6 research outputs found

    A low complexity partial transmit sequence scheme by use of dummy signals for PAPR reduction in OFDM systems

    Get PDF
    In this paper a novel technique for reducing the peak to average power ratio (PAPR) in OFDM systems by using the combination of the dummy sequence insertion (DSI) and partial transmit sequence (PTS) is proposed. In DSI increasing the number of dummy sequence decrease the transmission efficiency (TE) and in PTS the complexity increases when the number of subblock increases. Unlike the conventional PTS which needs several inverse fast fourier transform (IFFT) operations, the proposed DSI-PTS technique requires half IFFT operations only, while the PAPR performance is even better. So, it can remarkably reduce the computational complexity. Simulation results are examined with IEEE 802.16-2004 standard. By applying the DSI-PTS method about 0.5 dB reduction in PAPR at complementary cumulative distribution function (CCDF) of 0.01% is achieved compared to the conventional PTS while the complexity is reduced

    A Low Complexity Partial Transmit Sequence for Peak to Average Power Ratio Reduction in OFDM Systems

    Get PDF
    Partial transmit sequence (PTS) is one of the most important techniques for reducing the peak to average power ratio (PAPR) in OFDM systems. This paper presents a low complexity PTS scheme by applying a new phase sequence. Unlike the conventional PTS which needs several inverse fast Fourier transform (IFFT) operations, the proposed technique requires half IFFT operations only at the expense of slight PAPR degradation. Simulation and results are examined with QPSK modulation and OFDM signal and power amplifier with memory effects

    Implementation of a Single IFFT Block based Partial Transmit Sequence Technique for PAPR Reduction in OFDM

    Get PDF
    The current trends in wireless industry like IEEE 802.11a/g/n, IEEE 802.16e are based on OFDM which is highly promising in terms of higher data rates & better immunity to frequency selective fading. However OFDM is limited by high PAPR. High PAPR causes nonlinear distortion in the signal & hence results in intercarrier interference & out-of-band radiation. To combat the effect of high PAPR several PAPR reduction techniques have been devised. All these techniques have to strike a tradeoff among computational complexity, PAPR reduction performance, BER performance & redundancy. PTS technique provides a very effective PAPR reduction with no limit on the maximum number of subcarriers. But the technique suffers from very high computational complexity. Hence authors have tried to modify the technique so that the complexity is reduced significantly without affecting PAPR reduction performance. This dissertation is extensively based on PTS & in this course limns a novel approach which offers better PAPR reduction & significantly reduces the algorithmic complexity with respect to the original technique. The multiple numbers of IFFT blocks has been replaced by a single block; the parallel processing has been replaced by serial processing. The complexities & PAPR reduction performance of the modified & the original techniques have been compared.Furthermore the proposed technique has been emulated in a memory & power constrained environment on C6713DSK with TMS320C6713 processor using real signal input. The emulation results have been analyzed & it has been observed that the emulated PAPR values are at par with simulated ones. To check the SER performance of the technique, the receiver has been simulated as well. The transceiver channel model has been simulated & the SER performance of OFDM system with Single IFFT block PTS has been compared with that of OFDM without any reduction technique. The results show that the PAPR reduction technique does not affect the SER performance

    Performance Investigation of Peak Shrinking and Interpolating the PAPR Reduction Technique for LTE-Advance and 5G Signals

    Get PDF
    Orthogonal frequency division multiplexing (OFDM) has become an indispensable part of waveform generation in wideband digital communication since its first appearance in digital audio broadcasting (DAB) in Europe in 1980s, and it is indeed in use. As has been seen, the OFDM based waveforms work well with time division duplex operation in new radio (NR) systems in 5G systems, supporting delay-sensitive applications, high spectral efficiency, massive multiple input multiple output (MIMO) compatibility, and ever-larger bandwidth signals, which has demonstrated successful commercial implementation for 5G downlinks and uplinks up to 256-QAM modulation schemes. However, the OFDM waveforms suffer from high peak to average power ratio (PAPR), which is not desired by system designers as they want RF power amplifiers (PAs) to operate with high efficiency. Although NR offers some options for maintaining the efficiency and spectral demand, such as cyclic prefix based (CP-OFDM), and discrete Fourier transform spread based (DFT-S-OFDM) schemes, which have limiting effects on PAPR, the PAPR is still as high as 13 dB. This value increases when the bandwidth is increased. Moreover, in LTE-Advance and 5G systems, in order to increase the bandwidth, and data-rate, carrier aggregation technology is used which increases the PAPR the same way that bandwidth increment does; therefore, it is essential to employ PAPR reduction in signal processing stage before passing the signal to PA. In this paper, we investigate the performance of an innovative peak shrinking and interpolation (PSI) technique for reducing peak to average power ratio (PAPR) in orthogonal frequency division multiplexing (OFDM) based signals at waveform generation stage. The main idea behind the PSI technique is to extract high peaks, scale them down, and interpolate them back into the signal. It is shown that PSI technique is a possible candidate for reducing PAPR without compromising on computational complexity, compatible for existing and future telecommunication systems such as 4G, 5G, and beyond. In this paper, the PSI technique is tested with variety of signals in terms of inverse fast Fourier transform (IFFT) length, type of the signal modulation, and applications. Additional work has been carried out to compare the proposed technique with other promising PAPR reduction techniques. This paper further validates the PSI technique through experimental measurement with a power amplifier (PA) test bench and achieves an adjacent channel power ratio (ACPR) of less than –55 dBc. Results showed improvement in output power of PA versus given input power, and furthermore, the error vector magnitude (EVM) of less than 1% was achieved when comparing of the signal after and before modification by the PSI techniqu

    New methods of partial transmit sequence for reducing the high peak-to-average-power ratio with low complexity in the ofdm and f-ofdm systems

    Get PDF
    The orthogonal frequency division multiplexing system (OFDM) is one of the most important components for the multicarrier waveform design in the wireless communication standards. Consequently, the OFDM system has been adopted by many high-speed wireless standards. However, the high peak-to-average- power ratio (PAPR) is the main obstacle of the OFDM system in the real applications because of the non-linearity nature in the transmitter. Partial transmit sequence (PTS) is one of the effective PAPR reduction techniques that has been employed for reducing the PAPR value 3 dB; however, the high computational complexity is the main drawback of this technique. This thesis proposes novel methods and algorithms for reducing the high PAPR value with low computational complexity depending on the PTS technique. First, three novel subblocks partitioning schemes, Sine Shape partitioning scheme (SS-PTS), Subsets partitioning scheme (Sb-PTS), and Hybrid partitioning scheme (H-PTS) have been introduced for improving the PAPR reduction performance with low computational complexity in the frequency-domain of the PTS structure. Secondly, two novel algorithms, Grouping Complex iterations algorithm (G-C-PTS), and Gray Code Phase Factor algorithm (Gray-PF-PTS) have been developed to reduce the computational complexity for finding the optimum phase rotation factors in the time domain part of the PTS structure. Third, a new hybrid method that combines the Selective mapping and Cyclically Shifts Sequences (SLM-CSS-PTS) techniques in parallel has been proposed for improving the PAPR reduction performance and the computational complexity level. Based on the proposed methods, an improved PTS method that merges the best subblock partitioning scheme in the frequency domain and the best low-complexity algorithm in the time domain has been introduced to enhance the PAPR reduction performance better than the conventional PTS method with extremely low computational complexity level. The efficiency of the proposed methods is verified by comparing the predicted results with the existing modified PTS methods in the literature using Matlab software simulation and numerical calculation. The results that obtained using the proposed methods achieve a superior gain in the PAPR reduction performance compared with the conventional PTS technique. In addition, the number of complex addition and multiplication operations has been reduced compared with the conventional PTS method by about 54%, and 32% for the frequency domain schemes, 51% and 65% for the time domain algorithms, 18% and 42% for the combining method. Moreover, the improved PTS method which combines the best scheme in the frequency domain and the best algorithm in the time domain outperforms the conventional PTS method in terms of the PAPR reduction performance and the computational complexity level, where the number of complex addition and multiplication operation has been reduced by about 51% and 63%, respectively. Finally, the proposed methods and algorithms have been applied to the OFDM and Filtered-OFDM (F-OFDM) systems through Matlab software simulation, where F-OFDM refers to the waveform design candidate in the next generation technology (5G)

    Performance evaluation of OFDM based wireless communication systems using Graphics Processing Unit (GPU) based high performance computing

    Get PDF
    Wireless communication is one of the fastest developing technologies of current decade. Achieving high data rate under constrained condition demand sophisticated signal processing algorithms which in turn demand complex computational processing. Modern wireless communication techniques using OFDM demand substantial computational resources for implementation. An OFDM system with 2048 subcarriers typically requires a 2048 point IFFT for transmission and 2048 point FFT for reception. When signal processing techniques like PAPR, pre-equalization, equalization, pilot carrier insertion are implemented, the complexity increases considerably. This large complexity demands use of high performance computing systems for efficient implementation. This primary aim of this project was to take up this investigation. Rapid growth in computing and communications technology has led to the proliferation of powerful parallel and distributed computing paradigm leading to innovation in high performance computing and communications (HPCC). In this project, the performance of advanced wireless communication algorithms on Graphics Processing Unit (GPU) based high performance computing hardware has been evaluated. The computationally expensive multi-carrier wireless communication systems along with associated signal processing techniques have been implemented on GPU with an aim to reduce computation time. This project proposes the use of GPU architecture for efficient implementation of Long Term Evolution (LTE) Physical Layer, Multiple Input Multiple Output (MIMO) OFDM system and Partial Transmit sequence (PTS) technique for Peak-to-Average Power Ratio (PAPR) reduction in OFDM system. The implementation of this new method is expected to provide promising ways to implement complex wireless communication systems using GPU based computing hardware
    corecore