16,972 research outputs found

    Supercapacitor assisted LDO (SCALDO) techniquean extra low frequency design approach to high efficiency DC-DC converters and how it compares with the classical switched capacitor converters

    Get PDF
    Supercapacitor assisted low dropout regulators (SCALDO) were proposed as an alternative design approach to DC-DC converters, where the supercapacitor circulation frequency (switching frequency) is in the order of few Hz to few 10s of Hz, with an output stage based on a low dropout regulator stage. For converters such as 12–5V, 5–3.3V and 5–1.5V, the technique provides efficiency improvement factors of 2, 1.33 and 3 respectively, in compared to linear converters with same input-output combinations. In a 5–1.5V SCALDO regulator, using thin profile supercapacitors in the range of fractional farads to few farads, this translates to an approximate end to end efficiency of near 90%. However, there were concerns that this patented technique is merely a variation of well-known switched capacitor (charge pump) converters. This paper is aimed at providing a broad overview of the capability of SCALDO technique with generalized theory, indicating its capabilities and limitations, and comparing the practical performance with a typical switched capacitor converter of similar current capability

    A Charge Pump Architecture with High Power-Efficiency and Low Output Ripple Noise in 0.5 μm CMOS Process Technology

    Get PDF
    The demand of portable consumer electronic devices is skyrocketing day-by-day. Such modern integrated microsystems have several functional blocks which require different voltages to operate adequately. DC-DC converter circuits are used to generate different voltage domains for different functional blocks on large integrated microsystems from a single voltage battery-operated power supply. Charge pump is an inductorless DC-DC converter which generates higher positive voltage or lower voltage or negative voltage from the applied reference voltage. A charge pump circuit uses switches for charge transfer action and capacitors for charge storage. The thesis presents a high power-efficiency charge pump architecture with low output ripple noise in the AMI N-well 0.5 µm CMOS process technology. The switching action of the proposed charge pump architecture is controlled by a dual phase non-overlapping clock system. In order to achieve high power-efficiency, the power losses due to the leakage currents, the finite switch resistance and the imperfect charge transfer between the capacitors are taken into consideration and are minimized by proper switching of the charge transfer switches and by using different auxiliary circuits. To achieve low output ripple noise, the continuous current pumping method is proposed and implemented in the charge pump architecture. The proposed charge pump can operate over the wide input voltage range varying from 3 V to 7 V with the power conversion efficiency of 90%. The loading current drive capability of the proposed charge pump is ranging from 0 to 45 mA. The worst case output ripple voltage is less than 25 mV. To prove the concept, the design of the proposed charge pump is simulated rigorously over different process, temperature and voltage corners

    Design and development of auxiliary components for a new two-stroke, stratified-charge, lean-burn gasoline engine

    Get PDF
    A unique stepped-piston engine was developed by a group of research engineers at Universiti Teknologi Malaysia (UTM), from 2003 to 2005. The development work undertaken by them engulfs design, prototyping and evaluation over a predetermined period of time which was iterative and challenging in nature. The main objective of the program is to demonstrate local R&D capabilities on small engine work that is able to produce mobile powerhouse of comparable output, having low-fuel consumption and acceptable emission than its crankcase counterpart of similar displacement. A two-stroke engine work was selected as it posses a number of technological challenges, increase in its thermal efficiency, which upon successful undertakings will be useful in assisting the group in future powertrain undertakings in UTM. In its carbureted version, the single-cylinder aircooled engine incorporates a three-port transfer system and a dedicated crankcase breather. These features will enable the prototype to have high induction efficiency and to behave very much a two-stroke engine but equipped with a four-stroke crankcase lubrication system. After a series of analytical work the engine was subjected to a series of laboratory trials. It was also tested on a small watercraft platform with promising indication of its flexibility of use as a prime mover in mobile platform. In an effort to further enhance its technology features, the researchers have also embarked on the development of an add-on auxiliary system. The system comprises of an engine control unit (ECU), a directinjector unit, a dedicated lubricant dispenser unit and an embedded common rail fuel unit. This support system was incorporated onto the engine to demonstrate the finer points of environmental-friendly and fuel economy features. The outcome of this complete package is described in the report, covering the methodology and the final characteristics of the mobile power plant

    First operation and performance of a 200 lt double phase LAr LEM-TPC with a 40x76 cm^2 readout

    Full text link
    In this paper we describe the design, construction, and operation of a first large area double-phase liquid argon Large Electron Multiplier Time Projection Chamber (LAr LEM-TPC). The detector has a maximum drift length of 60 cm and the readout consists of a 40×7640\times 76 cm2^2 LEM and 2D projective anode to multiply and collect drifting charges. Scintillation light is detected by means of cryogenic PMTs positioned below the cathode. To record both charge and light signals, we have developed a compact acquisition system, which is scalable up to ton-scale detectors with thousands of charge readout channels. The acquisition system, as well as the design and the performance of custom-made charge sensitive preamplifiers, are described. The complete experimental setup has been operated for a first time during a period of four weeks at CERN in the cryostat of the ArDM experiment, which was equipped with liquid and gas argon purification systems. The detector, exposed to cosmic rays, recorded events with a single-channel signal-to-noise ratio in excess of 30 for minimum ionising particles. Cosmic muon tracks and their δ\delta-rays were used to assess the performance of the detector, and to estimate the liquid argon purity and the gain at different amplification fields.Comment: 23 pages, 21 figure

    An Energy-Efficient, Dynamic Voltage Scaling Neural Stimulator for a Proprioceptive Prosthesis

    Get PDF
    Accepted versio

    Study of solid laser materials Final report

    Get PDF
    Eigenvalues for electron configurations of rare earth ions in yttrium-aluminum garnet by optically pumped laser

    Active cooling control of the CLEO detector using a hydrocarbon coolant farm

    Full text link
    We describe a novel approach to particle-detector cooling in which a modular farm of active coolant-control platforms provides independent and regulated heat removal from four recently upgraded subsystems of the CLEO detector: the ring-imaging Cherenkov detector, the drift chamber, the silicon vertex detector, and the beryllium beam pipe. We report on several aspects of the system: the suitability of using the aliphatic-hydrocarbon solvent PF(TM)-200IG as a heat-transfer fluid, the sensor elements and the mechanical design of the farm platforms, a control system that is founded upon a commercial programmable logic controller employed in industrial process-control applications, and a diagnostic system based on virtual instrumentation. We summarize the system's performance and point out the potential application of the design to future high-energy physics apparatus.Comment: 21 pages, LaTeX, 5 PostScript figures; version accepted for publication in Nuclear Instruments and Methods in Physics Research

    On-chip Phase Locked Loop (PLL) design for clock multiplier in CMOS Monolithic Active Pixel Sensors (MAPS)

    Get PDF
    In a detector system, clock distribution to sensors must be controlled at a level allowing proper synchronisation. In order to reach theses requirements for the HFT (Heavy Flavor Tracker) upgrade at STAR (Solenoidal Tracker at RHIC), we have proposed to distribute a low frequency clock at 10 MHz which will be multiplied to 160 MHz in each sensor by a PLL. A PLL has been designed for period jitter less than 20 ps rms, low power consumption and manufactured in a 0.35 μm CMOS process
    corecore