488 research outputs found

    Evolution of High Throughput Satellite Systems: Vision, Requirements, and Key Technologies

    Full text link
    High throughput satellites (HTS), with their digital payload technology, are expected to play a key role as enablers of the upcoming 6G networks. HTS are mainly designed to provide higher data rates and capacities. Fueled by technological advancements including beamforming, advanced modulation techniques, reconfigurable phased array technologies, and electronically steerable antennas, HTS have emerged as a fundamental component for future network generation. This paper offers a comprehensive state-of-the-art of HTS systems, with a focus on standardization, patents, channel multiple access techniques, routing, load balancing, and the role of software-defined networking (SDN). In addition, we provide a vision for next-satellite systems that we named as extremely-HTS (EHTS) toward autonomous satellites supported by the main requirements and key technologies expected for these systems. The EHTS system will be designed such that it maximizes spectrum reuse and data rates, and flexibly steers the capacity to satisfy user demand. We introduce a novel architecture for future regenerative payloads while summarizing the challenges imposed by this architecture

    Scalable Schedule-Aware Bundle Routing

    Get PDF
    This thesis introduces approaches providing scalable delay-/disruption-tolerant routing capabilities in scheduled space topologies. The solution is developed for the requirements derived from use cases built according to predictions for future space topology, like the future Mars communications architecture report from the interagency operations advisory group. A novel routing algorithm is depicted to provide optimized networking performance that discards the scalability issues inherent to state-of-the-art approaches. This thesis also proposes a new recommendation to render volume management concerns generic and easily exchangeable, including a new simple management technique increasing volume awareness accuracy while being adaptable to more particular use cases. Additionally, this thesis introduces a more robust and scalable approach for internetworking between subnetworks to increase the throughput, reduce delays, and ease configuration thanks to its high flexibility.:1 Introduction 1.1 Motivation 1.2 Problem statement 1.3 Objectives 1.4 Outline 2 Requirements 2.1 Use cases 2.2 Requirements 2.2.1 Requirement analysis 2.2.2 Requirements relative to the routing algorithm 2.2.3 Requirements relative to the volume management 2.2.4 Requirements relative to interregional routing 3 Fundamentals 3.1 Delay-/disruption-tolerant networking 3.1.1 Architecture 3.1.2 Opportunistic and deterministic DTNs 3.1.3 DTN routing 3.1.4 Contact plans 3.1.5 Volume management 3.1.6 Regions 3.2 Contact graph routing 3.2.1 A non-replication routing scheme 3.2.2 Route construction 3.2.3 Route selection 3.2.4 Enhancements and main features 3.3 Graph theory and DTN routing 3.3.1 Mapping with DTN objects 3.3.2 Shortest path algorithm 3.3.3 Edge and vertex contraction 3.4 Algorithmic determinism and predictability 4 Preliminary analysis 4.1 Node and contact graphs 4.2 Scenario 4.3 Route construction in ION-CGR 4.4 Alternative route search 4.4.1 Yen’s algorithm scalability 4.4.2 Blocking issues with Yen 4.4.3 Limiting contact approaches 4.5 CGR-multicast and shortest-path tree search 4.6 Volume management 4.6.1 Volume obstruction 4.6.2 Contact sink 4.6.3 Ghost queue 4.6.4 Data rate variations 4.7 Hierarchical interregional routing 4.8 Other potential issues 5 State-of-the-art and related work 5.1 Taxonomy 5.2 Opportunistic and probabilistic approaches 5.2.1 Flooding approaches 5.2.2 PROPHET 5.2.3 MaxProp 5.2.4 Issues 5.3 Deterministic approaches 5.3.1 Movement-aware routing over interplanetary networks 5.3.2 Delay-tolerant link state routing 5.3.3 DTN routing for quasi-deterministic networks 5.3.4 Issues 5.4 CGR variants and enhancements 5.4.1 CGR alternative routing table computation 5.4.2 CGR-multicast 5.4.3 CGR extensions 5.4.4 RUCoP and CGR-hop 5.4.5 Issues 5.5 Interregional routing 5.5.1 Border gateway protocol 5.5.2 Hierarchical interregional routing 5.5.3 Issues 5.6 Further approaches 5.6.1 Machine learning approaches 5.6.2 Tropical geometry 6 Scalable schedule-aware bundle routing 6.1 Overview 6.2 Shortest-path tree routing for space networks 6.2.1 Structure 6.2.2 Tree construction 6.2.3 Tree management 6.2.4 Tree caching 6.3 Contact segmentation 6.3.1 Volume management interface 6.3.2 Simple volume manager 6.3.3 Enhanced volume manager 6.4 Contact passageways 6.4.1 Regional border definition 6.4.2 Virtual nodes 6.4.3 Pathfinding and administration 7 Evaluation 7.1 Methodology 7.1.1 Simulation tools 7.1.2 Simulator extensions 7.1.3 Algorithms and scenarios 7.2 Offline analysis 7.3 Eliminatory processing pressures 7.4 Networking performance 7.4.1 Intraregional unicast routing tests 7.4.2 Intraregional multicast tests 7.4.3 Interregional routing tests 7.4.4 Behavior with congestion 7.5 Requirement fulfillment 8 Summary and Outlook 8.1 Conclusion 8.2 Future works 8.2.1 Next development steps 8.2.2 Contact graph routin

    Advanced SDN-Based QoS and Security Solutions for Heterogeneous Networks

    Get PDF
    This thesis tries to study how SDN can be employed in order to support Quality of Service and how the support of this functionality is fundamental for today networks. Considering, not only the present networks, but also the next generation ones, the importance of the SDN paradigm become manifest as the use of satellite networks, which can be useful considering their broadcasting capabilities. For these reasons, this research focuses its attention on satellite - terrestrial networks and in particular on the use of SDN inside this environment. An important fact to be taken into account is that the growing of the information technologies has pave the way for new possible threats. This research study tries to cover also this problem considering how SDN can be employed for the detection of past and future malware inside networks

    Energy-Efficient Softwarized Networks: A Survey

    Full text link
    With the dynamic demands and stringent requirements of various applications, networks need to be high-performance, scalable, and adaptive to changes. Researchers and industries view network softwarization as the best enabler for the evolution of networking to tackle current and prospective challenges. Network softwarization must provide programmability and flexibility to network infrastructures and allow agile management, along with higher control for operators. While satisfying the demands and requirements of network services, energy cannot be overlooked, considering the effects on the sustainability of the environment and business. This paper discusses energy efficiency in modern and future networks with three network softwarization technologies: SDN, NFV, and NS, introduced in an energy-oriented context. With that framework in mind, we review the literature based on network scenarios, control/MANO layers, and energy-efficiency strategies. Following that, we compare the references regarding approach, evaluation method, criterion, and metric attributes to demonstrate the state-of-the-art. Last, we analyze the classified literature, summarize lessons learned, and present ten essential concerns to open discussions about future research opportunities on energy-efficient softwarized networks.Comment: Accepted draft for publication in TNSM with minor updates and editin

    Aeronautical Networks for In-Flight Connectivity : A Tutorial of the State-of-the-Art and Survey of Research Challenges

    Get PDF

    Minimal Energy Routing for Deep Space Satellite Networks

    Get PDF
    The purpose of this research is to find out a packet routing algorithm for link error rate aware satellite networks, achieving minimal network energy utilization. The existing energy aware routing protocols typically select routes that minimize the total transmission power over the satellites of the path, but do not consider the retransmissions that may be needed. A new protocol considering the link error rates in route selections for satellite networks is required. In our approach of data routing, the effective total transmissions and the energy required for these transmissions is considered. The simulator developed in C#.NET was designed and programmed to simulate and analyze the proposed link error rate aware routing protocol performance. Satellite network models for the simulation were developed using BRITE, a topology generator framework. Simulations are performed and the algorithm performance is analyzed in terms of energy load balance and schedule lengths.Computer Science Departmen

    Distributed satellite communications system design : first-order interactions between system and network architectures

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2005.Includes bibliographical references (p. 159-165).Humanity now exists in the midst of the fast-moving Information Age, a period of history characterized by fast travel and even faster information transfer. As data becomes seemingly more valuable than physical possessions, the introduction of exciting applications for communications services becomes ever more critical for the success - and in some cases, survival - of businesses and even nations. While the majority of these innovations have occurred over cable and fiber, a number of the most socially significant have occurred due to the introduction of satellites. Terrestrial fiber and cable systems have a number of advantages, but the extent of their reach and the cost of installation - in terms of both capital and time - favor industrialized nations over more remote and underdeveloped communities. Even as satellites offer the only real chance for ultimate communications ubiquity and true global unity, there remains a significant cost-benefit barrier. Few commercial satellite systems have succeeded economically without first falling victim to bankruptcy. The upfront capital required to implement a satellite communications system is staggering, and historically satellite companies have failed to adequately match capacity and service options to the current and actual future demand. The design process itself is an inherent limiting factor to the achievable cost and performance of a system.(cont.) Traditionally, the first step toward designing satellite communication systems - as well as terrestrial, sensor web, and ad hoc networks - has been to specify the system topology (e.g., the orbits of the satellites and the locations of the ground stations) based on the desired market and then to design the network protocols to make the most of the available resources. Such a sequential process assumes that the design of the network architecture (e.g., protocols, packet structure, etc) does not drive the design of the system architecture (e.g., constellation topology, spacecraft design, etc). This thesis will show that in the case of Ka-band distributed satellite communication systems this fundamental assumption is not valid, and can have a significant impact on the success (cost, capacity, customer satisfaction) of the resulting satellite communication system. Furthermore, this thesis will show that how a designer values performance during the design and decision process can have a substantial impact on the quality of the design path taken through the trade space of possible joint architectures.by Jennifer E. Underwood.S.M

    Energy efficiency in LEO satellite and terrestrial wired environments

    Get PDF
    To meet an ever-growing demand for advanced multimedia services and to support electronic connectivity anywhere on the planet, development of ubiquitous broadband multimedia systems is gaining a huge interest at both academic and industry levels. Satellite networks in general and LEO satellite constellations in particular will play an essential role in the deployment of such systems. Therefore, as LEO satellite constellations like Iridium or IridiumNEXT are extremely expensive to deploy and maintain, extending their service lifetimes is of crucial importance. In the main part of this thesis, we propose different techniques for extending satellite service life in LEO satellite constellations. Satellites in such constellations can spend over 30% of their time under the earth’s umbra, time during which they are powered by batteries. While the batteries are recharged by solar energy, the Depth of Discharge (DoD) they reach during eclipse significantly affects their lifetime – and by extension, the service life of the satellites themselves. For batteries of the type that power Iridium and Iridium-NEXT satellites, a 15% increase to the DoD can practically cut their service lives in half. We first focus on routing and propose two new routing metrics – LASER and SLIM – that try to strike a balance between performance and battery DoD in LEO satellite constellations. Our basic approach is to leverage the deterministic movement of satellites for favoring routing traffic over satellites exposed to the sun as opposed to the eclipsed satellites, thereby decreasing the average battery DoD– all without taking a significant penalty in performance. Then, we deal with resource consolidation – a new paradigm for the reduction of the power consumption. It consists in having a carefully selected subset of network links entering a sleep state, and use the rest to transport the required amount of traffic. This possible without causing major disruptions to network activities. Since communication networks are designed over the peak traffic periods, and with redundancy and over-provisioned in mind. As a remedy to these issues, we propose two different methods to perform resource consolidation in LEO networks. First, we propose trafficaware metric for quantifiying the quality of a frugal topology, the Maximum Link Utilization (MLU). With the problem being NP-hard subject to a given MLU threshold, we introduce two heuristics, BASIC and SNAP, which represent different tradeoffs in terms of performance and simplicity. Second, we propose a new lightweight traffic-agnostic metric for quantifiying the quality of a frugal topology, the Adequacy Index (ADI). After showing that the problem of minimizing the power consumption of a LEO network subject to a given ADI threshold is NP-hard, we propose a heuristc named AvOId to solve it. We evaluate both forms of resource consolidation using realistic LEO topologies and traffic requests. The results show that the simple schemes we develop are almost double the satellite batteries lifetime. Following the green networking in LEO systems, the second part of this thesis focuses on extending the resource consolidation schemes to current wired networks. Indeed, the energy consumption of wired networks has been traditionally overlooked. Several studies exhibit that the traffic load of the routers only has a small influence on their energy consumption. Hence, the power consumption in networks is strongly related to the number of active network elements. In this context, we extend the traffic-agnostic metric, ADI, to the wired networks. We model the problem subject to ADI threshold as NP-hard. Then, we propose two polynomial time heuristics – ABStAIn and CuTBAck. Although ABStAIn and CuTBAck are traffic unaware, we assess their behavior under real traffic loads from 3 networks, demonstrating that their performance are comparable to the more complex traffic-aware solutions proposed in the literature

    Protocols for packet switched communication and reliable multicasting in fully-dynamic multi-hop wireless networks

    Get PDF
    Designing protocols for a fully dynamic wireless packet switched networks pose unique challenges due to the constantly changing topology of the network. A set of protocols is presented that are capable of handling a fully dynamic wireless network in which switching centers and base stations are mobile as well as the end users. The protocols provide basic message delivery, network routing information updates, and support for reliable multicasting. There are four contributions of this work: (i) a hierarchical architecture for a fully dynamic wireless network, (ii) improved routing and update protocols with reduced control traffic, (iii) a method to provide reliable multicasting in a wireless environment that is near optimal in terms of the number of messages sent, and (iv) a set of load balancing algorithms that allow the network to autonomously and dynamically reconfigure the network topology to even out the load on the base stations. A detailed simulation of the protocols is developed and exercised to evaluate the performance of the protocols. For point to point delivery, the protocols successfully deliver all packets even when the rate of motion of the terminals causes more than 1/2 of them to be in a transitional state at any time. The results are similar for base station
    corecore