Scalable Schedule-Aware Bundle Routing

Abstract

This thesis introduces approaches providing scalable delay-/disruption-tolerant routing capabilities in scheduled space topologies. The solution is developed for the requirements derived from use cases built according to predictions for future space topology, like the future Mars communications architecture report from the interagency operations advisory group. A novel routing algorithm is depicted to provide optimized networking performance that discards the scalability issues inherent to state-of-the-art approaches. This thesis also proposes a new recommendation to render volume management concerns generic and easily exchangeable, including a new simple management technique increasing volume awareness accuracy while being adaptable to more particular use cases. Additionally, this thesis introduces a more robust and scalable approach for internetworking between subnetworks to increase the throughput, reduce delays, and ease configuration thanks to its high flexibility.:1 Introduction 1.1 Motivation 1.2 Problem statement 1.3 Objectives 1.4 Outline 2 Requirements 2.1 Use cases 2.2 Requirements 2.2.1 Requirement analysis 2.2.2 Requirements relative to the routing algorithm 2.2.3 Requirements relative to the volume management 2.2.4 Requirements relative to interregional routing 3 Fundamentals 3.1 Delay-/disruption-tolerant networking 3.1.1 Architecture 3.1.2 Opportunistic and deterministic DTNs 3.1.3 DTN routing 3.1.4 Contact plans 3.1.5 Volume management 3.1.6 Regions 3.2 Contact graph routing 3.2.1 A non-replication routing scheme 3.2.2 Route construction 3.2.3 Route selection 3.2.4 Enhancements and main features 3.3 Graph theory and DTN routing 3.3.1 Mapping with DTN objects 3.3.2 Shortest path algorithm 3.3.3 Edge and vertex contraction 3.4 Algorithmic determinism and predictability 4 Preliminary analysis 4.1 Node and contact graphs 4.2 Scenario 4.3 Route construction in ION-CGR 4.4 Alternative route search 4.4.1 Yen’s algorithm scalability 4.4.2 Blocking issues with Yen 4.4.3 Limiting contact approaches 4.5 CGR-multicast and shortest-path tree search 4.6 Volume management 4.6.1 Volume obstruction 4.6.2 Contact sink 4.6.3 Ghost queue 4.6.4 Data rate variations 4.7 Hierarchical interregional routing 4.8 Other potential issues 5 State-of-the-art and related work 5.1 Taxonomy 5.2 Opportunistic and probabilistic approaches 5.2.1 Flooding approaches 5.2.2 PROPHET 5.2.3 MaxProp 5.2.4 Issues 5.3 Deterministic approaches 5.3.1 Movement-aware routing over interplanetary networks 5.3.2 Delay-tolerant link state routing 5.3.3 DTN routing for quasi-deterministic networks 5.3.4 Issues 5.4 CGR variants and enhancements 5.4.1 CGR alternative routing table computation 5.4.2 CGR-multicast 5.4.3 CGR extensions 5.4.4 RUCoP and CGR-hop 5.4.5 Issues 5.5 Interregional routing 5.5.1 Border gateway protocol 5.5.2 Hierarchical interregional routing 5.5.3 Issues 5.6 Further approaches 5.6.1 Machine learning approaches 5.6.2 Tropical geometry 6 Scalable schedule-aware bundle routing 6.1 Overview 6.2 Shortest-path tree routing for space networks 6.2.1 Structure 6.2.2 Tree construction 6.2.3 Tree management 6.2.4 Tree caching 6.3 Contact segmentation 6.3.1 Volume management interface 6.3.2 Simple volume manager 6.3.3 Enhanced volume manager 6.4 Contact passageways 6.4.1 Regional border definition 6.4.2 Virtual nodes 6.4.3 Pathfinding and administration 7 Evaluation 7.1 Methodology 7.1.1 Simulation tools 7.1.2 Simulator extensions 7.1.3 Algorithms and scenarios 7.2 Offline analysis 7.3 Eliminatory processing pressures 7.4 Networking performance 7.4.1 Intraregional unicast routing tests 7.4.2 Intraregional multicast tests 7.4.3 Interregional routing tests 7.4.4 Behavior with congestion 7.5 Requirement fulfillment 8 Summary and Outlook 8.1 Conclusion 8.2 Future works 8.2.1 Next development steps 8.2.2 Contact graph routin

    Similar works