214 research outputs found

    Energy-Efficient Wireless Circuits and Systems for Internet of Things

    Full text link
    As the demand of ultra-low power (ULP) systems for internet of thing (IoT) applications has been increasing, large efforts on evolving a new computing class is actively ongoing. The evolution of the new computing class, however, faced challenges due to hard constraints on the RF systems. Significant efforts on reducing power of power-hungry wireless radios have been done. The ULP radios, however, are mostly not standard compliant which poses a challenge to wide spread adoption. Being compliant with the WiFi network protocol can maximize an ULP radio’s potential of utilization, however, this standard demands excessive power consumption of over 10mW, that is hardly compatible with in ULP systems even with heavy duty-cycling. Also, lots of efforts to minimize off-chip components in ULP IoT device have been done, however, still not enough for practical usage without a clean external reference, therefore, this limits scaling on cost and form-factor of the new computer class of IoT applications. This research is motivated by those challenges on the RF systems, and each work focuses on radio designs for IoT applications in various aspects. First, the research covers several endeavors for relieving energy constraints on RF systems by utilizing existing network protocols that eventually meets both low-active power, and widespread adoption. This includes novel approaches on 802.11 communication with articulate iterations on low-power RF systems. The research presents three prototypes as power-efficient WiFi wake-up receivers, which bridges the gap between industry standard radios and ULP IoT radios. The proposed WiFi wake-up receivers operate with low power consumption and remain compatible with the WiFi protocol by using back-channel communication. Back-channel communication embeds a signal into a WiFi compliant transmission changing the firmware in the access point, or more specifically just the data in the payload of the WiFi packet. With a specific sequence of data in the packet, the transmitter can output a signal that mimics a modulation that is more conducive for ULP receivers, such as OOK and FSK. In this work, low power mixer-first receivers, and the first fully integrated ultra-low voltage receiver are presented, that are compatible with WiFi through back-channel communication. Another main contribution of this work is in relieving the integration challenge of IoT devices by removing the need for external, or off-chip crystals and antennas. This enables a small form-factor on the order of mm3-scale, useful for medical research and ubiquitous sensing applications. A crystal-less small form factor fully integrated 60GHz transceiver with on-chip 12-channel frequency reference, and good peak gain dual-mode on-chip antenna is presented.PHDElectrical and Computer EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/162975/1/jaeim_1.pd

    Low-Power High-Data-Rate Transmitter Design for Biomedical Application

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Ultra-low power, low-voltage transmitter at ISM band for short range transceivers

    Get PDF
    Tezin basılısı Ä°stanbul ƞehir Üniversitesi KĂŒtĂŒphanesi'ndedir.The increasing demand for technology to be used in every aspect of our lives has led the way to many new applications and communication standards. WSN and BAN are some of the new examples that utilize electronic circuit design in the form of very small sensors to perform their applications. They consist of small sensor nodes and have applications ranging from entertainment to medicine. Requirements such as decreasing the area and the power consumption help to have longer-lasting batteries and smaller devices. The standard paves the way for the devices from diïŹ€erent vendors to communicate with each other, and that motivates us to make designs as compatible with the standard as it can be. In this thesis, an ultra-low power high eïŹƒcient transmitter with a small area working at 2.4 GHz have been designed for BAN applications. A study on the system-view perspective is important in optimizing the area and power since the transmitter architecture can change the circuit design. From a circuit design perspective, seeking to decrease power consumption means thinking of new techniques to implement the same function or a new system. Inspired by new trends, this research presents a design solution to the previously mentioned problem and hopefully, after fabrication, the measured results will match the simulated results to prove the validity of the design.Declaration of Authorship ii Abstract iv Öz v Acknowledgments vii List of Figures x List of Tables xiii Abbreviations xiv 1 Introduction 1 1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Communication Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2.1 Digital Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.2 Unwanted Power Limitations . . . . . . . . . . . . . . . . . . . . . 3 1.2.3 Multiple Access Techniques . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Transmitter System Level SpeciïŹcations . . . . . . . . . . . . . . . . . . . 4 1.3.1 Low Power Wireless Standards . . . . . . . . . . . . . . . . . . . . 4 1.4 Low-Power Wireless Transceiver systems . . . . . . . . . . . . . . . . . . . 6 1.4.1 Survey of the previous work . . . . . . . . . . . . . . . . . . . . . . 7 1.4.2 The Designed Transmitter System . . . . . . . . . . . . . . . . . . 8 1.5 Ultra-Low Power Transmitters Performance Metrics . . . . . . . . . . . . 9 1.6 Thesis Contribution and Outline . . . . . . . . . . . . . . . . . . . . . . . 10 2 Circuit Design for The Transmitter 11 2.1 Technology Characterization and Modeling for Low-Power Designs . . . 11 2.1.1 Passive Components modeling . . . . . . . . . . . . . . . . . . . . 11 2.1.2 Active Components Modeling . . . . . . . . . . . . . . . . . . . . . 13 2.1.3 MOS Transistor Sub-threshold Modeling . . . . . . . . . . . . . . 13 2.1.4 MOS Transistor Simulation-Based Modeling . . . . . . . . . . . . . 14 2.2 Low-Voltage Low-Power Analog and RF Design Principles . . . . . . . . . 17 2.2.1 Separate Gate Biasing of The Inverter . . . . . . . . . . . . . . . . 17 2.2.2 Body Biasing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3 Low-Voltage Analog Mixed Biasing Circuit Designs . . . . . . . . . . . . . 18 2.3.1 DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3.2 Operational AmpliïŹer Design . . . . . . . . . . . . . . . . . . . . . 19 2.4 Crystal Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.4.1 The MEMS Crystal . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.4.2 Crystal Oscillator Topologies . . . . . . . . . . . . . . . . . . . . . 23 2.4.3 Design of The CMOS Crystal Oscillator . . . . . . . . . . . . . . . 26 2.5 Pre-Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.6 OOK Modulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.7 BPSK Modulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.8 Digital Control of the Modulators . . . . . . . . . . . . . . . . . . . . . . . 35 2.9 Power AmpliïŹer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.9.1 ULP PA Topologies Survey . . . . . . . . . . . . . . . . . . . . . . 38 2.9.2 The Push-Pull PA Design Methodology . . . . . . . . . . . . . . . 41 2.10 Transmit/Receive (T/R) Switch . . . . . . . . . . . . . . . . . . . . . . . 43 2.10.1 T/R Switch Topologies . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.10.2 Suggested Low-Area Low-Voltage RF Switch . . . . . . . . . . . . 46 3 Transmitter Integration and Final Results 48 3.1 Transmitter Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.2 Transmitter Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.3 Results Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.4 Results Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4 Conclusions 59 4.1 Thesis Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 A Bond Wire Parasitic Modeling 61 B Crystal Oscillator With Parasitic EïŹ€ects 67 B.1 Simulation of FBAR with Parasitic EïŹ€ects . . . . . . . . . . . . . . . . . 67 B.2 Root Locus Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Bibliography 7

    Wireless body sensor networks for health-monitoring applications

    Get PDF
    This is an author-created, un-copyedited version of an article accepted for publication in Physiological Measurement. The publisher is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at http://dx.doi.org/10.1088/0967-3334/29/11/R01

    Architecture for ultra-low power multi-channel transmitters for Body Area Networks using RF resonators

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2011.Cataloged from PDF version of thesis.Includes bibliographical references (p. 99-103).Body Area Networks (BANs) are gaining prominence for their use in medical and sports monitoring. This thesis develops the specifications of a ultra-low power 2.4GHz transmitter for use in a Body Area Networks, taking advantage of the asymmetric energy constraints on the sensor node and the basestation. The specifications include low transmit output powers, around -10dBm, low startup time, simple modulation schemes of OOK, FSK and BPSK and high datarates of 1Mbps. An architecture that is suited for the unique requirements of transmitters in these BANs is developed. RF Resonators, and in particular Film Bulk Acoustic Wave Resonators (FBARs) are explored as carrier frequency generators since they provide stable frequencies without the need for PLLs. The frequency of oscillation is directly modulated to generate FSK. Since these oscillators have low tuning range, the architecture uses multiple resonators to define the center frequencies of the multiple channels. A scalable scheme that uses a resonant buffer is developed to multiplex the oscillators' outputs to the Power Amplifier (PA). The buffer is also capable of generating BPSK signals. Finally a PA optimized for efficiently delivering the low output powers required in BANs is developed. A tunable matching network in the PA also enables pulse-shaping for spectrally efficient modulation. A prototype transmitter supporting 3 FBAR-oscillator channels in the 2.4GHz ISM band was designed in a 65nm CMOS process. It operates from a 0.7V supply for the RF portion and 1V for the digital section. The transmitter achieves 1Mbps FSK, up to 10Mbps for OOK and BPSK without pulse shaping and 1Mbps for OOK and BPSK with pulse shaping. The power amplifier has an efficiency of up to 43% and outputs between -15dBm and -7.5dBm onto a 50Q antenna. Overall, the transmitter achieves an efficiency of upto 26% and energy per bit of 483pJ/bit at 1Mbps.by Arun Paidimarri.S.M

    Low Power Circuit Design in Sustainable Self Powered Systems for IoT Applications

    Get PDF
    The Internet-of-Things (IoT) network is being vigorously pushed forward from many fronts in diverse research communities. Many problems are still there to be solved, and challenges are found among its many levels of abstraction. In this thesis we give an overview of recent developments in circuit design for ultra-low power transceivers and energy harvesting management units for the IoT. The first part of the dissertation conducts a study of energy harvesting interfaces and optimizing power extraction, followed by power management for energy storage and supply regulation. we give an overview of the recent developments in circuit design for ultra-low power management units, focusing mainly in the architectures and techniques required for energy harvesting from multiple heterogeneous sources. Three projects are presented in this area to reach a solution that provides reliable continuous operation for IoT sensor nodes in the presence of one or more natural energy sources to harvest from. The second part focuses on wireless transmission, To reduce the power consumption and boost the Tx energy efficiency, a novel delay cell exploiting current reuse is used in a ring-oscillator employed as the local oscillator generator scheme. In combination with an edge-combiner power amplifier, the Tx showed a measured energy efficiency of 0.2 nJ=bit and a normalized energy efficiency of 3.1 nJ=bit:mW when operating at output power levels up to -10 dBm and data rates of 3 Mbps

    Analysis and Design of Energy Efficient Frequency Synthesizers for Wireless Integrated Systems

    Full text link
    Advances in ultra-low power (ULP) circuit technologies are expanding the IoT applications in our daily life. However, wireless connectivity, small form factor and long lifetime are still the key constraints for many envisioned wearable, implantable and maintenance-free monitoring systems to be practically deployed at a large scale. The frequency synthesizer is one of the most power hungry and complicated blocks that not only constraints RF performance but also offers subtle scalability with power as well. Furthermore, the only indispensable off-chip component, the crystal oscillator, is also associated with the frequency synthesizer as a reference. This thesis addresses the above issues by analyzing how phase noise of the LO affect the frequency modulated wireless system in different aspects and how different noise sources in the PLL affect the performance. Several chip prototypes have been demonstrated including: 1) An ULP FSK transmitter with SAR assisted FLL; 2) A ring oscillator based all-digital BLE transmitter utilizing a quarter RF frequency LO and 4X frequency multiplier; and 3) An XO-less BLE transmitter with an RF reference recovery receiver. The first 2 designs deal with noise sources in the PLL loop for ultimate power and cost reduction, while the third design deals with the reference noise outside the PLL and explores a way to replace the XO in ULP wireless edge nodes. And at last, a comprehensive PN theory is proposed as the design guideline.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/153420/1/chenxing_1.pd

    Automated Channel Assessment for Single Chip MedRadio Transceivers

    Get PDF
    Modern implantable and body worn medical devices leverage wireless telemetry to improve patient experience and expand therapeutic options. Wireless medical devices are subject to a unique set of regulations in which monitoring of the available frequency spectrum is a requirement. To this end, implants use software protocols to assess the in-band activity to determine which channel should be used. These software protocols take valuable processing time and possibly degrade the operational lifetime of the battery. Implantable medical devices often take advantage of a single chip transceiver as the physical layer for wireless communications. Embedding the channel assessment task in the transceiver hardware would free the limited resources of the microprocessor. This thesis proposes hardware modifications to existing transceiver architectures which would provide an automated channel assessment means for implantable medical devices. The results are applicable beyond medical device applications and could be employed to benefit any low-power, wireless, battery-operated equipment

    Ultra Low Power FM-UWB Transceiver for High-Density Wireless Sensor Networks

    Get PDF
    The WiseSkin project aims to provide a non-invasive solution for restoration of a natural sense of touch to persons using prosthetic limbs. By embedding sensor nodes into the silicone coating of the prosthesis, which acts as a sensory skin, WiseSkin targets to provide improved gripping, manipulation and mobility for amputees. Flexibility, freedom of movement and comfort demand unobtrusive, highly miniaturized, low-power sensing capabilities built into the artificial skin, which is then integrated with a sensory feedback system. Wireless communication between the sensor nodes provides more flexibility, better scalability and robustness compared to wired solution, and is therefore a preferred approach for WiseSkin. Design of an RF transceiver tailored for the specific needs of WiseSkin is the topic of this work. The properties of FM ultra-wide band (FM-UWB) modulation make it a good candidate for High-Density Wireless Sensor Networks (HD-WSN). The proposed FM-UWB receivers take advantage of short range to reduce power consumption, and exploit robustness of this wideband modulation scheme. The LNA, identified as the biggest consumer, is removed and signal is directly converted to dc, where amplification and demodulation are performed. Owing to 500 MHz bandwidth, frequency offset and phase noise can be tolerated, and a low-power, free-running ring oscillator can be used to generate the LO signal. The receiver is referred to as an approximate zero-IF receiver. Two receiver architectures are studied. The first one performs quadrature downconversion, and owing to the demodulator linearity, provides the multi-user capability. In the second receiver, quadrature demodulation is replaced by the single-ended one. Due to the nature of the demodulator, sensitivity degrades, and multiple FM-UWB signals cannot be resolved, but the consumption is almost halved compared to the first receiver. The proposed approach is verified through two integrations, both in a standard 65 nm bulk CMOS process. In the first run, a standalone quadrature receiver was integrated. Power consumption of 423 uW was measured, while achieving -70 dBm sensitivity. Good narrow-band interference rejection and multiuser capability with up to 4 FM-UWB channels could be achieved. In the second run, a full transceiver is integrated, with both quadrature and single-ended receivers and a transmitter, all sharing a single IO pad, without the need for any external passive components or switches. The quadrature receiver, with on-chip baseband processing and multi-user support, in this case consumes 550 uW, with a sesensitivity of -68 dBm. The low power receiver consumes 267 uW, and provides -57 dBm sensitivity, at a single FM-UWB channel. The implemented trantransmitter transmits a 100 kb/s FM-UWB signal at -11.4 dBm, while drawing 583 uW from the 1 V supply. The on-chip clock recovery allows reference frequency offset up to 8000 ppm. Since state of the art on-chip RC oscillators can provide below 2100 ppm across the temperature range of interest, the implemented transceiver demonstrates the feasibility of a fully integrated FM-UWB radio with no need for a quartz reference or any external components. In addition, the transceiver can tolerate up to 3 dBm narrow-band interferer at 2.4 GHz. Such a strong signal can be used to remotely power the sensor nodes inside the artificial skin and enable a truly wirelessWiseSkin solution
    • 

    corecore