
University of Genoa

Ph.D. in Science and Technology for Electronic and

Telecommunication Engineering

Doctoral Thesis

Advanced SDN-Based QoS and
Security Solutions for Heterogeneous

Networks

Candidates:

Luca Boero

Advisor:

Prof. Mario Marchese

Academic Year 2018/2019

Yesterday is history,

future is a mystery,

but today is a gift.

That’s why it’s called present.

Master Oogway

2

Acknowledgements

I would like to express my deepest gratitude to my advisor, Prof. Mario

Marchese, for his excellent guidance and for trusting in me since the begin-

ning.

I am sincerely grateful to my colleague Fabio Patrone and all the people

working in the Satellite Communications and Networking Laboratory for pro-

viding me with an excellent atmosphere for doing research. My work would

not have been possible without their help.

Moreover, I would like to thank my Relatives and my girlfriend’s Family

for their support, trust, and love. Their caring help during these years allowed

me to pursue my projects and realize my dreams.

Last but not least, I would like to thank my girlfriend Chiara for her

everyday support and love during difficult moments.

Luca

3

Contents

1 Introduction 11

2 Software Defined Networking 16

2.1 The SDN Controller . 21

2.2 The OpenFlow Protocol . 22

3 QoS in Traditional and SDN Networks 26

3.1 Definition of Quality of Service 26

3.2 QoS Classes, Applications and Metrics 28

3.3 Approaches to QoS Management 30

3.4 QoS Management in OpenFlow 32

3.5 Related works . 34

3.6 Motivations . 36

3.7 Possible solutions . 39

3.7.1 General Idea . 39

3.7.2 Implementation: BeaQoS 42

3.8 Re-Routing Strategies Analysis 45

3.8.1 Deadline Management Scenario 45

4

CONTENTS 5

3.8.2 Queue Balancing Scenario 50

3.9 Considerations . 56

3.9.1 Scaling Performances 56

3.9.2 Switch Coordination 57

3.9.3 Considerations on Queue Balancing Scenario 57

3.10 Conclusion about Support of Quality of Service in SDN 58

4 SDN in Satellite Environment 60

4.1 State of the Art for SDN/NFV Enabled Satellite Networks . . 63

4.2 Open Challenges . 67

4.3 Proposed Solutions . 71

4.4 The role of SDN in the 5G Satellite Communications 76

4.5 SDN-based Satellite Terrestrial Network 79

4.6 Time estimation model . 84

4.7 Results and Final considerations 89

4.8 Conclusion about the role of SDN in the Satellite environment 93

5 The Problem of Security 96

5.1 State of the art . 98

5.1.1 Machine Learning-based Classifiers 98

5.1.2 Intrusion Detection Systems classification 101

5.2 Statistical Fingerprint-IDS . 106

5.2.1 Key Ideas . 106

5.2.2 SF-IDS Architecture 107

5.2.3 SF-IDS Packet Analyzer 109

5.2.4 Statistical Fingerprint: the feature vector 110

CONTENTS 6

5.2.5 SF-IDS Classifiers . 111

5.3 Used traffic and performance parameters 113

5.3.1 Used Malware and Normal Traffic 113

5.3.2 Performance Evaluation Parameters 114

5.4 Performance evaluation . 117

5.4.1 Tools . 117

5.4.2 Evaluation of Single Classifiers 117

5.4.3 Single Malware affected flows performance 119

5.4.4 Classifiers Acting in Parallel 120

5.5 Considerations . 123

6 SDN IDS Implementation 126

6.1 Introduction . 127

6.2 State of The Art . 127

6.3 SDN Controller Employed within an IDS 129

6.3.1 General Description of Ryu 129

6.3.2 Flow Structure . 130

6.3.3 Structure of the “Stats Manager” Application 132

6.4 Used Traffic . 136

6.5 Testbed and Scenario Setup 138

6.5.1 The network . 138

6.5.2 Traffic emulation . 140

6.5.3 The Classifier . 141

6.6 Performance evaluation and comments 142

7 Conclusions 146

List of Figures

2.1 Difference between traditional and SDN network. 18

2.2 Routing in traditional vs. SDN network. 19

3.1 Congestion at one of the queue. 40

3.2 Action of re-routing of some flows. 40

3.3 Matched Flows with H = 100 48

3.4 Matched Flows with H = 250 49

3.5 Background Loss with H = 100 50

3.6 Background Loss with H = 250 51

3.7 Queue balancing performances with 100 flows. 54

3.8 Queue balancing performances with 125 flows. 55

3.9 Queue balancing performances with 150 flows. 55

3.10 Timing Performances in Queue Balancing Scenario. 58

4.1 Architectural Framework . 71

4.2 Road-map for an SDN/NFV-enabled satellite network 74

4.3 Considered terrestrial-satellite network 79

4.4 Polar LEO satellite constellation 81

4.5 LEO satellite constellation ISL model 82

7

LIST OF FIGURES 8

4.6 SDN Planes and functionalities scheme 83

4.7 Minimum and maximum T . 91

5.1 SF-IDS overall architecture. 108

5.2 Block diagram of the Packet Analyzer. 110

6.1 Ryu scheme . 129

6.2 General picture of how the app interacts with Ryu 132

6.3 Flow Stats Reply . 134

6.4 Classification Process . 135

6.5 Network topology . 139

6.6 ROC Diagram of Simulation 1 143

6.7 ROC Diagram of Simulation 2 144

List of Tables

2.1 SDN controllers overview . 23

3.1 Possible example of Service Level Specification. 28

3.2 ITU-T Y-1541 Qos Classes. 29

3.3 1-queue and 3-queues configurations performance 36

3.4 Fixed and variable service rate performance 37

3.5 Traffic classes and their deadline requirements 38

3.6 BeaQoS Statistics compared with OpenFlow 1.0 statistics. . . 44

3.7 Queue configurations. 47

4.1 Matching between challenges and Architectural Elements . . . 73

4.2 List of defined variables . 89

4.3 Set of initial parameters used for the experiments 91

4.4 PL and SL needed for the complete coverage of the Earth . . . 92

5.1 Misuse vs Statistical Fingerprint IDS 102

5.2 Used features for each flow as Statistical Fingerprint. 112

5.3 Used malware and normal traffic. 115

5.4 Evaluation Parameters. 116

9

LIST OF TABLES 10

5.5 Acc, TP , FN , TN , FP , and CI varying the applied Classifier 118

5.6 Acc, TP , FN , TN , FP , and CI for J48 120

5.7 Acc, TP , FN , TN , FP , and CI for PART 121

5.8 Acc, TP , FN , TN , FP , and CI for Random Forest 122

5.9 Acc, TP , FN , TN , FP , and CI for the three DMs 123

6.1 Flow Dictionary Structure . 130

6.2 Results of the Simulations . 142

Chapter 1

Introduction

Software Defined Networking (SDN) is revolutionizing the networking indus-

try by enabling programmability, easier management and faster innovation.

These benefits are made possible by its centralized control plane architec-

ture, which allows the network to be programmed by the application and

controlled from one central entity. The SDN architecture is composed of

both switches/routers and a central controller (SDN controller). The SDN

device processes and delivers packets according to rules stored in its flow ta-

ble (forwarding state), whereas the SDN controller configures the forwarding

state of each switch using a standard way: OpenFlow (OF). The controller is

also responsible to build the virtual topology representing the physical one.

Virtual topology is used by application modules that run on top of the SDN

controller to implement different control logics and network functions (e.g.,

routing, traffic engineering, firewall state).

Currently Quality of Service (QoS) management in OpenFlow is limited:

in each OF switch one or more queues can be configured for each outgoing

11

CHAPTER 1. INTRODUCTION 12

interface and used to map flow entries on them. Flow entries assigned to a

specific queue will be treated according to the queue’s configuration in terms

of service rate, but queue configuration takes place outside the OpenFlow

protocol [1]. Without a proper rate assignment, it is difficult to guarantee

QoS requirements to traffic. A possible solution to limit performance degra-

dation involves the re-routing of the flow undergoing the violation of QoS

constraints on a less congested path or queue.

Satellite communication networks have been evolving from standalone

networks with ad-hoc infrastructures to possibly interconnected portions of a

wider Future Internet architecture. Experts belonging to the fifth-generation

(5G) standardization committees are considering satellites as a technology

to integrate in the 5G environment. SDN is one of the paradigms of the next

generation of mobile and fixed communications. It can be employed to per-

form different control functionalities, such as routing, because it allows traffic

flow identification based on different parameters and traffic flow management

in a centralized way. The problem is to individuate a possible SDN-based

satellite - terrestrial network architecture and understand if the classical way

of management of this type of network (using OpenFlow) is feasible.

Many infrastructures and services are based on the use of Internet. The

number of people that has access to an Internet connection is growing rapidly.

These facts lead, on one hand, to new possible threats and attacks used by

cyber criminals, and, on the other hand, to an increased complexity in the

management. It is crucial to design systems able to prevent and tackle cy-

ber attacks such as Intrusion Detection Systems (IDS) that can alert when

someone or something is trying or has tried to compromise information sys-

CHAPTER 1. INTRODUCTION 13

tems through malicious actions. In the same time, big efforts are provided

in order to get tools that can make easier network management. The SDN

paradigm has been designed with this aim and allows network administrators

to manage networks by abstracting functionalities through the separation of

data and control planes.

In this thesis we try to study how SDN can be employed in order to

support Quality of Service and how the support of this functionality is fun-

damental for today networks. Considering, not only the present networks,

but also the next generation ones, the importance of the SDN paradigm

become manifest as the use of satellite networks, which can be useful consid-

ering their broadcasting capabilities. For these reasons, this research focuses

its attention on satellite - terrestrial networks and in particular on the use

of SDN inside this environment. As mentioned before, the growing of the

information technologies has pave the way for new possible threats. This

research study tries to cover also this problem considering how SDN can be

employed for the detection of past and future malware inside networks.

The outcomes of this thesis are manifold, and in particular can be ex-

pressed as:

Theoretical Develop a theoretical framework able to map topology, QoS

requirements and traffic descriptors into actions that must be taken

in order to provide better Quality of Service and guarantee certain se-

curity level inside a network. Describe the next generation satellite

networks trying to understand what are the problems of the current

generation and provide possible solutions and a possible road-map in

order to effectively implement the SDN paradigm in a satellite - terres-

CHAPTER 1. INTRODUCTION 14

trial network.

Algorithm design Design of algorithms and routines that, given the status

of the network, can generate network-level directives (i.e. flow modifi-

cations in OpenFlow) for the devices in the network in order to manage

the overall Quality of Service but also can stop malicious traffic that is

traversing the network.

Implementation Implementation of a QoS module and a security module

inside an SDN controller: the controller will implement the solutions

carried out in the theoretical and algorithm design objectives. The

implemented controller will be tested through simulated/emulated sce-

narios in order to evaluate performance issues and scalability concerns.

The studies made during my Ph.D. on these problems allow me to create

two SDN controller prototypes module, which are dedicated to the quality of

service and to network security respectively. The first module is responsible

for collecting traffic statistics from the underling network, monitoring the

queues of SDN switches and re-route flows in case of traffic overloading. In

the second one, thanks to the collection of statistics developed for the first

module and with simple computations, the security aware controller module

can distinguish in real time if a traffic flow is affected by malware or not.

Another fundamental part of my research activity is dedicated to the use of

SDN technology in the satellite environment. One of the aims of my research

is to introduce an SDN-based terrestrial satellite network architecture and

to estimate the mean time to deliver the data of a new traffic flow from the

source to the destination including the time required to transfer SDN control

CHAPTER 1. INTRODUCTION 15

actions. The practical effect is to identify the maximum performance than

can be expected in this type of network.

Software Defined Networking is a matter of high interest for the academic

research area since it can provide answers to one of the main problem of the

networking: portability. In the traditional approach to networking, most net-

work functionalities are implemented in routers and switches with dedicated

hardware but this approach is characterized by slow evolution of network

functionalities. As the traditional networking paradigm has a rather static

nature and now there is a widespread adoption of server virtualization and

a pressure for network organizations to be more efficient and agile in net-

work management, the necessity of a new software-oriented approach starts

to arise. One of the main solutions that fulfill the aforementioned need is

Software Defined Networking. SDN is highly beneficial for what concerns the

QoS, Security and satellite worlds.

The thesis is organized as follows: Chapter 2 describes the SDN paradigm

and its main components. Chapter 3 introduces the concepts of Quality of

Service and how it is handled inside traditional and SDN-based networks.

Chapter 4 shows the use of SDN inside the satellite environments and tries to

understand limitations and solutions that can be applied to this environment.

Chapter 5 describes the problem of network security with particular interest

in the use of intrusion detection systems. Chapter 6 describes the use of

an SDN architecture as an intrusion detection systems able to identify the

presence of malware inside a traffic flow. Finally Chapter 7 concludes the

thesis.

Chapter 2

Software Defined Networking

In the traditional approach to networking, most network functionality is im-

plemented in a dedicated appliance such as switch, router, application de-

livery controller. In addition, within the dedicated appliance, most of the

functionality is implemented in dedicated hardware such as an ASIC (Appli-

cation Specific Integrated Circuit).

This kind of approach is characterized by slow evolution of network function-

alities, which are by the way under the control of the provider of the device.

The widespread adoption of server virtualization and the consequent need

to move virtual machines dynamically between servers lead to increasing

pressure for network organizations to be more efficient and agile in network

management. As the traditional networking paradigm has a rather static

nature, the need for a new software-oriented approach started to arise.

One of the main innovations that the software-based approach can in-

troduce is the concept of abstractions applied to the control plane. The

abstractions in the data plane are already well established: the use of the

16

CHAPTER 2. SOFTWARE DEFINED NETWORKING 17

protocol stack is well standardized in any networking application. We need

to define some abstractions useful to create reusable components also for the

control plane [2]. The main tasks that the control plane must take care of

are:

• Figuring out the topology of the network

• Computing how to accomplish its goal on the given topology

• Configuring the forwarding state

Till now, each new control protocol must solve all three issues. In order

to create components that can be reused, it is possible to abstract the two

main tasks related to the topology information and the forwarding state

configuration. These two issues are identified by:

Global Network View It provides information about all the topology ar-

chitecture related to the considered network. This abstraction is in-

tended to translate the real network structure into a graph that the

controller can analyze in order to compute the forwarding model. The

global network view is provided by the Network Operating System

(NOS), which is an implementation of this abstraction lying above the

data plane.

Forwarding Model It provides a standard way of defining the forwarding

state inside the network nodes. The implementation of this abstraction

consists in installing simple forwarding rules inside the SDN switches

that are part of the network. The nodes are then supposed to follow

these rules in order to forward the packets.

CHAPTER 2. SOFTWARE DEFINED NETWORKING 18

The main innovation brought by Software Defined Networking is the de-

coupling of control and data plane [3]. In legacy networks, both control an

data plane are managed by the same entity, for example the router. This

concept creates a heavy burden for the device which has to take care of the

network. In Software Defined Networking the two tasks are assigned to dif-

ferent entities: the controller, which is the part of the network dedicated

to compute the forwarding state and the switch, which is the node devoted

to packet forwarding based on the local forwarding state. This difference is

highlighted in Figure 2.1.

Control

Plane

Data

Plane

Control

Plane

Data

Plane

Control

Plane

Data

Plane

(a)

Data

Plane

Data

Plane

Data

Plane

Control Plane

(b)

Figure 2.1: Difference between a traditional network 2.1(a) and a SDN net-

work 2.1(b).

The main elements constituting a Software Defined Network are [4]:

• Control Program - It has to decide forwarding policy by knowledge

CHAPTER 2. SOFTWARE DEFINED NETWORKING 19

of virtual global topology

• Network OS - It generates the virtual topology from the physical

network

• Routers/Switches - They implement specific rules to forward packets

The Software Defined Networking architecture has the aim of leaving the in-

telligence outside the data plane, in order to make the forwarding mechanisms

simpler and quicker. The control program can therefore be implemented in-

side a supervising Software Defined Networking controller together with the

Network Operative System (Figure 2.2).

Operating

System

Custom

Hardware

Distributed

System

OSPF

Distributed

System

IS-IS

OSPF=DIJKSTRA IS - IS

Network Operating System (NOS)

Distributed System

Figure 2.2: Difference between routing in a traditional network and a SDN

network.

The switches, on the other hand, send packets on the basis of simple

rules, installed inside the node by the above standing controller. These rules

are defined by match-action couples: a packet whose header corresponds to

certain parameters (a certain match) must be treated according to a specific

CHAPTER 2. SOFTWARE DEFINED NETWORKING 20

policy (the action to be taken). Controller and switch interact together using

the forwarding model, whose main implementation is the OpenFlow Protocol

[1].

The main opportunities that Software Defined Networking can address

are the support of dynamic movement and allocation of network resources,

the scalability of network functionalities and the reduction of network com-

plexity.

Software Defined Networking allows also to perform traffic engineering with

an end-to-end view of the network and to apply more effective security func-

tionalities [3].

The Open Networking Fundation (ONF) is the group that is most as-

sociated with the development and standardization of SDN . According to

the ONF, Software Defined Networking is an emerging architecture that is

dynamic, manageable, cost-effective, and adaptable, making it ideal for the

high-bandwidth, dynamic nature of today’s applications [5].

The main characteristics of the Software Defined Networking architecture

are:

• Programmability - Network control is directly programmable because

it is decoupled from forwarding functions

• Agility - Abstracting control from forwarding lets administrators dy-

namically adjust network-wide traffic flow to meet changing needs

• Central Management - Network intelligence is (logically) centralized in

software-based Software Defined Networking controllers that maintain

a global view of the network, which appears to applications and policy

CHAPTER 2. SOFTWARE DEFINED NETWORKING 21

engines as a single, logical switch

• Programmatical Configuration - Software Defined Networking lets net-

work managers configure, manage, secure, and optimize network re-

sources very quickly via dynamic, automated Software Defined Net-

working programs, which they can write themselves because the pro-

grams do not depend on proprietary software

• Use of open standard - When implemented through open standards,

Software Defined Networking simplifies network design and operation

because instructions are provided by Software Defined Networking con-

trollers instead of multiple, vendor-specific devices and protocols

2.1 The SDN Controller

The decoupled system has been compared to an operating system [6], in which

the controller provides a programmatic interface to the network, and it can

be used to implement management tasks and offer new functionalities. This

abstraction assumes the control is centralized and applications are written as

if the network is a single system. It enables the Software Defined Networking

model to be applied over a wide range of applications and heterogeneous

network technologies and physical media such as wireless, wired and optical

networks.

The Software Defined Networking controller has a double functionality:

it needs to interact with the underlying network switches (Southbound Com-

munication), but it also has to interface with high-level applications (North-

bound Communication).

CHAPTER 2. SOFTWARE DEFINED NETWORKING 22

While controller-switch interaction is fairly well defined in protocols such

as OpenFlow, there is no standard for interactions between controllers and

network services or applications. One possible explanation is that the north-

bound interface is defined entirely in software, while controller-switch inter-

actions must enable hardware implementation.

If we think of the controller as a “network operating system“, then there

should be a clearly defined interface by which applications can access the

underlying hardware (switches), co-exist and interact with other applications,

and utilize system services (e.g., topology discovery, forwarding), without

requiring the application developer to know the implementation details of

the controller. While there are several controllers that exist, their application

interfaces are still in the early stages and independent from each other. A

global overview of the current controller implementations can be found in

Table 2.1 [7].

2.2 The OpenFlow Protocol

OpenFlow [1] is a communication protocol that gives access to the forwarding

plane of a switch or router over the network. It takes care of the signalling

between the controller and the switches inside a Software Defined Networking

network.

OpenFlow enables remote controllers to establish the path of packets that

are travelling in the network, using network switches which are compliant to

the standard. OpenFlow in fact makes available a tool, the flow table, which

allows not only to perform routing operations, but also other functionalities,

CHAPTER 2. SOFTWARE DEFINED NETWORKING 23

Controller Implementation Overview

POX Python General, open-source SDN controller.

NOX Python/C++ The first OpenFlow controller.

MUL C OpenFlow controller with a multi-threaded infrastructure that

supports a multi-level north-bound interface for applications.

Maestro Java A NOS that provides interfaces for implementing modular net-

work control applications.

Trema Ruby/C A framework for developing OpenFlow controllers.

Beacon Java A cross-platform, modular, OpenFlow controller that supports

event-based and threaded operations.

Jaxon Java An OpenFlow controller based on NOX.

Helios C An extensible OpenFlow controller that provides a program-

matic shell for performing integrated experiments.

Floodlight Java A controller based on Beacon, that works with physical- and

virtual- OpenFlow switches.

SNAC C++ An OpenFlow controller based on NOX, which manages the

network, configures devices, and monitors events.

Ryu Python An SDN operating system that provides logically centralized

control and APIs to create new network management and con-

trol applications.

NodeFlow JavaScript An OpenFlow controller for Node.JS

ovs-controller C A simple OpenFlow controller implementation with Open-

vSwitch for managing remote switches through the OF proto-

col.

Flowvisor C Special purpose controller implementation.

RouteFlow C++ Special purpose controller implementation.

ONOS Java Open Network Operating System (ONOS) is an (SDN) OS for

service providers.

Table 2.1: SDN controllers overview

such as implementing firewall, making NAT (Network Address Translation)

or implementing Quality of Service policies.

OpenFlow provides an open standard to program the flow table in different

switches and routers. With this tool a network administrator can easily

CHAPTER 2. SOFTWARE DEFINED NETWORKING 24

manage a network, divide flows or perform other actions without the need of

hardware-specific tools but only using the OpenFlow primitives [8].

OpenFlow Protocol supports three message types: controller-to-switch,

asynchronous and symmetric, each with multiple subtypes. The first type

is used by the controller to manage or inspect the state of the switch. The

second type of message is used by OpenFlow switch for updating the infor-

mation the controller has about the network and the switch state. Symmetric

messages are sent either by the switch or the controller without solicitation.

There are different types of controller-to-switch messages:

• Feature: it is sent by the controller upon TLS (Transport Layer Secu-

rity) session establishment. The switch replies to this message with a

features reply that specifies the capabilities supported by the switch.

• Modify-state: this type of message is sent by the controller to manage

states on switches. Its primary purpose is to add/remove and modify

flows in the switch’s flow table.

• Read-state: this message is used by the controller to collect statistics

from the switch’s flow table, port and individual flow entries.

• Barrier : this request/reply message is used by the controller to receive

notifications for completed operations.

The asynchronous messages are sent by a switch without the controller’s

solicitation. The main type of asynchronous messages are:

• Packet-in: for all packets that do not have a matching flow entry in

the flow table a packet-in event is sent to the controller.

CHAPTER 2. SOFTWARE DEFINED NETWORKING 25

• Flow-removed : this is a message sent to the controller if and only if the

controller in the modify-state event has set the corresponding flag.

• Errors : the switch is able to notify the controller of problems using

error messages.

The last type of messages is the symmetric ones:

• Hello: they are exchanged between the switch and the controller upon

connection start-up.

• Echo: echo request/reply messages can be sent form either the switch

or the controller and must return an echo reply. They can be used to

indicate the latency, bandwidth and/or liveness of a controller-switch

connection.

• Vendor : this type of message provides a standard way for OpenFlow

switches to offer additional functionalities within the OpenFlow mes-

sage type space.

Chapter 3

Quality of Service in

Traditional and SDN Networks

3.1 Definition of Quality of Service

Concerning the network viewpoint, QoS is the ability of a network element

to have some level of assurance that its traffic and service requirements can

be satisfied. QoS manages bandwidth according to application demands and

network management settings.

The term QoS is used in different meanings, ranging from the users’ per-

ception of the service to a set of connection parameters necessary to achieve

particular service quality. The QoS meaning changes depending on the ap-

plication field and on the scientific scope. Three types of Quality of Service

have been defined [9]:

• Intrinsic QoS - it is directly provided by the network itself and may

be described in terms of objective parameters, such as loss and delay.

26

CHAPTER 3. QOS IN TRADITIONAL AND SDN NETWORKS 27

• Perceived QoS - it is the quality perceived by the users; it heavily

depends on the network performance but it is measured by the average

opinion of the users. Mean Opinion Score (MOS) methods are often

used to perform the measure of the quality. The MOS rating is the

arithmetic mean of all the individual user scores and can range from 1

(worst) to 5 (best) [10]. Even if there is a strict connection with the

objective metrics provided by the network, the user does not necessarily

perceived an increase (or decrease) in performance, in correspondence

of an intrinsic QoS variation.

• Assessed QoS - it is referred to the will of a user to keep on using

a specific service. It is related to Perceived QoS (P-QoS) and also de-

pends on the pricing mechanism, level of assistance of the provider and

other marketing and commercial aspects. For example, a performance

decrease may be surely tolerated by a user if a service is free, but the

same decrease will raise criticism if the user is paying for it.

At the moment, most of the QoS provision is offered in terms of intrin-

sic QoS (objective parameters) by using a Service Level Specification (SLS)

which is a set of parameters and their values which together define the ser-

vice offered to a traffic [11]. SLS is a separated technical part of a negotiated

agreement between a customer and the service provider on level of service

characteristics and the associated set of metrics, which is the commonly

adopted definition of a Service Level Agreement (SLA) [12, 13]. A possible

example of Service Level Specification is shown in Table 3.1.

Concerning device and network capabilities, the SLA may also indicate

the access technology that the customer can use, for example Ethernet, Wire-

CHAPTER 3. QOS IN TRADITIONAL AND SDN NETWORKS 28

Service Level Specification Range

Connection type CBR / VBR / Best-effort

Scope End-to-end

Connection Identification Identifier or sequence of identifiers

Traffic description Packet rate / Bucket size / Max burst size

Performance guarantees Packet loss / Packet transfer delay / Jitter

Multi Level Precedence Not applied / Routine / Immediate / Flash

Table 3.1: Possible example of Service Level Specification.

less LANs, GSM, UMTS, Ad-hoc Network, GPRS and Satellite Access. Even

if the SLS does not change, SLA should also consider these aspects that have

a relevant impact on the customer choices.

3.2 QoS Classes, Applications and Metrics

Many applications nowadays need QoS. Some of them are telemedicine,

tele-control (remote control of robots in hazardous environments, remote

sensors and systems for tele-manipulation), tele-learning, telephony, video-

conferences, online gaming, multimedia streaming and applications for emer-

gencies and security. Each application, having very different characteristics,

needs a specific degree of service, defined at the application layer.

Several standardization bodies have tried to define service categories, also

called QoS Classes, to be intended at application layer. ITU-T suggests a

definition of QoS classes [14] for the IP world which is summarized in Table

3.2.

A further step is to associate objective QoS requirements to the QoS

CHAPTER 3. QOS IN TRADITIONAL AND SDN NETWORKS 29

QoS Class Characteristics

0 Real-time, jitter sensitive, highly interactive

1 Real-time, jitter sensitive, interactive

2 Transaction data, highly interactive

3 Transaction data, interactive

4 Low loss only (short transactions, bulk data, video streaming)

5 Traditional applications of default IP networks

Table 3.2: ITU-T Y-1541 Qos Classes.

traffic classes generically defined above. Concerning the IP environment, the

QoS objective metrics mostly used [15] are as follows:

• IPLR - IP Packet Loss Ratio

• IPTD - IP Packet Transfer Delay

• IPDV - IP Packet Delay Variation (known as Jitter)

• IPER - IP Packet Error Ratio

Another metric often considered is the skew, which is the average value of

the difference of the delays measured by packets belonging to different media

such as voice and video within a video-conference service. In this case, if the

skew is large, there is no synchronization between voice and video with the

resulting effect of a bad dubbing.

CHAPTER 3. QOS IN TRADITIONAL AND SDN NETWORKS 30

3.3 Approaches to QoS Management

QoS management techniques are needed in order to offer the necessary tools

to guarantee specific QoS requirements. A possible classification of QoS

management functions is described in the following [10].

Over Provisioning It consists of purchasing an oversupply of bandwidth

to solve the challenges. This approach ignores not only bandwidth

optimization but also possible future trends and requirements of new

services. It cannot be classified exactly as a solution.

Flow Identification The identification of packets so that they may receive

a different treatment within the network is fundamental to guarantee

QoS. Different technology show different method to classify packet:

Flow Label and Traffic Class in IPv6, ToS and tuple [IP Source Address,

IP Destination Address, Protocol, Transport Source Port, Transport

Destination Port] in IPv4, VPI/VCI in ATM, Label Value in MPLS.

Call Admission Control An accurate resource reservation to guarantee

that traffic flows receive the correct service is strictly needed. The

acceptance or rejection of a new connection is performed subject to

a check about the availability of network resources in consequence of

specific requirements. After that, if enough resources are available,

they are reserved.

Traffic Control (Shaping) Shaping policies limit flows to their committed

rates in order for the flows to be conform with their traffic descriptors.

If connections exceed their bandwidth consumption specifications, the

CHAPTER 3. QOS IN TRADITIONAL AND SDN NETWORKS 31

network, which has dimensioned resources in strict dependence on the

declarations, cannot guarantee any specified QoS requirement. Two

common methods used in literature to shape traffic are Leaky Bucket

and Token Bucket [16].

Scheduling Packet scheduling specifies the service policy of a queue of a

node. In practice, scheduling decides the order that is used to pick the

packets out of the queue and to transmit them over the channel. The

main problem arises from the impossibility of assigning the committed

bandwidth to a specific flow at each time instant. A clear and complete

revision of the most interesting schedulers is reported in [17].

Queue Management Scheduling is often linked to queue management

schemes. They are used, for example, to establish the dropping strategy

when the buffer is full. Possible policies include: Tail Drop (discarding

the packet arrived last), Front Drop (eliminating the first packet in the

queue), Random Drop (selecting randomly the packet to discharge) or

dynamic schemes.

Flow Control It is the process of managing the rate of data transmission

between two nodes to prevent a fast sender from outrunning a slow

receiver. It provides a mechanism for the receiver to control the trans-

mission speed, so that the destination node is not overwhelmed with

incoming data. Generally, flow control is implemented end-to-end at

the transport layer. Even if it may help avoiding network saturation,

it cannot guarantee a specific QoS requirement, if used alone.

CHAPTER 3. QOS IN TRADITIONAL AND SDN NETWORKS 32

3.4 QoS Management in OpenFlow

As previously mentioned, Software Defined Networking (SDN) is revolution-

izing the networking industry by enabling programmability, easier manage-

ment and faster innovation [18, 19].

The SDN architecture is composed both of SDN enabled devices and of

a central controller (SDN controller). An SDN device processes and delivers

packets according to the rules stored in its flow table (forwarding state),

whereas the SDN controller configures the forwarding state of each SDN

device by using a standard protocol called OpenFlow (OF) [19]. The SDN

controller is responsible also to build the virtual topology representing the

physical one. The virtual topology is used by application modules that run on

top of the SDN controller to implement different control logics and network

functions (e.g., routing, traffic engineering, firewall actions).

Currently the Quality of Service (QoS) management in OF is quite lim-

ited: in each OF switch one or more queues can be configured for each out-

going interface and used to map flow entries on them. Flow entries mapped

to a specific queue will be treated according to the queue’s configuration in

terms of service rate, but the queue’s configuration takes place outside the

OF protocol. For example, the queue’s service rate cannot be modified by

OF.

Supposing that a flow is traversing a chain of queues from the source to the

destination node, and the flow data rate increases, a possible consequence

is that queues increase their occupancy, and a bottleneck may be generated

with consequent network congestion. The impossibility to change the bot-

tleneck queue’s service rate through real-time OF directives can lead to a

CHAPTER 3. QOS IN TRADITIONAL AND SDN NETWORKS 33

severe performance degradation for the flows traversing that queue because,

without a proper rate assignment, it is very difficult to guarantee Quality of

Service requirements to the flows [10].

A possible solution to mitigate the performance degradation involves the

re-routing of the flows experiencing a violation of deadline constraints (e.g.,

the flows that are totally received beyond the fixed time constraint) [20] on

less congested paths or queues. The underlying idea is that, since we cannot

change the service rate of the queues, we act on the ingress traffic, mov-

ing a subset of flows on different paths or queues in case of need. In order

to be 100% compatible with current OF hardware, we impose no changes to

OF specifications and directives. Instead we propose controller modifications

and, in particular, we use one popular SDN controller: Beacon [21]. Our up-

dated controller will receive statistics about queues, flows and ports from OF

switches and will compute an estimation of the flow rates and of the packet

loss of the queues. Based on customizable policies, BeaQoS will be able to

select a subset of flows experiencing congestion over the bottleneck queue

and to re-route them on another and less congested queue, so improving the

switch performances. The action of flow re-routing may be exploited not only

for deadline management but also for efficient queue load balancing. On the

other hand load balancing is often seen as an action to prevent congestion

and, consequentially, to limit and delay performance detriment.

CHAPTER 3. QOS IN TRADITIONAL AND SDN NETWORKS 34

3.5 Related works

Despite traffic engineering (TE) approaches are often ruled by MPLS-TE

[22, 23], the ability of the SDN controller to receive (soft) real-time infor-

mation from SDN devices and to make decisions based on a global view of

the network, coupled with the ability of “custom”-grained flow aggregation

inside SDN devices, makes TE one of the most interesting use cases for SDN

networks.

Global load balancing algorithms are proposed in [24] that addresses

load-balancing as an integral component of large cloud services and explores

ways to make load-balancing scalable, dynamic, and flexible. Moreover [24]

states that load-balancing should be a network primitive, not an add-on, and

presents a prototype distributed load-balancer based on this principle.

[25], shows that the controller should exploit switch support for wild-

card rules for a more scalable solution that directs large aggregates of client

traffic to server replicas. [25] also presents algorithms that compute concise

wildcard rules that achieve a target distribution of the traffic and automati-

cally change load-balancing policies without disrupting existing connections.

Furthermore, the authors implement these algorithms on top of the NOX

OpenFlow controller, evaluate their effectiveness, and propose avenues for

further research.

The work presented in [26] shows a system that re-configures the net-

work’s data plane to match current traffic demands by centrally controlling

the traffic that each service sends on a backbone connecting data-centres.

[26] develops a novel technique that leverages a small amount of scratch

capacity on links to apply updates in a provably congestion free manner,

CHAPTER 3. QOS IN TRADITIONAL AND SDN NETWORKS 35

without making any assumptions about the order and timing of updates at

individual switches. Further, to scale to large networks in the face of limited

forwarding table capacity, [26] greedily selects a small set of entries that can

satisfy current demands and updates this set without disrupting traffic.

Reference [27] analyses a partially deployed SDN network (a mix of SDN

and non-SDN devices) and shows how to exploit the centralized controller to

get significant improvements in network utilization as well as to reduce packet

losses and delays. [27] shows that these improvements are possible even in

cases where there is only a partial deployment of SDN capability in a network.

The authors formulate the SDN controller’s optimization problem for traffic

engineering with partial deployment and propose a fast Fully Polynomial

Time Approximation Schemes (FPTAS) to solve it.

This last problem is also tackled in [28] that introduces a traffic man-

agement method to divide, or to “slice”, network resources to match user

requirements. [28] presents an alternative to resort to low-level mechanisms

such as Virtual LANs, or to interpose complicated hypervisors into the con-

trol plane, by introducing an abstraction that supports programming isolated

slices of the network. The semantics of slices ensures that the processing of

packets on a slice is independent of all other slices. They define their slice

abstraction, develop algorithms to compile slices, and illustrate their use by

using examples. In addition, [28] describes a prototype implementation and

a tool to automatically verify formal isolation properties.

In order to support traffic engineering in the SDN environment, OpenFlow

Management and Configuration Protocol (OF-Config) has been proposed.

OF-Config [29] is a protocol developed by the Open Networking Foundation

CHAPTER 3. QOS IN TRADITIONAL AND SDN NETWORKS 36

Queue Configuration

Performance Metric 1-queue 3-queue

BF - packet loss 25% 71.16%

DF1 - percentage of flows matching the deadline 11.43% 74.29%

DF2 - percentage of flows matching the deadline 17.39% 19.57%

Table 3.3: Performance metrics of the traffic for 1-queue and 3-queues con-

figurations.

used to manage physical and virtual switches in an OpenFlow environment.

This tool tries to give to network engineers the ability to set policies and to

manage traffic across devices.

3.6 Motivations

Some approaches consider a single queue for each outgoing interface. In order

to support QoS mechanisms and traffic differentiation, it is common to con-

figure multiple queues in advance [10]. In order to highlight the importance

of traffic differentiation we perform a first group of simulations reported in

Table 3.3.

Flow entries mapped to a specific queue will be treated according to that

queue’s configuration in terms of service rate. Most of the previously men-

tioned approaches assumes the ability of SDN/OpenFlow to set the service

rate of the queues in each SDN device. This chance would be very helpful

to improve the SDN switch performance, as would be clear from a second

group of simulations reported in Table 3.4.

CHAPTER 3. QOS IN TRADITIONAL AND SDN NETWORKS 37

Queue Configuration

Performance Metric Fixed Rate Variable Rate

BF - packet loss 0% 0%

DF1 - percentage of flows matching the deadline 100% 100%

DF2 - percentage of flows matching the deadline 25% 100%

DF - percentage of flows matching the deadline 34.78% 100%

Table 3.4: Performance metrics of the traffic for fixed and variable service

rate.

Table 3.3 shows the results of simulations we ran aimed at showing how

it is hard, without traffic differentiation, to guarantee deadline requirements.

During 120s of simulation, a SDN Switch s1 receives a mix of traffic, gener-

ated with iperf, composed of “Background flows” (BF) and “Deadline flows”

(DF). DF are the flows for which there is an associated deadline: the flow

is useful if, and only if, is completely received at the destination within the

deadline. On the contrary BF have no associated deadline. BF are CBR

flows with a rate randomly chosen in the set {50, 60, 70, 80} kbit/s. DF are

divided into two classes: DF1 and DF2. DF1 has a 5 seconds deadline, while

DF2 a 9 seconds constraint. The overall traffic descriptors and requirements

are defined in Table 3.5.

We tested two configurations by using 125 generated flows. In the first

one s1 has 1 queue on the outgoing interface (q0) with a FIFO (First Input,

First Output) service rate sq0 = 3Mbit/s, whereas in the second one it has

3 queues, each of them dedicated to a specific traffic: q0 for BF, q1 for DF1

and q2 for DF2. The service rate of the queues (set in advance) are sq0 =

CHAPTER 3. QOS IN TRADITIONAL AND SDN NETWORKS 38

Traffic Class

Name Traffic Descriptor Percentage of Deadline

Overall Traffic Requirements

BF 50− 80 kbit/s x 50 s 30% -

DF1 4.5Mbit/s x 1 s 55% deadline: 9 s

DF2 1.5Mbit/s x 1 s 15% deadline: 5 s

Table 3.5: Traffic classes and their deadline requirements

300 kbit/s, sq1 = 1.7Mbit/s, sq2 = 1Mbit/s. The QoS metrics considered

here are the packet loss rate in percentage for BF and the percentage of flows

matching the deadline for DFs as shown in Table 3.3.

As one can note the 3-queue configuration consistently improves the per-

centage of flows matching the deadline and penalizes the packet loss rate of

BF. Setting the service rates of simple queues differently, the performances

will change but it is clear that traffic differentiation through multi-queues

interfaces gives the fundamental gears to manage deadline flows and to tune

the level of performances of the network traffic.

Table 3.4 shows the results of the second set of simulations we ran aimed

at showing how the power to change the service rate of the queues can im-

prove the deadline management performances. As the previous simulation,

s1 is receiving a mix of traffic composed of BF, DF1 and DF2. Again two con-

figurations are tested with the same number of generated flows. In the first

configuration, s1 has 3 queues with a pre-fixed service rate: sq0 = 2Mbit/s,

sq1 = 4Mbit/s and sq2 = 4Mbit/s, whereas in the second one, q1 can grab

CHAPTER 3. QOS IN TRADITIONAL AND SDN NETWORKS 39

the spare capacity from the other two when it needs more bandwidth: sq1 is

in the range [4− 10]Mbit/s.

The variable rate configuration consistently improves the total percentage

of flows that match the deadline, leading it up to 100%, without any impact

on BF packet loss. In Table 3.4 the label DF tags the Deadline flows without

distinction between DF1 and DF2.

Unfortunately, as highlighted at the beginning of this chapter, current OF

specification [1] is not able to configure queues’ service rate and delegates this

task to an external dedicated configuration protocol: “Queue configura-

tion takes place outside the OpenFlow protocol, either through a

command line tool or through an external dedicated configuration

protocol.” ([1], Section 7.3.5.8). As a consequence, this paper, even if ap-

plies multiple queues for traffic differentiation, supposes queue’s service rate

set and unchangeable in a SDN switch.

3.7 Possible solutions

3.7.1 General Idea

Although the design and implementation of a new OpenFlow directive able

to configure the queues’ service rate would be the best solution in terms of

performances, this choice would come up with a main drawback: it would

be totally incompatible with current OF switches that would not take any

benefit from the directive.

For this reason we propose an alternative solution totally compatible with

current OF switches. The underlying idea is shown in Figures 3.1 and 3.2.

CHAPTER 3. QOS IN TRADITIONAL AND SDN NETWORKS 40

Loss

Data Flows

Fixed Service

Rate

D
e
v
ic

e
 Q

u
e
u
e
s

q0 q1 q2

Figure 3.1: Congestion at one of the

queue.

q2

Moved

Flows

Data Flows

D
e
v
ic

e
 Q

u
e
u
e
s

Fixed Service

Rate

q0 q1

Figure 3.2: Action of re-routing of

some flows.

Let us suppose that, during the network operation, the OF switch in

Figure 3.1 receives 5 flows that manages through 3 outgoing queues q0, q1

and q2. Let us suppose that the orange flow (i.e. the largest arrow) increases

its data rate so that q0 receives more packets than those it can handle. q0

incoming rate is higher than the pre-configured service rate. In this situation,

increasing the incoming rate eventually leads to packet loss and to a severe

reduction of the quality experienced by the flows in q0. Being unable to

change the service rate of the queue, a possible solution involves the re-

routing of some flows arriving at q0 to another queue (e.g., q1 in Figure 3.2)

in order to reduce q0 incoming rate. Re-routing mechanisms attempt to use

the spare bandwidth unused by other queues for reducing the load of more

congested queues.

Since we want to keep simple both OF switches and OF specification,

we design and implement re-routing mechanisms inside the SDN controller.

CHAPTER 3. QOS IN TRADITIONAL AND SDN NETWORKS 41

Even if the idea is simple, the design of re-routing mechanisms involves func-

tionalities of the SDN controller and, in particular, the following features/

requirements:

• no primitives shall be modified with respect to the current OpenFlow

standard.

• the compatibility with early versions of OpenFlow (which is obviously

a must);

• the creation of a module able to handle statistics;

• the implementation of the proposed approaches;

The idea of re-routing and the strategies proposed in this paper can be

exploited both for specific deadline management purposes, and in the con-

text of the optimal management of hardware resources provided to common

software routers. Software routers can run on off-the-shelf general-purpose

CPUs and commodity hardware, rather than on expensive dedicated hard-

ware. Commodity hardware not only maintains a high level of programma-

bility and flexibility but is more cost-efficient than specialized hardware solu-

tions and network components. For this reason, software routers are largely

widespread [30]. On the other hand, it has been proved that the CPU is the

main bottleneck in a software router. Recent advances propose to increase

the packet processing performance through parallel processing based on off-

the-shelf multi-core processors [31]. In more detail, current software routers

implement filters for multi-queue NICs (Network Interface Controllers) used

to address incoming packets to a certain queue based on specific packet at-

tributes. By these filters, NICs are able to efficiently distribute the incoming

CHAPTER 3. QOS IN TRADITIONAL AND SDN NETWORKS 42

packet processing workload across multiple CPU cores. This also ensures that

each packet of a specific flow is served by the same CPU core so avoiding,

for example, packet reordering [32].

Instead of using dedicated hardware filters provided by NICs we propose a

flexible solution based on the OpenFlow architecture. Our approach consists

in using an OF software controller which can monitor incoming flows and

has the intelligence to decide the correct queueing strategy. We develop a

series of control algorithms able to re-arrange flows in order to make lighter

the computational burden of the CPU by equally distributing flows among

the available queues.

3.7.2 Implementation: BeaQoS

We chose Beacon [21] as SDN controller. Beacon is a multi-threaded Java-

based controller that relies on OSGi and Spring frameworks and it is highly

integrated into the Eclipse IDE. Anyway, independently of the specific choice

of the controller, our modifications can be implemented in any controller. The

structure of the controller consists of a group of functions (called bundles)

with dedicated functionalities. The main bundle we focused on is the Routing

one, which takes care of finding the correct path between the source and

destination to forward packets. Moreover, we created an ad-hoc bundle,

called Statistics, to the purpose of collecting and processing the statistics of

the reply messages provided by network switches. The principal proposed

modifications of Beacon are:

Statistics Polling Beacon controller has been modified in order to send

statistic requests to the switches. We added a function that triggers

CHAPTER 3. QOS IN TRADITIONAL AND SDN NETWORKS 43

the dispatch of statistic and feature request messages with a polling

interval (PI) configurable through an external properties file. We also

designed and implemented a class dedicated to the creation of statistic

request messages, such as ofp flow stats request, ofp port stats request,

ofp queue stats request [1], in order to obtain useful information about

the status of flows, ports and queues respectively.

Statistics This module has two main functions: one is devoted to the cre-

ation of the data structures needed to generate a database of statistics

related to the network nodes, the other one is dedicated to implement

the collection of data extracted from the messages about statistics. The

reply messages obtained from the network switches are the introduced

ofp flow stats, ofp port stats, ofp queue stats. In addition to the basic

statistics that the OpenFlow protocol 1.0 makes available, we added

specific functions to the controller, which allow BeaQoS to exploit the

collected data in order to compute parameters useful to apply the cho-

sen strategy. The additional statistics computed by BeaQoS, compared

with the ones available in OpenFlow 1.0, are shown in Table 3.6.

The main extracted feature is the Estimated Rate (ER) for ports,

queues, and flows. We computed the Estimated Rate ERt at a given

time instant as follows:

ERt =
TBt − TBt−1

PI
(3.1)

in which t is the sampling instant, TBt are the transmitted bytes at

the current instant, TBt−1 are the transmitted bytes at the previous

sampling instant and PI represents the polling interval in seconds.

CHAPTER 3. QOS IN TRADITIONAL AND SDN NETWORKS 44

Statistics available Statistics computed

in OpenFlow 1.0 by BeaQoS

Tx Bytes per Flow → Estimated Rate per Flow

Tx Bytes per Port → Estimated Rate per Port

Tx Bytes per Queue → Estimated Rate per Queue

Flow Match  → Flows per QueueFlow Actions

Queue ID

Table 3.6: BeaQoS Statistics compared with OpenFlow 1.0 statistics.

Obviously the quantity “transmitted bytes” and, consequently, the ex-

pression in (3.1), may be applied to ports, queues, and flows. Another

parameter we extracted is the number of flows currently belonging to

a specific queue (Flows per Queue).

Routing This module has been modified so as to implement the proposed al-

gorithms. When a switch receives a new flow, it contacts the controller

in order to know where to forward the traffic. When the controller has

to assign each flow to a specific queue, it checks a variable that iden-

tifies the algorithm to run. BeaQoS performs a routine to select the

correct queue based on the chosen strategy and then notifies the node

through the installation of a flow modification.

The proposed approaches are described in detail in the following sec-

tion.

CHAPTER 3. QOS IN TRADITIONAL AND SDN NETWORKS 45

3.8 Re-Routing Strategies Analysis

In this section, we present two main scenarios in which we compare different

proposed re-routing algorithms to find the most efficient solution. The first

scenario deals with the problem of the priority flows that must be served

within a specific deadline, as introduced in Section 3.6. The second one faces

the issue of balancing the load among different queues in a single SDN node.

3.8.1 Deadline Management Scenario

In this scenario we consider both “Background flows” (BF) and “Deadline

flows” (DF). As previously described, DF are flows for which there is an

associated deadline: the flow is useful if, and only if, it completes within

the deadline [20]. DF are of interest in datacenter applications (e.g., web

search, social networking) where user requests need to be satisfied within a

specified latency target and when the time expires, responses, irrespective

of their completeness, are shipped out (Today’s online services have service

level agreements (SLAs) baked into their operation [33, 34, 35]). Moreover,

online services have a partition-aggregate workflow, being user requests par-

titioned among (multiple) layers of servers (workers) whose results are then

aggregated to form the response. The combination of latency targets and

partition-aggregate workflow has implications for the traffic inside the data-

center. Specifically, for any network flow initiated by these workers, there is

an associated deadline.

We propose and implement two schemes in order to provide a basic sup-

port for deadline management inside a SDN network with mixed traffic BF,

CHAPTER 3. QOS IN TRADITIONAL AND SDN NETWORKS 46

DF1 (each flow with deadline1) and DF2 (each flow with deadline2). To

clarify the description of these approaches we assume that all interfaces of

each switch are configured with three queues: q0, q1, q2. q0 is dedicated to

BF, whereas the others are used for DF1 and DF2, respectively. The schemes

are the following:

Dedicated This scheme assigns each traffic class to a specific queue of the

considered switch port. Upon the arrival of a new flow inside the switch,

the routing engine of the Beacon controller decides which queue to

choose based on the traffic descriptor of the flow. BF are enqueued on

q0, DF1 are assigned to q1 and DF2 are assigned to q2.

Deadline This scheme is triggered when the controller receives a request

from a switch on how to manage an upcoming flow. The routing module

checks the Type of Service field1: BF are enqueued on q0, whereas for

DF1 or DF2, the controller chooses the less utilized queue qi∗ . The

utilization of the queues is computed based on the following function

U (qi):

i∗ = arg min
i=1,2

U (qi) ; U (qi) = sqi −
∑
k

targetk · nk,qi i = 1, 2 (3.2)

being: sqi the service rate of qi, known a-priori and configurable from

an external properties file; k the index that spans among the classes of

service (here DF1 and DF2); targetk the rate we need to guarantee to

the flow of class k2; nk,qi the number of flows belonging to the class k

1We choose the ToS field to differentiate DF1 and DF2 having in mind the DSCP (Diff

Serv Code Point) bits in the ToS field, but other solutions can be implemented.
2For example, a flow of class k with size of 100 kByte and a deadline of 10 s needs a

targetk ≥ 10 kByte/s.

CHAPTER 3. QOS IN TRADITIONAL AND SDN NETWORKS 47

Queue ID Service Rate Buffer Size

q0 0− 3Mbit/s 1000 packets

q1 2Mbit/s 1000 packets

q2 1Mbit/s 1000 packets

Table 3.7: Queue configurations.

and assigned to qi.

The aim is to maximize the number of DF whose deadline is matched, even

at the expense of background flows, if necessary.

We carried out the performance analysis on a PC running Mininet (ver-

sion 2.1.0) [36]. The scenario is composed of two hosts connected to a SDN

switch. The chosen implementation of the switch is Open vSwitch 2.0.2 [37],

managed by an instance of BeaQoS running on the same machine. Each port

of the switch is configured with 3 queues, q0, q1, q2. The rate assigned to each

buffer is shown in Table 3.7. The overall service rate is 3Mbit/s. The queue

dedicated to BF has a variable service rate ranging from 0 to 3Mbit/s: this

implies that q0 can be served only if the priority queues are not using the

entire link bandwidth. Queue service rates are configured through the Traffic

Control (tc) module in Linux Kernel.

The traffic used for these simulations, generated through the iperf tool,

consists, as said above, of 3 types of flows, BF, DF1 and DF2 composed of

the following percentages and features: 30% of the overall traffic is BF, which

is characterized by a random rate chosen in the set {50, 60, 70, 80} kbit/s and

a duration of 50 s; 55% is DF1, generating data at 4.5Mbit/s for 1 s and,

CHAPTER 3. QOS IN TRADITIONAL AND SDN NETWORKS 48

Figure 3.3: Percentage of flows that satisfy the deadline, computed with

H = 100.

undergoing a deadline of 9 s; and 15% is DF2 with 1.5Mbit/s data rate

for 1 s and with a deadline of 5 s. The summary of traffic descriptors and

requirements are reported in Table 3.5, already used for the results in Section

3.6.

In this scenario we compare the performances of the two different pro-

posed solutions: Dedicated and Deadline.

We ran an emulation of 3 hours of duration composed of 3000 flows structured

into BF and DF flows as described above. We present the obtained values

averaged over an Horizon (H) of consecutive flows. Each averaged value

is called Emulation Sample ID. The metrics used to compare the proposed

approaches are the percentage of Matched Deadline Flows (e.g., the percent-

age of flows satisfying the deadline) and the Loss of Background Flows (i.e.

the percentage of lost packets of BF flows). For what concerns Figures 3.3

and 3.4, showing the Matched Deadline Flows, an Horizon H = 100 and

CHAPTER 3. QOS IN TRADITIONAL AND SDN NETWORKS 49

Figure 3.4: Percentage of flows that satisfy the deadline, computed with

H = 250.

H = 250, respectively, is applied taking into account only DF flows. Figures

3.5 and 3.6, showing the Loss of Background Flows, apply again H = 100

and H = 250, respectively, but involving only BF flows.

Intuitively, large H values capture the steady state of the system and

small H values present more measurement noise. Instead of choosing a spe-

cific H or trying to capture a flat steady state behaviour, we decided to track

the performances over fixed time horizons in order to obtain a more realistic

approach, as discussed in [38] and [39]. The results of these tests show that

the Deadline scheme allows satisfying the time constraints of a much larger

number of DF than the Dedicated scheme. In practice, the Deadline scheme

is able to double, on average, the performance of the other approach, refer-

ring to Matched Deadline Flows (Figures 3.3, 3.4). The improvement of the

number of DF flows matching the deadline is obtained at the expense of BF

traffic, which suffers from a much higher packet loss than in the Dedicated

CHAPTER 3. QOS IN TRADITIONAL AND SDN NETWORKS 50

Figure 3.5: Percentage of lost packets for Background Flows, computed with

H = 100.

scheme, as shown in Figures 3.5 and 3.6.

In short independently of the H value, the Deadline technique is better

than the Dedicated one with respect to the percentage of satisfied deadlines

for DF flows, at the cost of increasing the loss achieved on BF flows.

Even if the flow specifications are not adherent to a specific real envi-

ronment, the conducted experiments prove the effectiveness of the presented

algorithms. This is true also for what concern the loss of background flow,

which, as stated in this chapter, are considered expendable with respect to

deadline ones.

3.8.2 Queue Balancing Scenario

As far as load balancing strategies are concerned, we propose three schemes

aimed at equalizing the traffic burden in each queue. In order to better

illustrate the operating principles of our solutions, we assume a network

CHAPTER 3. QOS IN TRADITIONAL AND SDN NETWORKS 51

Figure 3.6: Percentage of lost packets for Background Flows, computed with

H = 250.

scenario in which each interface of each switch has four available queues,

q0, q1, q2 and q3. The service rate of the outgoing interface is equally divided

among the different queues. The proposed schemes are the following:

Min Load This scheme consists in assigning the upcoming flow to the least

loaded queue. This task is performed by the routing module of the

BeaQoS controller. When a new flow reaches a SDN switch the con-

troller checks the estimated rate (computed as in Equation (3.1)) of

the queues belonging to the considered output port and selects the one

which has the minimum value.

If we think to the rate of the flows as numbers, it is possible to model the load

balancing problem among the available queues as a problem of partitioning

a given set of numbers into a collection of subsets so that the sums of the

numbers in each subset (i.e. the queues of the switches) are as close as

possible [40]. This problem is already known in literature as Multi-Way

CHAPTER 3. QOS IN TRADITIONAL AND SDN NETWORKS 52

Number Partitioning and it is NP-complete. For the sake of simplicity we

choose to implement an algorithm, which we call Multiway, based on the

greedy heuristic described below.

Multiway In this scheme all the flows are queued into q0 at the beginning,

then the controller periodically runs a scheme that sorts the flows in de-

creasing order based on the computed Estimated Rates (ER) in Equa-

tion (3.1) and assigns each flow, analyzed by following the established

ER decreasing order, to the queue with the lower utilization so far, in

order to equalize the load among the queues.

N-Migrations When the number of flows is huge, the Multiway approach

tends to become computationally heavy since it has to analyze and

possibly move all the flows traversing the interface. For this reason

we introduced the N-Migration strategy, where the number of flow mi-

grations is limited to N . The algorithm runs on scheduled times and

iterates N times a routine which selects a flow from the most loaded

queue and re-routes it in the least loaded one. The flow selected by the

strategy is the one which assures the best load equalization among the

queues. This selection is performed evaluating all the possible outcomes

through a simple simulation of re-routing.

Although these strategies may seem similar, the performance results are dif-

ferent. Tests about Queue Balancing use a very similar Mininet topology as

described for the Deadline scenario. The overall rate availability is 4Mbit/s.

The main difference is in the configuration of the queues inside the OpenFlow

switch: each interface of the switch has four queues, q0, q1, q2, q3 and the rate

CHAPTER 3. QOS IN TRADITIONAL AND SDN NETWORKS 53

of the outgoing interface is equally divided among the different queues such

as each one has 1Mbit/s available.

The traffic used in these simulations was generated by using the iperf tool and

consisted of flows with a rate randomly chosen in the set 50, 60, 70, 80, 90, 100

kbit/s. Flow duration is 50 s.

The network was tested with increasing workloads: 100, 125 and 150 flows

running with different seeds.

To better analyse the results, we introduce a performance index that

provides a measure of accuracy of our algorithm with respect to the optimal

solution, which ideally allows getting the exact amount of traffic in every

queue to get load balancing. We call this parameter index and we compute

it at each time instant t as:

indext =

∑
i

(
rtqi − r

t
)2

4
, t = 0, 1, . . . (3.3)

where rtqi is the measured output rate of queue qi and rt is the optimal queue

rate, both evaluated at time instant t. In other words, indext is a measure

of the distance between our solution and the ideal one.

The following plots show the Cumulative Frequency (CF) of indext. CF

is defined as the number of occurrences over the total samples in which the

indext is below a certain threshold (index-th). Figures 3.7, 3.8 and 3.9 show

CF versus index-th, for Min Load, Multiway and N-Migrations in case of

100, 125 and 150 flows, respectively. For what concerns the N-Migrations

approach, the N parameter is set to 1 for all simulations.

The results highlight that, in all examined cases, Min Load and Multiway

schemes show a very satisfying behaviour and have better performances with

CHAPTER 3. QOS IN TRADITIONAL AND SDN NETWORKS 54

Figure 3.7: Queue balancing performances with 100 flows.

respect to the N-Migrations approach. For example, when we consider 100

flows inside the network, as shown in Figure 3.7, we can say that, in 90%

of cases, the distance between our solution and the ideal one doesn’t exceed

5000 for what concerns Min Load and Multiway strategies. On the contrary,

N-Migrations accuracy curve has a less steep trend than the alternative solu-

tions: the value of index for this approach is below 5000 in 50% of cases. In

particular it is important to note that Min Load and Multiway behaviours

are very close to the Ideal one (CF is 1 for any index-th value, including 0)

and overlap it for a relatively small index-th.

Also the simulations involving 125 and 150 flows confirm the same be-

haviour, as shown in Figures 3.8 and 3.9.

Concerning N-Migrations: the results show that the N-Migrations approach

cannot achieve the same performances of the Min Load and Multiway. This is

due to the choice of the N parameter, which is the key of the algorithm. This

parameter can be set in order to tune the performances of this approach: as

the N parameter grows, the behaviour of the algorithm approaches the Mul-

CHAPTER 3. QOS IN TRADITIONAL AND SDN NETWORKS 55

Figure 3.8: Queue balancing performances with 125 flows.

Figure 3.9: Queue balancing performances with 150 flows.

tiway scheme. The choice of the N parameter leads to a trade-off between

performance and computational complexity.

CHAPTER 3. QOS IN TRADITIONAL AND SDN NETWORKS 56

3.9 Considerations

3.9.1 Scaling Performances

Concerning statistics (see Table 3.6) acquisition: the types of messages sent

by the controller are flow, queue and port requests that are used to gather

information about port rates, queue rates and individual flow statistics. The

controller receives three statistic replies, one for ports, one for queues and

one dedicated to all flows traversing the OpenFlow switch in a given instant.

Since the maximum information sent through the Ethernet frame is 1500

byte, each flow statistics reply message can report only the information about

10 flows. For this reason the number of flow statistic packets in the case of f

flows is df/10e. Given N the number of switches composing the network and

considering another two packets for port and queue statistics, the number of

packets p that the controller must process at every polling interval is

p =

(⌈
f

10

⌉
+ 2

)
·N (3.4)

Considering a significant number of flows f and switches N , the number of

packets p received by the controller can be large. This is the price of a fine-

grained control of an SDN network at flow-level (IntServ). The number of p

can be reduced by using the flows statistics for a small number of “aggregate”

flows. This could reduce the fine-grained control but relieves the controller

from the management of a large number of packets.

CHAPTER 3. QOS IN TRADITIONAL AND SDN NETWORKS 57

3.9.2 Switch Coordination

Even if we show the results by using a single OpenFlow switch in the network,

it is possible to extend the concept across multiple SDN devices. The routing

module implemented in the BeaQoS controller can manage more then one

single switch. For each switch the controller computes all the needed param-

eters in order to provide the best behaviour, given the chosen algorithm. In

order to extend this concept to the entire network, given a specific path to

the destination, it would be possible to compute the optimal queue qi∗ for

each switch belonging to the specific path.

Alternatively, since the controller BeaQoS has the view of the entire net-

work, another possible solution is to examine all existing paths between

source and destination for the considered flow. The controller could then

compute the best path for the specific flow and finally decide the optimal

queue qi∗ for all the switches belonging to the selected path.

3.9.3 Timing Performances and Overheads in Queue

Balancing Scenario

In queue balancing scenario timing performances are essential to guarantee an

“almost” instantaneous load balance among queues in each switch. The main

difficulty of this approach is due to the remote nature of the actions of the

SDN controller that acts as if the actions were internal switch functionalities.

The time elapsing from the load imbalance event at the switch and the new

queue balance (queue balance delay) can be expressed as the sum of several

components, as depicted in Figure 3.10.

CHAPTER 3. QOS IN TRADITIONAL AND SDN NETWORKS 58

Figure 3.10: Timing Performances in Queue Balancing Scenario.

All our tests are performed with a relatively small number of flows. This

allows the controller to manage per flow performances. Considering the Mul-

tiway algorithm, the controller can reorder the total amount of flows travers-

ing an SDN switch in a time of the order of milliseconds. Moreover, consid-

ering that the controller is connected with the switches using an out of band

connection, the time needed to deliver the flow modifications is negligible.

In a large scale scenario with a huge number of flows, it is possible to

aggregate flows, reducing the number of sent flow stats and the computation

time of the Multiway algorithm.

3.10 Conclusion about Support of Quality of

Service in SDN

The impossibility to configure the service rate of the queues in a OpenFlow

switch through an OF directive is a limitation that could reduce the quality

CHAPTER 3. QOS IN TRADITIONAL AND SDN NETWORKS 59

management capabilities in an SDN network but it is a fact for now. In this

chapter, exploiting the re-routing mechanism, we propose a method able to

provide a basic deadline management support and an efficient queue balanc-

ing without any modification of OpenFlow specifications and switches. We

present BeaQoS, an updated version of the Beacon controller able to receive

statistics from OpenFlow switches, compute more complex statistics and de-

cide the best queue re-routing strategy. We show the results obtained in

performance tests in which we compare alternative Deadline Management

approaches and Queue Balancing solutions. Our cases of study show that

the proposed solutions allow getting satisfying results when applied to the

current OpenFlow environment. Future developments will be devoted to the

scalability tests of our solutions and to the study of more complex queue man-

agement schemes that could lead to further improvements in performances.

We also plan to develop an extension of our internal re-routing approach for

the computation of alternative paths between the source and destination, in

order to reduce the network congestion.

Chapter 4

SDN in Satellite Environment

The upcoming 5th generation of mobile networks (5G) is specifically con-

ceived to provide extreme flexibility levels by-design to support services and

applications with highly heterogeneous requirements in terms of performance,

scalability, and deployment scenarios. To cope with these challenging objec-

tives, the current specification of the 5G can be considered as “a network

of networks”, since it will allow the adoption and combination (as needed

by the overlying applications) of different and alternative network stacks and

communication technologies. The “virtualization” paradigm is the key cross-

cutting enabler of the 5G design. It will pervade the 5G architecture at any

layer, in order to provide the related resources “as-a-Service”.

Clear and tangible examples of this process are Network Functions Virtu-

alization (NFV), Software Defined Networking (SDN), and Software Defined

Radio (SDR) technological frameworks, which, together, constitute the “vir-

tualization” engine of the 5G architecture [41]. Such technological frame-

works fully decouple hardware infrastructures from network protocols and

60

CHAPTER 4. SDN IN SATELLITE ENVIRONMENT 61

functions and introduce advanced multi-tenancy capabilities such as the pos-

sibility of creating multiple isolated “virtual” domains over the same infras-

tructure, where multiple tenants can build and run their customized network

services. To fully exploit these new capabilities and expose them towards ver-

tical industries and Over-The-Top (OTT) players, the 3rd Generation Part-

nership Project (3GPP) and Next Generation Mobile Networks (NGMN) Al-

liance are radically redesigning NorthBound interfaces of telecommunication

platforms, by adopting “Network Slicing” [41] as a base service model. The

Business/Operational Support Systems (BSS/OSS) of upcoming 5G network

platforms are meant to expose “customized” and isolated virtual projections

of the mobile network (i.e. Network Slices) to vertical industries and OTT

players, so as to enable them to run their applications and services on top of

these network slices. To this end, a network slice is composed of a number of

logical sub-networks that can have different roles and configurations. Such

subnetworks can be instantiated as “private” network projections inside the

slice, or shared among multiple slices (e.g., to attach multiple slices to the

same radio access network).

The potential role of satellite networking in such ecosystem becomes man-

ifest if referred to this slicing model, within which satellite resources can be

embedded, either as Physical Network Functions (PNFs), when considered

in their current deployment, or, with much greater relevance, by including

their virtualized operational components as manageable entities in the 5G

architectural framework. Thanks to their intrinsic ubiquity and broadcast-

ing capabilities, satellite networks can play multiple roles in 5G. The satellite

can act as a main single backhaul segment for rural areas, aircrafts, vessels,

CHAPTER 4. SDN IN SATELLITE ENVIRONMENT 62

trains, or as additional backhaul means to opportunistically provide addi-

tional connectivity/bandwidth resources, also improving service continuity,

or as a pure transport subnetwork.

The integration and use of satellite technology within the 5G ecosystem

obviously poses new architectural and service requirements/limitations. For

instance, on one side, it is reasonable to assume that satellite subnetworks

can be directly applied to those traffic flows (e.g., mission critical data) that

are associated with 3GPP 5G [42] Quality of Service (QoS) Indicators (5QI)

allowing delays in the order of 1-2 hundred milliseconds. On the other side,

satellite subnetworks can be adopted to facilitate and make more effective

the deployment and operations of other intermediate 5G subsystems such as

edge computing nodes needed to cope with tighter and more challenging 5QI

levels, as for Augmented Reality applications. In the edge computing sce-

nario, satellite interconnectivity may be exploited for the unicast/multicast/

broadcast geographical distribution of video, audio, and application software

binaries to a large number of terminals simultaneously.

In order to enable this deep integration between satellite and 5G, a

number of actions should be undertaken to bring state-of-the-art satellite

technologies closer to the virtualization paradigm used within the 5G ar-

chitecture. Many issues are related to physical layer aspects; quoting [43]:

“non-orthogonal multiple access (NOMA), massive multiple input and mul-

tiple output (MIMO), cooperative communications and network coding, full

duplex (FD), device-to-device (D2D) communications, millimeter wave com-

munications, automated network organization, cognitive radio (CR)”. Nev-

ertheless, from the networking viewpoint, virtualization and multi-tenancy

CHAPTER 4. SDN IN SATELLITE ENVIRONMENT 63

are key aspects. Despite satellite technologies are well known to provide

advanced network virtualization means, since they allow the dynamic man-

agement of multi-point QoS-guaranteed links, these capabilities should be

exposed “as-a-Service” to multiple concurring tenants. In this respect, the

potential impact of architectural frameworks based on NFV, SDN and SDR

might be more than relevant.

4.1 State of the Art for SDN/NFV Enabled

Satellite Networks

The physical and hardware separation between control and data forwarding

nodes is one of the main principles behind the SDN paradigm. Its imple-

mentation is based on three different functional planes: Management Plane,

whose purpose is to compute resource allocation strategies to provide each

user with the required QoS, depending on the user’s policies and current

status of the network; Control Plane, aimed at computing and enforcing for-

warding rules to a number of data forwarding nodes in order to properly route

traffic flows; Data Plane, composed of the nodes of the underlying network

infrastructure, whose only purpose is to forward the incoming traffic flows,

by following the given rules.

The aim of NFV is to decouple network functions from dedicated physical

devices, making possible to run such functions on general-purpose servers

which could be deployed in network operators’ datacenters. In this way,

a more precise hardware resource allocation and sharing can be achieved,

implementing Virtual Network Functions (VNFs) on virtual machines and

CHAPTER 4. SDN IN SATELLITE ENVIRONMENT 64

assembling and chaining VNFs to create services.

These new concepts can also be employed in satellite communication net-

works, allowing:

• intelligent delivery and deployment of new services in a flexible and

programmable way;

• decrease in energy consumption, by virtualizing the functions per-

formed by the ground segment of the satellite infrastructure and con-

solidating/activating/deactivating them on remote datacenters;

• Capital Expenditure (CAPEX) decrease by exploiting general-purpose

hardware components to deploy virtualized functions;

• Last but not least, the flexible embedding of satellite networking func-

tionalities in the creation and dynamic adaptation of network slices,

along with the required resource provisioning at the level of the Satel-

lite Network Operator (SNO).

SDN and virtualization for broadband satellite networks are investigated

in [44]. This has been one of the first studies to include a vision of how

SDN and NFV concepts could be employed in satellite networks. The au-

thors propose a network architecture based on GEO satellite communica-

tions. Reconfigurable broadband satellite networks are also the focus of the

research work in [45], where a strategy is developed to deal with the prob-

lem of resource management based on a functional architecture composed

of virtualized functions distributed throughout the network. [46] proposes a

joint placement of controllers and gateways in an SDN-Enabled 5G-Satellite

Integrated Network.

CHAPTER 4. SDN IN SATELLITE ENVIRONMENT 65

An SDN/NFV-based framework for integrated satellite-terrestrial com-

munication networks called SERvICE is considered in [47], which exploits

the centralized control of SDN to suggest a strategy to distribute the three

planes of the SDN paradigm in the various network nodes of a multi-layer

satellite network. The Management plane acts as the orchestrator of the

overall network in the Satellite Network Management Center (SNMC). The

Control Plane is divided into two parts: the space part, dealt with by the

space controller in GEO satellites, and the terrestrial part, in charge of the

terrestrial controllers implemented inside datacenters and Satellite Gateways

(SGWs). The Data Plane is also divided into space and terrestrial parts and

is composed of MEO and LEO satellites, SGWs, and other intermediate

terrestrial nodes, such as SDN switches.

In recent years, the growing interest in the next generation of networks

has led to an interest in and the proliferation of different project opportunities

financed by the bodies of the European Commission and the European Space

Agency. These projects are very important for the innovative aspects and

the problems associated with the use of new generation networks. Below are

some of the main projects concerning 5G networks.

The European H2020 SANSA (Shared Access Terrestrial-Satellite Back-

haul Network Enabled by Smart Antennas) [48] project has the objective of

increasing the performance of mobile backhaul networks, in order to meet the

5G requirements. Specific goals are to increase the capacity of the backhaul

network trying to meet the predicted traffic demand of 5G, to improve the

network resilience against link failure and congestion, along with the spec-

trum efficiency in the Ka band, to reduce the energy consumption of the

CHAPTER 4. SDN IN SATELLITE ENVIRONMENT 66

current mobile networks and to ease their deployment. To these purposes,

the project proposes the use of smart antennas to set up a novel end-to-

end system architecture composed by both terrestrial and satellite nodes.

Flexibility in the network is achieved through a Hybrid Network Manager

(HNM), which includes configuration, event and topology management func-

tionalities.

The European H2020 project VITAL (VIrtualized hybrid satellite - Ter-

restriAl systems for resilient and fLexible future networks) brings NFV into

the satellite domain and enables SDN-based resource management in hy-

brid terrestrial-SatCom networks. A framework named Satellite Cloud Ra-

dio Access Network (SatCloudRAN) [49] is defined. Its main principle is to

virtualize a DVB (Digital Video Broadcasting) - Satellite Second Generation

(DVB-S2)/ DVB - Return Channel Satellite Second Generation (DVB-RCS2)

ground infrastructure onto a centralized cloud-based processing platform.

Three different virtualization levels are identified: network layer functions,

MAC layers functions, and physical layer ones up to the radio frequency

front-end of SGW OutDoor Units (ODUs). In detail, in the first level network

functions such as Performance Enhancing Proxy (PEP), admission control

strategies and QoS policies’ management are performed in a centralized hub.

IP packets are sent to the SGW. In the second level, the uncoded DVB-S2

frame (called BBFRAME) is created remotely and then sent to the physical

gateway. In the last level, data packets forwarded to the ODUs are physical

layer frames (I/Q symbols). This framework could allow a full virtualization

of the satellite delivery chain and its provision ”as-a-Service” to multiple ten-

ants contributing to the Satellite Network-as-a-Service (SatNaaS) paradigm

CHAPTER 4. SDN IN SATELLITE ENVIRONMENT 67

[50].

ARTES 1 CLOUDSAT aims to determine the applicability of SDN and

NFV technologies in order to define and validate integrated virtualized satel-

lite - terrestrial architectures [51]. The network architecture is composed of

the following subsystems:

• Infrastructure, including the virtualization-capable equipment on which

network services are deployed: switches and routers of the satellite ter-

minals, and gateways.

• Infrastructure management entities, based on distributed management

paradigms, such as Virtualized Infrastructure Management (VIM) en-

tities for the SDN/NFV enabled segments and the satellite segment,

and a Wide Area Management (WAN) entity.

• Orchestrators, in charge of the deployment of services and resource

allocation within each network segment.

• Federated Manager, representing the interface toward each orchestra-

tor, as well as the interface toward final users.

4.2 Open Challenges

Despite the research efforts performed to fill the gap between the current

satellite communication networks and their envisioned network virtualiza-

tion evolution, we have identified some open challenges, which require being

further investigated and solved before proposing a stable and standardized

CHAPTER 4. SDN IN SATELLITE ENVIRONMENT 68

network architecture. All these issues have a strong impact on the future in-

tegration of satellite technologies into the 5G ecosystem; for instance, on how

a satellite network may be included in a slice subnetwork, and how it may

support dynamic lifecycle operations such as instantiation, de-instantiation,

and tuning, as discussed in the next section.

The first issue to be tackled is how to distribute the different layer func-

tionalities that compose the SDN architecture, i.e. in which nodes to locate

the three SDN planes. This problem involves different factors, such as the

high propagation delays of satellite links and the processing power capabili-

ties of the considered components. Satellite networks may use different types

of satellites acting at different altitudes (GEO, MEO, LEO) and character-

ized by different sizes, such as pico, nano, micro, etc. For these reasons,

their communication capabilities are differentiated, in terms of transmission

frequency bands, transmission rate, and number of on-board antennas that

can be installed. All these variables can lead to different choices about SDN

planes positioning, and, consequently, to different satellite network architec-

tures.

Another concern in the design of an SDN satellite network is the imple-

mentation of the communication protocol between Data and Control Planes.

In traditional SDN networks, this protocol is identified in the de-facto stan-

dard OpenFlow. It enables the collection and processing of the network

status information in order to allow Control and Management Planes enforc-

ing policies and forwarding rules about current traffic flows. In a satellite

network there is the need to collect network status information that may be

insignificant in terrestrial networks, such as network topology changes due

CHAPTER 4. SDN IN SATELLITE ENVIRONMENT 69

to satellite movements, satellite current available energy and storage space.

To allow this, some extensions of the OpenFlow protocol may be required.

As already mentioned, the network topology may change during the net-

work lifetime, owing to LEO and MEO satellites motion. As a consequence,

there is the need of a handover procedure to keep the flow tables of the

Data Plane nodes updated, performing new rule computations when needed.

Another situation in which handover is required is when a satellite terminal,

served by a given satellite, loses its visibility and has to switch to another one

[52]. Even in this case, a change of the flow rules inside the involved switches

and, possibly, reconfiguration of satellite NFV services may be needed, in

order to avoid service interruption. Checking the impact of satellite mobility

on virtualization and on the creation of logical virtual networks as-a-Service

dedicated to given use cases (slices) is indeed a challenging task.

Another open challenge is related to the problem of the gateway diver-

sity. The ground infrastructure may be composed of a set of satellite gate-

ways linked together through the terrestrial network. Therefore, they offer

different points of access to the space segment, which are geographically dis-

tributed in a wide area. This network topology, if really exploited, implies the

application of strategies to choose the best satellite gateway for the forward

links [53, 54]. The spectrum frequency bands used by satellite transponders

are high, which increases the achievable transmission rates but also the at-

tenuation due to atmospheric phenomena, such as rain. This means that the

access to the space segment may be, in a given period of time, more conve-

nient from one point with respect to another, both from the performance and

from the energy viewpoint. Selecting the gateway may give practical advan-

CHAPTER 4. SDN IN SATELLITE ENVIRONMENT 70

tages, if properly orchestrated. A real-time change of the satellite gateway

for the ongoing transmissions due to the extreme attenuation of the forward

link of the currently selected satellite gateway is a possibility; however, on

one side, it should be transparent for OTT players using slices, and, on the

other side, it should be dynamically managed by the network control plane

in an agile and flexible fashion. For example, slice internal elements (i.e.

slice subnetworks) might be reconfigured to route traffic towards the new

gateways.

Other open issues regard real-time monitoring and resource constraints,

which are not limited to the widely investigated GEO and LEO scenarios.

Since the past few years, new kinds of satellites, such as CubeSats, have

been attracting the attention of a large number of industries and univer-

sities, thanks to their lower costs and shorter deployment. The size and

weight of these satellites are much lower if compared to GEO and LEO, but

they suffer from very strict constraints about, for example, available energy,

storage capacity, and computational power. These variables, among others

regarding the status of the satellites in contact with the satellite gateways,

should be monitored and controlled in the resource allocation process. At the

same time, they make the provision of slices more time-dependent. To cope

with the dynamic satellite features, slice provision and adaptation should be

performed along with real-time monitoring of performance parameters and

resource availability.

CHAPTER 4. SDN IN SATELLITE ENVIRONMENT 71

Backhauling/
TransportNetworks

WIM
WIM NFVO

OSS/BSS

MEC

Vertical
Vertical

VerticalVertical
Applications

VIM

Network Slices
as-a-Service

VNFM
VNFM

VNFM
VNFM

Backhauling/
TransportNetworks

U
pp

er
L
ay

er
s

PNF
PNF

PNF
PNF

VIM
VIM

Flexibility
SDN

Netw. tech.

Satellite network - aware
deploymentand

optimizationmechanisms

Virtualizationdegree
of Satellite Networks

Multiple NFV Services
including the satellite ones

Vertical Application
componentsdeployed in

network data-centers

Legenda:
OSS: Operational Support System (interfacing the network)
BSS: Business Support System (interfacing verticals)
WIM: WAN Infrastructure Manager
VIM: Virtual Infrastructure Manager
VNFM: Virtual Network Functions Manager
NFVO: Network Functions Virtualization Orchestrator
MEC: Multi-access Edge Computing
PNF: Physical Network Function

Application Layer

TCP UDP
Other transport

layer

IPv4 - IPv6
Other network

layer

N
et

w
or

k
L
ay

er

Satellite Medium Access Control (SMAC)
Sub-layer

Satellite Link Control (SLC) Sub-layer

Satellite Physical (SPHY) LayerD
at

a
L
in

k
an

d
P

hy
si

ca
l
L
ay

er
s

Figure 4.1: Architectural Framework

4.3 Proposed Solutions

With reference to the 3GPP, ETSI NFV Management and Orchestration

(MANO, http://www.etsi.org/technologies-clusters/technologies/

nfv/open-source-mano) and ETSI Multi-access Edge Computing (MEC,

https://bit.ly/2IvXVaY) architectural frameworks, we can refer to the

architectural elements depicted in Figure 4.1 to highlight the main points

connected with the deployment of satellite-related functionalities and their

embedding as full-fledged slice components. Current satellite networking

elements can be seen as PNFs, providing long-haul connectivity. To be

integrated and orchestrated as slice components by an NFV-Orchestrator

http://www.etsi.org/technologies-clusters/technologies/nfv/open-source-mano
http://www.etsi.org/technologies-clusters/technologies/nfv/open-source-mano
https://bit.ly/2IvXVaY

CHAPTER 4. SDN IN SATELLITE ENVIRONMENT 72

(NFVO), upon requests coming from the OSS to satisfy the requirements

of vertical applications, the functionalities of SGWs and Satellite Terminals

(STs) need to be virtualized except for ODU, which remains a PNF, basi-

cally conforming to the SatCloudRAN paradigm. To better highlight such

functionalities and their mapping to VNFs, in Figure 4.1, we have included

the representation of a satellite network protocol stack that can implement

either standard protocols such as TCP/UDP and IP or dedicated protocols

indicated as “Other transport/network solution”, with the intention to in-

clude proprietary architectural elements aimed at performance optimization

such as PEP and header compression. With the desired flexibility, satellite

components (physically and/or virtually implemented in VIMs) can then be

employed by the WIM in the backhaul, whenever needed to support applica-

tions whose KPIs are compatible with their characteristics, or even to create

transport links or subnetworks toward the Enhanced Packet Core (EPC).

The role of SDN here becomes instrumental to allow fast reconfiguration and

interconnection of attachment points for the functional components. In the

MEC framework, in the presence of otherwise isolated terminals, the satel-

lite virtual network may be the only means to deploy application components

close to their users and to provide them with caching at the edge, in order

to satisfy stringent application requirements.

Let us make a practical example. A vertical service request may be

monitoring and controlling remote installations such as oil and gas pipelines

through SCADA (Supervisory Control and Data) or, alternatively, tracking

assets like containers. Remote installations, as well as containers when on

board vessels, may be networked only through satellites, but Vertical Ap-

CHAPTER 4. SDN IN SATELLITE ENVIRONMENT 73

plications may ignore this technical need and deliver the service request to

the BSS. The OSS checks multiple NFV services exposed by the NFVO and

selects the satellite transport providing a given quality of service in terms

of delay, loss, and jitter (if requested). To provide the assured quality the

satellite network may need to operate specific actions, from the transport

layer (e.g., PEP, TCP optimization) and network layer (e.g., IP DiffServ/

IntServ, IP routing), within the Satellite Independent layers, down to link

and medium access control and physical layer (e.g., MAC using SIC - Suc-

cessive Interference Cancellation -, adaptive coding and modulation, etc.) in

the Satellite Dependent part. These operations may be performed in a VIM

by one or more datacenters, not necessarily located nearby the satellite Earth

station, connected to each other by the WIM.

Open challenges identified in the previous section may be mapped over

the architectural elements in Figure 4.1, as also shown in Table 4.1.

Challenges
Involved

Architectural Elements

SDN Planes Positioning WIM/PNF

SDN Communication Protocol issues WIM/PNF/VNFM

Gateway Selection OSS

Real-time Monitoring OSS/NFVO/PNF

Impact of
SS/NFVO/WIM

Satellite Motion on Virtualization

Resource and
OSS/NFVO/VIM/WIM/MEC

Performance Constraints issues

Table 4.1: Matching between challenges and Architectural Elements

CHAPTER 4. SDN IN SATELLITE ENVIRONMENT 74

Figure 4.2: Road-map for an SDN/NFV-enabled satellite network

The integration of terrestrial and satellite networks in 5G through the

virtualization of network functions, the provision of slices, and the use of

general-purpose instead of ad-hoc hardware, will not be immediate. More-

over, the investments required to design and deploy a GEO/LEO satellite

communication network are huge, so current satellite operators cannot re-

place costly hardware components before the end of the scheduled network

lifetime, especially concerning on-board technologies.

Before implementing a complete operative case as the one used in the

previous practical example, a gradual virtualization would be recommendable

CHAPTER 4. SDN IN SATELLITE ENVIRONMENT 75

to facilitate a preliminary integration in the near future. We have identified

three possible incremental virtualization levels, as shown in the clouds (a),

(b), and (c) of Figure 4.2, respectively:

(a) Ground Infrastructure, physically composed of SGWs (i.e., the nodes

interfacing satellite portions and ground infrastructure, which include

ODUs), Network Control Center (NCC) and Network Management

Center (NMC). The first step could be to virtualize network control

and management functions previously performed inside the NCC and

NMC, which would be virtually implemented inside a datacenter rather

than on ad-hoc nodes. These functions include dynamic network re-

source allocation, real-time control and non-real-time management of

the overall network and could include the actions related to SDN Man-

agement and Control Planes, such as user policies management and

forwarding rules computation. The functions performed by SGWs can

be virtualized and remotely located in one or more datacenters, re-

ducing the specific-purpose hardware components of the SGWs, which

could be limited to the ODUs, excluded from the virtualization. As

described in [49], there may be three different variants for the virtu-

alization of a SGW, depending on the virtualization “depth”: only

network and upper layers functions, such as PEP and VPN (Virtual

Private Network); network and upper layers + Encapsulation MAC

functions; network and upper layers + Encapsulation MAC + Physi-

cal layer functions, such as adaptive Forward Error Correction (FEC)

coding and modulation, giving access to satellite links.

(b) Satellite Terminals. The second step could be to virtualize the func-

CHAPTER 4. SDN IN SATELLITE ENVIRONMENT 76

tions performed by the STs. Considering their role, the virtualized

functions could be the same as for the SGWs except for the scheduling

task that the SGW has to perform across many STs that are sharing the

same resources. In this case the SGW has to coordinate different STs

with different demands, QoS profiles and channel conditions, whereas

the STs do not have to deal with this task. Moreover, additional func-

tionalities related to the MEC and content caching paradigms can be

implemented inside remote servers to help reduce the latency.

(c) Satellites. The final step could involve the addition of virtualized func-

tions on board satellites. Considering the different kinds of satellites

and the various possible satellite constellations, both SDN Control and

Data Planes functions could be implemented on-board satellites. Satel-

lite communication functions could be virtualized in order to better

exploit limited available resources. This point, however, requires a

careful analysis of the on-board available resources, both in terms of

performance and energy consumption and implementation costs.

4.4 The role of SDN in the 5G Satellite Com-

munications

In this section, we focus on SDN in order to better understand which are

the consequences of its employment in satellite networks. The main princi-

ple of SDN is to centralize the intelligence of the network decoupling control

and Data Planes. SDN can be employed for different purposes. The most

CHAPTER 4. SDN IN SATELLITE ENVIRONMENT 77

common is routing, but also congestion control, flow control, and even secu-

rity, allowing novel control and management strategies based on fine-grained

traffic flow identification.

The most commonly used communication protocol between SDN switches

and controllers is OpenFlow [1]. It is used to manage the flow tables inside the

SDN switches to forward packets. These tables consist of lists of flow entries

which include matching rules and corresponding actions. Each matching

rule contains a set of matching fields, i.e. a set of parameters to identify a

traffic flow, such as source and destination Ethernet addresses, source and

destination IP addresses, source and destination TCP/UDP ports, among

others. An action is defined for each matching rule. If there is a match

between received packets and matching rules, the packets are forwarded by

using the corresponding actions. If there is no match, SDN switches ask for a

new forwarding rule which is computed and sent back by the SDN controllers.

Several studies have already investigated the employment of SDN in in-

tegrated satellite-terrestrial networks. The main difference among them is

how the different authors have decided to locate the different SDN Planes

and their functionalities within the satellite network components. [55] inves-

tigates the use of the SDN paradigm in High-Throughput Satellite (HTS)

networks, identifying the most interesting use cases and perspectives: the

used network infrastructure is composed of a Geostationary (GEO) satellite

including the SDN controller, Satellite Gateways acting as SDN switches, and

a terrestrial Network Management Centre (NMC) implementing the Man-

agement Plane. Almost the same network architecture is considered in [56],

where an SDN-based Information-Centric Networking (ICN) architecture for

CHAPTER 4. SDN IN SATELLITE ENVIRONMENT 78

an integrated satellite-terrestrial network is proposed. [55] also suggests that

a network composed of a Low Earth Orbit (LEO) satellite constellation in

addition to a GEO satellite system could bring benefits. A novel software-

defined satellite network architecture, called OpenSAN, is proposed in [57]:

the satellite ground segment infrastructure acts as the Data Plane, a GEO

satellite includes the Control Plane, while the Management functionalities are

performed by a terrestrial Network Operation and Control Centre (NOCC).

An architecture which exploits LEO inter-satellite links (ISLs) for data for-

warding and GEO broadcasting capabilities for rapid network deployment

is described in [58]. Other studies have considered a hierarchical multi-layer

satellite network where the Data Plane is included both in LEO and Medium

Earth Orbit (MEO) satellites [47, 59, 60].

Only [58] considers the computation of the time required to establish a

new forwarding rule and to route and deliver the first packet of the new

data. The rest of the packets will follow the same forwarding rule. The

required time is in the order of few milliseconds in terrestrial networks and it

does not significantly affect the application data delivery time. In integrated

satellite-terrestrial networks, it could be not negligible, especially considering

satellite link delays together with the strict performance requirements of some

applications. In this case, the aim of our work is to estimate the mean value

of this time in a software-defined integrated satellite-terrestrial network, in

order to identify which are the maximum performance requirements a certain

application can get if its data are forwarded through satellites.

CHAPTER 4. SDN IN SATELLITE ENVIRONMENT 79

4.5 SDN-based Satellite Terrestrial Network

In order to understand better the possible implication in the use of SDN

in a satellite-terrestrial network, we introduced an example network shown

in Figure 4.3, which is composed of three portions. The network is very

challenging, in particular for the delay, because it involves GEO satellites,

which have a main role also concerning the SDN control architecture, as

explained below.

GEO Satellites

LEO Satellite
Constellation

Ground Stations

NMCCs

Control Plane

Data Plane

Satellite access

Management Plane

......

... ...

Figure 4.3: Considered terrestrial-satellite network with focus on one of the

three equal portions

Each portion is composed of a set of heterogeneous terrestrial networks

which could be based on different technologies, such as 5G cells, Local Area

Networks, LTE cells, linked together by a terrestrial infrastructure but also

by a LEO satellite constellation, which is common among the 3 portions.

In this way, traffic flows with given performance requirements, especially

the delay-tolerant ones, can be forwarded through the satellite constellation,

CHAPTER 4. SDN IN SATELLITE ENVIRONMENT 80

partially offloading the terrestrial infrastructure. Alternatively, the satellite

route could be selected in case of fault of the terrestrial infrastructure.

In details, the overall terrestrial portion is composed of:

• Ground stations: terrestrial stations linked, on the one hand, with

terrestrial terminals through terrestrial communication means (wired

or wireless) and, on the other hand, equipped with a satellite antenna

to send/receive data to/from satellites.

• Terrestrial hosts: they are all kind of nodes which can generate data

traffic, such as user mobile and fixed terminals and servers.

• Network Management and Control Centres (NMCCs): three terrestrial

centres which manage network resources and user requirements.

The satellite portion includes three GEO satellites. Each GEO satellite covers

a third of the shared LEO constellation. LEO satellites are linked with

the ground stations and, through ISLs, among them. The considered LEO

satellite constellation is a multi-orbit polar constellation where orbital planes

are circular and equally spaced among them. Satellites are equally spaced

within each orbit. Its representation is reported in Figure 4.4.

There are two types of ISLs: intra-orbit ISLs (ia-ISLs), which are the

links between adjacent LEO satellites belonging to the same orbit; and inter-

orbit ISLs (ie-ISLs), which are the links between adjacent LEO satellites

belonging to different and adjacent orbits. In this way, each satellite has four

bidirectional ISLs. However, in this kind of constellation, satellites which are

travelling at high latitude are not able to keep ISLs active due to their speed

and consequent Doppler effect. Another issue which could affect ISL status

CHAPTER 4. SDN IN SATELLITE ENVIRONMENT 81

Figure 4.4: Polar LEO satellite constellation

is the presence of the so-called “Seam”. Orbital planes are equally spaced

around a 180◦ angle, hence there are two adjacent orbits whose satellites

travel in opposite direction (as shown in Figure 22.1 of [61]): the first ones

from south to north and the other ones from north to south. Communications

through the ie-ISL of these satellites could not be possible for the same reason

of the high latitude ISLs. In our network all ISLs are always active except for

the ones operating at high latitudes. Besides, we assume a “W” ISL pattern

(Figure 22.3(a) of [61]). Figure 4.5 illustrates our considered ISL model: the

horizontal size is two times the number of orbits and the vertical size is half

the number of satellites per orbit.

CHAPTER 4. SDN IN SATELLITE ENVIRONMENT 82

Figure 4.5: LEO satellite constellation ISL model

We structure the Data/Forwarding, Control, and Management Planes as

depicted in Figure 4.6.

LEO satellites constitute the Data Plane and act as SDN switches. Their

only purpose is to forward the data received from ground stations through

the constellation following the routing instructions stored in their memory

and previously received by the GEO satellites. GEO satellites act as SDN

controllers. Their aim is twofold: each of them periodically collects and sends

information about the statistics of the underlying LEO satellite constellation

to the related NMCC; every time a GEO receives a new flow entry request,

it computes the forwarding rules exploiting the data management strategies

received from the NMCC and then sends a flow entry reply to the proper

LEO satellite. NMCCs collect and keep updated the information about the

CHAPTER 4. SDN IN SATELLITE ENVIRONMENT 83

Figure 4.6: SDN Planes and functionalities scheme

network statistics received from the GEO satellites and the traffic flow per-

formance requirements (policies) received from the terrestrial hosts. When

NMCCs receive a strategy request from the GEO satellites, they establish a

data management strategy exploiting these information and send it back to

the GEO satellites. We opt for a distributed Management Plane in order to

reduce the access time between NMCCs and GEO satellites, even though, in

this case, a protocol to keep the consistency of this information is required,

as also mentioned in [57]. In some cases, Control and Management Planes

can be implemented in the same node. We have decided to apply the Man-

CHAPTER 4. SDN IN SATELLITE ENVIRONMENT 84

agement Plane on terrestrial nodes in order to reduce the time to install and

update traffic flow policies and to avoid storing a huge amount of information

and tackling a high computational effort on-board GEO satellites that have

storage, energy, and computational power constraints.

Taking into account all these steps, the time required to route a new traffic

flow could be quite large, especially considering the delay of GEO satellite

links. In the next section, we will estimate the mean value of this time, in

order to quantify its impact on the expected performances and identify the

maximum performance requirements that allow the use of the satellites.

4.6 Time estimation model

We consider a terrestrial host THS generating data packets destined to an-

other terrestrial host THD located in areas covered by two different ground

stations GSS and GSD, respectively. THS sends its packets to GSS which

uploads them to the LEO satellite LES (which is an SDN switch) in contact

in that moment. THS’s packets are a new traffic flow for LES that requires

a specific forwarding rule to the GEO satellite GES (an SDN controller)

which is covering the LEO constellation portion where LES is located. GES

contacts the related NMCC NMS asking for information about the current

status of the network and the performance policy related to the identified

traffic flow. A routing path from LES to the LEO satellite LED (also an

SDN switch) in contact with GSD is computed by GES. Proper forwarding

rules are sent to each involved LEO satellite/SDN switch. If LED is located

in an area covered by another GEO satellite/SDN controller GED, a portion

CHAPTER 4. SDN IN SATELLITE ENVIRONMENT 85

of the routing path includes the LEO satellites inside GED’s coverage area.

In this case, the required information will be sent also to GED through its

related NMCC NMD. When LES receives its forwarding rule, the packets

are sent through the SDN-based LEO network until they reach LED. Finally,

LED downloads them to GSD and then to their final destination THD.

To ease the model always keeping the considered scenario as close as pos-

sible to a real one, we consider only propagation delays. We ignore transmis-

sion, queuing, and forwarding delays in this case, because they may be con-

sidered negligible compared to the satellite link propagation delays for traffic

flows characterized by short duration. We assume that there is no handoff

during the overall described process, i.e. the topology does not change. Con-

sequently, the mean time T required to compute and establish a new set of

forwarding rules and deliver the first packet of the related new traffic flow

data to the destination may be structured into 9 components:

1. propagation time between THS and GSS for data packets;

2. propagation time between GSS and LES for data packets;

3. propagation time between LES and GES for flow entry request;

4. propagation time between GES and NMS for policy and network statis-

tics request;

5. propagation time between NMS and GES for policy and network statis-

tics reply;

6. propagation time between GES and LES for flow entry reply;

CHAPTER 4. SDN IN SATELLITE ENVIRONMENT 86

7. propagation times of all ISLs from LES to LED for data packets;

8. propagation time between LED and GSD for data packets;

9. propagation time between GSD and THD for data packets;

The values of all these components depend on the distances between the in-

volved node pairs. The distances among adjacent LEO satellites belonging

to the same orbit is almost constant, therefore the propagation delay of ia-

ISLs may be considered as a constant (part of component 7). The distances

among GEO satellites and related NMCCs is constant, and, opportunely set-

ting NMCCs positions, is the same for each of the three pairs (GEO, NMCC).

Therefore the propagation delay of the (GEO, NMCC) link is constant (com-

ponents 4 and 6). The distances related to the other elements range between

a minimum and a maximum value. In this way, we can estimate the possible

range of T from a lower to an upper bound considering, respectively, the

minimum and maximum values of these distances, and, consequently, the

minimum and maximum values of the related propagation delays. Hence, T

can be obtained as in Equation (4.1). All variables are defined in Table 4.2.

T = 2·
(
tGS
TH+tLEGS+tGE

LE +tGE
NM

)
+

NL∑
h=1

NL∑
k=1

qh,k ·
[
H ia

h,k ·tLELEia+H ie
h,k ·tLELEie

]
(4.1)

where:

tLEGSmin ≤ tLEGS ≤ tLEGSmax (4.2)

tLEGSmin =
dLEGSmin

c
=
hLE
c

(4.3)

CHAPTER 4. SDN IN SATELLITE ENVIRONMENT 87

tLEGSmax =
dLEGSmax

c
= −RE

c
· sin θLEGSmin+

1

c
·

·
√
h2
LE + 2 · hLE ·RE +R2

E · sin2 θLEGSmin

(4.4)

tGE
LEmin ≤ tGE

LE ≤ tGE
LEmax (4.5)

tGE
LEmin =

dGE
LEmin

c
=
hGE − hLE

c
(4.6)

tGE
LEmax =

dGE
LEmax

c
= −RE + hLE

c
· sin θGE

LEmin+
1

c
·

·
[
h2
GE + 2 · hGE ·RE − (h2

LE + 2 · hLE ·RE) · cos2 θGE
LEmin+

+R2
E · sin2 θGE

LEmin
]1/2

(4.7)

tGE
NM =

dGE
NM

c
=
RE

c
·
[√(hLE +RE

RE

)2

− cos2 θGE
NM − sin θGE

NM

]
(4.8)

θGE
NM = arctan

[
cos(ϕGE − ϕNM) · cos ξNM − 1512√

1− cos2(ϕGE − ϕNM) · cos2 ξNM

]
(4.9)

tLELEia =
dLELEia

c
= 2 · Re + hLE

c
· sin

(
π

SL

)
(4.10)

tLELEie min ≤ tLELEie ≤ tLELEie max (4.11)

tLELEie min =
dLELEie min

c
= 2 · Re + hLE

c
· sin

(π

2 · SL

)
(4.12)

CHAPTER 4. SDN IN SATELLITE ENVIRONMENT 88

tLELEie max =
dLELEie max

c
= 2 · Re + hLE

c
· sinψ (4.13)

ψ = arccos

[
cos

(
π

SL

)
· cos

(
− π

PL

)]
(4.14)

Equations (4.4) and (4.7) are obtained from Equation (2.2) in [62], Equa-

tion (4.8) is defined in [63], Equation (4.9) is reported in [64], and Equations

(4.10), (4.12), (4.13), and (4.14) are obtained from simple trigonometric com-

putations.

tGS
TH mean propagation delay of TH÷GS links

tLEGS mean propagation delay of GS÷LE links

tGE
LE mean propagation delay of LE÷GE links

tGE
NM propagation delay of NM÷GE links

NL overall number of LEO satellites

qh,k probability that LES and LED are the hth and kth LEO

satellite respectively

H ia
h,k number of ia-ISL in the path between LEh and LEk

tLELEia propagation delay of ia-ISLs

H ie
h,k number of ie-ISL in the path between LEh and LEk

tLELEie mean propagation delay of ie-ISLs

dLEGS distance between ground stations and LEO satellites

c speed of light in vacuum

hLE LEO satellite altitude

RE mean Earth radius

θLEGSmin minimum elevation angle between ground stations

CHAPTER 4. SDN IN SATELLITE ENVIRONMENT 89

and LEO satellites

dGE
LE distance between LEO and GEO satellites

θGE
LEmin minimum elevation angle between LEO and GEO satellites

hGE GEO satellite altitude

dGE
NM distance between NMCCs and GEO satellites

θGE
NM elevation angle between NMCCs and GEO satellites

ϕGE GEO satellite longitude

ϕNM NMCC longitude

ξNM NMCC latitude

dLELEia distance between two LEO satellites linked through an ia-ISL

SL number of LEO satellites per orbital plane

dLELEie distance between two LEO satellites linked through an ie-ISL

PL number of LEO satellite orbital planes

Table 4.2: List of defined variables

4.7 Results and Final considerations

To perform computations we use the python library math. To model the

considered LEO satellite constellation we exploit the python library networkx

that allows the creation of a connected graph and the association of weights

to its edges. In our case, the weights represent the communication delays of

the ISLs.

To the purpose of computing the mean overall time to establish the rout-

ing path between THS and THD, we need to set the position of the control

CHAPTER 4. SDN IN SATELLITE ENVIRONMENT 90

centre defined in terms of latitude and longitude coordinates, the altitude

of geostationary satellites and their positions in terms of longitude. The

longitude of the NMCCs and GEO satellites are always considered equal

(ϕGE = ϕNM), so that the elevation angle between them, reported in Equa-

tion 4.9, depends only on the latitude of the NMCCs. Other parameters to be

set for the experiments are θLEGSmin and θGE
LEmin, which, respectively, are the

minimum elevation angle between a ground station and a LEO satellite and

the minimum elevation angle between a LEO and GEO satellite, respectively.

These parameters are set to a value of 10◦ in order to avoid the presence of

obstacles inside the communication path between the involved entities.

To take into account the effects of different paths in the simulations,

the parameters qh,k, H ia
h,k, and H ie

h,k, defined in Table 4.2, are introduced.

Assuming each couple of LEO satellites (h, k) having the same probability

of being the end points of the routing path’s satellite portion, we assign the

value of 1
N2

L
to the parameter qh,k. Concerning the number of hops in the

considered paths, we derive the values by using the build-in function of the

python library networkx which returns all the possible paths between two

nodes in a selected graph, thus allowing to compute both H ia
h,k and H ie

h,k.

The set of parameters used in the simulations are reported in Table 4.3.

Figure 4.7 shows the minimum and maximum values of T with respect

to the LEO satellite altitude hLE which influences the number of satellites

and orbital planes considered in the model, as reported in [62]. Since the

aim is that LEO satellites completely cover the Earth surface independently

of their altitude, a specific number of orbital planes and satellites is needed:

Table 4.4 shows the number of orbital planes and LEO satellites necessary in

CHAPTER 4. SDN IN SATELLITE ENVIRONMENT 91

Parameter Value

RE 6371 [km]

hGE 35790 [km]

hLE [400− 1500] [km]

ξNM 45◦

θLEGSmin 10◦

θGE
LEmin 10◦

qh,k
1

N2
L

c 299792.458 [km/s]

Table 4.3: Set of initial parameters used for the experiments

order to cover the entire Earth with respect to the altitude of LEO satellites.

From Table 4.4 we can notice that increasing the altitude, the number of

orbital planes and satellites per orbital plane decreases.

400 600 800 1000 1200 1400
hLE(km)

0.62

0.64

0.66

0.68

0.70

T
(s
)

Figure 4.7: Minimum and maximum T

CHAPTER 4. SDN IN SATELLITE ENVIRONMENT 92

Altitude [km] SL PL

400 15 8

450 14 7

500 13 7

550 13 7

600 12 6

650 - 700 11 6

750 - 850 10 5

900 - 1050 9 5

1100 - 1350 8 4

1400 - 1500 7 4

Table 4.4: Number of PL and SL needed for the complete coverage of the

Earth

In Figure 4.7, as expected, T globally exhibits an ascending trend, since

the end-to-end-delay grows with the satellite altitude. We can also notice

that, every time there is a decrease in the number of orbital planes, and,

consequently, a reduction of the number of satellites involved in the complete

Earth coverage, T slightly decreases. This reduction is due to the fact that

a lower number of satellites is needed in order to obtain a complete coverage

of the Earth and, as a consequence, the number of hops to be performed

by the flows in order to reach the destination decreases. In any case, this

small decrease is balanced when the distance between two satellites increases

due to the growing altitude. Consequently, the behaviour of T keeps an

ascending trend. It is worth noting that, considering a maximum altitude

CHAPTER 4. SDN IN SATELLITE ENVIRONMENT 93

equal to 1500km, the maximum end to end delay is about 0.709s. This type

of computation is essential to decide if a future 5G service can be forwarded to

satellite portions or not. The time required to route and forward traffic over

the considered SDN-based satellite network is not excessive but, of course, is

in contrast with demanding delay sensitive applications.

Traditional and currently operating satellite communication networks of-

ten rely on ad-hoc hardware components and proprietary software solutions.

This hinders the integration of satellite and terrestrial networks and also

of different satellite networks. New solutions are arising to ease the inte-

gration and allow satellites to be part of an overall Internet composed of

heterogeneous networks, according to the network evolution envisioned in

the 5G environment. The employment of SDN in satellite networks is not

straightforward but could be a possible solution.

4.8 Conclusion about the role of SDN in the

Satellite environment

Satellite communication networks are going to have a crucial role in the 5G

ecosystem which can take advantage of their high coverage and broadcast

capability to increase the number of networked users, and to improve the

reliability and availability of the overall network in particular in cases of

emergency and critical missions, service continuity and multimedia distribu-

tion. However, their integration with 5G terrestrial networks is a non-trivial

task and entails evolutions of the current structures. From the networking

viewpoint, network virtualization is a concept that will bring benefits in terms

CHAPTER 4. SDN IN SATELLITE ENVIRONMENT 94

of lower costs, higher flexibility, and tailored service provision. The adop-

tion of SDN and NFV technologies into the satellite domain is seen as a key

element to accomplish satellite and mobile terrestrial networks integration,

allowing the creation of a heterogeneous 5G network architecture and the

provision of dedicated slices. In this vision, satellite network architectures

should be augmented with autonomous and flexible management of service

lifecycle operations, including the real-time monitoring of performance and

other 5G KPIs.

In this chapter we surveyed the outputs of some the main research projects

and studies about the integration of satellite networks in the 5G environment,

with the purpose of highlighting the current status of the research in this field.

We have described the open issues to be investigated before defining and

standardizing an SDN/NFV-based solution for satellite networks. Consider-

ing the difficulties of virtualizing these networks, an architectural framework

and a possible road-map including a set of possible future steps to allow a

gradual virtualization starting from the satellite ground infrastructure up to

on-board functionalities have been proposed. Furthermore, we investigates

the employment of the SDN paradigm in an integrated terrestrial-satellite

network where three GEO satellites act as SDN controllers and the Data

Plane is embedded in a LEO satellite constellation. A model to estimate

the mean time required to complete the SDN control actions and to deliver

the first packet of a new traffic flow is also proposed. The obtained results

allow understanding which is the lower bound of the required mean deliv-

ery time. This value should be used by a user/application to fix the perfor-

mance requirements in case the satellite component is used or by the network

CHAPTER 4. SDN IN SATELLITE ENVIRONMENT 95

management to decide if traffic may be forwarded through the satellite in a

software-defined integrated terrestrial-satellite network. In the proposed time

estimation model, we have only considered propagation delays and assumed

there is no handoff, i.e. the topology is unchanged during the traffic flow

data delivery. Even if the assumptions seem reasonable for short flows, the

impact of transmission, queuing and forwarding delays must be considered

for wider and possibly congested scenarios. The aspects neglected here will

be investigated in future research. Other open issues to be tackled are: al-

ternative integrated terrestrial-satellite network architectures, including, for

example, Medium Earth Orbit (MEO) satellites; the study of a different dis-

tribution of the SDN Planes inside the network nodes; the impact of the

overhead introduced by using the OpenFlow protocol for communication be-

tween SDN controller and switches; the synchronization problems due to the

rapid movement of satellites; and the issues related to the migration of LEO

satellites from one controller to another.

Chapter 5

The Problem of Security

Important applications such as e-business, e-banking, public health service,

and defense system control are dependent on computer networks. For this

motivation they are often object of attacks by malicious software (malware).

Malware is software designed to intrude a computer system without the con-

sent of the owner through the use of viruses, backdoors, spywares, trojans,

keyloggers, botnets, and worms [65]. In this context accurate malware de-

tection is a necessity [66]. Countermeasures may be dedicated to specific

devices, as happens in the context of mobile devices [67, 68, 69] and FM

radios [70], to specific applications such as Internet chats [71], to operat-

ing systems such as Android [72], and to given environments such as Delay

Tolerant Networks (DTNs) [73] and AODV-Based MANETs [74].

In general Intrusion Detection Systems (IDS) may help tackle malicious

intrusions. An IDS is a hardware/software designed to automatically alert

when someone or something is trying or has tried to compromise information

systems through malicious actions. [75, 76] contain a detailed and interesting

96

CHAPTER 5. THE PROBLEM OF SECURITY 97

classification of Intrusion Detection Systems depending on: the location of

the IDS (host based, network based, and hybrid); the detection time (on and

off line); the environment (wireless, wired, and heterogeneous); as well as the

architecture (centralized/distributed); and the reaction (active/passive). As

far as this paper is concerned, the most important IDS classification proposed

in [75, 76] regards the processing method adopted to detect possible intru-

sions: Misuse Detection and Anomaly Detection. Misuse detection defines an

abnormal behavior and considers all the other behaviors as normal. Anomaly

Detection fixes the normal behavior and considers all the other behaviors

as abnormal. From the operative viewpoint the former contains: signature

based, rule based, state transition algorithms, and data mining. The latter

includes: statistical, distance, profile, and model-based schemes. Misuse De-

tection (MD) needs to open and inspect the content of the packets or files

traversing the IDS either to collect and compare signatures with the available

signatures in a malware database or to apply a given set of rules. MD is often

very efficient, its drawback stands in the weakness of signatures/rules, which

may be referred to dated attacks, and in the required computation time be-

cause each single packet needs to be inspected. Anomaly Detection, and, in

particular, concerning this paper, Statistical Analysis Based Intrusion Detec-

tion (SABID) would like to avoid these drawbacks also at the cost of a lower

detection accuracy. Packets could not be opened and inspected and each

traffic flow can be monitored over time by measuring the statistics of a set

of variables (called features) to distinguish between anomalies (possible mal-

ware) and normal behaviors (normal, not infected, traffic). Some more detail

about these aspects will be provided in the next Section. In the framework

CHAPTER 5. THE PROBLEM OF SECURITY 98

of SABID systems this paper proposes a novel network-based IDS, called SF-

IDS (Statistical Fingerprint-IDS). SF-IDS uses the typical flow definition at

IP (Internet Protocol) layer and is aimed at deciding whether an IP flow is

malware-affected or not. It is structured into a training phase developed by

using a ground truth of known flows and an operative classification and deci-

sion phase. Both training and classification/decision phases are based on the

definition and extraction of a group of statistical parameters related to each

IP flow, which represent the Statistical Fingerprint of the flow and on ma-

chine learning-based classifiers devoted to distinguish normal from malicious

traffic.

5.1 State of the art

5.1.1 Machine Learning-based Classifiers

Machine learning-based classifiers are aimed at identifying to which set of

categories a new sample belongs on the basis of a training set composed by

data whose category is known. In our case classifiers are used to discriminate

normal from malicious traffic as explained in Section 5.2. Machine learning-

based Classifiers may be structured into two families: supervised and un-

supervised. Supervised classifiers require a training phase during which a

number of samples whose classification is known are used to carve N deci-

sion regions in the features space, being N the number of the classes to be

identified. All the samples whose vectors lie in the same decision region be-

long to the same class. A sample whose classification is unknown is classified

by determining the decision region where the feature vector of the sample

CHAPTER 5. THE PROBLEM OF SECURITY 99

falls. The methodology to carve the decision region depends on the chosen

algorithm.

Naive Bayes [77, 78, 79], among many others, belongs to the group of

Bayesian Classifier [80] and requires the independence of the features. Sup-

port Vector Machine (SVM) [78] is a family of methods that, given a set

of training samples, each marked as belonging to one of two classes, build

a model which assigns new samples to one class or to the other. An SVM

model is a representation of the samples as points in space. The two classes

must be divided by a gap which should be as wide as possible. New samples

whose classification is unknown are assigned to a class depending on which

side of the frontier they fall in. The gap may be created in different ways so

giving origin to Linear, Quadratic, Cubic, and Radial Basis Functions SVM.

K-Nearest Neighbors (K-NN) [77] input consists of the K closest training

samples in the feature space. A sample is classified by a majority vote of its

neighbors, with the object being assigned to the most common class among

its K nearest neighbors. In other words, K-NN uses a reference cell such

as an hyper-sphere. The cell is expanded up to include K training samples.

In the hyper-sphere case they are the K samples with minimum Euclidean

distance. The sample under exam is assigned to the class whose training

samples among the K samples are more numerous than the samples of the

other classes. DTNB [81] is a simple Bayesian ranking method that combines

naive Bayes with induction of decision tables. Ridor [82] models large data

sets, which results in rule sets having minimal inter-rule interactions and

simple to be maintained. SMO implements the sequential minimal optimiza-

tion algorithm [83] to train a support vector classifier: training a support

CHAPTER 5. THE PROBLEM OF SECURITY 100

vector machine requires the solution of a very large Quadratic Programming

(QP) optimization problem. SMO divides the QP problem into a series of

smallest possible QP problems that are solved analytically. J48 is a decision

tree algorithm that generates a pruned or unpruned decision tree by using

C4.5 algorithm [84]: decision tree algorithms begin with a set of cases, or

examples, and create a tree data structure that can be used to classify new

cases. Each case is described by a set of attributes (or features) which can

have numeric or symbolic values. There is a label representing the name of

a class associated with each training case. Each internal node of a decision

tree contains a test, the result of which is used to decide what branch to

follow from that node. The leaf nodes contain class labels instead of tests.

In classification mode, when a test case (which has no label) reaches a leaf

node, C4.5 classifies it using the label stored there. JRIP implements the

propositional rule learner Repeated Incremental Pruning to Produce Error

Reduction (RIPPER), proposed in [85]. Mentioned C4.5 and RIPPER oper-

ate in two stages. First they induce an initial rule set and then they refine

it using a rather complex optimization stage that discards (C4.5) or adjusts

(RIPPER) individual rules to make them work better together. PART [86]

exploits the fact that rule sets can be learned one rule at a time, without

any global optimization, and infers rules by repeatedly generating partial

decision trees. Random Tree, authored by Eibe Frank and Richard Kirkby,

builds a tree that considers K randomly chosen attributes at each node. It

does not perform any pruning and it has an option to allow an estimation of

class probabilities (or target mean in the regression case) based on a hold-

out set (backfitting). Again authored by Eibe Frank, RBF Network [87] is

CHAPTER 5. THE PROBLEM OF SECURITY 101

a fully supervised machine learning scheme that uses Gaussian Radial Ba-

sis Function (RBF) Networks. Random forests [88] is an ensemble learning

method for classification, regression, and other tasks. It operates through

a multitude of decision trees at the training time. Each user is assumed to

know about the construction of single classification trees. To classify a new

object from an input vector, the input vector is put down each of the trees

in the forest. Each tree gives a classification and the tree “votes” for a class.

The forest chooses the classification having the most votes over all the trees

in the forest. “Random Forests” is a trademark of Leo Breiman and Adele

Cutler.

Unsupervised classifiers are aimed at framing the flows under exam within

clusters without any “a priori” information about the samples. For the pur-

pose of this research we focused only on supervised classifier but future in-

vestigation can be made using unsupervised ones.

5.1.2 Misuse and Statistical Analysis Based Intrusion

Detection Systems

A rough comparison about processing method, accuracy, complexity, speed,

and limitations between MD and SABID (considered representative of the

entire class of Anomaly Detection for the aim of this work) methods is re-

ported in Table 5.1. In practice the comparison is between intrusion detection

systems that require the inspection of packets/files/codes and systems based

on the analysis of statistical profiles.

Concerning the large and heterogeneous family of Misuse Based Intru-

sion Detection Systems, recent research includes the following papers, among

CHAPTER 5. THE PROBLEM OF SECURITY 102

Misuse Based Statistical Analysis

Intrusion Detection Based Intrusion

Detection

Processing method It examines the It examines

whole packet for samples of

signatures/rules traffic statistically

Accuracy High Low

Complexity High Low

Speed Slow Fast

Limitations It cannot detect A training data

new virus or set is involved

encrypted flow

Table 5.1: Misuse Based Intrusion Detection versus Statistical Analysis

Based Intrusion Detection systems.

many others. [89] is a paper whose experimental results show the detection

ability of the system to learn effective rules from repeated presentations of

a tagged training set. Best system accuracy is close to 90%.[90] develops an

automatic categorization system to automatically group phishing websites or

malware samples by using a cluster ensemble. Malware categorization results

range between 86% and 91%. [91] proposes a host-rule-behavior-based detec-

tion method, composed of a clustering engine that groups the objects (e.g.,

processes and files) of a suspicious program together into a cluster. Obtained

results vary depending on the fixed threshold of false positives (see Table 5.4

for a definition): if you want no false positives, then the system can assume

CHAPTER 5. THE PROBLEM OF SECURITY 103

71% true positives but if you relax the threshold you can get true positives

rates above 90%: 93.2% with 9.8% false positives and up to about 97% with

22.5% false positives. The authors show that their results are more satis-

fying than the ones got by commercial antivirus software. Concerning the

search and analysis of opcodes (from operation code, a portion of a machine

language instruction that specifies the operation to be performed), we can

mention [92] and [93]. [92] is aimed at individuating a subset of opcodes suit-

able for malware detection through SVM (Support Vector Machine). Using

opcode sequences typically needs to label a large amount of both malicious

and benign code. [93] proposes a method that uses single-class learning to

detect unknown malware families. Specific results vary if labeling is per-

formed through malicious or benign software but in general: labeling 60%

of the legitimate software assures about 85% accuracy. Among signature-

based approaches: [94] classifies packed and polymorphic malware through

a fast application-level emulator; the effectiveness is validated by showing

that malware is detected as a variant of existing malware in 88% of cases.

Classification is also quite quick: 1.3 [s] for a sample set. [95] compares

the performance of the intrusion detection systems Suricata and Snort. The

percentage of alerts detected is close to 100% for Snort while the one for Suri-

cata heavily varies on the operating network speed: 98% at 1Gbps, 91.8% at

1.5Gbps and 66.8% at 2.0Gbps. [96] selects the possible signatures and uses

only a subset of the necessary ones.

Concerning the systems that use Anomaly Detection (or also hybrid Sta-

tistical Analysis/Misuse Detection): [97] proposes a hybrid IDS combining

packet header anomaly detection (PHAD) and network traffic anomaly de-

CHAPTER 5. THE PROBLEM OF SECURITY 104

tection (NETAD). The combined action seems to work even if it is difficult

to detect precise percentages from the reported results. [98] introduces a

hybrid intrusion detection system that combines k-Means and two classifiers:

K-nearest neighbor and Naive Bayes for anomaly detection. The goal in [98]

is to decrease the false alarm rate when intrusions are detected and classified

in 4 categories: Denial of Service (DOS), U2R (User to Root), R2L (Remote

to Local), and Probe. The accuracy varies depending on the attack: from

92% of U2R to more then 98% for Probe. [99] describes a two stage archi-

tecture to tackle intrusions. In the first stage a probabilistic classifier is used

to detect potential anomalies in the traffic. In the second stage a HMM (Hy-

brid Markov Model) traffic model is used to narrow down the number of IP

addresses carrying the attack. The performance depends on the number of

states used for the HMN and on other used features: the best configuration

provides an accuracy close to 97% and a false alarm rate below 3%. [100]

introduces a hybrid detection framework combining misuse detection, which

uses a Random Forest classification algorithm, and anomaly detection, which

exploits the weighted k-Means scheme. The detection rate of the combined

approach is about 98% with a false positive rate of about 1%.

As far as Statistical Analysis Based Detection, two papers are particularly

meaningful for the topic of this research, even if they are not strictly related

to malware detection: [101] and [102]. Both contributions are aimed at de-

tecting application-layer tunnels throughout Statistical Fingerprints. [101]

presents a statistical classification mechanism called Tunnel Hunter devoted

to recognize a generic application protocol tunneled on top of HTTP or of

SSH. The accuracy is 100% for HTTP tunnels and above 99% for SSH ones.

CHAPTER 5. THE PROBLEM OF SECURITY 105

[102] aims at detecting DNS tunnels. The accuracy for a mix of applications is

close to 99%. Another important paper concerning the approach followed in

this work is [103], where streaming content changes are detected only through

traffic patterns built from the traffic volume achieved by routers. Other arti-

cles must be mentioned as relevant for this work. [104] introduces a scheme

for intrusion detection operating in WEKA, used also in our research. [105]

proposes to structure Machine-Learning-based intrusion detection systems

into Artificial Intelligence based and Computational Intelligence based ones.

The former refer to the methods from domains such as statistical modeling

(as we done), whereas the latter include methodologies such as genetic algo-

rithms, artificial neural network, fuzzy logic, and artificial immune systems.

[106] extracts a long list of features from the used dataset [107] and com-

pares, as done in this thesis (Table 5.5), different classifiers such as, among

the others, DTNB, JRIP, PART, RIDOR, all providing about 95% accuracy,

and SMO, assuring an accuracy above 97%. [108] compares J48, Random

Forest and Random Tree in the same operating environment by using the

same dataset and list of features presented in [106] and proposes to use a

combination of classifiers to enhance the performance, which is above the

99% in the best cases. The obtained results of these classifiers are very sim-

ilar to the ones shown in Table 5.5. [109] proposes a selection of features by

using swarm intelligence algorithms, such as Artificial Bee Colony (ABC) or

Particle Swarm Optimization (PSO), and evaluates the performance through

the same dataset used in [107].

CHAPTER 5. THE PROBLEM OF SECURITY 106

5.2 Statistical Fingerprint - Based Intrusion

Detection System - SF-IDS

5.2.1 Key Ideas

Our idea shares with [101], [102], [110] and the other papers mentioned in the

previous section concerning SABID, the idea of detecting something by using

statistical analysis. For instance “looking at simple statistical properties

of protocol messages, such as statistics of packet interarrival times and of

packets sizes” [102] may be useful to perform monitoring actions. “The key

idea is that the information carried by packets at the network layer, such as

packet-size and inter-arrival time between consecutive packets, are enough

to infer the nature of the application protocol that generated those packets”

[101]. This sentence, referred in [101] to tunnels, may be literally applied to

malware and for this reason useful for our purposes. We think that, observing

the statistical features of a specific IP traffic flow, we can get information

about the malicious (or not) nature of this flow. We identify an IP traffic flow

with the 5-tuple composed of the following fields of the IP and TCP/UDP

headers:

• IP Source Address (IP SA)

• IP Destination Address (IP DA)

• TCP/UDP Source Port

• TCP/UDP Destination Port

• Protocol

CHAPTER 5. THE PROBLEM OF SECURITY 107

These fields are considered as two-way (the inversion of Source and Desti-

nation Ports and Addresses is considered as one single flow) in the tests in

Section 5.4. This choice reduces the number of flows per each trace recorded

from the network, and allows creating longer flows that are more robust to

the noise than default short flows created automatically by hosts connected

to the Internet. The field Protocol defines the protocol used in the data por-

tion of the IP datagram. In practice it specifies the content of the IP packet

information field. The Internet Assigned Numbers Authority maintains a

list of IP protocol numbers which was originally defined in [111] and are now

defined through an online database specified in [112].

5.2.2 SF-IDS Architecture

The overall architecture of the proposed IDS is depicted in Figure 5.1, which

refers to a general-purpose architecture to analyze traffic flows whose op-

erative steps are detailed in the following. Such architecture has not been

implemented and used to perform experiments for which we have applied

a subset of the components appearing in Figure 5.1 and, in particular, the

“Packet analyzer” (object of Subsection of 5.2.3), “Malware DB” (used for

the training phase) and “Syslogger” (output of the packet analyzer). The

practical implementation of the overall architecture in Figure 5.1 is one of

the next steps of this research activity.

Packets from/to the Internet traverse the external interface (typically an

ADSL/ATM interface) of the system and are processed by a router in order

to be properly forwarded. At this level, if needed, some virtual interfaces may

be attached to allow sending/receiving packets through tunneling protocols

CHAPTER 5. THE PROBLEM OF SECURITY 108

Internet

External

interface

Firewall

filter list

Packet analyzer

 Filter builder

Syslogger

Malware DB

LAN

Internal

interface

Figure 5.1: SF-IDS overall architecture.

and/or traffic encryption. This allows establishing virtual point-to-point (se-

cure) connections with the aim of creating Virtual Private Networks (VPNs).

Thus, different user sites may appear to be part of a unique wide network.

User applications, running in different locations, are enabled to communi-

cate with each other and, possibly, share common resources in the same

way applications are hosted on co-located computers. However, it is worth

noting that the adoption of VPNs only partially reduces the hazard to be

victim of malware. Whether a PC in the user LAN is infected by a malware,

the PC may easily infect other systems present in the LANs and belonging

to same VPN infrastructure. In other words, IDS mechanisms need to be

adopted even in presence of secure and encrypted links (tunnels) connecting

different sites of the same enterprise. Furthermore, some malicious tunnels

CHAPTER 5. THE PROBLEM OF SECURITY 109

may represent the media through which infected packets may be conveyed,

as mentioned in the previous section through the proper references. The IP

packets traversing the router are inspected by a “Packet Analyzer (PA)” in

order to detect possible harmful flows. The PA exploits the features of a set

of malwares stored in the so-called “Malware Data Base (MDB)”. Whenever

a malicious flow is detected, its features are logged in the “Syslogger“ sub-

system and, correspondingly, a new rule is compiled by the “Filter Builder

(FB)” and then added to the filter list (“Firewall Filter List - FFL”) of the

firewall. The new rule aims at blocking the just detected malicious flow,

thus preventing the related malware to access the LAN through the Internal

Interface (commonly, an Ethernet interface). It should be highlighted that,

if the system has more than one internal interface, each interface has its own

FFL.

5.2.3 SF-IDS Packet Analyzer

The Packet Analyzer represents the most original part of our work and the

object of the performance evaluation. Figure 5.2 sketches its main compo-

nents.

Incoming packets feed the “Feature Extractor” (FE) which performs two

principal operations. The first one consists in the identification of a traffic

flow on the basis of the flow definition provided before. The second operation

is the extraction of a number of features, discussed in the next Subsection,

from each flow. Under this perspective, each flow is uniquely described by the

vector Vf of its features. Vf is the Statistical Fingerprint of the flow. The

vector Vf is then passed to a group of classifiers, each of them previously

CHAPTER 5. THE PROBLEM OF SECURITY 110

Feature

Extraction

Decision

Maker

Classifier 1

Incoming

Packets

Decision
Classifier 2

Classifier 3

Classifier N

Figure 5.2: Block diagram of the Packet Analyzer.

trained by using known traffic traces to detect the malware presence on the

basis of a set of features. Each classifier makes its own decision: the flow is a

malware or it is not. Eventually, a Decision Maker merges the decisions made

by each classifier in order to produce the final decision regarding the flow

under analysis. Strategies adopted to make the final decision are discussed

in Subsection 5.4.4.

5.2.4 Statistical Fingerprint: the feature vector

The 14 components (indicated as features) of the vector Vf used to classify

each flow are listed in Table 5.2. As said before, the key idea is that the

following features associated to each flow are enough to infer the possible

malicious nature of the flow. The use of these features is coherent with the

literature in the field, see for example [113, 114]. [107] uses a larger and

different list, not strictly related to the features of flows. Any change to the

CHAPTER 5. THE PROBLEM OF SECURITY 111

features used in the table does not require any substantial change to SF-IDS.

5.2.5 SF-IDS Classifiers

The algorithms used to distinguish normal from malicious traffic on the basis

of the set of features extracted from each flow are machine learning-based

classifiers. The following supervised classifiers, coherently with the state of

the art presented in Section 5.1, have been tested to select the most perfor-

mant ones.

• Naive Bayes (NB);

• Linear SVM - the frontier between regions is a linear function;

• Quadratic SVM - the frontier between regions is a quadratic function;

• Cubic SVM - the frontier between regions is a cubic function;

• Radial Basis Functions (RBF) SVM;

• K-Nearest Neighbors - K-NN with K = 1, and K = 3;

• JRIP;

• Random Forest;

• DTNB;

• PART;

• Ridor;

• SMO;

CHAPTER 5. THE PROBLEM OF SECURITY 112

• J48;

• Random Tree;

• RBF Network;

Features Description

Num Pack Number of packets

Tot Byte Flux Number of bytes

Flow Duration Duration of the flow in seconds

Byte Rate Byte rate

Packet Rate Packet rate

Delta Mean Average inter-arrival time of packets

Delta Std Standard deviation of inter-arrival time

LE “Entropy” of the packet lengths2

DPL Total number of subsets of packets having the

same length divided by the total number of

packets of the flow

First Len Length of the first packet

Max Len Length of the longest packet

Min Len Length of the shortest packet

Mean Len Average packet length

Std Len Standard deviation of the packet length

Table 5.2: Used features for each flow as Statistical Fingerprint.

2LE is calculated starting from the normalized occurrences of the packet lengths. Specif-

CHAPTER 5. THE PROBLEM OF SECURITY 113

5.3 Used traffic and performance parameters

5.3.1 Used Malware and Normal Traffic

The tests reported in the performance evaluation have been carried out by

downloading traffic samples from [115]. Table 5.3 contains the list of used

malwares together with the overall number of analyzed flows and packets.

Each flow appearing in Table 5.3 under the label malware is not exclusively

composed of malware affected packets but it contains also not affected traffic.

Obviously the two components can be distinguished to allow a correct perfor-

mance evaluation. Table 5.3 includes also the same quantities for the traffic

that is not affected by malware and is called “normal traffic”. In this case

these traces are totally malware free. Each malware has different features.

Cutwail is a botnet aimed at spamming.

Purple Haze is a botnet that records user activities. In practice, it is a

keylogger acting at kernel level.

Ramnit is a worm that has been used to get Facebook passwords.

Tbot is a botnet used for DDoS attacks, bank frauds, and cheats by using

e-money (bitcoins).

Zeus is a botnet that widespreads a Trojan to infect computers through

phishing or false download actions unconsciously performed by users.

Its main function is online banking FTP account violation.

ically, being Li the number of times a packet has a length equal to i, LE is computed as

LE = −
∑1526

i=0
Li

N log2(Li

N), where N is the total number of packets belonging to the flow.

CHAPTER 5. THE PROBLEM OF SECURITY 114

ZeroAccess is a Trojan that affects Microsoft Windows operating systems.

It is used to download other malware on the infected machine and

is mostly involved in bitcoin mining and click fraud. It may remain

hidden on a system by using several techniques.

AlienspyRAT is a Trojan that gives attackers the ability to gain complete

remote control of a compromised system. It can be used to collect

a range of system-specific data, including operating system version,

memory and RAM data, Java version number, and other details, such

as passwords, and private information.

Kuluoz is a Trojan that tries to steal passwords and sensitive information.

It can also download other malware onto the infected PC.

Sality is a polymorphic file infector. It infects executable files on local,

removable, and remote shared drives. It can communicate over a peer-

to-peer (P2P) network and has the purpose of relaying spam, compro-

mising web servers, and extruding data.

Normal traffic used in the tests has been captured by using the tcpdump

utility.

5.3.2 Performance Evaluation Parameters

The performance of each classifier itemized in Subsection 5.2.5 has been

evaluated by comparing the results of the classification with the actual class

of the flow. Under this perspective, 4 cases, listed in Table 5.4, can occur.

CHAPTER 5. THE PROBLEM OF SECURITY 115

Malware Flows Packets

Cutwail 2347 35674

Purple Haze 7349 324709

Ramnit 25141 155973

Tbot 223 13048

Zeus 202 7443

ZeroAccess 350 2535

AlienspyRAT 1214 9010

Kuluoz 16894 179607

Sality 12939 250784

Normal Traffic Flows Packets

Normal Traffic 1 4969 833368

Normal Traffic 2 12552 3533925

Normal Traffic 3 23351 4428188

Table 5.3: Used malware and normal traffic.

Corresponding quantities in percentage may be defined as TN = NTN

NN
·100,

FP = NFP

NN
·100, TP = NTP

NM
·100, FN = NFN

NM
·100, being NN the overall num-

ber of analyzed normal flows, NM the overall number of analyzed malware

affected flows, and NTN , NFP , NTP , and NFN the overall number of True

Negatives, False Positives, True Positives, and False Negatives, respectively.

True Positives and True Negatives are the Correct Detection Cases. False

Positives (False Alarms) and False Negatives (Missed Detections) are the

cases where the system fails, although the impact of FPs and FNs on the

CHAPTER 5. THE PROBLEM OF SECURITY 116

Evaluation Parameter Meaning

True Negative (TN) A flow is normal traffic, i.e., it is

not malware affected and it is correctly

classified as normal traffic.

False Positive (FP) A flow is normal traffic, i.e., it is

not malware affected but it is wrongly

classified as malware. This case is also

called False Alarm.

True Positive (TP) A flow is malware affected and it is

correctly classified as malware.

False Negative (FN) A flow is malware affected but it is

wrongly classified as normal traffic.

This case is also called Missed Detection.

Table 5.4: Evaluation Parameters.

overall performance is very different. Consequently the percentage of correct

decisions may be evaluated through the parameter Accuracy (Acc) defined

as:

Acc =
NTN +NTP

NTOT

· 100 (5.1)

where NTOT = NN +NM is the overall number of flows.

CHAPTER 5. THE PROBLEM OF SECURITY 117

5.4 Performance evaluation

5.4.1 Tools

The tests have been carried out by using a free machine learning software

called WEKA (Waikato Environment for Knowledge Analysis) [116, 117,

118], introduced in 1997 at the University of Waikato, New Zealand, using

the 3.6.10 version of the software. WEKA is written in Java, supports stan-

dard algorithms for data preprocessing, clustering, classification, regression,

visualization, and feature selection. All data have to be available in this for-

mat to be analyzed. Detailed WEKA characteristics are reported in [118].

All SF-IDS Classifiers listed in Subsection 5.2.5 are supported by this tool.

5.4.2 Evaluation of Single Classifiers

The analysis has been carried out taking into account the entire set of flows

in Table 5.3. Each single trace, both malware and normal, has been divided

into two parts (50% of the trace each). The first part of each trace has been

used to compose the file for the training phase, the second part to build the

file employed for the tests. The goal is to distinguish malware affected flows

and normal traffic.

Table 5.5 shows, for each classifier in Subsection 5.2.5, the obtained Accuracy

and the percentage of True Positives, False Negatives, True Negatives, and

False Positives. The last column of Table 5.5 contains also the 95% Con-

fidence Interval (CI) of the Accuracy values, computed through the known

formula Acc± 1.96 ·
√

Acc(1−Acc)
NTOT

, where NTOT is the overall number of flows

used for testing, taking the values from Table 5.3, as indicated above. The

CHAPTER 5. THE PROBLEM OF SECURITY 118

confidence interval may be simply computed in the same way also for TP ,

FN , TN , and FP . A good number of classifiers is close to 99% concerning

Classifier Acc TP FN TN FP CI

1-NN 97.21 97 3 97.5 2.5 97.0785÷97.3565

3-NN 97.32 97.2 2.8 97.5 2.5 97.1890÷97.4618

CubicSVM 51.02 99.6 0.4 3 97 50.5976÷51.4428

DTNB 97.45 98.9 1.1 96 4 97.3225÷97.5887

J48 98.03 98.8 1.2 97.3 2.7 97.9186÷98.1532

Jrip 97.86 98.9 1.1 96.8 3.2 97.7407÷97.9851

LinearSVM 88.20 93.6 6.4 82.9 17.1 87.9372÷88.4824

NaiveBayes 89.68 99.7 0.3 79.7 20.3 89.4239÷89.9381

PART 98.06 99 1 97.2 2.8 97.9493÷98.1821

QuadraticSVM 83.63 90.9 9.1 76.4 23.6 83.3272÷83.9526

Random Forest 98.35 99.3 0.7 97.5 2.5 98.2503÷98.4651

Random Tree 97.56 97.7 2.3 97.4 2.6 97.4332÷97.6938

RBFNetwork 75.93 85.2 14.8 66.8 33.2 75.5766÷76.2992

RBFSVM 86.87 90.3 9.7 83.5 16.5 86.5908÷87.1616

Ridor 98.00 99.3 0.7 96.7 3.3 97.8899÷98.1261

SMO 88.19 93.5 6.5 82.9 17.1 87.9259÷88.4713

Table 5.5: Percentage of Acc, TP , FN , TN , FP , and CI for Acc by varying

the applied Classifier

the percentage of True Positives (and, in consequence, close to 1% concerning

the percentage of False Negatives) but not all of them provide also satisfying

results in terms of True Negatives and False Positives. In this view, from the

CHAPTER 5. THE PROBLEM OF SECURITY 119

results reported in Table 5.5, it is possible to individuate the most promising

classifiers. To this goal we use the metric in Equation (5.2) that minimizes

the sum of the percentage of False Positives and False Negatives.

min(FP + FN) (5.2)

The resulting three best classifiers are: Random Forest, J48, and PART.

5.4.3 Classifier Performance to distinguish Single Mal-

ware affected flows and Normal Traffic

The ability of the selected classifiers to correctly detect each single malware

has been also checked. Given the training phase operated to get the results

in Table 5.5, we have tested the three classifiers by using the 50% of the

traces of each malware (which contains, as said before, both affected and

not affected packets) not used for training. The performance in terms of

Acc, TP, FN, TN, and FP (as well as the 95% Confidence Interval of the

Accuracy) is shown in Tables 5.6, 5.7, and 5.8, for J48, PART, and Ran-

dom Forest respectively. All selected classifiers offer excellent performance

even if Random Forest is slightly more efficient. It perfectly distinguishes

Kuluoz, Tbot, and ZeroAccess from Normal Traffic (100% Accuracy) and,

in particular, provides an Accuracy of 97.78% for Cutwail. J48 and PART

get for the same malware an Accuracy of 91.48% and 90.46%, respectively.

The performance of Random Forest is again the best for Purplehaze: 99.95%

against 98.53% of J48 and 93.42% of PART. Concerning Zeus, Random For-

est and J48 allow getting an Accuracy of 99%, PART of about 94%. The

performance for AlienspyRAT and Ramnit is the same for all the considered

CHAPTER 5. THE PROBLEM OF SECURITY 120

J48

Malware Acc TP FN TN FP CI

AlienspyRAT 99.83 100 0 75 25 99.5127÷100

Cutwail 91.48 100 0 81.7 18.3 89.8853÷93.0789

Kuluoz 99.98 100 0 99.5 0.5 99.965÷100

Purplehaze 98.53 98.9 1.1 88 12 98.1416÷98.9196

Ramnit 96.74 100 0 68.8 31.2 96.4364÷97.0566

Sality 99.56 99.6 0.4 99.6 0.4 99.4072÷99.7272

Tbot 99.10 100 0 99.1 0.9 97.3649÷100

ZeroAccess 98.28 98.2 1.8 100 0 96.3625÷100

Zeus 99.00 100 0 98.5 1.5 97.0789÷100

Table 5.6: Percentage of Acc, TP , FN , TN , FP , and CI for Acc using J48

Classifier

classifiers as well as, substantially, for Sality.

5.4.4 Classifiers Acting in Parallel

A possible alternative to the use of a single classifier is the exploitation of a

bank of classifiers as shown in the Packet Analyzer in Figure 5.2. Specifically,

a group of different classifiers act in parallel and communicate their decisions

to one Decision Maker (DM) block.

The DM block can make the final decision about malware affection or not

in different ways. It can state that a flow is malware affected either if at

least one single classifier has taken this decision (Dominant), or following

CHAPTER 5. THE PROBLEM OF SECURITY 121

PART

Malware Acc TP FN TN FP CI

AlienspyRAT 99.83 100 0 75 25 99.5127÷100

Cutwail 90.46 97.8 2.2 82.1 17.9 88.7796÷92.1404

Kuluoz 99.94 99.9 0.1 100 0 99.8889÷99.9927

Purplehaze 93.41 93.4 6.6 94 6 92.6131÷94.2169

Ramnit 96.74 100 0 68.8 31.2 96.4364÷97.0566

Sality 99.35 98.7 1.3 99.7 0.3 99.1552÷99.5466

Tbot 99.10 80 20 100 0 97.3649÷100

ZeroAccess 98.85 98.8 1.2 100 0 97.2822÷100

Zeus 94.05 94.1 5.9 94 6 89.4493÷98.6695

Table 5.7: Percentage of Acc, TP , FN , TN , FP , and CI for Acc using

PART Classifier

the majority of the decisions of the single classifiers (Majority), or if all

single classifiers have taken this decision (Unanimity). The three classifiers

selected before (J48, PART, and Random Forest) have been used to compose

the mentioned bank of classifiers acting in parallel. The results about Accu-

racy, TP, FN, TN and FP are reported in Table 5.9 together with the 95%

Confidence Interval of the Accuracy. Training and testing files are the same

as in Subsection 5.4.2. Even if the reported percentage are very similar for

all the DMs, some remarks may be made. The “Dominant” DM maximizes

the percentage of True Positives (and consequently minimizes the percent-

age of False Negatives) with respect to both the other two DMs (and this

CHAPTER 5. THE PROBLEM OF SECURITY 122

Random Forest

Malware Acc TP FN TN FP CI

AlienspyRAT 99.83 100 0 75 25 99.5127÷100

Cutwail 97.78 99.5 0.5 95.8 4.2 96.9435÷98.6271

Kuluoz 100 100 0 100 0 100÷100

Purplehaze 99.94 99.9 0.1 100 0 99.8702÷100

Ramnit 96.73 100 0 68.8 31.2 96.428÷97.049

Sality 99.79 99.8 0.2 99.8 0.2 99.69÷99.9082

Tbot 100 100 0 100 0 100÷100

ZeroAccess 100 100 0 100 0 100÷100

Zeus 99.00 100 0 98.5 1.5 97.0789÷100

Table 5.8: Percentage of Acc, TP , FN , TN , FP , and CI for Acc using

Random Forest Classifier

is expected) and the most performant classifier Random Forest (see Table

5.5) that assures TP and FN equal to 99.3% and 0.7% respectively. The

same quantities for the “Dominant” DM are 99.69% and 0.31%. Even if the

difference is not evident, the very slight improvement means that there is an

intervention of J48 and PART that detect malware affection when Random

Forest (rarely) fails. The improvement in terms of TP and FN is paid by a

worst performance concerning TN and FP. The decrease of TN happens not

only with respect to the other DMs (again expected) but with respect to the

values got by Random Forest in Table 5.5.

Increasing the necessary number of malware decisions made by single

CHAPTER 5. THE PROBLEM OF SECURITY 123

DM Strategy Acc TP FN TN FP CI

Dominant 98.28 99.68 0.32 96.89 3.11 98.1735÷98.3931

Majority 98.28 99.25 0.75 97.33 2.67 98.1754÷98.3949

Unanimity 97.88 98.04 1.96 97.73 2.27 97.7637÷98.0069

Table 5.9: Percentage of Acc, TP , FN , TN , FP , and CI for Acc obtained

at the output of the three DMs

classifiers to assign a flow to the malware class allows reducing the percent-

age of False Positives (2.67% for “Majority” and 2.27% for “Unanimity”)

and, consequently, increasing the percentage of True Negatives (97.33% and

97.73%, respectively for “Majority” and “Unanimity”) at cost of FN and

TP. Similarly as happens for “Dominant” about TP and FN, “Unanimity”

allows getting TN and FP values better than the ones got by Random Forest

in Table 5.5, again for the intervention of J48 and PART which mitigate the

rare erroneous decisions of Random Forest.

5.5 Considerations

In this research we propose a network-based IDS called SF-IDS (Statistical

Fingerprint - IDS) devoted to decide whether an IP flow is malware-affected

or not. SF-IDS is structured into a training phase and a classification/

decision phase. Both phases are based on the definition and extraction of

a group of IP flows statistical parameters that represent the Statistical Fin-

gerprint. The key idea is that the Statistical Fingerprint may help detecting

the nature (malicious or not) of each flow. The classification/decision phase

CHAPTER 5. THE PROBLEM OF SECURITY 124

consists of a “Feature Extractor” (FE), a bank of classifiers, and a Decision

Maker that merges the decisions of the classifiers. The performance evalua-

tion traces a possible streamline in view of a future practical implementation

and it is structured as follows.

1) Evaluation of the single classifiers and choice of the best ones. To

perform this choice we have adopted as a metric the sum of False Alarms and

Missed Detections and we have selected the schemes providing the minimum

values. Random Forest is the best one but also J48 and PART provide

excellent results. The selected schemes are very efficient even if applied to

each single malware. In particular, Random Forest assures a null percentage

of False Negatives and False Positives for Kuluoz, Tbot, and ZeroAccess,

and a very close to null percentage for Sality and Zeus. Random Forest

also assures satisfying results for Cutwail. It is very efficient to recognize

AlienspyRAT and Ramnit (100% TP - 0% FN) but it has some difficulties

to identify normal traffic, often interpreted as these malwares (75% TN -

25% FP for AlienspyRAT and 68.8% TN - 31.2% for Ramnit).

2) Evaluation of the scheme including three classifiers (Random Forest,

J48, and PART acting in parallel) and a Decision Maker (DM) that makes

decisions on the basis of three different strategies: “Dominant”, “Majority”,

and “Unanimity”.

The choice among the three DMs depends on a possibly adopted risk

function/performance tuning. For example, in this case, the balance be-

tween Missed Detections and False Alarms we want to get: the “Dominant”

DM allows minimizing Missed Detections at cost of False Alarms; increasing

the number of algorithms necessary to classify a flow as a malware allows

CHAPTER 5. THE PROBLEM OF SECURITY 125

achieving better results in terms of False Alarms but implies a performance

decrease as concerns Missed Detections. The minimum percentage of False

Alarms is got by “Unanimity” DM.

The obtained results open the door to an actual development of the soft-

ware needed to implement the overall architecture proposed here that will be

discussed in the next chapter. For this implementation we chose to use the

SDN paradigm, which allows us to take advantage of its unique characteris-

tics.

Chapter 6

SDN IDS Implementation

The number of people accessing the Internet is growing rapidly leading, on

one hand, to new possible attacks used by cyber criminals and, on the other

hand, to an increased complexity in the network management. It is cru-

cial designing systems able to prevent cyber attacks. At the same time,

many efforts are provided in order to get tools that can make easier net-

work management. The Software Defined Networking (SDN) paradigm has

been designed with this aim allowing network administrators to manage net-

works easily. This chapter deals with an original Intrusion Detection System

that exploits an SDN architecture to get the information needed to feed a

statistical-fingerprint based IDS. Specifically the proposed system collects

traffic data suitable to detect the possible presence of malware inside the

network, and describes the design and implementation of an application de-

veloped upon a SDN controller (Ryu) and its role in the malware detection

process.

126

CHAPTER 6. SDN IDS IMPLEMENTATION 127

6.1 Introduction

IDSs [75] may be classified depending on: data source (host based, network

based, and hybrid); detection time (on and off line); environment (wireless,

wired, and heterogeneous); architecture type (centralized/distributed); reac-

tion (active/passive); and processing (Misuse Detection and Anomaly Detec-

tion). We focus the attention on reactive network based systems, possibly

operating online over heterogeneous networks. In parallel with the evolution

of IDSs, the need of simplifying network management has brought to the de-

velopment of the Software Defined Networking (SDN) [119, 120] paradigm.

Combining a malware detector IDS and SDN may represent a step forward

in the service provided by SDN and may allow simplifying the IDS design by

means of SDN functions.

6.2 State of The Art

Although the solution proposed in [121] is not directly linked to malware

detection, it introduces a possible approach for collecting flow statistics in

SDN. The author explains that the use of SDN is essential to allow deep accu-

racy and granularity without introducing too much communication overhead

inside the network. SDN is able to control both temporal (how often to col-

lect data) and spatial (how deep should the inspection be inside the packet)

granularity and to distribute flow counting tasks in a smart way among all

the switches in the network.

In [122], the authors design an environment that exploits SDN to im-

plement an IDS for a network of Embedded Mobile Devices, so avoiding

CHAPTER 6. SDN IDS IMPLEMENTATION 128

the problems of standard IDSs within this kind of network such as the in-

ability to cope with end-host mobility and the limited set of actions which

can be taken in response to anomalies. Without specifying any particular

anomaly detection algorithm, the authors classify what kind of anomalies

can be observed: Stateless Flow, Stateful Flow, Volumetric Anomalies, and

Physical Anomalies. Within this classification, the category closer to our ap-

proach is the volumetric anomaly, which is revealed from the statistics sent

by the switches to the controller. However, the reference [122] focuses on

the changes of the overall traffic volume, whereas we consider more specific

statistical features of flows.

The authors of [123] propose a behavioral-based Security Monitoring Sys-

tem that exploits the flexibility of SDN to orchestrate the detection system.

The used controller is Ryu but the collection of statistical data and the classi-

fication of flows are delegated to sFlow that represents an additional element

in the network. The used classifier in [123] is SVM, a supervised classification

algorithm in line with our design choice.

In [124] a DDoS detector is implemented by SDN to allow recognizing ma-

licious flows without any deep packet inspection. The system architecture

is similar to the one proposed in this chapter, even though some differences

arise, mainly concerning the classification phase. [124] chooses NOX as a

controller and develops an application that collects flows’ statistics at prede-

termined time instants. 6 features are extracted from the collected statistics.

Self Organizing Map (SOM), an unsupervised classifier, is employed for flow

classification.

CHAPTER 6. SDN IDS IMPLEMENTATION 129

6.3 SDN Controller Employed within an IDS

6.3.1 General Description of Ryu

The controller chosen to implement our IDS is Ryu [125], an open source,

component-based, software defined networking framework written in python,

which provides software components by using API that make easy for devel-

opers to create new network management and control applications. The

general structure of the code is sketched in Figure 6.1 that highlights how

the main central framework, responsible for the whole system management,

communicates with the switches through the OpenFlow protocol and with

the different apps through the APIs.

SDN
App

SDN
App

Stats
Manger

Ryu SDN Framework

OpenFlow

Switch
OpenFlow

Switch

API

OpenFlow

Protocol

Figure 6.1: Ryu scheme

The main contribution is the design and implementation of an application

(app) called stats manager, aimed at managing the flow tables in the used

SDN switch, providing the information needed to classify the traffic, and

making decisions about “malware/normal” on the examined traffic.

CHAPTER 6. SDN IDS IMPLEMENTATION 130

6.3.2 Flow Structure

A traffic flow is usually defined as a group of packets sharing some common

characteristics. We use one of the most common conventions according to

which a flow is a set of packets having the same 5-tuple: IP source address,

IP destination address, TCP/UDP source port, TCP/UDP destination port,

Protocol field of IP header. For each flow we store the data in Table 6.1.

Key Description

IP src IP source address

port src TCP/UDP source port

IP dst IP destination address

port dst TCP/UDP destination port

protocol Protocol field in the IP header

first len length of the first packet

pkt count number of packets in the flow

byte count number of bytes in the flow

dur sec duration of the flow(in seconds)

dur nsec nanoseconds exceeding dur sec

byte rate byte rate of the flow

pkt rate packet rate of the flow

avg iat average inter-arrival time between packets

avg pl average packet length

state current state of the flow

extra p number of packets not registered in the statistics

extra b number of bytes not registered in the statistics

label class of the flow (’normal’ or ’virus’)

Table 6.1: Flow Dictionary Structure

CHAPTER 6. SDN IDS IMPLEMENTATION 131

The first 5 lines define the flow; the following 9 lines contain the features

selected in the previous chapter, which can be computed by the SDN con-

troller directly from the information received by the SDN switch through the

statistic reply message; last four lines are better explained in the following:

• state: describes the state of each flow with respect to the current time

window (see section 6.3.3):

– ’B’ means “begun”

– ’C’ means “continued”

– ’E’ means “ended”

• extra p and extra b: some packets such as the packet-in, i.e. the first

packet of a new flow, and corresponding bytes cannot be considered by

the SDN switch counters. In other words they cannot be detected by

using the statistic reply message. These fields allow the app not to lose

this information. These aspects will be elaborated in the following.

• label: it is the ground truth about the nature of the flow: normal

or affected by malware. During the training phase this information is

used to give correct examples to the classifier. In the test phase this

field is ignored by the classifier and it is used only to assess the system

performance.

Data related to a single flow are stored in the application by two struc-

tures: active flows, which contains all the flows currently active in the

network, and ended flows, which maintains the information about the flows

recently terminated.

CHAPTER 6. SDN IDS IMPLEMENTATION 132

6.3.3 Structure of the “Stats Manager” Application

Initialization

t

t

t

F
eatu

re

R
eq

u
est F

ea
tu

re
R

ep
ly

1

2 4 53

Switch

Host

Controller

Packet

? P
ac

k
et

-i
n R

u
le

In
stallation

Packet

Start idle timeout
update stats

+1
P
a
ck

et
-o

u
t

Reset idle timeout
update stats

+1

Packet

F
o
rw

a
rd

F
o
rw

a
rd

Timeout
expires F

lo
w

s
re

m
ov

ed

Monitor
Thread

T
ri

g
g
er

F
low

 stats

R
eq

u
est

F
lo

w
 s

ta
ts

R
ep

ly

Figure 6.2: General picture of how the app interacts with Ryu

Being Ryu an event-based controller, developing an application for this

framework means coding functions that will be executed when a particular

event happens. Figure 6.2 depicts the most relevant events for our goal

(denoted with a star) and their temporal action. In detail:

1) Initialization: this event happens only when the controller instance

is created, all the internal variables are initialized, and the monitor

thread, which will periodically trigger the statistics’ request, is started.

The controller periodically sends a flow statistic request message in or-

der to gather information about the network traffic from all the switches

in the network (just the used one in our case). The time period elapsed

between two consecutive messages is called time window and it was

empirically set to 30 seconds.

2) Feature Reply: shortly after the boot, the controller needs to collect

some information about the network it has to control. To this purpose it

sends a feature request message to the connected switch that, in turn,

CHAPTER 6. SDN IDS IMPLEMENTATION 133

answer through a feature reply message, announcing what optional

features it supports. Being the first communication between controller

and switch, the initialization of flow tables occurs.

3) Packet-in: the first packet of a new flow doesn’t match any rule in the

flow tables, thus it is sent directly to the controller where two kinds

of actions are performed: standard packet-in management and start

of the IDS statistics collection. The former relates to the tasks that

are usually done by every SDN controller: the path for the new flow

is computed, the needed rules are installed in the switch, and the first

packet is sent back to the sender switch encapsulated in a packet-out

message. The latter is strictly related to “Stats Manager” application:

the unknown flow must be recorded in the active flows database and

the length of the first packet (first len in Table 6.1) is stored.

4) Flow removed: if no packet matches a given rule for a specified num-

ber of seconds, called idle timeout, the flow is considered ended and the

rule is removed from the table. When this occurs, the switch sends a

packet to the controller, containing the statistics of the removed rule, to

notify the event. This is the asynchronous way to collect statistics be-

cause it may happen at any time instant, as it is strictly dependent on

the traffic. The controller extracts the flow identifiers and uses them

as indexes to retrieve the specific flow in the active flows database.

The measured features (pkt count, byte count, dur sec, dur nsec, in

Table 6.1) are immediately saved and the derived features (byte rate,

pkt rate, avg iat, avg pl) inferred from the previous ones through sim-

CHAPTER 6. SDN IDS IMPLEMENTATION 134

ple processing. Finally, the flow entry is removed from the active flow

database and inserted in the ended flow database.

5) Flow stats Reply: as stated before, every 30 seconds the controller

asks the switch for the statistics of the currently active flows. As a

reply, the switch sends an OpenFlow packet containing the statistics of

all the flows to the controller, as illustrated in Figure 6.3. This is the

synchronous way to collect statistics since it is regularly scheduled by

the controller. Similarly to the asynchronous case, every flow identifier

is used as an index to look for the flow entry in the active flows database.

Once found, the entry is updated with the new data, before being stored

again.

Figure 6.3: Flow Stats Reply

CHAPTER 6. SDN IDS IMPLEMENTATION 135

Upon flow stat replies are received at the end of a time window additional

processing steps are done by the classification process, as shown in Figure

6.4.

active

flows

ended

flows

Figure 6.4: Classification Process

All the data related to both active and ended flows are merged to form

a unique dataset. The subsequent processing steps depend on the phase the

controller is actually performing.

• Training Phase: received data are added to the training set of the

classifier; when enough data are gathered, they are used to train the

classifier. This process produces the classifier’s model as a result, which

is stored and used in the test phase.

• Test Phase: received data are directly addressed to a classifier’s module

CHAPTER 6. SDN IDS IMPLEMENTATION 136

for the actual classification. Even though the output of a single flow

classification is just a binary label stating ”malware“ or ”normal“, the

system produces two different text files as output.

The first one contains the details of all the analyzed flows and reports

all the fields of the flow structure, in Table 6.1, together with the result

of the classification process. Consequently it is possible to check how

the classifier performs for each single flow.

The second file contains a general report for every time window, con-

taining the total number of flows, the number of normal and malware

flows, and the usual classification metrics: true positives, true nega-

tives, false positives, false negatives.

6.4 Used Traffic

In order to test our approach we have to collect traffic information abut

malwares. The traces used in this research with the purpose of verifying the

proposed architecture, are composed by a mix of different traffic generated

by different malwares, which are briefly described in the following:

AlienspyRat: it belongs to the Remote Access Trojan family. Once

activated, this software allows collecting system information, updating and

downloading other malware. The malware sends captured information to the

central server and waits to receive commands.

Asprox: is a spam botnet emerged in 2007. It is known for sending mass

of phishing emails used in conjunction with social engineering lures (e.g.,

booking confirmations, postal-themed spam, etc.). This botnet arrives as

CHAPTER 6. SDN IDS IMPLEMENTATION 137

an attachment to spammed messages disguised as notifications from postal

companies, as well as airline booking confirmations.

Cutwail: is a botnet used to generate spam emails using the contacts

in address books. The malware receives instructions from a command and

control server about which and how many messages to send. Once it has

completed the task, it sends a full report on the number of sent messages

and on any found errors to the controller.

Darkness: also called Optima, it is a botnet specialized in DDoS attacks.

It waits for commands from a Command and Control (C&C) server that sends

encrypted control messages to the infected machines.

Kuluoz: is a botnet aimed at sending phishing emails that simulate mes-

sages sent by postal administrations, combined with the use of social engi-

neering techniques. Furthermore, the control server is able to send commands

to the infected machines to download and execute pay-per-install programs

so to ensure gains to the botnet manager.

Madness: is a distributed denial of service botnet growing in size and

popularity. It infects computers running Windows and communicates with

its command and control server via HTTP by using a simple client-server

model.

Neris: is a botnet that uses an http-based channel to communicate with

the C&C server. The main aims of this malware, after establishing a commu-

nication with the C&C, are to send spam and perform click-fraud by using

advertisement services.

Purplehaze: is a botnet targeted to take the control of machines with

the aim of using them to generate many clicks on online advertising sites. It

CHAPTER 6. SDN IDS IMPLEMENTATION 138

can generate a high volume of traffic on web sites containing advertisements

or links in very short time.

Ramnit: this trojan primarily spreads through a contact with infected

removable devices, mainly USB flash memory. Once installed, this program

connects with a remote server via TCP port 443, sending all the obtained

information on the infected machine.

Tbot: is a Trojan that targets older Windows versions in order to open

a back door in the system and allow the attacker to use the machine without

the owner’s consent.

ZeroAccess: this Trojan has the main purpose of assuring money to the

attacker via pay-per-click advertisement. This tool is able to create a hidden

and encrypted file system where it can save its members in total freedom, as

well as all other additional malware that can download.

Zeus: has the main purpose of stealing information related to the bank

accounts of the targets by means of techniques such as man-in the-browser,

keystroke logging and form grabbing. The spread of the virus occurs mainly

through drive-by downloads, initiated by mistake from the user, or phishing

schemes. There is a server that acts as a control center from which the

commands start.

6.5 Testbed and Scenario Setup

6.5.1 The network

The network is emulated by means of mininet [126], an open source program

which allows recreating a realistic virtual network inside a pc. More precisely,

CHAPTER 6. SDN IDS IMPLEMENTATION 139

OpenFlow

h1 h2

C1

S1

Controller

10.0.0.1 10.0.0.2

Figure 6.5: Network topology

it is a network emulation orchestration system that runs a collection of end-

hosts, switches, routers, and links on a single Linux kernel. It uses lightweight

virtualization to make a single system look like a complete network.

Mininet supports the SDN paradigm by implementing its main compo-

nents: the switches and controller. Regarding switches, mininet leverages

Open v-Switch [37], an open source, multilayer virtual switch, explicitly

designed to enable network automation through programmatic extensions,

while still supporting standard management interfaces and protocols.

Concerning the controller, mininet implements the basic OpenFlow refer-

ence controller by default but it is possible to specify which controller to use

at launch time. In our work we set as SDN controller the instance of Ryu

that contains the stats manager app running on the same machine that

emulates the network.

The chosen network topology to perform the simulations is sketched in

Figure 6.5. It consists of two hosts (h1 and h2) connected to a single SDN

switch (S1) that communicate with the SDN controller (C1) through a ded-

icated channel.

CHAPTER 6. SDN IDS IMPLEMENTATION 140

6.5.2 Traffic emulation

In order to emulate a real scenario, we merged the flows produced by the

malwares described in Section 6.4 with normal, malware-free traffic. We

have captured normal flows by setting a network switch in our laboratory in

port monitoring mode and sniffing all the traffic coming to the switch. Before

starting the actual transmission, some manipulations on the original captured

flows are performed with the help of the Tcpreplay [127] and Wireshark [128]

command line tools:

• IP addresses was rewritten in such a way that all the packets appear

to be exchanged between only two IP addresses: 10.0.0.1 and 10.0.0.2.

• In order to keep the simulation time reasonable, we cut the longest

traces in order to have the same duration for normal and malware

traffic. The duration of our experiments was approximately 2 hours.

• We divided the 12 malware’s captures in 2 groups of 6 and added

one malware-free capture to each group. In particular, group 1 con-

tained Asprox, Cutwail, Darkness, Madness, Purplehaze, and Zeus;

while group 2 contained Alienspy, Kuluoz, Neris, Ramnit, Tbot, and

Zeroaccess.

• All the captured flows of both groups were temporally shifted in order

to begin at the same time instant. Finally, they were merged together

in two final pcap files to be used in the emulations.

CHAPTER 6. SDN IDS IMPLEMENTATION 141

6.5.3 The Classifier

Ensemble learning algorithms (e.g., random forest, bagging and boosting)

have received an increasing interest because they are more accurate and ro-

bust to noise and outliers than single classifiers [129]. The philosophy behind

ensembles classifiers is that a set of classifiers performs better than an in-

dividual classifier. [88] introduced a new and promising classifier in 2001

called Random Forest that consists of a collection of tree-structured classi-

fiers, each one initialized with an independent identically distributed random

vector x. Random Forest presents many advantages: it runs efficiently on

large databases, it is able to handle thousands of input variables without vari-

able deletion, it is computationally lighter than other tree ensemble methods.

Moreover, Random Forest estimates which variables are more important in

the classification.

We performed a classifier performance evaluation in the previous chapter

and Random Forest provided the best performance, for this reason, it has

been also used also in the following tests.

When a sample is given as input to the classifier every tree independently

decides the class of the samples Ĉb(x) and casts a unit vote for it. The most

voted class is the final output of the classifier ĈB
rf = mojorityvote{Ĉb(x)}B1 .

The implementation of the classifier in python language is taken from the

scikit-learn library [130], whose APIs are inserted into Ryu’s code through a

wrapper class we wrote for this purpose.

CHAPTER 6. SDN IDS IMPLEMENTATION 142

6.6 Performance evaluation and comments

Table 6.2 presents the overall results related to the two groups of malware

described in Section 6.4. When group 2 is tested, group 1 is used in the train-

ing phase and viceversa, as shown in Table 6.2. The indicated values refer to

the percentages of the parameters True Positive (TP), True Negative (TN),

False Positive (FP), False Negative (FN), and Accuracy (ACC, computed as

TP+TN
TF

, where TF is the total number of flows).

Sim Train Test TP TN FP FN ACC

1 group 1 group 2 0.845 0.987 0.013 0.155 0.887

2 group 2 group 1 0.978 0.964 0.036 0.022 0.972

Table 6.2: Results of the Simulations

In this particular application, since the result of the flows’ classification is

available for each time window, we computed an overall value for the afore-

mentioned quantities. For each of them, a weighted average was computed

as follows:

TP =

∑T
t=1 TPt∑T
t=1 F

m
t

, TN =

∑T
t=1 TNt∑T
t=1 F

n
t

FP =

∑T
t=1 FPt∑T
t=1 F

n
t

, FN =

∑T
t=1 FNt∑T
t=1 F

m
t

ACC =

∑T
t=1 TPt + TNt∑T

t=1 F
T
t

where:

• t is a counter of the time window when the classification takes place.

CHAPTER 6. SDN IDS IMPLEMENTATION 143

• T is the last time instant of the simulation.

• TPt is the number of TP at instant t.

• Fm
t is the number of malware flows at instant t.

• F n
t is the number of normal flows at instant t.

• F T
t is the total number flows at instant t.

Figure 6.6: ROC Diagram of Simulation 1

Figures 6.6 and 6.7 show the Receiver Operating Characteristic (ROC) curves

of the two simulations in Table 6.2. The dashed line is the “line of no

discrimination” given by a random guess. The graphs show a performance

very close to the ideal one (point (0, 1)) in both figures. It means that our

designed system reaches a very high value of correct detections (TP) with a

CHAPTER 6. SDN IDS IMPLEMENTATION 144

Figure 6.7: ROC Diagram of Simulation 2

very low probability of false alarms (FP). It is worth remarking that, in both

cases, the classifier is trained with a set of malware flows which is different

from the one employed in the testing phase, i.e. the malware used to test the

classifier is not part of the dataset used to build the model for the Random

Forest algorithm during the training phase.

The implementation of a combined malware detector IDS and SDN sys-

tem allows simplifying the IDS design also improving the service offered by

an SDN architecture. In this chapter we presented a possible implementa-

tion of an integrated SDN-IDS Ryu-based controller application devoted to

detect the possible presence of malwares traversing the network. The results

obtained through a simulation campaign have demonstrated the effectiveness

and robustness of the proposed system, which has reached an accuracy level

CHAPTER 6. SDN IDS IMPLEMENTATION 145

ranging from 88 and 97%.

This is a little step forward in the use of an SDN approach that can lead

to innovative solutions to manage and secure networks.

Chapter 7

Conclusions

In the first part of this work we analyzed and explained the most important

benefits and improvements that SDN architecture provided to traditional

networking approaches. The main innovation brought by SDN is the decou-

pling of control plane and data plane. In SDN the two tasks are assigned

to different entities: the controller, which is the part of the network ded-

icated to compute the forwarding state and the switch, which is the node

devoted to packet forwarding based on the local forwarding state. Then,

we described the concept behind Quality of Service and we illustrated the

most common approaches used in traditional networks to assure specific per-

formance requirements. The previous considerations allowed to understand

the importance of Quality of Service in priority-based networks and its ben-

efits in emerging applications. For this reason we analyzed the OpenFlow

protocol and the basic tools it provides to support QoS solutions. Due to

the lack of flexibility and power of the tools mentioned above, we decided

to propose new approaches to manage priority flows inside a SDN network,

146

CHAPTER 7. CONCLUSIONS 147

exploiting the re-routing principle. The solutions introduced by our work

are the Deadline algorithm, in which priority flows are assigned to the least

loaded queue, and the Dedicated strategy, in which each queue of the SDN

switch is devoted to a specific type of traffic. Moreover we developed several

load balancing algorithms to the purpose of equalizing the traffic among the

queues of a SDN node. Our cases of study show that the proposed QoS solu-

tions allow to gain satisfying results when applied to the current OpenFlow

environment. Future developments could consist in testing the network en-

vironment with a larger amount of traffic in order to test the scalability of

our solutions. Furthermore, we plan to run our algorithms in other scenar-

ios set with different queue configurations. We will investigate alternative

QoS strategies that could lead to further improvements in performances. We

also plan to develop an extension of our internal re-routing approach to the

computation of alternative paths between source and destination, in order to

leverage the network congestion.

After the discussion on the QoS support in a SDN network we focus our

attention on the satellite environment. This implies to take into account

the limitations and the possible advantages brought by this world. One of

them is the fact that traditionally current operating satellite communication

networks rely on ad-hoc hardware components and proprietary software so-

lutions. This hinders the integration of satellite and terrestrial networks and

also of different satellite networks. Fortunately, new solutions are arising

to ease the integration and allow satellites to be part of an overall Internet

composed of heterogeneous networks, according to the network evolution en-

visioned in the 5G environment. SDN is one of them but its employment in

CHAPTER 7. CONCLUSIONS 148

satellite networks is not straightforward. In this work we try to understand

which is the current employments of this technology in the satellite environ-

ment surveying the outputs of some the main research projects and studies

about the integration of satellite networks in the 5G environment, propos-

ing a possible road-map for the introduction of the SDN and virtualization

concepts in the next generation satellite - terrestrial networks and proposing

a model to estimate the mean time required to complete the SDN control

actions and to deliver the first packet of a new traffic flow able to give and

idea of the delay introduced by the use of SDN in satellite communications.

Finally, we discussed about the network security and in particular we fo-

cused on the intrusion detection systems, which are systems aimed at analyz-

ing and detecting security problems. The first part of the chapter is devoted

to IDSs based on the taxonomy related to these systems. More precisely, we

discussed on the differences between Misuse and Anomaly Detection based

IDSs. Then we concentrate our attention on statistical fingerprint-based in-

trusion detection systems, which inspects packets in order to get a statistical

characterization of the flows. This characterization represents their finger-

print and based on this our system makes decisions regarding the flow under

analysis. More in detail, we extract a specific flow fingerprint able to tell us if

the considered flow is affected by malware or not. For this purpose, we used

different machine learning algorithms, which take as input the aforemen-

tioned fingerprint and release as output the category of the analyzed flow.

After this we investigated if it was feasible to apply this technique also in

the SDN environment. To this purpose, using the knowledge acquired during

the entire research, we built an SDN controller application able to manage

CHAPTER 7. CONCLUSIONS 149

both the traffic traversing the network and, in the same time, identify if a

considered flow is affected by malware or not. Both of these actions can be

done by the used SDN controller Ryu without any OpenFlow modification,

resulting 100% compliant with the current specifications.

This research is not intended finished but, on the contrary, there are a

lot of things to do in the SDN field. A possible future work, which is in

direct sequence with this thesis, can be understand what are the implication

regarding the next generation (5G) networks, not only in the satellite en-

vironment, as done in this work, but also in the other fields treated inside

this thesis. One possible example is the study of the implication of SDN

in the support of quality of service in terrestrial 5G environment. An other

interesting field of study in which SDN can play a major role, it is applying

its concepts to industrial networks. Nowadays, industries and in particular

the energy production environment are trying to open their network to the

internet and the infrastructure remote control is becoming a must. In this

transformation SDN can play a primary role due to its flexibility and easier

management.

Bibliography

[1] OpenFlow Switch Specification, Open Networking Foundation,

December 19, 2014, version 1.5.0.

[2] S. Shenker, “A Gentle Introduction to Software Defined Networks,”

http://tce.technion.ac.il/files/2012/06/Scott-shenker.pdf, 2012, UC

Berkeley, Technion Computer Engineering Center.

[3] T. Nadeau and K. Gray, SDN - Software Defined Networks, O’Reilly,

Ed. O’Reilly Media Inc., 2013.

[4] K. Benzekki, A. El Fergougui, and A. Elbelrhiti Elalaoui,

“Software-defined networking (SDN): a survey,” Security and

Communication Networks, vol. 9, no. 18, pp. 5803–5833, 2016.

[Online]. Available:

https://onlinelibrary.wiley.com/doi/abs/10.1002/sec.1737

[5] Open Networking Fundation, “Software-Defined Networking: The

New Norm for Networks,” April 2012.

[6] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKewon,

and S. Shenker, “Nox: towards an operating system for networks,”

150

http://tce.technion.ac.il/files/2012/06/Scott-shenker.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002/sec.1737

BIBLIOGRAPHY 151

ACM SIGCOMM Computer Commun. Review, vol. 38, no. 3, p.

105–110, 2008.

[7] B. A. A. Nunes, M. Mendonca, X. Nguyen, K. Obraczka, and

T. Turletti, “A Survey of Software-Defined Networking: Past, Present,

and Future of Programmable Networks,” IEEE Communications

Surveys Tutorials, vol. 16, no. 3, pp. 1617–1634, Third 2014.

[8] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,

L. Peterson, J. Rexford, S. Shenker, and J. Turner, “Openflow:

Enabling Innovation in Campus Networks,” SIGCOMM Comput.

Commun. Rev., vol. 38, no. 2, pp. 69–74, Mar. 2008. [Online].

Available: http://doi.acm.org/10.1145/1355734.1355746

[9] W. C. Hardy, QoS Measurement and Evaluation of

Telecommunications Quality of Service, Wiley, Ed. John Wiley and

Sons, Chichester, 2001.

[10] M. Marchese, QoS Over Heterogeneous Networks, Wiley, Ed. Wiley

Publishing, 2007.

[11] R. Gellens, “The SYS and AUTH POP Response Codes,” RFC 3206

(Proposed Standard), Internet Engineering Task Force, February

2002. [Online]. Available: http://www.ietf.org/rfc/rfc3206.txt

[12] J. Gozdecki, A. Jajszczyk, and R. Stankiewicz, “Quality of service

terminology in IP networks,” Communications Magazine, IEEE,

vol. 41, no. 3, pp. 153 – 159, March 2003.

http://doi.acm.org/10.1145/1355734.1355746
http://www.ietf.org/rfc/rfc3206.txt

BIBLIOGRAPHY 152

[13] “ITU-T Recommendation. Support of IP based Services Using IP

Transfer Capabilities. ITU-T Recommendation Y.1241,” March 2001.

[14] “ITU-T Recommendation. Network Performance Objectives for

IP-Based Services. ITU-T Recommendation Y.1541,” February 2003.

[15] “ITU-T Recommendation. IP Packet Transfer and Availability

Performance Parameters. ITU-T Recommendation Y.1540,”

November 2002.

[16] A. Tanenbaum, Computer Networks, 4th ed. Prentice Hall

Professional Technical Reference, 2002.

[17] H. J. Chao and X. Guo, Quality of Service Control in High-Speed

Networks. John Wiley and Sons, Chichester, England, 2002.

[18] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and

S. Shenker, “Ethane: Taking Control of the Enterprise,” in

Proceedings of the 2007 Conference on Applications, Technologies,

Architectures, and Protocols for Computer Communications, ser.

SIGCOMM ’07, 2007, pp. 1–12.

[19] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,

L. Peterson, J. Rexford, S. Shenker, and J. Turner, “OpenFlow:

Enabling Innovation in Campus Networks,” SIGCOMM Comput.

Commun. Rev., vol. 38, no. 2, pp. 69–74, Mar. 2008. [Online].

Available: http://doi.acm.org/10.1145/1355734.1355746

[20] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowtron, “Better

Never Than Late: Meeting Deadlines in Datacenter Networks,” in

http://doi.acm.org/10.1145/1355734.1355746

BIBLIOGRAPHY 153

Proceedings of the ACM SIGCOMM 2011 Conference, ser.

SIGCOMM ’11, 2011, pp. 50–61.

[21] D. Erickson, “The Beacon Openflow Controller,” in Proceedings of the

Second ACM SIGCOMM Workshop on Hot Topics in Software

Defined Networking, ser. HotSDN ’13, 2013, pp. 13–18.

[22] D. Awduche, L. Berger, D. Gan, T. Li, V. Srinivasan, and S. G,

“RSVP-TE: Extensions to RSVP for LSP tunnels,” RFC 3209, 2001.

[23] D. Applegate and M. Thorup, “Load optimal MPLS routing with N

+ M labels,” in INFOCOM 2003. Twenty-Second Annual Joint

Conference of the IEEE Computer and Communications. IEEE

Societies, vol. 1, March 2003, pp. 555–565.

[24] N. Handigol, S. Seetharaman, M. Flajslik, R. Johari, and

N. McKeown, “Aster*x: Load-Balancing as a Network Primitive,” in

Plenary Demo, 9th GENI Engineering Conference, ser. 9th GENI,

November 2010.

[25] R. Wang, D. Butnariu, and J. Rexford, “OpenFlow-based Server

Load Balancing Gone Wild,” in Proceedings of the 11th USENIX

Conference on Hot Topics in Management of Internet, Cloud, and

Enterprise Networks and Services, ser. Hot-ICE’11, 2011, pp. 12–12.

[26] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri,

and R. Wattenhofer, “Achieving High Utilization with

Software-driven WAN,” in Proceedings of the ACM SIGCOMM 2013

Conference on SIGCOMM, ser. SIGCOMM ’13, 2013, pp. 15–26.

BIBLIOGRAPHY 154

[27] S. Agarwal, M. Kodialam, and T. V. Lakshman, “Traffic engineering

in software defined networks,” in 2013 Proceedings IEEE INFOCOM,

April 2013, pp. 2211–2219.

[28] S. Gutz, A. Story, C. Schlesinger, and N. Foster, “Splendid Isolation:

A Slice Abstraction for Software-defined Networks,” in Proceedings of

the First Workshop on Hot Topics in Software Defined Networks, ser.

HotSDN ’12, 2012, pp. 79–84.

[29] OpenFlow Management and Configuration Protocol, Open Networking

Foundation, 2014,

https://www.opennetworking.org/images/stories/downloads/sdn-

resources/onf-specifications/openflow-config/of-config-1.2.pdf.

[30] M. Dobrescu, N. Egi, K. Argyraki, B.-G. Chun, K. Fall,

G. Iannaccone, A. Knies, M. Manesh, and S. Ratnasamy,

“RouteBricks: Exploiting Parallelism to Scale Software Routers,” in

Proceedings of the ACM SIGOPS 22Nd Symposium on Operating

Systems Principles, ser. SOSP ’09. New York, NY, USA: ACM,

2009, pp. 15–28. [Online]. Available:

http://doi.acm.org/10.1145/1629575.1629578

[31] T. Meyer, D. Raumer, F. Wohlfart, B. Wolfinger, and G. Carle,

Validated Model-Based Performance Prediction of Multi-Core

Software Routers. Praxis der Informationsverarbeitung und

Kommunikation (PIK), 2014, ch. vol. 2, pp. 1–12.

https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow-config/of-config-1.2.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow-config/of-config-1.2.pdf
http://doi.acm.org/10.1145/1629575.1629578

BIBLIOGRAPHY 155

[32] T. Meyer, D. Raumer, F. Wohlfart, B. E. Wolfinger, and G. Carle,

“Low latency packet processing in software routers,” in International

Symposium on Performance Evaluation of Computer and

Telecommunication Systems (SPECTS 2014), July 2014, pp. 556–563.

[33] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,

A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall, and

W. Vogels, “Dynamo: Amazon’s highly available key-value store,”

SIGOPS Oper. Syst. Rev., vol. 41, no. 6, pp. 205–220, Oct. 2007.

[Online]. Available: http://doi.acm.org/10.1145/1323293.1294281

[34] T. Hoff. (2009, Nov.) 10 eBay Secrets for Planet Wide Scaling.

http://highscalability.com/blog/2009/11/17/10-ebay-secrets-for-

planet-wide-scaling.html.

[35] W. Vogels. (2009, Apr.) Performance and Scalability. http://www.

allthingsdistributed.com/2006/04/performance and scalability.html.

[36] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, and N. McKeown,

“Reproducible Network Experiments Using Container-based

Emulation,” in Proceedings of the 8th International Conference on

Emerging Networking Experiments and Technologies, ser. CoNEXT

’12. New York, NY, USA: ACM, 2012, pp. 253–264. [Online].

Available: http://doi.acm.org/10.1145/2413176.2413206

[37] “Open vSwitch,” http://openvswitch.org/, 2014.

[38] C. G. Cassandras, Y. Wardi, B. Melamed, G. Sun, and C. G.

Panayiotou, “Perturbation analysis for online control and

http://doi.acm.org/10.1145/1323293.1294281
http://www.allthingsdistributed.com/2006/04/performance_and_scalability.html
http://www.allthingsdistributed.com/2006/04/performance_and_scalability.html
http://doi.acm.org/10.1145/2413176.2413206
http://openvswitch.org/

BIBLIOGRAPHY 156

optimization of stochastic fluid models,” IEEE Transactions on

Automatic Control, vol. 47, no. 8, pp. 1234–1248, Aug 2002.

[39] M. Cello, M. Marchese, and M. Mongelli, “On the qos estimation in

an openflow network: The packet loss case,” IEEE Communications

Letters, vol. 20, no. 3, pp. 554–557, March 2016.

[40] R. E. Korf, “Multi-way Number Partitioning,” in Proceedings of the

21st International Jont Conference on Artifical Intelligence, ser.

IJCAI’09. San Francisco, CA, USA: Morgan Kaufmann Publishers

Inc., 2009, pp. 538–543. [Online]. Available:

http://dl.acm.org/citation.cfm?id=1661445.1661531

[41] J. Ordóñez-Lucena, P. Ameigeiras, D. Lopez, J. J. Ramos-Muñoz,

J. Lorca, and J. Folgueira, “Network Slicing for 5G with SDN/NFV:

Concepts, Architectures, and Challenges,” IEEE Communications

Magazine, vol. 55, no. 5, pp. 80–87, May 2017.

[42] 3GPP TS 23.501:”Technical Specification Group Services and

Systems Aspects; System Architecture for the 5G system; Stage 2”.

[43] Z. Ma, Z. Zhang, Z. Ding, P. Fan, and H. Li, “Key techniques for 5G

wireless communications: network architecture, physical layer, and

MAC layer perspectives,” Science China Information Sciences,

vol. 58, no. 4, pp. 1–20, Apr 2015.

[44] L. Bertaux, S. Medjiah, P. Berthou, S. Abdellatif, A. Hakiri,

P. Gelard, F. Planchou, and M. Bruyere, “Software Defined

http://dl.acm.org/citation.cfm?id=1661445.1661531

BIBLIOGRAPHY 157

Networking and Virtualization for Broadband Satellite Networks,”

IEEE Communications Magazine, vol. 53, no. 3, pp. 54–60, 2015.

[45] M. Sheng, Y. Wang, J. Li, R. Liu, D. Zhou, and L. He, “Toward a

flexible and reconfigurable broadband satellite network: Resource

management architecture and strategies,” IEEE Wireless

Communications, vol. 24, no. 4, pp. 127–133, 2017.

[46] J. Liu, Y. Shi, L. Zhao, Y. Cao, W. Sun, and N. Kato, “Joint

placement of controllers and gateways in SDN-enabled 5G-satellite

integrated network,” IEEE Journal on Selected Areas in

Communications, vol. 36, no. 2, pp. 221–232, Feb 2018.

[47] T. Li, H. Zhou, H. Luo, and S. Yu, “Service: A software defined

framework for integrated space-terrestrial satellite communication,”

IEEE Transactions on Mobile Computing, vol. 17, no. 3, pp. 703–716,

2017.

[48] Z. Georgios, P. Georgia, N. José, B. Jorge, M. Isaac, T. Christos,

M. Sina, S. S. Krishna, A. Maha, and C. Symeon, “SANSA-hybrid

terrestrial-satellite backhaul network: scenarios, use cases, KPIs,

architecture, network and physical layer techniques,” International

Journal of Satellite Communications and Networking, vol. 35, no. 5,

pp. 379–405, 2017. [Online]. Available:

https://onlinelibrary.wiley.com/doi/abs/10.1002/sat.1207

[49] T. Ahmed, E. Dubois, J.-B. Dupé, R. Ferrús, P. Gélard, and

N. Kuhn, “Software-defined satellite cloud RAN,” International

https://onlinelibrary.wiley.com/doi/abs/10.1002/sat.1207

BIBLIOGRAPHY 158

Journal of Satellite Communications and Networking, vol. 36, no. 1,

pp. 108–133, 2018.

[50] R. Ferrús, H. Koumaras, O. Sallent, G. Agapiou, T. Rasheed, M.-A.

Kourtis, C. Boustie, P. Gélard, and T. Ahmed, “SDN/NFV-enabled

satellite communications networks: Opportunities, scenarios and

challenges,” Physical Communication, vol. 18, pp. 95–112, 2016.

[51] G. Gardikis, H. Koumaras, C. Sakkas, and V. Koumaras, “Towards

SDN/NFV-enabled satellite networks,” Telecommunication Systems,

vol. 66, no. 4, pp. 615–628, 2017.

[52] B. Yang, Y. Wu, X. Chu, and G. Song, “Seamless handover in

software-defined satellite networking,” IEEE Communications Letters,

vol. 20, no. 9, pp. 1768–1771, 2016.

[53] T. Ahmed, R. Ferrús, R. Fedrizzi, O. Sallent, N. Kuhn, E. Dubois,

and P. Gélard, “Satellite gateway diversity in SDN/NFV-enabled

satellite ground segment systems,” in Communications Workshops

(ICC Workshops), 2017 IEEE International Conference on. IEEE,

2017, pp. 882–887.

[54] M. Mongelli, T. De Cola, M. Cello, M. Marchese, and F. Davoli,

“Feeder-link outage prediction algorithms for SDN-based

high-throughput satellite systems,” in Communications (ICC), 2016

IEEE International Conference on. IEEE, 2016, pp. 1–6.

[55] T. Rossi, M. De Sanctis, E. Cianca, C. Fragale, M. Ruggieri, and

H. Fenech, “Future space-based communications infrastructures based

BIBLIOGRAPHY 159

on high throughput satellites and software defined networking,” IEEE

International Symposium on Systems Engineering (ISSE), pp.

332–337, 2015.

[56] Y. Zhang and Y. Wang, “SDN based ICN architecture for the future

integration network,” 16th International Symposium on

Communications and Information Technologies (ISCIT), pp. 474–478,

2016.

[57] J. Bao, B. Zhao, W. Yu, Z. Feng, C. Wu, and Z. Gong, “Opensan: a

software-defined satellite network architecture,” ACM SIGCOMM

Computer Communication Review, vol. 44, no. 4, pp. 347–348, 2014.

[58] Z. Tang, B. Zhao, W. Yu, Z. Feng, and C. Wu, “Software defined

satellite networks: Benefits and challenges,” IEEE Computing,

Communications and IT Applications Conference (ComComAp), pp.

127–132, 2014.

[59] T. Li, H. Zhou, H. Luo, W. Quan, and S. Yu, “Modeling software

defined satellite networks using queueing theory,” IEEE International

Conference on Communications (ICC), pp. 1–6, 2017.

[60] J. Feng, L. Jiang, Y. Shen, W. Ma, and M. Yin, “A scheme for

software defined ors satellite networking,” IEEE Fourth International

Conference on Big Data and Cloud Computing (BdCloud), pp.

716–721, 2014.

BIBLIOGRAPHY 160

[61] A. Ferreira, J. Galtier, and P. Penna, “Topological design, routing

and handover in satellite networks,” Handbook of wireless networks

and mobile computing, vol. 473, p. 493, 2002.

[62] F. Long, Satellite Network Constellation Design. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2014, pp. 21–40. [Online]. Available:

https://doi.org/10.1007/978-3-642-54353-1 2

[63] S. Cakaj, B. Kamo, A. Lala, and A. Rakipi, “The coverage analysis

for low earth orbiting satellites at low elevation,” International

Journal of Advanced Computer Science and Applications (IJACSA),

vol. 5, no. 6, 2014.

[64] R. L. Douglas, Satellite communications technology. Englewood

Cliff, NJ, USA: Prentice Hall, 1988.

[65] Y. Ye, T. Li, Q. Jiang, and Y. Wang, “Cimds: adapting

postprocessing techniques of associative classification for malware

detection,” Systems, Man, and Cybernetics, Part C: Applications and

Reviews, IEEE Transactions on, vol. 40, no. 3, pp. 298–307, 2010.

[66] V. G. Cerf, “Defense against the dark arts,” Internet Computing,

IEEE, vol. 16, no. 1, pp. 96–96, 2012.

[67] H. Kim, K. G. Shin, and P. Pillai, “Modelz: monitoring, detection,

and analysis of energy-greedy anomalies in mobile handsets,” Mobile

Computing, IEEE Transactions on, vol. 10, no. 7, pp. 968–981, 2011.

[68] M. Chandramohan and H. B. K. Tan, “Detection of mobile malware

in the wild,” Computer, vol. 45, no. 9, pp. 0065–71, 2012.

https://doi.org/10.1007/978-3-642-54353-1_2

BIBLIOGRAPHY 161

[69] M. La Polla, F. Martinelli, and D. Sgandurra, “A survey on security

for mobile devices,” Communications surveys & tutorials, IEEE,

vol. 15, no. 1, pp. 446–471, 2013.

[70] E. Fernandes, B. Crispo, and M. Conti, “Fm 99.9, radio virus:

Exploiting fm radio broadcasts for malware deployment,” Information

Forensics and Security, IEEE Transactions on, vol. 8, no. 6, pp.

1027–1037, 2013.

[71] S. Gianvecchio, M. Xie, Z. Wu, and H. Wang, “Humans and bots in

internet chat: measurement, analysis, and automated classification,”

IEEE/ACM Transactions on Networking (TON), vol. 19, no. 5, pp.

1557–1571, 2011.

[72] S. Y. Yerima, S. Sezer, and G. McWilliams, “Analysis of bayesian

classification-based approaches for android malware detection,”

Information Security, IET, vol. 8, no. 1, pp. 25–36, 2014.

[73] W. Peng, F. Li, X. Zou, and J. Wu, “Behavioral malware detection in

delay tolerant networks,” Parallel and Distributed Systems, IEEE

Transactions on, vol. 25, no. 1, pp. 53–63, 2014.

[74] H. Nakayama, S. Kurosawa, A. Jamalipour, Y. Nemoto, and N. Kato,

“A dynamic anomaly detection scheme for aodv-based mobile ad hoc

networks,” Vehicular Technology, IEEE Transactions on, vol. 58,

no. 5, pp. 2471–2481, 2009.

BIBLIOGRAPHY 162

[75] F. Sabahi and A. Movaghar, “Intrusion detection: A survey,” in

Systems and Networks Communications, 2008. ICSNC’08. 3rd

International Conference on. IEEE, 2008, pp. 23–26.

[76] D. E. Denning, “An intrusion-detection model,” IEEE Transactions

on Software Engineering, vol. SE-13, no. 2, pp. 222–232, Feb 1987.

[77] K. Fukunaga, Introduction to Statistical Pattern Recognition (2Nd

Ed.). San Diego, CA, USA: Academic Press Professional, Inc., 1990.

[78] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification (2Nd

Edition). Wiley-Interscience, 2000.

[79] A. McCallum, K. Nigam et al., “A comparison of event models for

naive bayes text classification,” in AAAI-98 workshop on learning for

text categorization, vol. 752. Citeseer, 1998, pp. 41–48.

[80] P. Langley, W. Iba, and K. Thompson, “An analysis of bayesian

classifiers,” in Aaai, vol. 90, 1992, pp. 223–228.

[81] M. A. Hall and E. Frank, “Combining naive bayes and decision

tables.” in FLAIRS Conference, vol. 2118, 2008, pp. 318–319.

[82] B. R. Gaines and P. Compton, “Induction of ripple-down rules

applied to modeling large databases,” Journal of Intelligent

Information Systems, vol. 5, no. 3, pp. 211–228, 1995.

[83] J. C. Platt, “Fast training of support vector machines using sequential

minimal optimization,” in Advances in Kernel Methods - Support

BIBLIOGRAPHY 163

Vector Learning. MIT Press, January 1998. [Online]. Available:

http://research.microsoft.com/apps/pubs/default.aspx?id=68391

[84] J. R. Quinlan, C4.5: Programs for Machine Learning. San

Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1993.

[85] W. W. Cohen, “Fast effective rule induction,” in Proceedings of the

twelfth international conference on machine learning, 1995, pp.

115–123.

[86] E. Frank and I. H. Witten, “Generating accurate rule sets without

global optimization,” in ICML, vol. 98, 1998, pp. 144–151.

[87] E. Frank, “Fully supervised training of gaussian radial basis function

networks in weka,” Department of Computer Science, University of

Waikato, Tech. Rep, vol. 4, p. 14, 2014.

[88] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp.

5–32, 2001. [Online]. Available:

http://dx.doi.org/10.1023/A:1010933404324

[89] J. J. Blount, D. R. Tauritz, and S. A. Mulder, “Adaptive rule-based

malware detection employing learning classifier systems: a proof of

concept,” in Computer Software and Applications Conference

Workshops (COMPSACW), 2011 IEEE 35th Annual. IEEE, 2011,

pp. 110–115.

[90] W. Zhuang, Y. Ye, Y. Chen, and T. Li, “Ensemble clustering for

internet security applications,” Systems, Man, and Cybernetics, Part

http://research.microsoft.com/apps/pubs/default.aspx?id=68391
http://dx.doi.org/10.1023/A:1010933404324

BIBLIOGRAPHY 164

C: Applications and Reviews, IEEE Transactions on, vol. 42, no. 6,

pp. 1784–1796, 2012.

[91] Z. Shan and X. Wang, “Growing grapes in your computer to defend

against malware,” Information Forensics and Security, IEEE

Transactions on, vol. 9, no. 2, pp. 196–207, 2014.

[92] P. O’Kane, S. Sezer, K. McLaughlin, and E. G. Im, “Svm training

phase reduction using dataset feature filtering for malware detection,”

Information Forensics and Security, IEEE Transactions on, vol. 8,

no. 3, pp. 500–509, 2013.

[93] I. Santos, F. Brezo, B. Sanz, C. Laorden, and P. G. Bringas, “Using

opcode sequences in single-class learning to detect unknown

malware,” Information Security, IET, vol. 5, no. 4, pp. 220–227, 2011.

[94] S. Cesare, Y. Xiang, and W. Zhou, “Malwise - an effective and

efficient classification system for packed and polymorphic malware,”

IEEE Transactions on Computers, vol. 62, no. 6, pp. 1193–1206, June

2013.

[95] A. Alhomoud, R. Munir, J. P. Disso, I. Awan, and A. Al-Dhelaan,

“Performance evaluation study of intrusion detection systems,”

Procedia Computer Science, vol. 5, pp. 173 – 180, 2011, the 2nd

International Conference on Ambient Systems, Networks and

Technologies (ANT-2011) / The 8th International Conference on

Mobile Web Information Systems (MobiWIS 2011). [Online].

BIBLIOGRAPHY 165

Available:

http://www.sciencedirect.com/science/article/pii/S1877050911003498

[96] S. K. Cha, I. Moraru, J. Jang, J. Truelove, D. Brumley, and D. G.

Andersen, “Splitscreen: Enabling efficient, distributed malware

detection,” Communications and Networks, Journal of, vol. 13, no. 2,

pp. 187–200, 2011.

[97] M. A. Aydın, A. H. Zaim, and K. G. Ceylan, “A hybrid intrusion

detection system design for computer network security,” Computers &

Electrical Engineering, vol. 35, no. 3, pp. 517–526, 2009.

[98] H. Om and A. Kundu, “A hybrid system for reducing the false alarm

rate of anomaly intrusion detection system,” in Recent Advances in

Information Technology (RAIT), 2012 1st International Conference

on. IEEE, 2012, pp. 131–136.

[99] R. R. Karthick, V. P. Hattiwale, and B. Ravindran, “Adaptive

network intrusion detection system using a hybrid approach,” in

Communication Systems and Networks (COMSNETS), 2012 Fourth

International Conference on. IEEE, 2012, pp. 1–7.

[100] R. M. Elbasiony, E. A. Sallam, T. E. Eltobely, and M. M. Fahmy, “A

hybrid network intrusion detection framework based on random

forests and weighted k-means,” Ain Shams Engineering Journal,

vol. 4, no. 4, pp. 753–762, 2013.

http://www.sciencedirect.com/science/article/pii/S1877050911003498

BIBLIOGRAPHY 166

[101] M. Dusi, M. Crotti, F. Gringoli, and L. Salgarelli, “Tunnel hunter:

Detecting application-layer tunnels with statistical fingerprinting,”

Computer Networks, vol. 53, no. 1, pp. 81–97, 2009.

[102] M. Aiello, M. Mongelli, and G. Papaleo, “Dns tunneling detection

through statistical fingerprints of protocol messages and machine

learning,” International Journal of Communication Systems, vol. 28,

no. 14, pp. 1987–2002, 2015.

[103] H. Nakayama, A. Jamalipour, and N. Kato, “Network-based

traitor-tracing technique using traffic pattern,” IEEE Transactions on

Information Forensics and Security, vol. 5, no. 2, pp. 300–313, June

2010.

[104] M. N. Mohammad, N. Sulaiman, and O. A. Muhsin, “A novel

intrusion detection system by using intelligent data mining in weka

environment,” Procedia Computer Science, vol. 3, pp. 1237–1242,

2011.

[105] M. Zamani and M. Movahedi, “Machine learning techniques for

intrusion detection,” arXiv preprint arXiv:1312.2177, 2013.

[106] G. V. Nadiammai and M. Hemalatha, “Perspective analysis of

machine learning algorithms for detecting network intrusions,” in

Computing Communication Networking Technologies (ICCCNT),

2012 Third International Conference on, July 2012, pp. 1–7.

[107] “Kdd cup 1999 data,”

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

BIBLIOGRAPHY 167

[108] S. Saravanan, S. Vijay Bhanu, and R. Chandrasekaran, “Study on

classification algorithms for network intrusion systems,” Journal of

Communication and Computer, vol. 9, no. 11, pp. 1242–1246, 2012.

[109] A. C. Enache and V. V. Patriciu, “Intrusions detection based on

support vector machine optimized with swarm intelligence,” in

Applied Computational Intelligence and Informatics (SACI), 2014

IEEE 9th International Symposium on, May 2014, pp. 153–158.

[110] H. Nakayama, A. Jamalipour, and N. Kato, “Network-based

traitor-tracing technique using traffic pattern,” Information Forensics

and Security, IEEE Transactions on, vol. 5, no. 2, pp. 300–313, 2010.

[111] J. Postel, “Rfc 790—assigned numbers,” 1981.

[112] J. Reynolds, “Assigned numbers: Rfc 1700 is replaced by an on-line

database,” 2002.

[113] T.-F. Yen, X. Huang, F. Monrose, and M. K. Reiter, “Browser

fingerprinting from coarse traffic summaries: Techniques and

implications,” in Proceedings of the 6th International Conference on

Detection of Intrusions and Malware, and Vulnerability Assessment,

ser. DIMVA ’09. Berlin, Heidelberg: Springer-Verlag, 2009, pp.

157–175.

[114] M. Crotti, M. Dusi, F. Gringoli, and L. Salgarelli, “Traffic

classification through simple statistical fingerprinting,” SIGCOMM

Comput. Commun. Rev., vol. 37, no. 1, pp. 5–16, Jan. 2007. [Online].

Available: http://doi.acm.org/10.1145/1198255.1198257

http://doi.acm.org/10.1145/1198255.1198257

BIBLIOGRAPHY 168

[115] www.mediafire.com/?a49l965nlayad.

[116] “Weka – data mining machine learning software,”

http://www.cs.waikato.ac.nz/ml/weka/.

[117] R. K. Dash, “Selection of the best classifier from different datasets

using weka,” in International Journal of Engineering Research and

Technology, vol. 2, no. 3 (March-2013). ESRSA Publications, 2013.

[118] H. A. Nguyen and D. Choi, “Application of data mining to network

intrusion detection: classifier selection model,” in Challenges for Next

Generation Network Operations and Service Management. Springer,

2008, pp. 399–408.

[119] W. Stallings, “Software-defined networks and openflow,” The internet

protocol Journal, vol. 16, no. 1, pp. 2–14, 2013.

[120] B. A. A. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka, and

T. Turletti, “A survey of software-defined networking: Past, present,

and future of programmable networks,” IEEE Communications

Surveys & Tutorials, vol. 16, no. 3, pp. 1617–1634, 2014.

[121] Y. Zhang, “An adaptive flow counting method for anomaly detection

in sdn,” in Proceedings of the ninth ACM conference on Emerging

networking experiments and technologies. ACM, 2013, pp. 25–30.

[122] R. Skowyra, S. Bahargam, and A. Bestavros, “Software-defined ids

for securing embedded mobile devices,” in High Performance Extreme

Computing Conference (HPEC), 2013 IEEE. IEEE, 2013, pp. 1–7.

www.mediafire.com/?a49l965nlayad
http://www.cs.waikato.ac.nz/ml/weka/

BIBLIOGRAPHY 169

[123] P. Wang, K.-M. Chao, H.-C. Lin, W.-H. Lin, and C.-C. Lo, “An

efficient flow control approach for sdn-based network threat detection

and migration using support vector machine,” in e-Business

Engineering (ICEBE), 2016 IEEE 13th International Conference on.

IEEE, 2016, pp. 56–63.

[124] R. Braga, E. Mota, and A. Passito, “Lightweight ddos flooding attack

detection using nox/openflow,” in Local Computer Networks (LCN),

2010 IEEE 35th Conference on. IEEE, 2010, pp. 408–415.

[125] Ryu, “Framework community: Ryu sdn controller,”

https://osrg.github.io/ryu/, 2016.

[126] B. Lantz, B. Heller, and N. McKeown, “A Network in a Laptop:

Rapid Prototyping for Software-Defined Networks,” in 9th ACM

Workshop on Hot Topics in Networks, October 2010.

[127] A. Turner and M. Bing, “Tcpreplay,”

https://tcpreplay.appneta.com/, 2011.

[128] G. Combs et al., “Wireshark,” Web page: http://www. wireshark.

org/last modified, pp. 12–02, 2007.

[129] T. G. Dietterich, “An experimental comparison of three methods for

constructing ensembles of decision trees: Bagging, boosting, and

randomization,” Machine learning, vol. 40, no. 2, pp. 139–157, 2000.

[130] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,

O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,

https://osrg.github.io/ryu/
https://tcpreplay.appneta.com/

BIBLIOGRAPHY 170

J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and

E. Duchesnay, “Scikit-learn: Machine learning in Python,” Journal of

Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

	Introduction
	Software Defined Networking
	The SDN Controller
	The OpenFlow Protocol

	QoS in Traditional and SDN Networks
	Definition of Quality of Service
	QoS Classes, Applications and Metrics
	Approaches to QoS Management
	QoS Management in OpenFlow
	Related works
	Motivations
	Possible solutions
	General Idea
	Implementation: BeaQoS

	Re-Routing Strategies Analysis
	Deadline Management Scenario
	Queue Balancing Scenario

	Considerations
	Scaling Performances
	Switch Coordination
	Considerations on Queue Balancing Scenario

	Conclusion about Support of Quality of Service in SDN

	SDN in Satellite Environment
	State of the Art for SDN/NFV Enabled Satellite Networks
	Open Challenges
	Proposed Solutions
	The role of SDN in the 5G Satellite Communications
	SDN-based Satellite Terrestrial Network
	Time estimation model
	Results and Final considerations
	Conclusion about the role of SDN in the Satellite environment

	The Problem of Security
	State of the art
	Machine Learning-based Classifiers
	Intrusion Detection Systems classification

	Statistical Fingerprint-IDS
	Key Ideas
	SF-IDS Architecture
	SF-IDS Packet Analyzer
	Statistical Fingerprint: the feature vector
	SF-IDS Classifiers

	Used traffic and performance parameters
	Used Malware and Normal Traffic
	Performance Evaluation Parameters

	Performance evaluation
	Tools
	Evaluation of Single Classifiers
	Single Malware affected flows performance
	Classifiers Acting in Parallel

	Considerations

	SDN IDS Implementation
	Introduction
	State of The Art
	SDN Controller Employed within an IDS
	General Description of Ryu
	Flow Structure
	Structure of the ``Stats_Manager'' Application

	Used Traffic
	Testbed and Scenario Setup
	The network
	Traffic emulation
	The Classifier

	Performance evaluation and comments

	Conclusions

