las últimas décadas, los avances tecnológicos y el esfuerzo por desarrollar nuevos sistemas de comunicaciones han crecido al ritmo que la demanda de información aumentaba a nivel mundial. Desde la aparición de Internet, el tráfico global de datos ha incrementado de forma exponencial y se han creado infinidad de aplicaciones y contenidos desde entonces.Con la llegada de la fibra óptica se produjo un avance muy significativo en el campo de las comunicaciones, ya que la fibra de vidrio y sus características fueron la clave para crear redes de largo alcance y alta velocidad. Por otro lado, los avances en las tecnologías de fabricación de circuitos integrados y de dispositivos fotónicos de alta velocidad han encabezado el desarrollo de los sistemas de comunicaciones ópticos, logrando incrementar la tasa de transmisión de datos hasta prácticamente alcanzar el ancho de banda de la fibra óptica.Para conseguir una mayor eficiencia en las comunicaciones y aumentar la tasa de transferencia, se necesitan métodos de modulación complejos que aprovechen mejor el ancho de banda disponible. No obstante, esta mayor complejidad de la modulación de los datos requiere sistemas con mejores prestaciones en cuanto a rango dinámico y linealidad. Estos esquemas de modulación se emplean desde hace tiempo en los sistemas de comunicaciones inalámbricos, donde el ancho de banda del canal, el aire, es extremadamente limitado y codiciado.Actualmente, los sistemas inalámbricos se enfrentan a una saturación del espectro que supone un límite a la tasa de transmisión de datos. Pese a los esfuerzos por extender el rango frecuencial a bandas superiores para aumentar el ancho de banda disponible, se espera un enorme aumento tanto en el número de dispositivos, como en la cantidad de datos demandados por usuario.Ante esta situación se han planteado distintas soluciones para superar estas limitaciones y mejorar las prestaciones de los sistemas actuales. Entre estas alternativas están los sistemas mixtos fibra-inalámbrico utilizando sistemas de antenas distribuidas (DAS). Estos sistemas prometen ser una solución económica y muy efectiva para mejorar la accesibilidad de los dispositivos inalámbricos, aumentando la cobertura y la tasa de transferencia de las redes a la vez que disminuyen las interferencias. El despliegue de los DAS tendrá un gran efecto en escenarios tales como edificios densamente poblados, hospitales, aeropuertos o edificios de oficinas, así como en áreas residenciales, donde un gran número de dispositivos requieren una cada vez mayor interconectividad.Dependiendo del modo de transmisión de los datos a través de la fibra, los sistemas mixtos fibra-inalámbrico se pueden categorizar de tres formas distintas: Banda base sobre fibra (BBoF), radiofrecuencia sobre fibra (RFoF) y frecuencia intermedia sobre fibra (IFoF). Actualmente, el esquema BBoF es el más utilizado para transmisiones de larga y media distancia. No obstante, utilizar este esquema en un DAS requiere unidades de antena remota (RAU) complejas y costosas, por lo que no está claro que esta configuración pueda ser viable en aplicaciones de bajo coste que requieran de un gran número de RAUs. Los sistemas RFoF e IFoF presentan esquemas más simples, sin necesidad de integrar un modulador/demodulador, puesto que la señal se procesa en una estación base y no en las propias RAUs.El desarrollo de esta tesis se enmarca en el estudio de los distintos esquemas de DAS. A lo largo de esta tesis se presentan varias propuestas de amplificadores de transimpedancia (TIA) adecuadas para su implementación en cada uno de los tres tipos de RAU existentes. La versatilidad y el amplio campo de aplicación de este circuito integrado, tanto en comunicaciones como en otros ámbitos, han motivado el estudio de la implementación de este bloque específico en las diferentes arquitecturas de RAU y en otros sistemas, tales como un receptor de televisión por cable (CATV) o una interfaz de un microsensor inercial capacitivo.La memoria de tesis se ha dividido en tres capítulos. El Capítulo 1 se ha empleado para introducir el concepto de los DAS, proporcionando el contexto y la motivación del diseño de las RAU, partiendo desde los principios básicos de operación de los dispositivos fotónicos y electrónicos y presentando las distintas arquitecturas de RAU. El Capítulo 2 supone el núcleo principal de la tesis. En este capítulo se presenta el estudio y diseño de los diferentes TIAs, que han sido optimizados respectivamente para cada una de las configuraciones de RAU, así como para otras aplicaciones. En un tercer capítulo se recogen los resultados más relevantes y se exponen las conclusiones de este trabajo.Tras llevar a cabo la descripción y comparación de las topologías existentes de TIA, se ha llegado a las siguientes conclusiones, las cuales nos llevan a elegir la topología shunt-feedback como la más adecuada para el diseño: - El compromiso entre ancho de banda, transimpedancia, consumo de potencia y ruido es menos restrictivo en los TIAs de lazo cerrado. - Los TIAs de lazo cerrado tienen un mayor número de grados de libertad para acometer su diseño. - Esta topología presenta una mejor linealidad gracias al lazo de realimentación. Si la respuesta frecuencial del núcleo del amplificador se ajusta de manera adecuada, el TIA shunt-feedback puede presentar una respuesta frecuencial plana y estable.En esta tesis, se ha propuesto una nueva técnica de reducción de ruido, aplicable en receptores ópticos con fotodiodos con un área activa grande (~1mm2). Esta estrategia, que se ha llamado la técnica del fotodiodo troceado, consiste en la fabricación del fotodiodo, no como una estructura única, sino como un array de N sub-fotodiodos, que ocuparían la misma área activa que el original. Las principales conclusiones tras hacer un estudio teórico y realizar un estudio de su aplicación en una de las topologías de TIA propuestas son: - El ruido equivalente a la entrada es menor cuanto mayor es el número de sub-fotodiodos, dado que la contribución al ruido que depende con el cuadrado de la frecuencia (f^2) decrece con una dependencia proporcional a N. - Con una aplicación simple de la técnica, replicando el amplificador de tensión del TIA N veces y utilizando N resistencias de realimentación, cada una con un valor N veces el original, la sensibilidad del receptor aumenta aproximadamente en un factor √N y la estabilidad del sistema no se ve afectada. - Al dividir el fotodiodo en N sub-fotodiodos, la capacidad parásita de cada uno de ellos es N veces menor a la original. Con esta nueva capacidad parásita, el diseño del TIA se puede optimizar, consiguiendo una sensibilidad mucho mejor que con un único fotodiodo para el mismo valor de consumo de potencia.Las principales conclusiones respecto a los diseños de los distintos TIAs para comunicaciones son las siguientes: TIA para BBoF: - El TIA propuesto, alcanza, con un consumo de tan solo 2.9 mW, un ancho de banda de 1 GHz y una sensibilidad de -11 dBm, superando las características de trabajos anteriores en condiciones similares (capacidad del fotodiodo, tecnología y tasa de transmisión). - La técnica del fotodiodo troceado se ha aplicado a este circuito, consiguiendo una mejora de hasta 7.9 dBm en la sensibilidad para un diseño optimizado de 16 sub-fotodiodos, demostrando, en una simulación a nivel de transistor, que la técnica propuesta funciona correctamente. TIA para RFoF: - El diseño propuesto logra una figura de mérito superior a la de trabajos previos, gracias a la combinación de su bajo consumo de potencia y su mayor transimpedancia. - Además, mientras que en la mayoría de trabajos previos no se integra un control de ganancia en el TIA, esta propuesta presenta una transimpedancia controlable desde 45 hasta 65 dBΩ. A través de un sistema de control simultáneo de la transimpedancia y de la ganancia en lazo abierto del amplificador de voltaje, se consigue garantizar una respuesta frecuencial plana y estable en todos los estados de transimpedancia, que le otorga al diseño una superior versatilidad y flexibilidad. TIA para CATV: - Se ha adaptado una versión del TIA para RFoF para demostrar la capacidad de adaptación de esta estructura en una implementación en un receptor CATV con un rango de control de transimpedancia de 18 dB. - Con la implementación del control de ganancia en el TIA, no es necesario el uso de un atenuador variable en el receptor, simplificando así el número de etapas del mismo. - Gracias al control de transimpedancia, el TIA logra rangos de entrada similares a los publicados en trabajos anteriores basados en una tecnología mucho menos accesible como GaAs PHEMT. TIA para IFoF Se ha fabricado un chip en una tecnología CMOS de 65 nm que opera a 1.2 V de tensión de alimentación y se ha realizado su caracterización eléctrica y óptica. - El TIA presenta una programabilidad de su transimpedancia con un control lineal en dB entre 60 y 76 dBΩ mediante un código termómetro de 4 bits. - El ancho de banda se mantiene casi constante en todo el rango de transimpedancia, entre 500 y 600 MHz.Como conclusión general tras comparar el funcionamiento de los TIAs para las distintas configuraciones de RAU, vale la pena mencionar que el TIA para IFoF consigue una figura de mérito muy superior a la de otros trabajos previos diseñados para RFoF. Esto se debe principalmente a la mayor transimpedancia y al muy bajo consumo de potencia del TIA para IFoF propuesto. Además, se consigue una mejor linealidad, ya que, para una transmisión de 54 Mb/s con el estándar 802.11a, se consigue un EVM menor de 2 % en un rango de entrada de 10 dB, comparado con los entre 3 y 5 dB reportados en trabajos previos. El esquema IFoF presenta un gran potencial y ventajas frente al RFoF, lo que lo coloca como una buena alternativa para disminuir los costes y mejorar el rendimiento de los sistemas de antenas distribuidas.Por último, cabe destacar que el diseño de TIA propuesto y fabricado para IFoF contribuye en gran medida al desarrollo y validación de una RAU completa. Se ha demostrado la capacidad de la estructura propuesta para alcanzar un bajo ruido, alta linealidad, simplicidad en la programabilidad de la transimpedancia y adaptabilidad de la topología para diferentes requisitos, lo cual es de un gran interés en el diseño de receptores ópticos.Por otra parte, una versión del TIA para su uso en una interfaz de sensores MEMS capacitivos se ha propuesto y estudiado. Consiste en un convertidor capacidad-voltaje basado en una versión del TIA para RFoF, con el objetivo de conseguir un menor ruido y proveer de una adaptabilidad para diferentes sensores capacitivos. Los resultados más significativos y las conclusiones de este diseño se resumen a continuación: - El TIA presenta un control de transimpedancia con un rango de 34 dB manteniendo el ancho de banda constante en 1.2 MHz. También presenta un control independiente del ancho de banda, desde 75 kHz hasta 1.2 MHz, manteniendo la transimpedancia fija en un valor máximo. - Con un consumo de potencia de tan solo 54 μW, el TIA alcanza una sensibilidad máxima de 1 mV/fF, que corresponde a una sensibilidad de 4.2 mV/g y presenta un ruido de entrada de tan solo 100 µg/√("Hz" ) a 50 kHz en la configuración de máxima transimpedancia.La principal conclusión que destaca de este diseño es su versatilidad y flexibilidad. El diseño propuesto permite adaptar fácilmente la respuesta de la interfaz a una amplia gama de dispositivos sensores, ya que se puede ajustar el ancho de banda para ajustarse a distintas frecuencias de operación, así como la transimpedancia puede ser modificada para conseguir distintas sensibilidades. Este doble control independiente de ancho de banda y transimpedancia le proporcionan una adaptabilidad completa al TIA.<br /
    corecore