34 research outputs found

    Pattern Recognition

    Get PDF
    Pattern recognition is a very wide research field. It involves factors as diverse as sensors, feature extraction, pattern classification, decision fusion, applications and others. The signals processed are commonly one, two or three dimensional, the processing is done in real- time or takes hours and days, some systems look for one narrow object class, others search huge databases for entries with at least a small amount of similarity. No single person can claim expertise across the whole field, which develops rapidly, updates its paradigms and comprehends several philosophical approaches. This book reflects this diversity by presenting a selection of recent developments within the area of pattern recognition and related fields. It covers theoretical advances in classification and feature extraction as well as application-oriented works. Authors of these 25 works present and advocate recent achievements of their research related to the field of pattern recognition

    Neuromorphic Systems for Pattern Recognition and Uav Trajectory Planning

    Get PDF
    Detection and control are two essential components in an intelligent system. This thesis investigates novel techniques in both areas with a focus on the applications of handwritten text recognition and UAV flight control. Recognizing handwritten texts is a challenging task due to many different writing styles and lack of clear boundary between adjacent characters. The difficulty is greatly increased if the detection algorithms is solely based on pattern matching without information of dynamics of handwriting trajectories. Motivated by the aforementioned challenges, this thesis first investigates the pattern recognition problem. We use offline handwritten texts recognition as a case study to explore the performance of a recurrent belief propagation model. We first develop a probabilistic inference network to post process the recognition results of deep Convolutional Neural Network (CNN) (e.g. LeNet) and collect individual characters to form words. The output of the inference network is a set of words and their probability. A series of post processing and improvement techniques are then introduced to further increase the recognition accuracy. We study the performance of proposed model through various comparisons. The results show that it significantly improves the accuracy by correcting deletion, insertion and replacement errors, which are the main sources of invalid candidate words. Deep Reinforcement Learning (DRL) has widely been applied to control the autonomous systems because it provides solutions for various complex decision-making tasks that previously could not be solved solely with deep learning. To enable autonomous Unmanned Aerial Vehicles (UAV), this thesis presents a two-level trajectory planning framework for UAVs in an indoor environment. A sequence of waypoints is selected at the higher-level, which leads the UAV from its current position to the destination. At the lower-level, an optimal trajectory is generated analytically between each pair of adjacent waypoints. The goal of trajectory generation is to maintain the stability of the UAV, and the goal of the waypoints planning is to select waypoints with the lowest control thrust throughout the entire trip while avoiding collisions with obstacles. The entire framework is implemented using DRL, which learns the highly complicated and nonlinear interaction between those two levels, and the impact from the environment. Given the pre-planned trajectory, this thesis further presents an actor-critic reinforcement learning framework that realizes continuous trajectory control of the UAV through a set of desired waypoints. We construct a deep neural network and develop reinforcement learning for better trajectory tracking. In addition, Field Programmable Gate Arrays (FPGA) based hardware acceleration is designed for energy efficient real-time control. If we are to integrate the trajectory planning model onto a UAV system for real-time on-board planning, a key challenge is how to deliver required performance under strict memory and computational constraints. Techniques that compress Deep Neural Network (DNN) models attract our attention because they allow optimized neural network models to be efficiently deployed on platforms with limited energy and storage capacity. However, conventional model compression techniques prune the DNN after it is fully trained, which is very time-consuming especially when the model is trained using DRL. To overcome the limitation, we present an early phase integrated neural network weight compression system for DRL based waypoints planning. By applying pruning at an early phase, the compression of the DRL model can be realized without significant overhead in training. By tightly integrating pruning and retraining at the early phase, we achieve a higher model compression rate, reduce more memory and computing complexity, and improve the success rate compared to the original work

    Computationally efficient algorithms and implementations of adaptive deep brain stimulation systems for Parkinson's disease

    Get PDF
    Clinical deep brain stimulation (DBS) is a tool used to mitigate pharmacologically intractable neurodegenerative diseases such as Parkinson's disease (PD), tremor and dystonia. Present implementations of DBS use continuous, high frequency voltage or current pulses so as to mitigate PD. This results in some limitations, among which there is stimulation induced side effects and shortening of pacemaker battery life. Adaptive DBS (aDBS) can be used to overcome a number of these limitations. Adaptive DBS is intended to deliver stimulation precisely only when needed. This thesis presents work undertaken to investigate, propose and develop novel algorithms and implementations of systems for adapting DBS. This thesis proposes four system implementations that could facilitate DBS adaptation either in the form of closed-loop DBS or spatial adaptation. The first method involved the use of dynamic detection to track changes in local field potentials (LFP) which can be indicative of PD symptoms. The work on dynamic detection included the synthesis of validation dataset using mainly autoregressive moving average (ARMA) models to enable the evaluation of a subset of PD detection algorithms for accuracy and complexity trade-offs. The subset of algorithms consisted of feature extraction (FE), dimensionality reduction (DR) and dynamic pattern classification stages. The combination with the best trade-off in terms of accuracy and complexity consisted of discrete wavelet transform (DWT) for FE, maximum ratio method (MRM) for DR and k-nearest neighbours (k-NN) for classification. The MRM is a novel DR method inspired by Fisher's separability criterion. The best combination achieved accuracy measures: F1-score of 97.9%, choice probability of 99.86% and classification accuracy of 99.29%. Regarding complexity, it had an estimated microchip area of 0.84 mm² for estimates in 90 nm CMOS process. The second implementation developed the first known PD detection and monitoring processor. This was achieved using complementary detection, which presents a hardware-efficient method of implementing a PD detection processor for monitoring PD progression in Parkinsonian patients. Complementary detection is achieved by using a combination of weak classifiers to produce a classifier with a higher consistency and confidence level than the individual classifiers in the configuration. The PD detection processor using the same processing stages as the first implementation was validated on an FPGA platform. By mapping the implemented design on a 45 nm CMOS process, the most optimal implementation achieved a dynamic power per channel of 2.26 μW and an area per channel of 0.2384 mm². It also achieved mean accuracy measures: Mathews correlation coefficient (MCC) of 0.6162, an F1-score of 91.38%, and mean classification accuracy of 91.91%. The third implementation proposed a framework for adapting DBS based on a critic-actor control approach. This models the relationship between a trained clinician (critic) and a neuro-modulation system (actor) for modulating DBS. The critic was implemented and validated using machine learning models, and the actor was implemented using a fuzzy controller. Therapy is modulated based on state estimates obtained through the machine learning models. PD suppression was achieved in seven out of nine test cases. The final implementation introduces spatial adaptation for aDBS. Spatial adaptation adjusts to variation in lead position and/or stimulation focus, as poor stimulation focus has been reported to affect therapeutic benefits of DBS. The implementation proposes dynamic current steering systems as a power-efficient implementation for multi-polar multisite current steering, with a particular focus on the output stage of the dynamic current steering system. The output stage uses dynamic current sources in implementing push-pull current sources that are interfaced to 16 electrodes so as to enable current steering. The performance of the output stage was demonstrated using a supply of 3.3 V to drive biphasic current pulses of up to 0.5 mA through its electrodes. The preliminary design of the circuit was implemented in 0.18 μm CMOS technology

    Advanced Applications of Rapid Prototyping Technology in Modern Engineering

    Get PDF
    Rapid prototyping (RP) technology has been widely known and appreciated due to its flexible and customized manufacturing capabilities. The widely studied RP techniques include stereolithography apparatus (SLA), selective laser sintering (SLS), three-dimensional printing (3DP), fused deposition modeling (FDM), 3D plotting, solid ground curing (SGC), multiphase jet solidification (MJS), laminated object manufacturing (LOM). Different techniques are associated with different materials and/or processing principles and thus are devoted to specific applications. RP technology has no longer been only for prototype building rather has been extended for real industrial manufacturing solutions. Today, the RP technology has contributed to almost all engineering areas that include mechanical, materials, industrial, aerospace, electrical and most recently biomedical engineering. This book aims to present the advanced development of RP technologies in various engineering areas as the solutions to the real world engineering problems

    Proceedings of the 7th Sound and Music Computing Conference

    Get PDF
    Proceedings of the SMC2010 - 7th Sound and Music Computing Conference, July 21st - July 24th 2010

    Machine Learning

    Get PDF
    Machine Learning can be defined in various ways related to a scientific domain concerned with the design and development of theoretical and implementation tools that allow building systems with some Human Like intelligent behavior. Machine learning addresses more specifically the ability to improve automatically through experience

    Energy Data Analytics for Smart Meter Data

    Get PDF
    The principal advantage of smart electricity meters is their ability to transfer digitized electricity consumption data to remote processing systems. The data collected by these devices make the realization of many novel use cases possible, providing benefits to electricity providers and customers alike. This book includes 14 research articles that explore and exploit the information content of smart meter data, and provides insights into the realization of new digital solutions and services that support the transition towards a sustainable energy system. This volume has been edited by Andreas Reinhardt, head of the Energy Informatics research group at Technische Universität Clausthal, Germany, and Lucas Pereira, research fellow at Técnico Lisboa, Portugal
    corecore