491 research outputs found

    Asynchronous techniques for system-on-chip design

    Get PDF
    SoC design will require asynchronous techniques as the large parameter variations across the chip will make it impossible to control delays in clock networks and other global signals efficiently. Initially, SoCs will be globally asynchronous and locally synchronous (GALS). But the complexity of the numerous asynchronous/synchronous interfaces required in a GALS will eventually lead to entirely asynchronous solutions. This paper introduces the main design principles, methods, and building blocks for asynchronous VLSI systems, with an emphasis on communication and synchronization. Asynchronous circuits with the only delay assumption of isochronic forks are called quasi-delay-insensitive (QDI). QDI is used in the paper as the basis for asynchronous logic. The paper discusses asynchronous handshake protocols for communication and the notion of validity/neutrality tests, and completion tree. Basic building blocks for sequencing, storage, function evaluation, and buses are described, and two alternative methods for the implementation of an arbitrary computation are explained. Issues of arbitration, and synchronization play an important role in complex distributed systems and especially in GALS. The two main asynchronous/synchronous interfaces needed in GALS-one based on synchronizer, the other on stoppable clock-are described and analyzed

    Radiation safety based on the sky shine effect in reactor

    Get PDF
    In the reactor operation, neutrons and gamma rays are the most dominant radiation. As protection, lead and concrete shields are built around the reactor. However, the radiation can penetrate the water shielding inside the reactor pool. This incident leads to the occurrence of sky shine where a physical phenomenon of nuclear radiation sources was transmitted panoramic that extends to the environment. The effect of this phenomenon is caused by the fallout radiation into the surrounding area which causes the radiation dose to increase. High doses of exposure cause a person to have stochastic effects or deterministic effects. Therefore, this study was conducted to measure the radiation dose from sky shine effect that scattered around the reactor at different distances and different height above the reactor platform. In this paper, the analysis of the radiation dose of sky shine effect was measured using the experimental metho

    Adaptive Latency Insensitive Protocols

    Get PDF
    Latency-insensitive design copes with excessive delays typical of global wires in current and future IC technologies. It achieves its goal via encapsulation of synchronous logic blocks in wrappers that communicate through a latency-insensitive protocol (LIP) and pipelined interconnects. Previously proposed solutions suffer from an excessive performance penalty in terms of throughput or from a lack of generality. This article presents an adaptive LIP that outperforms previous static implementations, as demonstrated by two relevant cases — a microprocessor and an MPEG encoder — whose components we made insensitive to the latencies of their interconnections through a newly developed wrapper. We also present an informal exposition of the theoretical basis of adaptive LIPs, as well as implementation detail

    Using MCD-DVS for dynamic thermal management performance improvement

    Get PDF
    With chip temperature being a major hurdle in microprocessor design, techniques to recover the performance loss due to thermal emergency mechanisms are crucial in order to sustain performance growth. Many techniques for power reduction in the past and some on thermal management more recently have contributed to alleviate this problem. Probably the most important thermal control technique is dynamic voltage and frequency scaling (DVS) which allows for almost cubic reduction in power with worst-case performance penalty only linear. So far, DVS techniques for temperature control have been studied at the chip level. Finer grain DVS is feasible if a globally-asynchronous locally-synchronous (GALS) design style is employed. GALS, also known as multiple-clock domain (MCD), allows for an independent voltage and frequency control for each one of the clock domains that are part of the chip. There are several studies on DVS for GALS that aim to improve energy and power efficiency but not temperature. This paper proposes and analyses the usage of DVS at the domain level to control temperature in a clustered MCD microarchitecture with the goal of improving the performance of applications that do not meet the thermal constraints imposed by the designers.Peer ReviewedPostprint (published version

    Petri nets based components within globally asynchronous locally synchronous systems

    Get PDF
    Dissertação apresentada na Faculdade de Ciências e Tecnologias da Universidade Nova de Lisboa para a obtenção do grau de Mestre em Engenharia Electrotécnica e ComputadoresThe main goal is to develop a solution for the interconnection of components constituent of a GALS - Globally Asynchronous, Locally Synchronous – system. The components are implemented in parallel obtained as a result of the partition of a model expressed a Petri net (PN), performed using the PNs editor SNOOPY-IOPT in conjunction with the Split tool and the tools to automatically generate the VHDL code from the representations of the PNML models resulting from the partition (these tools were developed under the project FORDESIGN and are available at http://www.uninova.pt/FORDESIGN). Typical solutions will be analyzed to ensure proper communication between components of the GALS system, as well as characterized and developed an appropriate solution for the interconnection of the components associated with the PN sub-models. The final goal (not attained with this thesis) would be to acquire a tool that allows generation of code for the interconnection solution from the associated components, considering a specific application. The solution proposed for componentes interconnection was coded in VHDL and the implementation platforms used for testing include the Xilinx FPGA Spartan-3 and Virtex-II

    Developing Globally-Asynchronous Locally- Synchronous Systems through the IOPT-Flow Framework

    Get PDF
    Throughout the years, synchronous circuits have increased in size and com-plexity, consequently, distributing a global clock signal has become a laborious task. Globally-Asynchronous Locally-Synchronous (GALS) systems emerge as a possible solution; however, these new systems require new tools. The DS-Pnet language formalism and the IOPT-Flow framework aim to support and accelerate the development of cyber-physical systems. To do so it offers a tool chain that comprises a graphical editor, a simulator and code gener-ation tools capable of generating C, JavaScript and VHDL code. However, DS-Pnets and IOPT-Flow are not yet tuned to handle GALS systems, allowing for partial specification, but not a complete one. This dissertation proposes extensions to the DS-Pnet language and the IOPT-Flow framework in order to allow development of GALS systems. Addi-tionally, some asynchronous components were created, these form interfaces that allow synchronous blocks within a GALS system to communicate with each other

    The Future of Formal Methods and GALS Design

    Get PDF
    AbstractThe System-on-Chip era has arrived, and it arrived quickly. Modular composition of components through a shared interconnect is now becoming the standard, rather than the exotic. Asynchronous interconnect fabrics and globally asynchronous locally synchronous (GALS) design has been shown to be potentially advantageous. However, the arduous road to developing asynchronous on-chip communication and interfaces to clocked cores is still nascent. This road of converting to asynchronous networks, and potentially the core intellectual property block as well, will be rocky. Asynchronous circuit design has been employed since the 1950's. However, it is doubtful that its present form will be what we will see 10 years hence. This treatise is intended to provoke debate as it projects what technologies will look like in the future, and discusses, among other aspects, the role of formal verification, education, the CAD industry, and the ever present tradeoff between greed and fear

    The MANGO clockless network-on-chip: Concepts and implementation

    Get PDF

    An Asynchronous GALS Interface with Applications

    Get PDF
    A low-latency asynchronous interface for use in globally-asynchronous locally-synchronous (GALS) integrated circuits is presented. The interface is compact and does not alter the local clocks of the interfaced local clock domains in any way (unlike many existing GALS interfaces). Two applications of the interface to GALS systems are shown. The first is a single-chip shared-memory multiprocessor for generic supercomputing use. The second is an application-specific coprocessor for hardware acceleration of the Smith-Waterman algorithm. This is a bioinformatics algorithm used for sequence alignment (similarity searching) between DNA or amino acid (protein) sequences and sequence databases such as the recently completed human genome database
    corecore