3,519 research outputs found

    Special arod system studies seventh quarterly report

    Get PDF
    Phase lock loop advanced circuits, and technical summary for Airborne Range and Orbit Determination /AROD/ syste

    Switched Capacitor Loop Filter 와 Source Switched Charge Pump 를 이용한 Phase-Locked Loop 의 설계

    Get PDF
    학위논문(석사) -- 서울대학교대학원 : 공과대학 전기·정보공학부, 2022.2. 정덕균.This thesis proposes a low integrated RMS jitter and low reference spur phase locked loop (PLL) using a switched capacitor loop filter and source switched charge pump. The PLL employs a single tunable charge pump which reduces current mis match across wide control voltage range and charge sharing effect to get high perfor mance of reference spur level. The switched capacitor loop filter is adopted to achieve insensitivity to temperature, supply voltage, and process variation of a resistor. The proposed PLL covers a wide frequency range and has a low integrated RMS jitter and low reference spur level to target various interface standards. The mechanism of switched capacitor loop filter and source switched charge pump is analyzed. Fabricated in 40 nm CMOS technology, the proposed analog PLL provides four phase for a quarter-rate transmitter, consumes 6.35 mW at 12 GHz using 750 MHz reference clock, and occupies an 0.008 mm2 with an integrated RMS jitter (10 kHz to 100 MHz) of 244.8 fs. As a result, the PLL achieves a figure of merit (FoM) of -244.2 dB with high power efficiency of 0.53 mW/GHz, and reference spur level is -60.3 dBc.본 논문에서는 낮은 RMS jitter 와 낮은 레퍼런스 스퍼를 가지며 스위치축전기 루프 필터와 소스 스위치 전하 펌프를 이용한 PLL 을 제안한다. 제안된 PLL 은 레퍼런스 스퍼의 성능을 위해 넓은 컨트롤 전압의 범위 동안 전류의 오차를 줄여주고 전하 공유 효과를 줄여주는 하나의 조절 가능한 전하 펌프를 사용하였다. 저항의 온도, 공급 전압, 공정 변화에 따른 민감도를 낮추기 위해 스위치 축전기 루프 필터가 사용되었다. 다양한 인터페이스 표준을 지원하기 위해 제안하는 PLL 은 넓은 주파수 범위를 지원하고 낮은 RMS jitter 와 낮은 레퍼런스 스퍼를 갖는다. 스위치 축전기 루프 필터와 소스 스위치 전하 펌프의 동작 원리에 대해 분석하였다. 40 nm CMOS 공정으로 제작되었으며, 제안된 회로는 quarter-rate 송신기를 위해 4 개의 phase 를 만들어내며 750 MHz 의 레퍼런스 클락을 이용하여 12 GHz 에서 6.35 mW 의 power 를 소모하고 0.008mm2 의 유효 면적을 차지하고 10 kHz 부터 100 MHz 까지 적분했을 때의 RMS jitter 값은 244.8fs 이다. 제안하는 PLL 은 -244.2 dB 의 FoM, 0.53 mW/GHz 의 power 효율을 달성했으며 레퍼런스 스퍼는 -60.3 dBc 이다CHAPTER 1 INTRODUCTION 1 1.1 MOTIVATION 1 1.2 THESIS ORGANIZATION 3 CHAPTER 2 BACKGROUNDS 4 2.1 CLOCK GENERATION IN SERIAL LINK 4 2.2 PLL BUILDING BLOCKS 6 2.2.1 OVERVIEW 6 2.2.2 PHASE FREQUENCY DETECTOR 7 2.2.3 CHARGE PUMP AND LOOP FILTER 9 2.2.4 VOLTAGE CONTROLLED OSCILLATOR 10 2.2.5 FREQUENCY DIVIDER 13 2.3 PLL LOOP ANALYSIS 15 CHAPTER 3 PLL WITH SWITCHED CAPACITOR LOOP FILTER AND SOURCE SWITCHED CHARGE PUMP 19 3.1 DESIGN CONSIDERATION 19 3.2 PROPOSED ARCHITECTURE 21 3.3 CIRCUIT IMPLEMENTATION 23 3.3.1 PHASE FREQUENCY DETECTOR 23 3.3.2 SOURCE SWITCHED CHARGE PUMP 26 3.3.3 SWITCHED CAPACITOR LOOP FILTER 30 3.3.4 VOLTAGE CONTROLLED OSCILLATOR 35 3.3.5 POST VCO AMPLIFIER 39 3.3.6 FREQUENCY DIVIDER 40 CHAPTER 4 MEASUREMENT RESULTS 43 4.1 CHIP PHOTOMICROGRAPH 43 4.2 MEASUREMENT SETUP 45 4.3 MEASURED PHASE NOISE AND REFERENCE SPUR 47 4.4 PERFORMANCE SUMMARY 50 CHAPTER 5 CONCLUSION 52 BIBLIOGRAPHY 53 초 록 58석

    A Low Noise Sub-Sampling PLL in Which Divider Noise Is Eliminated and PD-CP Noise Is not multiplied by N^2

    Get PDF
    This paper presents a 2.2-GHz low jitter sub-sampling based PLL. It uses a phase-detector/charge-pump (PD/CP)that sub-samples the VCO output with the reference clock. In contrast to what happens in a classical PLL, the PD/CP noise is not multiplied by N2 in this sub-sampling PLL, resulting in a low noise contribution from the PD/CP. Moreover, no frequency divider is needed in the locked state and hence divider noise and power can be eliminated. An added frequency locked loop guarantees correct frequency locking without degenerating jitter performance when in lock. The PLL is implemented in a standard 0.18- m CMOS process. It consumes 4.2 mA from a 1.8 V supply and occupies an active area of 0.4 X 0.45 m

    A Fully-Integrated Reconfigurable Dual-Band Transceiver for Short Range Wireless Communications in 180 nm CMOS

    Get PDF
    © 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.A fully-integrated reconfigurable dual-band (760-960 MHz and 2.4-2.5 GHz) transceiver (TRX) for short range wireless communications is presented. The TRX consists of two individually-optimized RF front-ends for each band and one shared power-scalable analog baseband. The sub-GHz receiver has achieved the maximum 75 dBc 3rd-order harmonic rejection ratio (HRR3) by inserting a Q-enhanced notch filtering RF amplifier (RFA). In 2.4 GHz band, a single-ended-to-differential RFA with gain/phase imbalance compensation is proposed in the receiver. A ΣΔ fractional-N PLL frequency synthesizer with two switchable Class-C VCOs is employed to provide the LOs. Moreover, the integrated multi-mode PAs achieve the output P1dB (OP1dB) of 16.3 dBm and 14.1 dBm with both 25% PAE for sub-GHz and 2.4 GHz bands, respectively. A power-control loop is proposed to detect the input signal PAPR in real-time and flexibly reconfigure the PA's operation modes to enhance the back-off efficiency. With this proposed technique, the PAE of the sub-GHz PA is improved by x3.24 and x1.41 at 9 dB and 3 dB back-off powers, respectively, and the PAE of the 2.4 GHz PA is improved by x2.17 at 6 dB back-off power. The presented transceiver has achieved comparable or even better performance in terms of noise figure, HRR, OP1dB and power efficiency compared with the state-of-the-art.Peer reviewe

    Power electronics options for large wind farm integration : VSC-based HVDC transmission

    Get PDF
    This paper describes the use of voltage source converter based HVDC transmission (VSC transmission) system for grid integration of large wind farms over long distance. The wind farms can be based on either doubly-fed induction generator (DFIG) or fixed speed induction generator (FSIG). The paper describes the operation principles and control strategies of the proposed system. Automatic power balancing during network AC fault is achieved without communication between the two converters. PSCAD/EMTDC simulations are presented to demonstrate the robust performance and to validate the proposed system during various operating conditions such as variations of generation and AC fault conditions. The proposed VSC transmission system has technical and economic advantages over a conventional AC connection for integrating large wind farms over long distanc

    Digitally Controlled Oscillator for mm-Wave Frequencies

    Get PDF
    In the fifth generation of mobile communication, 5G, frequencies above 30 GHz, so-called millimeter-wave (mm-wave) frequencies are expected to play a prominent role. For the synthesis of these frequencies, the all-digital phase locked loop (ADPLL) has recently gained much attention. A core component of the ADPLL is the digitally controlled oscillator (DCO), an oscillator that tunes the frequency discretely. For good performance, the frequency steps must be made very small, while the total tuning range must be large. This thesis covers several coarse- and fine-tuning techniques for DCOs operating at mm-wave frequencies. Three previously not published fine-tuning schemes are presented: The first one tunes the second harmonic, which will, due to the Groszkowski effect, tune the fundamental tone. The second one is a current-modulation scheme, which utilizes the weak current-dependence of the capacitance of a transistor to tune the frequency. In the third one, a digital-to-analog converter (DAC) is connected to the bulk of the differential pair and tunes the frequency by setting the bulk voltage. The advantages and disadvantages of the presented tuning schemes are discussed and compared with previously reported fine-tuning schemes. Two oscillators were implemented at 86 GHz. Both oscillator use the same oscillator core and hence have the same power consumption and tuning range, 14.1 mW and 13.9%. A phase noise of -89.7 dBc/Hz and -111.4 dBc/Hz at 1 MHz and 10 MHz offset, respectively, were achieved, corresponding to a Figure-of-Merit of -178.5 dBc/Hz. The first oscillator is fine-tuned using a combination of a transformer-based fine-tuning and the current modulation scheme presented here. The achieved frequency resolution is 55 kHz, but can easily be made finer. The second oscillator utilizes the bulk bias technique to achieve its fine tuning. The fine-tuning resolution is here dependent on the resolution of the DAC; a 100μV resolution corresponds to a resolution of 50 kHz.n 2011, the global monthly mobile data usage was 0.5 exabytes, or 500 million gigabytes. In 2016, this number had increased to 7 exabytes, an increase by a factor 14 in just five years, and there are no signs of this trend slowing down. To meet the demands of the ever increasing data usage, engineers have begun to investigate the possibility to use significantly higher frequencies, 30 GHz or higher, for mobile communication than what is used today, which is 3 GHz or below. To be able to transmit and receive data at these high frequency, an oscillator capable of operating at these frequencies are required. An oscillator is an electrical circuit that generates an alternating current (a current that first goes one way, and then the other) at a specific frequency. Below is an example to illustrate to function and importance of the oscillator: Imagine driving a car and listening to the radio. Suddenly, a horrendous song starts playing from the radio, so you instantly tune to another station and find some great, smooth jazz. Satisfied, you lean back and drive on. But what exactly happened when you "tuned to another station"? What you really did was changing the frequency of the oscillator, which can be found in the radio receiver of the car. The radio receiver filters out all frequencies, except for the frequency of the local oscillator. So by setting the frequency of the local oscillator to the frequency of the desired radio channel, only this radio channel will reach the speakers of the car. Thus, the oscillator must be able to vary its frequency to any frequency that a radio station can transmit on. While an old car radio may seem like a simple example, the very same principle is used in mobile communication, even at frequencies above 30 GHz. The oscillator is also used in the same way when transmitting signals, so that the signals are transmitted on the correct frequency. The design of the local oscillator is a hot topic among radio engineers. A poorly designed oscillator will ruin the performance of the whole receiver or transmitter. This thesis covers the design of a special type of oscillators, called digital controlled oscillators or DCO, operating at 30 GHz or higher. The frequency of these oscillators are determined by a digital word (ones and zeros), instead of using an analog voltage, which is traditionally used. Digital control results in greater flexibility and higher noise-resilience, but it also means that the frequency can’t be changed continuously, but rather in discrete steps. This discrete behavior will cause noise in the receiver. To minimize this noise, the frequency steps should be minimized. In this thesis, we have proposed a DCO design, operating at 85.5 GHz, which can be tuned almost 7 % in either direction. To our knowledge, no other DCO operates at such high frequencies. In the proposed oscillators the frequency steps are only 55 kHz apart, which is so small that its effect on the radio receiver can, with a good conscience, be ignored. This is achieved with a novel technique that makes tiny, tiny changes in the current that passes through the oscillator

    Realization of a 10 kW MES power to methane plant based on unified AC/DC converter

    Get PDF
    This paper presents a galvanic isolated multi output AC/DC topology that is suitable for Microbial electrosynthesis (MES) based Power to Methane energy storage systems. The presented scheme utilizes a three phase back to back converters, a single-input and multiple-output three phase transformer, single diode rectifiers and buck converters that employ a proper interconnection between MES cells and the mains. The proposed topology merges all the required single phase AC/DC converters as a unified converter which reduces the overall system size and provides system integrity and overall controllability. The proposed control scheme allows to achieve the following desired goals:1) Simultaneous control of all cells; 2) Absorbing power from the grid and covert to methane when the electricity price goes down; 3) the power factor and the quality of grid current is under control; 4) Supplying MES cells at the optimal operating point. For verification of system performance, Real time simulation results that are obtained from a 10-kW MES energy storage are presented.Postprint (author's final draft

    Power factor-corrected transformerless three-phase PWM converter for UPS applications

    Get PDF
    This thesis describes the research of a new transformerless three phase PWM converter for uninterruptible power supplies (UPS) applications. The removal of the bulky three phase transformer in larger power UPS can provide a significant saving in weight and cost of the overall system. The converter consists of a new four-wire rectifier coupled with a four-wire inverter via a dc bus. The supply and load neutral may be connected together without any neutral current flowing into the utility regardless of the load on the inverter. This allows the load to be at the same potential as the utility. The rectifier, inverter and complete UPS and control system are described in detail and simulation results are used extensively to back up the theory. An experimental prototype of the four-wire rectifier provides further confirmation of the principles. A further proposal to digitize the system is given. This would reduce the size of the required control circuit and simplify the hardware requirements

    A Bang-Bang All-Digital PLL for Frequency Synthesis

    Get PDF
    abstract: Phase locked loops are an integral part of any electronic system that requires a clock signal and find use in a broad range of applications such as clock and data recovery circuits for high speed serial I/O and frequency synthesizers for RF transceivers and ADCs. Traditionally, PLLs have been primarily analog in nature and since the development of the charge pump PLL, they have almost exclusively been analog. Recently, however, much research has been focused on ADPLLs because of their scalability, flexibility and higher noise immunity. This research investigates some of the latest all-digital PLL architectures and discusses the qualities and tradeoffs of each. A highly flexible and scalable all-digital PLL based frequency synthesizer is implemented in 180 nm CMOS process. This implementation makes use of a binary phase detector, also commonly called a bang-bang phase detector, which has potential of use in high-speed, sub-micron processes due to the simplicity of the phase detector which can be implemented with a simple D flip flop. Due to the nonlinearity introduced by the phase detector, there are certain performance limitations. This architecture incorporates a separate frequency control loop which can alleviate some of these limitations, such as lock range and acquisition time.Dissertation/ThesisM.S. Electrical Engineering 201
    corecore