7 research outputs found

    State-Dependent Architecture of Thalamic Reticular Subnetworks

    Get PDF
    Behavioral state is known to influence interactions between thalamus and cortex, which are important for sensation, action, and cognition. The thalamic reticular nucleus (TRN) is hypothesized to regulate thalamo-cortical interactions, but the underlying functional architecture of this process and its state dependence are unknown. By combining the first TRN ensemble recording with psychophysics and connectivity-based optogenetic tagging, we found reticular circuits to be composed of distinct subnetworks. While activity of limbic-projecting TRN neurons positively correlates with arousal, sensory-projecting neurons participate in spindles and show elevated synchrony by slow waves during sleep. Sensory-projecting neurons are suppressed by attentional states, demonstrating that their gating of thalamo-cortical interactions is matched to behavioral state. Bidirectional manipulation of attentional performance was achieved through subnetwork-specific optogenetic stimulation. Together, our findings provide evidence for differential inhibition of thalamic nuclei across brain states, where the TRN separately controls external sensory and internal limbic processing facilitating normal cognitive function.National Institute of Neurological Disorders and Stroke (U.S.) (NIH Pathway to Independence Career Award K99 NS 078115)Brain & Behavior Research Foundation (Young Investigator Award)National Institutes of Health (U.S.) ( Transformative R01 Award TR01-GM10498)National Institutes of Health (U.S.) (Grant R01-MH061976

    Cell

    Get PDF
    Behavioral state is known to influence interactions between thalamus and cortex, which are important for sensation, action, and cognition. The thalamic reticular nucleus (TRN) is hypothesized to regulate thalamo-cortical interactions, but the underlying functional architecture of this process and its state dependence are unknown. By combining the first TRN ensemble recording with psychophysics and connectivity-based optogenetic tagging, we found reticular circuits to be composed of distinct subnetworks. While activity of limbic-projecting TRN neurons positively correlates with arousal, sensory-projecting neurons participate in spindles and show elevated synchrony by slow waves during sleep. Sensory-projecting neurons are suppressed by attentional states, demonstrating that their gating of thalamo-cortical interactions is matched to behavioral state. Bidirectional manipulation of attentional performance was achieved through subnetwork-specific optogenetic stimulation. Together, our findings provide evidence for differential inhibition of thalamic nuclei across brain states, where the TRN separately controls external sensory and internal limbic processing facilitating normal cognitive function. PAPERFLICK:DP1 MH103908/MH/NIMH NIH HHS/United StatesDP1MH103908/DP/NCCDPHP CDC HHS/United StatesK99 NS 078115/NS/NINDS NIH HHS/United StatesK99 NS078115/NS/NINDS NIH HHS/United StatesR00 NS078115/NS/NINDS NIH HHS/United StatesR01 GM104948/GM/NIGMS NIH HHS/United StatesR01 MH061976/MH/NIMH NIH HHS/United StatesR01 NS077986/NS/NINDS NIH HHS/United StatesR01-MH061976/MH/NIMH NIH HHS/United StatesR01MH057414/MH/NIMH NIH HHS/United StatesR01MH101209/MH/NIMH NIH HHS/United StatesR01NS077986/NS/NINDS NIH HHS/United StatesTR01-GM10498/GM/NIGMS NIH HHS/United States2015-08-14T00:00:00Z25126786PMC420548

    Cortical Components of Reaction-Time during Perceptual Decisions in Humans

    Full text link
    The mechanisms of perceptual decision-making are frequently studied through measurements of reaction time (RT). Classical sequential-sampling models (SSMs) of decision-making posit RT as the sum of non-overlapping sensory, evidence accumulation, and motor delays. In contrast, recent empirical evidence hints at a continuous-flow paradigm in which multiple motor plans evolve concurrently with the accumulation of sensory evidence. Here we employ a trial-to-trial reliability-based component analysis of encephalographic data acquired during a random-dot motion task to directly image continuous flow in the human brain. We identify three topographically distinct neural sources whose dynamics exhibit contemporaneous ramping to time-of-response, with the rate and duration of ramping discriminating fast and slow responses. Only one of these sources, a parietal component, exhibits dependence on strength-of-evidence. The remaining two components possess topographies consistent with origins in the motor system, and their covariation with RT overlaps in time with the evidence accumulation process. After fitting the behavioral data to a popular SSM, we find that the model decision variable is more closely matched to the combined activity of the three components than to their individual activity. Our results emphasize the role of motor variability in shaping RT distributions on perceptual decision tasks, suggesting that physiologically plausible computational accounts of perceptual decision-making must model the concurrent nature of evidence accumulation and motor planning

    There is more to decisions than meets the eye: Cortical motor activity and previous motor responses predict sensorimotor decisions

    Get PDF
    Abstract Human behavior is largely guided by sensory information about our environment. The process of transforming sensory evidence into appropriate behavior is called sensorimotor decision making. Despite the many advances in uncovering its neural basis, it remains unclear which role cortical motor areas play in the functional architecture enabling sensorimotor decision making. Specifically, it is unknown whether cortical motor areas actually contribute to the decision making process, e.g. by casting a vote on the response alternatives, or whether they alternatively simply produce the behavior selected elsewhere. To investigate the involvement of cortical motor areas in sensorimotor decision making, we conducted two experiments in which human participants made choices about motion in visual stimuli and reported the choice with one of two manual responses, i.e. button presses with the left or the right index finger. Using magnetoencephalography to measure neural activity during decision making, in the first experiment we showed that activity in sensorimotor areas was predictive of upcoming choices several seconds before the button press and even before stimulus presentation. In part, this activity could be linked to the neural aftermath of the previous trial’s choice report, which shifted a measure of cortical activity in sensorimotor areas towards the previously unchosen response alternative in the current trial. This previously unknown tendency to alternate between hands when reporting sensorimotor decisions was significant and varied in size with the size of the neural aftermath of the previous button press over sensorimotor areas across several independent statistics. The results show that beyond the current stimulus, i.e. beyond what meets the eye, other factors like the previous motor act may influence response selection in sensorimotor decision making. Additionally, the results suggest that this is driven by the neural aftermath of previous responses in cortical motor areas. More generally, this suggest that neural fluctuations in cortical motor areas can influence response selection in sensorimotor decision making. This means that cortical motor areas may be more than an output stage in sensorimotor decision making. Consistent with this interpretation, we showed that response alternation in sensorimotor decision making can be manipulated in a directed fashion through instructed and non-choice-related simple button 12 | Abstract presses in an independent group of participants in our second study. This result establishes that previous motor acts can influence response selection in sensorimotor decision making, independent of whether they are choice-related or simply instructed. Given this generalization beyond choice-driven button presses, the results of the second experiment are consistent with the interpretation that response alternation is at least partly driven by neural correlates of previous motor acts. In summary, our results suggest that neural fluctuations in cortical motor areas can influence response selection in sensorimotor decision making, in turn suggesting that motor areas may be more than an output stage of the brain during sensorimotor decision making
    corecore