407 research outputs found

    A cross-layer scheduling strategy for the downlink of a MIMO-OFDMA system with heterogeneous traffic

    Get PDF
    in this paper we propose and investigate a cross-layer multiuser scheduling strategy for the support of heterogeneous traffic in the downlink of a MIMO-OFDMA system. It jointly considers different objectives: maximize the sum-rate on the radio channel, ensure a fair allocation of resources among users belonging to the same traffic class, consider the dynamics of traffic sources by looking at the delay of data packets in the queues, contribute to maximize quality of service figures at the application level. To exploit temporal diversity and to reduce complexity, the ergodic weighted sum-rate is maximized and dual optimization with stochastic approximation is applied to derive on-line algorithms. The numerical results show the capability of the scheduler to allocate physical layer resources according to rate constraints imposed for each different traffic class and with fairness inside each class, even in presence of different channels conditions and different network loads.Postprint (published version

    Delay aware optimal resource allocation in MU MIMO-OFDM using enhanced spider monkey optimization

    Get PDF
    In multiple users MIMO- OFDM system allocates the available resources to the optimal users is a difficult task. Hence the scheduling and resource allocation become the major problem in the wireless network mainly in case of multiple input and multiple output method that has to be made efficient. There is various method introduced to give an optimal solution to the problem yet it has many drawbacks. So we propose this paper to provide an efficient solution for resource allocation in terms of delay and also added some more features such as high throughout, energy efficient and fairness. To make optimal resource allocation we introduce optimization algorithm named spider monkey with an enhancement which provides the efficient solution. In this optimization process includes the scheduling and resource allocation, the SNR values, channel state information (CSI) from the base station. To make more efficient finally we perform enhanced spider - monkey algorithm hence the resource allocation is performed based on QoS requirements. Thus the simulation results in our paper show high efficiency when compared with other schedulers and techniques

    Cross-layer design for OFDMA wireless systems with heterogeneous delay requirements

    Get PDF
    This paper proposes a cross-layer scheduling scheme for OFDMA wireless systems with heterogeneous delay requirements. We shall focus on the cross-layer design which takes into account both queueing theory and information theory in modeling the system dynamics. We propose a delay-sensitive cross-layer design, which determines the optimal subcarrier allocation and power allocation policies to maximize the total system throughput, subject to the individual user's delay constraint and total base station transmit power constraint. The delay-sensitive power allocation was found to be multilevel water-filling in which urgent users have higher water-filling levels. The delay-sensitive subcarrier allocation strategy has linear complexity with respect to number of users and number of subcarriers. Simulation results show that substantial throughput gain is obtained while satisfying the delay constraints when the delay-sensitive jointly optimal power and subcarrier allocation policy is adopted. © 2007 IEEE.published_or_final_versio

    Eficiência energética avançada para sistema OFDMA CoMP coordenação multiponto

    Get PDF
    Doutoramento em Engenharia EletrotécnicaThe ever-growing energy consumption in mobile networks stimulated by the expected growth in data tra ffic has provided the impetus for mobile operators to refocus network design, planning and deployment towards reducing the cost per bit, whilst at the same time providing a signifi cant step towards reducing their operational expenditure. As a step towards incorporating cost-eff ective mobile system, 3GPP LTE-Advanced has adopted the coordinated multi-point (CoMP) transmission technique due to its ability to mitigate and manage inter-cell interference (ICI). Using CoMP the cell average and cell edge throughput are boosted. However, there is room for reducing energy consumption further by exploiting the inherent exibility of dynamic resource allocation protocols. To this end packet scheduler plays the central role in determining the overall performance of the 3GPP longterm evolution (LTE) based on packet-switching operation and provide a potential research playground for optimizing energy consumption in future networks. In this thesis we investigate the baseline performance for down link CoMP using traditional scheduling approaches, and subsequently go beyond and propose novel energy e fficient scheduling (EES) strategies that can achieve power-e fficient transmission to the UEs whilst enabling both system energy effi ciency gain and fairness improvement. However, ICI can still be prominent when multiple nodes use common resources with di fferent power levels inside the cell, as in the so called heterogeneous networks (Het- Net) environment. HetNets are comprised of two or more tiers of cells. The rst, or higher tier, is a traditional deployment of cell sites, often referred to in this context as macrocells. The lower tiers are termed small cells, and can appear as microcell, picocells or femtocells. The HetNet has attracted signiffi cant interest by key manufacturers as one of the enablers for high speed data at low cost. Research until now has revealed several key hurdles that must be overcome before HetNets can achieve their full potential: bottlenecks in the backhaul must be alleviated, as well as their seamless interworking with CoMP. In this thesis we explore exactly the latter hurdle, and present innovative ideas on advancing CoMP to work in synergy with HetNet deployment, complemented by a novel resource allocation policy for HetNet tighter interference management. As system level simulator has been used to analyze the proposed algorithm/protocols, and results have concluded that up to 20% energy gain can be observed.O aumento do consumo de energia nas TICs e em particular nas redes de comunicação móveis, estimulado por um crescimento esperado do tráfego de dados, tem servido de impulso aos operadores m oveis para reorientarem os seus projectos de rede, planeamento e implementa ção no sentido de reduzir o custo por bit, o que ao mesmo tempo possibilita um passo signicativo no sentido de reduzir as despesas operacionais. Como um passo no sentido de uma incorporação eficaz em termos destes custos, o sistema móvel 3GPP LTE-Advanced adoptou a técnica de transmissão Coordenação Multi-Ponto (identificada na literatura com a sigla CoMP) devido à sua capacidade de mitigar e gerir Interferência entre Células (sigla ICI na literatura). No entanto a ICI pode ainda ser mais proeminente quando v arios n os no interior da célula utilizam recursos comuns com diferentes níveis de energia, como acontece nos chamados ambientes de redes heterogéneas (sigla Het- Net na literatura). As HetNets são constituídas por duas ou mais camadas de células. A primeira, ou camada superiora, constitui uma implantação tradicional de sítios de célula, muitas vezes referidas neste contexto como macrocells. Os níveis mais baixos são designados por células pequenas, e podem aparecer como microcells, picocells ou femtocells. A HetNet tem atra do grande interesse por parte dos principais fabricantes como sendo facilitador para transmissões de dados de alta velocidade a baixo custo. A investigação tem revelado at e a data, vários dos principais obstáculos que devem ser superados para que as HetNets possam atingir todo o seu potencial: (i) os estrangulamentos no backhaul devem ser aliviados; (ii) bem como sua perfeita interoperabilidade com CoMP. Nesta tese exploramos este ultimo constrangimento e apresentamos ideias inovadoras em como a t ecnica CoMP poder a ser aperfeiçoada por forma a trabalhar em sinergia com a implementação da HetNet, complementado ainda com uma nova perspectiva na alocação de recursos rádio para um controlo e gestão mais apertado de interferência nas HetNets. Com recurso a simulação a níível de sistema para analisar o desempenho dos algoritmos e protocolos propostos, os resultados obtidos concluíram que ganhos at e a ordem dos 20% poderão ser atingidos em termos de eficiência energética

    MAC Scheduling Strategies in LTE Advanced

    Get PDF
    An Efficient scheduling algorithm at the data link layer is needed in multiuser systems to efficiently exploit the benefits of multiuser multiple input multiple output (MIMO). The 3G partnership programme (3GPP) does not specify any specific scheduling for Long Term Evolution (LTE) Advanced; we can have any one of the scheduling strategies applicable for LTE Advanced. There is substantial amount of literature on scheduling algorithms for multiuser wireless systems. In this paper, we are presenting various types of scheduling schemes of LTE Advanced, their advantages, and inefficiencies.Keywords – Scheduling, MIMO, LTE Advanced, Channel state information (CSI) , Adaptive modulation and coding (AMC)

    Resource Allocation for Delay Differentiated Traffic in Multiuser OFDM Systems

    Full text link
    Most existing work on adaptive allocation of subcarriers and power in multiuser orthogonal frequency division multiplexing (OFDM) systems has focused on homogeneous traffic consisting solely of either delay-constrained data (guaranteed service) or non-delay-constrained data (best-effort service). In this paper, we investigate the resource allocation problem in a heterogeneous multiuser OFDM system with both delay-constrained (DC) and non-delay-constrained (NDC) traffic. The objective is to maximize the sum-rate of all the users with NDC traffic while maintaining guaranteed rates for the users with DC traffic under a total transmit power constraint. Through our analysis we show that the optimal power allocation over subcarriers follows a multi-level water-filling principle; moreover, the valid candidates competing for each subcarrier include only one NDC user but all DC users. By converting this combinatorial problem with exponential complexity into a convex problem or showing that it can be solved in the dual domain, efficient iterative algorithms are proposed to find the optimal solutions. To further reduce the computational cost, a low-complexity suboptimal algorithm is also developed. Numerical studies are conducted to evaluate the performance the proposed algorithms in terms of service outage probability, achievable transmission rate pairs for DC and NDC traffic, and multiuser diversity.Comment: 29 pages, 8 figures, submitted to IEEE Transactions on Wireless Communication

    Resource allocation and feedback in wireless multiuser networks

    Get PDF
    This thesis focuses on the design of algorithms for resource allocation and feedback in wireless multiuser and heterogeneous networks. In particular, three key design challenges expected to have a major impact on future wireless networks are considered: cross-layer scheduling; structured quantization codebook design for MU-MIMO networks with limited feedback; and resource allocation to provide physical layer security. The first design challenge is cross-layer scheduling, where policies are proposed for two network architectures: user scheduling in single-cell multiuser networks aided by a relay; and base station (BS) scheduling in CoMP. These scheduling policies are then analyzed to guarantee satisfaction of three performance metrics: SEP; packet delay; and packet loss probability (PLP) due to buffer overflow. The concept of the τ-achievable PLP region is also introduced to explicitly describe the tradeoff in PLP between different users. The second design challenge is structured quantization codebook design in wireless networks with limited feedback, for both MU-MIMO and CoMP. In the MU-MIMO network, two codebook constructions are proposed, which are based on structured transformations of a base codebook. In the CoMP network, a low-complexity construction is proposed to solve the problem of variable codebook dimensions due to changes in the number of coordinated BSs. The proposed construction is shown to have comparable performance with the standard approach based on a random search, while only requiring linear instead of exponential complexity. The final design challenge is resource allocation for physical layer security in MU-MIMO. To guarantee physical layer security, the achievable secrecy sum-rate is explicitly derived for the regularized channel inversion (RCI) precoder. To improve performance, power allocation and precoder design are jointly optimized using a new algorithm based on convex optimization techniques

    Resource allocation and feedback in wireless multiuser networks

    Get PDF
    This thesis focuses on the design of algorithms for resource allocation and feedback in wireless multiuser and heterogeneous networks. In particular, three key design challenges expected to have a major impact on future wireless networks are considered: cross-layer scheduling; structured quantization codebook design for MU-MIMO networks with limited feedback; and resource allocation to provide physical layer security. The first design challenge is cross-layer scheduling, where policies are proposed for two network architectures: user scheduling in single-cell multiuser networks aided by a relay; and base station (BS) scheduling in CoMP. These scheduling policies are then analyzed to guarantee satisfaction of three performance metrics: SEP; packet delay; and packet loss probability (PLP) due to buffer overflow. The concept of the τ-achievable PLP region is also introduced to explicitly describe the tradeoff in PLP between different users. The second design challenge is structured quantization codebook design in wireless networks with limited feedback, for both MU-MIMO and CoMP. In the MU-MIMO network, two codebook constructions are proposed, which are based on structured transformations of a base codebook. In the CoMP network, a low-complexity construction is proposed to solve the problem of variable codebook dimensions due to changes in the number of coordinated BSs. The proposed construction is shown to have comparable performance with the standard approach based on a random search, while only requiring linear instead of exponential complexity. The final design challenge is resource allocation for physical layer security in MU-MIMO. To guarantee physical layer security, the achievable secrecy sum-rate is explicitly derived for the regularized channel inversion (RCI) precoder. To improve performance, power allocation and precoder design are jointly optimized using a new algorithm based on convex optimization techniques
    corecore