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Abstract—In this paper we propose and investigate a cross-layer
multiuser scheduling strategy for the support of heterogeneous traffic in
the downlink of a MIMO-OFDMA system. It jointly considers different
objectives: maximize the sum-rate on the radio channel, ensure a fair
allocation of resources among users belonging to the same traffic class,
consider the dynamics of traffic sources by looking at the delay of
data packets in the queues, contribute to maximize quality of service
figures at the application level. To exploit temporal diversity and to
reduce complexity, the ergodic weighted sum-rate is maximized and dual
optimization with stochastic approximation is applied to derive on-line
algorithms. The numerical results show the capability of the scheduler
to allocate physical layer resources according to rate constraints imposed
for each different traffic class and with fairness inside each class, even
in presence of different channels conditions and different network loads.

I. INTRODUCTION

In the development of fourth generation wireless networks, e.g LTE
or WiMax, OFDM and MIMO technologies will be heavily exploited
to support the transmission of multiple users. In fact, Multi-User
MIMO (MU-MIMO) spatial multiplexing schemes are a promising
way to increase system throughput and there is a growing interest
on the topic as [1,2,3] shows. Recently, attention has been paid
to the combination of spatial diversity multiple access systems and
frequency domain packet scheduling [4,5,6,7,8]. Specifically, in [6]
the authors present a low complexity sum-power constraint iterative
waterfilling that is capacity achieving and probably convergent. In
[8] the authors address the problem of feedback reduction. On the
other hand, future wireless networks need to provide connectivity
to heterogeneous users offering different data traffic types, e.g.
voice, video, web browsing, etc. This poses several constraints and
additional challenges which can be faced within the framework of
the cross-layer design [9,10].

In this paper we propose and investigate a cross-layer multiuser
scheduling strategy for MIMO-OFDMA systems which jointly con-
siders different objectives: maximize the sum-rate on the radio chan-
nel, ensure a fair allocation of resources among users belonging to the
same traffic class, consider the dynamics of traffic sources by looking
at the delay of data packets in the queues, contribute to maximize
quality of service figures at the application level. In the proposed
solution we look for a low computation complexity and a reduced
feedback. In contrast to [7], in order to further reduce complexity for
on line implementation we follow a dual decomposition strategy and a
stochastic approximation. In order to reduce feedback load the paper
resorts to opportunistic strategies that solve the spatial scheduling. In
summary, this paper proposes a joint spatial and frequency scheduler
that allows on-line implementation and only requires partial feedback
and a low-complexity implementation.

The paper is organized as follows. After having introduced the
radio interface model in Sect. II, the radio resource allocation problem
is formulated in Sect. IIIl. The dual optimization framework that
allows on-line implementation is illustrated in Sect. IV and the

allocation algorithm follows in Sect. V. The architecture of the system
applying the proposed solution is described in Sect. VI and, finally,
results are presented in Sect. VII.

II. RADIO INTERFACE MODEL

We consider an OFDMA scenario with M subcarriers and K users.
Each user k is single antenna and receives simultaneously up to Np
signals, which can come from different spatial locations, antennas or
beams. Only one of the Np signals is intended for user k. Each
signal is characterized by a spatial signature, i.e. a beamforming
vector by, g, m=1,...,M q=1,..., Nr. Subcarriers and spatial
signatures are shared by all the users at each time slot. A binary
allocation variable {ak,m,q} indicates whether a space-frequency
resource is used by user k, i.e. ax,m,q = 1 if user k is scheduled on
frequency m and beam g, ax,m,q = 0 otherwise, with the constraint
Zszl ak,m,q < 1. The composite signal received by user k on the
subcarrier m is therefore given by
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where hy, ., is the Nr-dimensional vector of channel gains, xs,m,q is
the transmitted complex symbol of user s, pm,q > 0 is the power of
the g-th transmitted signal and wy, ., is the additive white Gaussian
noise with variance o2. From the viewpoint of information theory,
the problem could correspond to a broadcast channel.

In spite of the big gains in spectral efficiency that can be ob-
tained by incorporating multiantenna transmission to a multicarrier
system, an evident drawback of this scenario is the increased design
complexity. In order to keep feedback and computation complexity
low in the optimization of the PHY layer parameters we consider in
this paper opportunistic beamforming (OB) technique [11]. However,
the scheduling strategy considered here can be also extended to a
more general framework of spatial precoding. According to OB,
the transmitter generates orthogonal spatial signatures randomly for
each subcarrier. Based on partial CSI feedback, the scheduler and
resource allocator only handle the set of binary allocation variables
a = {ak,m,q} and the set of powers p = {pm,q}. The CSI is the
set of equivalent channel power gains ci,m,q seen by each user k
at frequency m with respect to the g-th beam, which are given by
Ck,ym,q = ‘hg,mbm»qp/ai-

III. RADIO RESOURCE ALLOCATION PROBLEM

The aim of resource allocation is to dynamically assign radio
interface resources a and p to the different users in order to achieve
the best tradeoff among different objectives:

o to maximize the sum-rate on the radio channel

« to ensure a fair allocation of resources among users belonging

to the same traffic class and/or guarantee a minimum amount of
resources to some users or classes



o to consider the dynamics of traffic sources and control the
delay of data packets in the queue according to requirements
of specific traffic classes.

« to contribute at the maximization of quality of service figures at
the application level

Motivated by the need of flexibility in considering the outlined
objectives, we formulate the resource allocation problem at a given
time instant as a problem of ergodic weighted sum rate maximization
with constraints on the average value of the rate provided to users as
follows.
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is the SINR of user k at frequency m and beam g. This approach
extends the techniques outlined in [13] for OFDM with single
antenna.

The coefficients wy, are the weights that allow prioritizing the users
according to the service class and status of the queue buffers; they
are not fixed constants, but are randomly changing parameters. The
parameters Rox, £ = 1,..., Ko and ¢, k = Ko+ 1,..., K are
fixed parameters that define a constraint on the rate provided to users
with
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Without loosing in generality, the first K¢ users have a fixed average
rate constraint Rox, whereas the remaining users have a proportional
rate constraint depending on coefficients ¢, which may be different
for different traffic classes. We assume that v, (&, p) are known
by the Nr transmitters by means of partial channel feedback. For
instance, this would be the case of a broadcast channel where the
Base Station has perfect SINR feedback.

It is important to underline that rate and sum power constraints
are referred in this problem to average values. The reason is twofold:
i) these constraints relax the instantaneous constraints leading to a
reduction in the complexity of the resulting optimization algorithm
and 1ii) it incorporates the time dimension in the resulting resource
allocation by using the ergodicity assumption. For systems with hard
instantaneous power constraint, the solution of the problem needs to
be suitably adapted by using power rescaling, as shown later.

IV. DUAL OPTIMIZATION AND ADAPTIVE IMPLEMENTATION

The proposed algorithm is based on a dual optimization framework,
based on a Lagrangian relaxation of power and rate constraints. This
relaxation retains the subcarrier assignment exclusivity constraints,
but dualizes the power/rate constraints incorporating them into the
objective function, thereby allowing us to solve the dual problem
instead. This dual optimization is much less complex.

To derive the dual problem we first write the Lagrangian:
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where the dual variables A, p, v relax the cost function. It can (bz
rewritten as
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where Py(a,p) = >N _, Z;V:Tl Ak, m,qPm,q 18 the power of user k.
The dual objective of problem (3) is defined as
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where a*,p* are the optimal solutions which maximize the La-
grangian for each feasible value of A\, i, v. Hence, the dual problem
can then be written as

min g(A, 1, )
A,p,v

SEA>0, p>0 (10)

which is a convex optimization problem (even though the primal
problem is not a concave maximization problem) with K + 1
variables. Since the dual objective may be not differentiable, an
iterative subgradient method can be used to update the K41 solutions
of the dual problem.Starting from initial solutions A° and u°, ©/°, the

update equations are:
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where g} is the subgradient of function g() with respect to ), i.e.
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and 83, 6,0, are positive step-size parameters; a*', p** are the op-
timal solutions of (9) at the ¢-th iteration. An useful advantage of the
iterative method is that it keeps low the computation complexity. In
the practical applications, the adaptive implementation is suggested,
where the iterations are performed along time (¢ becomes the time



index), and the evaluation of the average power and rate can be done
through a stochastic approximation: if f*(a*,p*) is the generic rate
or power at time i, its average E { f i(a, p*)} can be approximated
with the current value of f*(a*, p*) or with a weighted time average
2is0 o fi=i(a*, p*), where « is a tuning parameter. The dynamic
behavior of the adaptive method, i.e the convergence speed and the
residual error, depends on the choice of step-size parameters. A
discussion is provided in [13].

A. Convergence issues

Concerning the global convergence of the proposed algorithm, the
system utility in eq.(2) is nonconcave. Therefore, it appears that the
proposed algorithm will not converge or will converge to only a
locally optimal power/rate allocation, because it is based on solving
the dual problem and yet the duality gap can be strictly positive. Note
that spatial power allocation for downlink sum-rate optimization is
a non-convex problem and its solution is still open in the literature
[14]. This fact has motivated our suboptimal approach leading to
eq.(19) in the next Section, which precludes convergence to the global
solution. However, simulations that we have done so far present: a
stable behavior in stationary scenarios, a good trade-off complexity
versus performance and good tracking capabilities. Moreover, the
stochastic approximation procedure when applying the subgradient
in order to solve the dual optimization problem, is quite well studied
in the literature [13], [15]. We omit its analysis for the sake of clarity.

V. ALLOCATION ALGORITHM

We are now deriving the allocation algorithm, i.e. the algorithm
which provides at each time slot ¢, the optimal values of a*,p*
given A, u,v. By keeping as main task the low complexity, we
seek for a suboptimal solution. By using ergodic approximation'
the Lagrangian can be maximized with respect to a, p, given the
dual variables A, u, v. The result can be expressed as follows. Let
W = [Um,1,- .., Um,Np] With um q € {0,1,..., K} a vector of
Nt user indexes (index um,q = O has the meaning of no user in
position ¢), and v = [v1,...,vNy] With vy > 0 a vector of Np
power values. The solution is written for each frequency m as

u,, = arg max M (u,,) (14)
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and Vv = ¥(u,,) is the solution (15). When the optimal solution
u,,, V(uy,) is found, then
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We distinguish between the scheduling phase (variable a) and the
power allocation (variable p). The problem in (15) is the power allo-
cation problem for a given set of users that are spatially multiplexed
on frequency m. This problem is usually analytically untractable and
it is difficult to find a direct solution. As a suboptimal solution we
will provide the water-filling solution evaluated by assuming constant
uniform power allocation for the interfering beams:

Vy, + Wy, \4 -
Vg = -4 UL :| Um, < Ko
a { Mog(2) Y gra(V) !
T +

N e T Rl L v

5= _ Um,q > Ko

a [ Alog(2) Vitrngomoa (V) !
(20

where V = [V, V,..., V], and the power V is a parameters which
estimates the power of interfering beams.

The equation (14) represents a discrete optimization problem which
is referred as space-frequency allocation. This problem could be
further simplified, by making it independent of power allocation,
through the replacement of ¥ with V and ~u,, , mq(¥) with
Vit q,m,q( V). This simplified allocation can enjoy the possibility of
a simplified SNIR feedback, which, on the other hand, does not allow
the evaluation of the exact achievable rate to be used for adaptive
modulation and coding.

Space-frequency allocation requires in general an exhaustive
search in the space of all possible vectors u,,. We may describe
this space by using the number @ € {1,...,Nr} of allocated
beams (those with u(n,m,q) # 0), the disposition index j €
{1,...,No!l/(Nr — Q)'Q"} (there are up to N¢!/((Nr — Q)!Q!
dispositions of Q) allocated beams out of Np), the combination
index h € {1,...,K!/(K — Q)!} (there are up to K!/(K — Q)!
combinations of () users over each disposition of ) allocated beams.
This huge search space can be reduced by using by using suboptimal
algorithms. One of these algorithms is the one considered in [12]
which can be applied when Vv is replaced with V. A slightly different
formulation which emphasizes the role of a scheduler as an entity
that selects users according to a given metric is summarized here. It
iterates the following operations until all the available M Nt space-
frequency resources have been allocated:

o for each user k find the best resource (my, g ) which maximizes
Vi,m.q(V)

« for each user k find the best other-user combination able to share
frequency my, with user k. This requires the evaluation, for each
candidate combination of users sharing frequency my, of the
metric M ™ (W, ). A suboptimal greedy search is implemented-

o (*) select for allocation the user combination (among the K
evaluated before, one for each user) with the best metric and
mark the just allocated frequency as unavailable.

The step marked with (*), as discussed later, can be executed by
an entity denoted as scheduler, whereas the other steps are executed
iteratively by an entity denoted as resource allocator’

VI. SYSTEM ARCHITECTURE

This section discusses the main architectural elements of a system
that applies the proposed scheduling strategy to the transmission of
multi-user heterogeneous traffic flows in the downlink of a wireless
system. In this discussion we refer to the scheme in Fig. 1 and the
cross-layer aspects are emphasized.

2These steps need only, at each iteration, a simple update which takes into
account the new status of the available resources.



A. Applications
We consider 3 different types of applications:

o Application generating VoIP traffic. The source has active peri-
ods where a constant bit-rate data flow is generated and silence
periods. The traffic has stringent delay requirements and requires
a minimum rate during active periods. Data transmitted has
a timestamp indicating its deadline D which is used by the
scheduler. Voice activity information is useful for scheduling
to avoid assignment of unuseful resources. For this traffic, the
minimum rate Rox is equal to R in the active periods and
switched to O during silence period

« Application generating streaming video traffic. The source gen-
erates a variable rate data flow and the video packet have
different roles and priorities inside the video stream. The traffic
has delay requirements: according to playout delay at destination
a deadline is fixed and packets arriving after deadline are
discarded. Deadline D is used by the scheduler. The quality of
the transmission is related to the amount of data arriving at the
decoder within the deadline and to their importance in video
reconstruction. Side information on the importance of video
packet is sent to the queue manager. For this type of traffic the
available rate is shared with fairness among users of the same
class by tuning the parameters ¢.

o Application generating FTP data traffic. In this case the traffic
has not delay requirements. For this type of traffic the available
rate is shared with fairness among users of the same class by
tuning the parameters ¢;. The available rate in this case is lower
than the rate assigned to streaming traffic.

The applications provides the lower layers with information on
how to set parameters Ko and ¢y, on the the maximum tolerable
delay, on the deadline of packets and on the type of video packets.

B. Queue buffers

Data packets coming from the application are placed in a queue.
There is a queue for each traffic flow. The queue manager provides
the scheduler with the information on the time to deadline 7D, of the
Head of Line (HOL) packet of each queue. The queue manager also
implements a buffer management policy for each buffer. We consider
here the following policies:

« Dropping of expired packets (DXP): packets with expired dead-
line are dropped to avoid waste of radio resource. This can be
applied for VoIP traffic.

« Dropping based on packet priority and dependency (DPD): low
priority packets with time to deadline below a given threshold
are dropped from the buffer when the size of the queue is too
large. This can be applied to streaming video traffic to prevent
packet loss for late delivery in case of peaks in the source rate.
This policy requires the knowledge of side information on the
priority of the packets in the video stream.

C. Scheduler

This is the entity that decides which user or set of users is sched-
uled for transmission on part of the next available radio resources.
This decision is a part of the iterative process for space-frequency
allocation described in the previous Section and is based on the
comparison of the metrics M (u,, ). These metrics depend on the
weights wy, and on the resources that the resource allocator intends to
assign. The weights are dynamically set up by the scheduler to make
its decision dependent on the status of the queues. The following two

strategies are proposed for real time traffic:
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where (O = b(l/k + 1), if £ < Ko, and B = bug, if & > Ko.
Parameters a and b are used to suitably shape the functions of the
time to deadline 7'D;, of the HOL packet in the queue and Ty,qq iS
the maximum tolerable delay of the application. For both strategies
the weight wy, increases exponentially as the 7'Dj, decreases; in the
second strategy the increase is proportional to dual variable px or
vy, to improve fairness. The scheduler, by using the parameters Roy
and ¢ and the information on rate allocated to user provided by
the resource allocator, keeps track of rate constraints and updates the
values of dual variables p,vk. It also sends to resource allocator the
updated values of wj and pg,vk. This entity does not interact with
the physical layer.

D. Resource allocator

This is the entity which decides which resources (space, frequency
and power) can be assigned to a given set of users. This decision
is a part of the iterative process for space-frequency allocation
described in the previous Section and is based on the CSI provided
by the physical layer, and the information provided by the scheduler.
It evaluates for the scheduler the metrics M (u,,,) and the rate
achievable with the assigned resources. When a set of users is
scheduled for transmission with a set of assigned resources, the
resource allocator sends to physical layer information on the power
to use and on the modulation and coding format suitable to realize
the assigned rate. The resource allocator is air-interface aware, but
does not interact with the queues. The resource allocator also keeps
track of power constraint and updates the value of .

E. Physical layer

Performs the transmission of scheduled data, according to the
resources assigned by the resource allocator. It also handles CSI feed-
back, which is collected and periodically sent to resource allocator.

VII. NUMERICAL RESULTS

Results are obtained for a scenario which incorporates some char-
acteristic aspects of practical applications in next generation wireless
systems. We are considering here a single cell of the downlink of
an OFDMA wireless system with M=128 subcarriers working on
a bandwidth of 1.25 Mhz. Base station is equipped with multiple
antennas. The system is TDD and it is assumed that 2/5 of frame
interval is used for downlink transmission. The CSI coming from
users is updated every 10ms and for rate assignment a signal-to-
noise-ratio gap of 3dB is adopted. The users have a position which is
uniformly distributed in circular area of radius 500m. The simulation
time is 100s.

Channel model includes path loss, correlated shadowing (not
present in the second option for user distributions) and time and
frequency correlated fast fading. Path loss is modeled as a function
of distance as L(dB) = ko + k1 log(d) (k1=40, k2=15.2 for results).
Shadowing is superimposed to path-loss, with classical lognormal
model (std. deviation: 6 dB) and exponential correlation in space
(correlation distance equal to 20m). Fast fading on each link of the
MIMO broadcast channel is complex Gaussian, independent across
antennas and is modeled according to a 3GPP Pedestrian model. This
model has a finite number of complex multipath components with
fixed delay (delay spread of 2.3 microseconds) and power (average



normalized to 1). Time correlation is obtained according to a Jakes’
model with given Doppler bandwidth (6 Hz in the results). At the
base station orthogonal beamforming is adopted, where beam vectors
change randomly at each frame. In the simulated system the total
average power constraint is fixed to 1W. To obtain the results we also
assume that channel variations in time due to Doppler effects have
a negligible impact on the feedback quality. The effects of outdated
feedback would require a proper investigation which is out of the
scope of the paper.

The first two Tables I and II have the aim of investigating the
behavior of the scheduling algorithm with respect to different design
options for the weights wy, the step size d, and the update of
variables vy, for voice users, the use of buffer managements strategies.
The performance figures considered are the average rate assigned to
users (efficiency at the physical layer), the achieved PSNR for video
transmission and the drop-rate for VoIP transmission (quality at the
application). The fixed parameters are: Ror =64 kbit/s, ¢, = 1/12,
o = 0.75, » = 0.01, 6, = 0.00005. The first remark is the
substantial fairness achieved among the different video users in spite
of the very different channel conditions. We also found the following
elements. First, the best way to set up weights wj is as in eq.
(21) which exploits information on packet deadline coming from the
queues to prioritize in the short term packets approaching deadlines.
This is important for variable rate traffic flows. Second, the periodical
update of variables v, during the silence periods of voice transmission
is very important to avoid data dropping® in the first part of voice talk
periods where subgradient algorithms needs some time to converge
to the new values of v;. The update of variables vy according to
eqs.(10)-(12) requires a virtual assignment of rate which is not used in
silence periods. Third, the use of suitable packet dropping strategies at
buffer level is important to improve achieved quality at the application
level: dropping packets that will be useless if transmitted avoids waste
of resource; a content-aware dropping of selected packets in a video
stream improves the quality at the decoder.

Figures 2 and 3 explore the dynamic behavior of the scheduling
algorithm for the system configuration corresponding to the last line
of Table II. Fig. 2 shows the behavior of the power which the resource
allocator would assign according to the constraint on the average total
power as in the problem (2). Since the variations of instantaneous
power around the average are reasonably limited, it si possible to
apply instantaneous power scaling after power assignments to satisfy
the constraint P even for the instantaneous power. when needed,
and this does not destroy the efficiency of the scheduling algorithm.
Fig. 3 shows, for one video user, the behavior of variable pj and of
weight wy, according to the state of the channel and to the status of
the queue (which is illustrated through the graph of the normalized
time-to deadline of the HOL packet) It is interesting to note that wy,
reacts to the state of the queue in favor of situations where packets
approach the deadline, whereas uj follows the state of the entire
system with its slow channel variations®, trying to accommodate
average rate constraints.

Figure 4 has the aim of showing the capability of the scheduler to
allocate physical layer resources according to rate constraints imposed
in eq. (2). In the system there are 4 different classes of users with
4 different rate requirements (1 class with constant rate constraint,
3 classes with proportional rate constraints). In spite of different
channel conditions the constraints are respected with fairness inside

3the residual dropping rate of one voice user in this set of simulated results
is due to a very deep shadowing lasting for nearly 10s.
4fast fading is handled by the space-frequency scheduler

TABLE I
SCENARIO WITH 12 VIDEO USERS. RATE ASSIGNED BY THE SCHEDULER
AND PSNR FOR DIFFERENT CHOICES OF WEIGHTS wj,. THE RESULTS IN
THE LOWER PART OF THE TABLE REFER TO THE USE OF DPD IN THE

BUFFER.
param. Tot. rate Rate av. PSNR | PSNR range
[kbit/s] [kbit/s] [dB] [dB]
wi=1, 2035 160-175 31.1 2.5
(20),b=2,a=2 2240 170-210 333 6
2l),b=4,a=2 2069 167-177 32.3 2
wg=1, 2030 160-175 333 1.8
20),b=2,a=2 2175 168-198 34.8 33
21),b=4,a=2 2067 165-178 34.1 1.8

each class.

Finally, the last Table investigate how the assigned rate and quality
of service indicators change by increasing the number of user in the
system. In this case, the users are assumed to be placed at the same
distance d = 250m from the base station and do not experience
shadowing effects. It is shown that when the user load increases
the system is able to preserve the quality of voice users, whereas
the quality perceived by the FTP user and the video user decreases,
without loosing fairness.

VIII. CONCLUSIONS

In this paper we presented a cross-layer multiuser scheduling
strategy for a MIMO-OFDMA system which tries to maximize sum-
rate whilst supporting with fairness different traffic classes with
different constraints. It exploits temporal diversity by means of er-
godic maximization, it allows low complexity on-line implementation
and uses a reduced feedback thanks to opportunistic beamforming.
We have shown in the numerical results that the algorithm is able
to allocate channel resources according to the constraints of each
different traffic class and with fairness inside each class, even in
presence of different channels conditions and with different network
loads.

The proposed scheduling strategy may be easily adapted to a LTE
scenario [16] where spatial multiplexing is supported by means of a
set of predefined precoding matrices whose colums are ortogonal
beamforming vectors. In this case, it is also worth noting that
subcarriers are assigned in groups of 12 leading to a complexity
reduction in terms of feedback and algorithms.

Scheduler

Resource
allocation

PHY
layer

Fig. 1. Simplified architecture of the system that implements the proposed
scheduling strategy.
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