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Abstract

This thesis introduces approaches providing scalable delay-/disruption-tolerant routing ca-
pabilities in scheduled space topologies. The solution is developed for the requirements de-
rived from use cases built according to predictions for future space topology, like the future
Mars communications architecture report from the interagency operations advisory group.
A novel routing algorithm is depicted to provide optimized networking performance that
discards the scalability issues inherent to state-of-the-art approaches. This thesis also pro-
poses a new recommendation to render volume management concerns generic and easily
exchangeable, including a new simple management technique increasing volume awareness
accuracy while being adaptable to more particular use cases. Additionally, this thesis intro-
duces a more robust and scalable approach for internetworking between subnetworks to
increase the throughput, reduce delays, and ease configuration thanks to its high flexibility.
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1 Introduction

1.1 Motivation

In space networks, end-to-end communications are challenging due to frequent disruptions
and high delays along the end-to-end path. In addition to these delays due to disruptions,
interplanetary distances induce delays on the links, resulting from the signal propagation
speed limit.
The so-calledDelay-/Disruption-Tolerant Networking (DTN1) architecture tackles those con-

straints. The DTN messages, called bundles, can be stored at intermediary nodes until the
next transmission opportunity occurs, contrary to traditional ground networks, where nodes
directly forward the bundles upon reception.
Besides disruptions due to failures or other unplanned events, space networks show chal-

lenging topological dynamics due to themobility of the nodes. Consequently, a network node
can communicate with different subsets of neighbors over time. This high constraint makes
most of the traditional routing algorithms inapplicable.
Space network connections are often scheduled, i.e., the episodes of connectivity between

nodes, called contacts, are known in advance. Thanks to node trajectory prediction and
mission planning, operators can create a contact plan, which lists the future contacts that
should be considered for end-to-end pathfinding. Several neighbors might be reachable
simultaneously, but if only one connection at a time is possible due to hardware constraints
(e.g., the satellite operates with a single steerable antenna), mission planning is essential to
define potential connections that should be ignored. Routing algorithms can then derive a
time-varying graph from the contact plan and find a route to a bundle destination with a
delay-tolerant version of shortest path algorithms.
Contact Graph Routing (CGR) [Bur09], later standardized by the Consultative Committee

for Space Data Systems (CCSDS) as Schedule-Aware Bundle Routing (SABR) [CCS19] is the
reference deterministic routing algorithm in scheduled space networks. The Interplanetary
Overlay Network (ION) [Bur07] is a referenceNASA implementation to allow nodes to operate
within a DTN architecture [CBH+07] and uses CGR as the sole routing algorithm. ION is flight
proven and operationally used, e.g., for communications with the international space station.
Moreover, CGR is still the exclusive routing algorithm available in ION, attesting to its huge

This thesis is also available at https://bitbucket.org/olivier-dj/diss/
1For convenience, this acronym is also used in this thesis to refer to networks with delay-tolerant capabilities.
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predominance for space DTN.
The place CGR holds in the DTN routing field encouraged, for more than a decade, various

research works around CGR to provide enhancements. Those advancements still need to
be improved regarding the space network growth predictions.

Figure 1.1: Projections of node counts and networking capabilities from the futuremars com-
munications architecture report (figure from [ioa22]), page 86.

The future Mars Communications Architecture [ioa22] report from the Interagency Opera-
tions Advisory Group (IOAG) published in February 2022 states that each relay orbiter, the
user vehicles (in orbit or on the surface), the relevant Earth stations, and the various Mis-
sion Operations Centers (MOCs) will serve as DTN nodes. The IOAG also identifies SABR as
essential for the service management function.

Mars

Region

Ring road orbiter
trajectory

Interregional
communication

Earth

Interplanetary
distance

Ground station

Orbiter

Figure 1.2: Topology-based regional structure, with one region per planet.

However, such a statement conflicts with CGR’s known limitations, e.g., its processing time
in large networks or itsmemory pressurewhenusing Yen’s algorithm [Yen71, ABB+15, FDJB21,
FMCF18, Wal20, WBW+16], rendering unrealistic the ability of CGR to support the networking
characteristics presented in figure 1.1.
In response to the predictions regarding the network size increases, sub-networks were

also introduced under the name of regions [Ale19], where bundles can flow from one region
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to another only through gateway nodes called passageways. Regions permit the reduction of
the scope of CGR’s applicability to a subset of nodes tomitigate its scalability issues. However,
this brings the risk of transferring this issue from the intraregional level to the interregional
one, with the multiplicity of small regions addressing the inability of CGR to operate in larger
ones. Figure 1.2 depicts a regional structure.
Last, themaximum amount of transmittable data via a contact, called volume, is a precious

resource that needs to bemanaged as efficiently as possible. The contacts can be infrequent
and short. The predicted load and bundle size increase (as permitted by DTN technologies)
might stress CGR even further when considering existing gaps in its volume management.
The primary motivation for this thesis is the need for a scalable solution to address in-

creasing loads, increasing network sizes in terms of the number of nodes and contacts, and
upcoming interregional routing challenges for scheduled space networks.

1.2 Problem statement
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Figure 1.3: DTN contact plan growth compared with a static network.

The space network growth prediction regarding nodes, contacts, load, and delays due to in-
terplanetary links and deep space missions requires efficient routing, volume management,
and internetworking solutions.
Routing is a central component to reach this goal, as selecting efficient end-to-end paths

can mitigate end-to-end delays by approaching optimal pathing. The multiplication of edges
in such network graph representations brings scalability challenges. A static network sees its
graph representation increase when the number of nodes and possible contacts increases.
At the same time, a DTN graph grows even larger depending on the operational period sup-
ported by the contact plan for a given number of nodes. For a given operating period, the
horizon of a contact plan refers to the latest contact end time. Figure 1.3 depicts this aspect
by considering three different snapshots for two networks and providing the contact IDs (the
contact plan shows 11 contacts against 5 for the static one over time).
In other words, a static network graph grows depending on two factors: the number of

nodes multiplied by the average egress contacts from a node. In comparison, a DTN graph
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grows depending on three factors by adding the time component (multiplying the edges by
the average number of subsequent contacts between two nodes before the contact plan
horizon).
This pressure on the routing algorithm is problematic, as scalability requires higher node

and contact counts, and flexibility and robustness require a later contact plan horizon. How-
ever, a relatively low ceiling for scalability can be expected due to the current state of research
in deterministic pathfinding solutions while stacking support for different DTN aspects. In-
ternetworking between regions operating with different contact plans can mitigate the issue
but cannot be considered sufficient. Indeed, the risk is to transfer the problem from the
intraregional level to the interregional routing one by increasing the interregional structure
size and the possible scalability issues associated (e.g., delays and configuration).
The nature of such extreme networks might require redundancy as an efficient way to

increase throughput and robustness between the regions. The administration might be,
however, challenging, as both ends need to know about the possible options with potential
optimization selections. At the same time, the delays within the region or between the two
regions might be too high to allow reactive administration decisions. Configuration tensions
may arise depending on the regional structure leveraged, for example, with the need for
heterogeneous node configurations within a given region or contact plan sharing between
agencies for gateway administration.
Routing affects volume management, as the suboptimal following hop selection can in-

crease the risk of congestion, and reciprocally volume management affects routing as inac-
curate volume booking awareness can lead to path selection encompassing contacts already
exhausted in terms of volume.
Volumemanagement is a critical concern, as the contact volume is precious, and incorrect

volume management triggers a domino effect during high-load traffic periods, repeatedly
updating the volume awareness incorrectly by relying on a state built on previous inaccurate
updates.
A scalable solution associating accurate routing and volumemanagement with robust and

flexible internetworking does not exist for large scheduled DTNs.

1.3 Objectives

The main objective of this thesis is to improve DTN scalability by addressing three main top-
ics: intraregional routing, volume management, and interregional routing. To provide some
numbers, scalable in the context of this thesis means regions of hundreds of nodes and in-
terregional structures of hundreds of regions. The state-of-the-art deterministic approaches
are currently inapplicable with such network sizes. An algorithm aligned with the SABR ex-
pectations aims to schedule the bundles for routes that show early predicted arrival times
and low hop count (in this order of priority). The objective of this thesis is to answer the
following research question:

Can a routing algorithm increase scalability, network performance, and computational
performance simultaneously, with respect to the state-of-the-art expectations, for both unicast

and multicast bundles?

This question is decomposed into the following theses.
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/T1/ An intraregional scheduled DTN routing algorithm for unicast and multicast bundles
can show enhanced networking performance and reduced computational cost regarding the
SABR standard expectations for the foreseen network sizes.

/T2/ The volume management can be processed accurately with a unified and efficient
algorithm compatible with the support of priority and data rate variation extensions.

/T3/ The interregional routing for multiple actors can be supported with flexibility and re-
duced configuration pressure.

This thesis will introduce a set of new concepts that mark a shift in the current state-of-
the-art pathfinding approaches, the current design of volume management, and the current
design for interregional routing. A new routing paradigm involving shortest-path tree tech-
niques for unicast and multicast purposes will be introduced, named the Shortest-Path tree
approach for routing in Space Networks (SPSN), as well as a new volume management tech-
nique and an alternative regional structure.

1.4 Outline

This thesis is structured as follows: the objectives and requirements are covered in chapter
2. Chapter 3 covers the Delay-Tolerant Networks architecture and routing fundamentals and
the required graph theory concepts for this thesis. Chapter 4 provides an extensive analysis
of SABR. Chapter 5 covers the current state-of-the-art DTN routing approaches with special
considerations regarding the requirements. Chapter 6 presents novel designs to address in-
traregional routing, volume management, and interregional routing support. The proposed
designs will be evaluated in chapter 7. The core contributions will then be summarized in
chapter 8, and an outline for future work will be proposed.
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2 Requirements

This chapter proposes a use case scenario following the network structure predicted by
the future Mars communication architecture report. A general requirement analysis is con-
ducted, followed by the requirement formulations for each thesis presented in section 1.3.

2.1 Use cases

Planet

Surface node

Ring road orbiter

A Region encompassing
a planetary ring road

A ring road orbiter
trajectory

Interregional bridge
(As configured by the tree)

Interregional
shortcut bridge

Figure 2.1: An interregional tree. The encompassed nodes of a region are represented for
the root region only.

It has been proposed for the future interplanetary backbone to encompass relatively in-
dependent subnetworks called regions nested in a hierarchical tree structure [Ale19]. The
passageway nodes would simultaneously be members of two regions and act as interfaces
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Figure 2.2: A deep space mission within the interregional networking backbone.

to allow interregional traffic. The interregional structure and forwarding mechanism will be
covered in sections 3.1.6 and 4.7.
The scenario depicted in figure 2.1 will be leveraged to derive requirements for this thesis.

The tree structure of the currently proposed interregional routing approach is retained. The
figure presents seven regions in dashed-line red circles, but only the root region exhibits its
intraregional topology.
The dotted red arrows depict the interregional bridges that are assured currently by the

presence of passageway nodes, simultaneously members of the two concerned regions. Be-
cause the nature of those bridges is subject to changes, an abstract representation was
intentionally preferred. The dotted green arrows depict possible bridges, called shortcuts,
that would break the structure of the interregional tree. However, supporting such shortcuts
could be highly beneficial to decrease the delays or increase the throughput.
The ring road network proposal, presented in [KBGB08], uses low Earth orbit (LEO) satel-

lites to connect remote areas. A resource-constrained network with predictable orbit mo-
bility patterns characterizes a ring road. The contacts can be very short and, therefore, can
show limited volumes.
The ring road networks are convenient topologies for planet surface access within an in-

terplanetary network. A single orbiting satellite can allow communications between DTN-
capable nodes in space and on large areas of the planet’s surface. Although not directly
mentioned in the IOAG report for future Mars communications [ioa22], orbiting relay nodes
communicating with surface assets in a delay-tolerant manner also constitute a ring road
network. Ring road networks can be deployed for the moon [FFW18] and probably for any
future exploration of a distant planet due to its cost-efficiency.
More specifically, their deployment within the regional routing backbone could also pos-

itively or negatively impact deep space missions. Communications are affected by ranges,
atmospheric conditions, planet positions, planet rotations, and the hardware and energy
required for transmission.
The atmosphere of Mars is, for example, 100 times less dense than the terrestrial atmo-

sphere [Bar74], and atmospheric perturbations are expected to be reduced if comparedwith
Earth. Ground stations are usually expected to be less impacted by constrained resource
concerns. Moreover, the position of the possible intermediary planets and their nodes im-
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pacts pathfinding.
Bundle end-to-end transmissions over interregional paths, as depicted in figure 2.2, might

present non-negligible benefits to allow earlier transmissions or communications with re-
duced noise due to atmospheric conditions.

2.2 Requirements

2.2.1 Requirement analysis

The definition of functional requirements can be considered sensitive for this thesis. The
route base properties required to select a route as the best candidate are already known
and standardized by SABR, any route selection algorithm should align with the SABR re-
quirements. Therefore, the approach shall minimize the bundle arrival time and the path
hop count in descending order of priority. If several routes are still eligible after this process,
extra filtering using the expiration times can be applied.
In other words, the main information provided by the SABR specification is the method

to select one candidate as the best route among a set of existing routes, consistently im-
plemented as finding the best candidate among a set of known routes. Depending on the
processing pressure mitigation techniques being deployed, this process can not systemat-
ically ensure that the best existing route is part of the previously identified routes and, by
extension, that this best route can effectively be selected. This behavior will be described in
the section 4.
SABR selection criteria are assumed to be appropriate for the scope of this thesis. How-

ever, the conceptual location of this selection phase, either using a list of pre-computed
routes described by SABR or directly during a hypothetical enhanced pathfinding algorithm,
should not be constrained by a standard if the resulting outputs appear identical.
It can be possible to follow the SABR core but not necessarily the form, as SABR aims to

approach routing correctness. The means to achieve this goal will be considered an imple-
mentation detail in the context of SABR. Experience shows that strictly following the rec-
ommendations (including a short mention of Yen’s algorithm) does not provide a reasonable
compromise between computational pressure and network performance with larger topolo-
gies (as mentioned in [ABB+15, FDJB21, FMCF18, Wal20, WBW+16] and confirmed in section
7.3.
Regarding software complexity, various measurement techniques exist, but one can argue

that programming complexity exhibits a subjective nature [MM82]. However, the same study
states that "individuals tend to evaluate the complexity of the programming task more on the size
of the resultant program than on either the expended effort or the inherent complexity of the task".
In comparison, the algorithmic complexity has visible and measurable effects. CGR is

sometimes considered a complicated algorithm when diving into the details, justifying the
publication of surveys and tutorials [ABB+15, FDJB21].
Lowering the software complexity is critical as reducing the algorithmic complexity low-

ers the risk of introducing bugs, simplifies the onboarding of new software developers and
researchers, and eases the continuous enhancement of the software. These benefits are
hardly measurable (objectively) and casually underestimated. However, support of new fea-
tures can induce further software complexity.
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2.2.2 Requirements relative to the routing algorithm

Scenarios from figures 2.1 and 2.2 highlight the routing challenges. The potential presence of
resource-constrained nodes and the future network size predictions further constrain future
approaches. The SABR standard is a baseline for the networking performance expectation as
a constraint on the output. Concerning the input, the approach shall exhibit stable process-
ing times for any bundle to be scheduled, and this at any time during operations. Multicast
is a crucial feature for administration. Its support in ION’s implementation of SABR, coupled
with the network size increase prediction, motivates multicast support to be a requirement
for this thesis.
Therefore, the requirements for thesis /T1/ are:

/R1/ Networking performance: The approach shall exhibit network performance compara-
ble to the current SABR-compliant routing algorithms.

/R2/ Predictability: The approach shall exhibit a predictable processing time and memory
pressure.

/R3/ Multicast: Multicast is an important aspect of administration and load optimization in
a DTN. Multicast shall be supported natively.

Requirement /R1/ addresses the space networking needs, coupled with the node access of
topological knowledge inherent to a scheduled DTN. The goal of the current state-of-the-art
standard fromCCSDS is hardly questionable. Deterministic pathfinding discards the need for
replication. The path ordering from SABR is justified if early delivery, shorter routes in terms
of hops, and use of longer life paths must be prioritized in that order. The use cases exhibit
challenging topologies, with deep space communications and short scheduled contacts in-
volving resource-constrained nodes. The solution provided in this thesis shall be efficient for
the targeted region sizes, i.e., at least a hundred nodes.
Future space networks will encompass more nodes with better interconnectivity, meaning

more interfaces and contacts. At the same time, all nodes might not have the same compu-
tational power, and requirement /R2/ intends to provide a routing algorithm that can show
predictable processing time on a single bundle scheduling basis. The challenge of predictabil-
ity in the context of DTN routing is to find the correct balance (which can vary depending on
the node constraints) between pathfinding accuracy and path reusability to achieve the de-
sired tradeoffs between the quality of the path detection and the computational pressure.
The presence of resource-constrained nodes in the use cases brings the need to have con-
trolled computational pressure.
Last, the algorithm shall be adapted withmulticast /R3/ specificities. Indeed, CGR-multicast

opened the path of multicast in the context of SABR, but the handling can be described
as insufficient. Indeed, CGR-multicast uses CGR(-unicast) as a backend by computing and
selecting paths for each multicast member. This approach lacks some effort sharing as the
multicast group size impacts the multicast handling of pathfinding, best candidate routes
selection, and volume updates. Concerning the latter, the volume handling for multicast is
not SABR-compliant (see sections 4.5 and 5.4.2).

2.2.3 Requirements relative to the volume management

Contact volumes are precious resources, and the extreme nature of the scenarios from fig-
ures 2.1 and 2.2 showing short, long-range, or low data rate contacts (with possible com-
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bination of those characteristics) renders volume management both crucial and challeng-
ing. Some level of local volume awareness accuracy is also a dependency for volume-aware
routing algorithms like SABR. Bundle priority (see section 3.2.4) and data rate variations
(see section 3.1.5) shall also be considered as elements of a general need to provide retro-
compatibility, match the current state-of-the-art support, or prepare future support tech-
niques.
The requirements for thesis /T2/ are:

/R4/ Accuracy: Themain goal for volumemanagement is an accurate internal representation
of volume awareness.

/R5/ Compatibility: The volumemanagement technique shall be compatible with extensions
dealing with varying data rates and priority support.

/R6/ Adaptability: The volumemanagement technique shall be adaptable to support poten-
tial future extensions like linear support of data rate variation (in opposition to the intervals
of constant data rate solution).

Requirement /R4/ addresses the need for effective volume management, and a more ac-
curate volume representation is welcome as a general solution to replace several existing
features. Increasing the space network load (bundle count and sizes) will stress contact uti-
lization management. Even minor inaccuracies for a single bundle scheduling can trigger a
cascade of volumemanagement inaccuracy for the following scheduling. As volumemanage-
ment directly impacts pathfinding, efficient volume accounting is crucial for space networks,
including the considered use cases.
However, volume management is challenging due to other concerns like bundle priority,

data rate variations, and the detection of rescheduling candidates. Simple approaches are
easier to adapt to be compatible with those constraints. The base approach presented in the
thesis mainly targets the latest bundle protocol version. Still, adaptability to older protocol
versions or network-specific characteristics shall be possible. Requirement /R5/ shall ensure
compatibility with those concerns. Even if priority support can be questionable in a multi-
tenant network, deep-space missions can benefit from its support. Data rate variation is also
a significant concern, as the bell shape of the data rate curves is a typical ring road ground-
to-orbit communications characteristic [CFR18].
The approach shall also be compatible with prospective future designs. An attractive can-

didate is, for example, linear support of the data rate variation. The concept shall present
adaptability for that possible enhancement by fulfilling requirement /R6/. Indeed, the high
value of the space contact can motivate further optimization of the volume management for
the considered scenarios.

2.2.4 Requirements relative to interregional routing

When operating on a regional structure as shown in scenarios from figures 2.1 and 2.2, the
end-to-end paths may be longer in terms of hops and show higher delays, such characteris-
tics increases the threats occasioned by possible single-hop failures (e.g., node breakdown
or congestion). Redundancy is crucial to mitigate the risks by eliminating the single points
of failure. Redundancy means the need for multiple simultaneous passageway support on
a single interface level (between two regions). On a large scale, redundancy means the exis-
tence of multiple paths from one region to another (the tree becoming a mesh), at least to
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allow better paths to exist if compared with a rigid tree structure. A passageway node op-
erates with two contact plans (see 3.1.6). Requesting the nodes to operate with more than
one contact plan is a severe concern for scalability.
The requirements for thesis /T3/ are:

/R7/ Robustness: Allowing multiple nodes to communicate simultaneously with the neigh-
boring regions shall be supported.

/R8/ Flexibility: Shortcuts shall be supported to exhibit lower structural limitations in re-
sponse to opportunistic possibilities and mission-specific needs.

/R9/ Partitioning: Clear partitioning is required to decrease configuration complexity and
avoid potential scalability issues associated.

The main subject of questioning about the interregional routing approach was the single
points of failure that constitute the node passageways. This issue is currently addressed in
IONwith failover support. The requirement /R7/ intends to support wider interfaces between
regions (multiple simultaneous passageway support) with transparent management of such
concepts. Moreover, large hierarchical regional designs are even more affected by single
points of failure, bringing the risks of disconnecting large sets of nodes entirely upon failures
of single passageways.
Interregional routing leverages a relatively static tree. The path from one region to another

is unique, while interconnectivity could be possible between regions that are not supposed
to be neighbors in the regional tree. The existence of possible shortcuts brings the need
for flexibility with requirement /R8/. This requirement echoes the networking performance
required, as shortcuts can also decrease congestion and delays for the considered use cases.
A more explicit regional border is essential for appropriately separating concerns and

hardware between operators, fulfilling requirement /R9/. Discarding the need for nodes op-
erating with multiple contact plans would also increase stability and scalability by lowering
the responsibilities given to individual nodes, consequently lowering the number of routing
tables to maintain.
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3 Fundamentals

This section will mainly introduce the DTN field and the SABR [CCS19] functioning to provide
the tools to understand any SABR analysis for the DTN routing context and the considered
use cases. Moreover, this section will introduce the mapping between graph theory and
DTN objects and the required graph theory tools to allow comparisons and support new
concept descriptions. Lastly, a short discussion about determinism and predictability will be
proposed.

3.1 Delay-/disruption-tolerant networking

3.1.1 Architecture

With the rise of wireless protocols and the miniaturization of computers, an increasing de-
mand for communication with or between mobile devices has been observed within the
last fifty years. Mobile Ad hoc NETworking (MANET) became a popular research topic in the
nineties. At the same time, InterPlanetary Networking (IPN) foundations were independently
developed to cope with the inherent delays and disruptions of deep-space communications.
Some IPN concepts were adapted in 2000 for challenging terrestrial networks showing dis-

ruptions and delays. The encompassing topologies sharing these characteristics were coined
as Delay-Tolerant Networking (DTN) [Fal03]. Since 2007, RFC 4838 [CBH+07], 5050 [BFB22],
and 9171 [SB07] specifications describe the DTN architecture and the bundle protocol.
The motivation for developing a DTN architecture was the inapplicability of existing net-

work protocols showing such high delays and disruptions.
While the meaning of disruption is clear, no matter if the interruption of connectivity was

planned or not, the cause of delay is twofold. End-to-end delays can occur if some links show
disruptions. In some particular environments, the signal’s propagation time from one node
to another is not negligible. A prominent example is communication with deep space space-
craft, but the speed of light should not be considered the standard for signal propagation
speed. Other environments are suitable for deploying DTN technologies, like underwater
networks encompassing acoustic links.
The Internet protocols and applications leverage quasi-instantaneousness of communica-

tions, where disruptions lasting hours can routinely be observed in space networks. Proto-
cols based on acknowledgments or conversations will likely fail to work correctly, as feedback
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may be received hours later. This aspect presents two main consequences:

• The nodes along a path must store the messages until the next transmission oppor-
tunity. It represents an essential shift from the Internet world where the routers only
forward the messages to a so-called store-carry-forward paradigm. It presupposes the
necessity to provide storage to the routers. This aspect is a core component of the
bundle protocol (RFC 5050 and 9171 [BFB22, SB07]).

• The application has to be delay-tolerant, and the DTN messages must provide enough
data individually to allow the applications to progress when receiving a single message.

To this end, the bundle protocol adds the bundle layer, which lives between the applica-
tion layer and the lower ones within the Open Systems Interconnection (OSI) model. Each
protocol data unit, or bundle, can be arbitrarily long, making bundle sizes in the gigabyte
range or higher possible.
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Figure 3.1: Bundle protocol example scenario.

To adapt to underlying protocols, the bundle agent uses Convergence Layer Adapters
(CLA), which permit the transmission and reception of bundles via the lower layers. It makes
the bundle protocol quite flexible, allowing agents, for example, to operate on top of TCP/IP
for the Internet or the Licklider Transmission Protocol (LTP) [RBF08] for deep space networks.
Figure 3.1 depicts the end-to-end path of a large bundle (e.g., a video) sent from a rover

on a distant planet to the Earth. An intermediary node is a satellite orbiting a distant planet
that bridges the rover and the Earth’s ground station communications. The communications
between the ground station and the operator’s terminal flows through the Internet. After the
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video is recorded, a contact from the rover to the satellite is directly available, no retention
is required, and the video is sent directly to the satellite within a single bundle. After trans-
mission, however, there is no direct link from the satellite to the ground station on Earth.
The message is stored on the satellite until the next transmission opportunity. The distance
between the satellite and the ground station induces a very high delay on the link. The blue
line depicts the layer locations where a bundle is still processed as a single data unit. The
red line depicts the layer locations where the bundle can be processed as multiple distinct
layer-specific data units.

3.1.2 Opportunistic and deterministic DTNs

As stated in the previous section, the bundle protocol applies to various challenging net-
works, from deep space environments, which brought the need to manage the delays on a
single link due to the interplanetary ranges, to themobile or vehicular networks showing non-
deterministic motions and, thus hardly predictable disruptions. The contacts between the
nodes can be predicted for the former, while future transmission opportunities are usually
unpredictable for the latter.
At first glance, this can presume a clear separation between the deterministic DTNs, where

a quasi full-knowledge of the future transmission opportunities can be leveraged with the
opportunistic DTNs, where the next connectivity interval cannot be known in advance with
sufficient confidence.
These two sets of DTNs are not nested but do overlap. A deterministic (or scheduled) DTN

is not necessarily free of opportunistic behaviors. The DTN IP Neighbor Discovery (IPND)
[EB10] permits the discovery of new participating nodes, and finally, in 2016, Burleigh et al.
[BCMR16] introduced opportunistic behaviors within the deterministic routing approach of
ION to finally leverage the information shared by the discovered nodes for routing.

3.1.3 DTN routing

With the delay and disruption constraints, the standard Internet protocols were not likely
to work correctly in the bundle protocol layer. Some Internet protocols might work partially
(e.g., the bundle protocol can be deployed on top of TCP/IP). However, multiplying long delays
or disruptions along an end-to-end path affects those protocols negatively. Static router
configuration can effectively provide relevant routing information at a given time. Still, the
dynamic nature of the topology renders any static configuration ineffective most of the time
or, at best, only intermittently acceptable.
More dynamicmethods, such as distance vector routing protocols [Mal93,MM97, SNM+16],

periodically update the routing table upon reception of update messages or detection of link
state changes, are also ineffective in a DTN. The feedback of a topology change in a distant
network area is not likely to be propagated in time to the local node for a correct routing
decision for destinations depending on this topological change.
Routers using link-state routing protocols such as OSPF [FLM08] store a comprehensive

network representation to apply pathfinding algorithms to update the routing table. In the
same way, the internal network graph representation is updated upon reception of admin-
istrative messages, and even if the construction cost of the routes is negligible, the graph
update is not likely to be performed in time.
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Even if a collaborative protocol converges relatively rapidly on a terrestrial network, the
end-to-end delays between the nodes and the frequent topology change far exceed the rout-
ing protocol capabilities to allow rapid convergence. These protocols are indeed designed to
work in environments showing very sporadic topology changes over time, with end-to-end
delays of the millisecond range, to rapidly find alternative paths within the second range. In
opposition, the disruptions and single link delays of a DTN can routinely induce end-to-end
in the minute or hour range, with contact durations that can be arbitrarily short.
Routing protocols targeting DTN have been developed (e.g., in [GFPBJ16, LYQ11, SRMS16]),

including many proposals that can be included in various categories of the different pro-
posed taxonomy designs. The large variety of routing protocols comes from the possible
DTN topologies and node characteristics. A taxonomy will be proposed in the state-of-the-
art section.

3.1.4 Contact plans

In a scheduled DTN, the periods of connectivity between the nodes, or contacts, are unidirec-
tional and known in advance. It permits the creation of time-varying graphs representing the
network and using a delay-tolerant version of shortest-path algorithms. The SABR standard
[CCS19] also defines the information expected to be found in a contact plan. A contact plan
is a list of entries gathering the necessary information to constitute a time-varying graph and
to retrieve the signal propagation delays between two nodes at a given time.
In this document, the differentiation between prediction and observation is not necessary,

as the pathfinding algorithms are unaware of the probability that a contact does not exhibit
its predicted characteristics. Other definitions for the term contact are listed in [Wal20]. In the
context of routing, the SABR standard defines a contact "An interval during which it is expected
that data will be transmitted by a sending node and that most or all of the transmitted data will
be received by a receiving node" (SABR, section 1.4.1, page 1-2). In other words, any bit of
information transmitted during the contact will effectively reach the receiver if its prediction
accuracy is high (i.e., the start and end time predictions match the observation).
A contact entry is described by (at least):

• Its start time.

• Its end time.

• Its transmitting node.

• Its receiving node.

• Its nominal data rate.

Therefore, a bidirectional contact requires two entries in the contact plan (from A to B and
from B to A). Additionally, other metrics can be attached, such as contact confidence (a sort
of informal probability) or CLA information.
This set of metrics does not reflect the possible delays on a single link. A contact can be

long enough to exhibit different delays during its duration. It was therefore decided to create
separate entries in the contact plans for this purpose.
Moreover, a contact is not a link representation, i.e., a contact plan written for SABR can

not present two contacts with the same transmitting and receiving nodes with an overlap-
ping period of connectivity. If it appears that two nodes will effectively be connected with
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two different contacts that overlap in time, a third contact showing a data rate equal to the
addition of those two contact data rates should be inserted for this overlapping period (and
both initial contacts should be striped to end and start before and after this period).
Another contact plan entry type is used to retrieve the expected distance between two

nodes for a given time interval to calculate the link delay. More specifically, SABR defines a
range interval as "a period of time during which the displacement between two nodes A and B is
expected to vary by less than one light second from a stated anticipated distance" (SABR, section
1.4.1, page 1-2).
A range interval entry is unidirectional and described by:

• Its start time.

• Its end time.

• Its A node.

• Its B node.

• The distance in light seconds between A and B. (One-Way Light Time or OWLT)

For simplification, some contact plans associate an expected link delay with the contact
itself. It is the case with the simulator leveraged for evaluation (see section 7). If a contact
was expected to show more than one delay during its lifetime, it could be split into as many
contacts as range intervals relevant to the original contact.

3.1.5 Volume management

In the Internet

Reservation approaches for the Internet assume continuous end-to-end paths and are not
likely to work with the frequent disruptions observed in a DTN.
The IntServ approach [BCS94] based on the Resource reSerVation Protocol (RSVP) (see

[ZDE+93]) requires the receiver to request quality of service. This is a first critical issue as
the delays on single links might not permit receiving the requests in time to allow enhanced
volume management. The approach relies on the concept of flow, with router configuration
along the end-to-end path, for a specific sender and receiver. The flows are also likely to
be broken in a DTN due to disruptions, and the correction techniques would not allow con-
tinuous volume management support. Lastly, application-based flow control brings serious
scalability concerns, as reservations are single flow-based rather than classes.
The DiffServ approach [NBBB98] relies on the concept of classes, and the class marking

would be set at border nodes between subnetworks. This could be an issue, as fine-grained
volume management is already required for intraregional networking. Assuming that the
marking is available, the routers then apply scheduling and queue management policies,
relying on the message classes.
The nature of the DTN field is unsuitable for existing Internet reservation techniques due

to the abovementioned reasons, but also due to a paradigm shift from data rate concerns to
volume concerns. On the Internet, the links are not expected to show disruptions, and work-
ing with data rates might seem sufficient to organize traffic control. In a DTN, the links are
time-bounded intervals (with possibly long delays and low data rates). Knowing the volume
transmittable via a single link seems more relevant than knowing the data rate of a contact
duration without knowing its duration.
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Contact utilization

This section defines how the contact data rate utilization is calculated. However, the princi-
ples presented in this section are not followed by the SABR specification. In SABR, the contact
data rate R does not depend on time but is defined as the expected mean data rate over the
contact duration D. The contact volume V is V = R × D. For this reason, the data rate was
termed nominal in the previous section. The contact plan does not inform about a contact
data rate’s variability or constancy.
The signal-to-noise ratio of orbiting satellites usually varies. It is at its maximum value

when the satellite is at the zenith and its minimum value when it approaches the horizons.
Given the Shannon-Hartley theorem [Sha49], which states that the theoretical data rate up-
per bound depends on the channel data rate and the signal-to-noise ratio, the expected
data rate of contact may vary during its duration. This behavior of the data rate is known and
already mentioned in [CFR18], and the associated curve depicting the date rate over time
is expected to have a bell shape for transmissions between orbiting satellites and ground
stations. A single contact can be fragmented into several contacts of different data rates to
better fit the real expected data rate curve.
It becomes then possible to define a function f which gives for any time t between the

contact start time A and end time B the corresponding data rate r. If transmission occurs
during an interval [a,b] (a ∈ [A,B],b ∈ [A,B]), the transmitted volume v (v ∈ [0, V]) becomes:

∫ b
a f (t) dt = v (1)

Only the expected transmission end time b has to be calculated, as the volume v and the
transmission start time a would be constants rather than variables: the transmitted volume
is assumed to be equal to the bundle size, which is known, and a preliminary calculation
would permit to set a before integral solving (e.g., a is set to the maximum between the
contact start time and the current time, both being known). The expected transmission start
time a would be known, thanks to some awareness of the previously booked volume for this
contact, and obviously, the size v of the bundle is known as well.
A more convenient tool would be a function g derived from (1) returning for the transmis-

sion start time a, and the bundle size v, the expected bundle transmission end time b.
The DTN field moves towards accurately representing the data rate utilization [BCM+14,

BTDT13, CDCP21]. However, each countermeasure against inaccurate volume booking as-
sumes a constant data rate.
It is not expected to be a critical issue in practice, as the predicted contact volumes are

usually accurate (a prerequisite for CGR’s good functioning). This representation remains
sufficient if the contact data rates are effectively used from the start time of the contacts.
However, if some load is scheduled for a contact while the satellite approaches the horizon,
the routing algorithm will assume a higher data rate than is actually available for this period.
From one extreme to another, if the load is a single large bundle carrying some precious

science data, the contact will end before the bundle transmission end time, rendering the
data rate interval utilization unprofitable (as the contact may end during its transmission).
On the other hand, if the load shows plenty of small bundles, an arbitrarily high number of
them can pass through, but in the same way, an arbitrarily high number of them may have
to be rescheduled.
Even if using the hypothetical function g appears as the theoretically correct way to address

this issue, the practicability of the approach seems, for the moment, unrealistic. Still, this can
be considered for current volume management to support related future features.
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3.1.6 Regions

Region Node Passageway Contact

Figure 3.2: A DTN region hierarchy. Figure from [Jon19].

With increasing node counts, internetworking was adapted for DTN under the name of
regions [Ale19]. The nodes encompassed in a contact plan are part of a region. The bundles
are transmitted from one region to another through gateway nodes called passageways. A
passageway is a member of the two regions it bridges. A passageway needs, therefore, the
contact plan of both regions.
The approach is in continuous evolution, and this thesis considers a later version of the

approach, as described in an unpublished document provided by Scott C. Burleigh 1.
As stated earlier, this permits a reduction of the contact plan sizes to minimize the com-

putational impact of the routing algorithms within the region, as the pathfinding processing
costs depend on the number of nodes cited in the contact plan (and the contact plan horizon
depending on the implementation). Moreover, this can bring a separation of concerns to a
certain degree, with the flexibility to create regions that are, e.g., topology-based, mission-
based, or agency-based.
The regions are nested but do not overlap, as depicted in figure 3.2. The passageways are

members of two regions simultaneously, the encompassing region and the nested one. In
ION [Bur07], interregional routing is processed with a dedicated algorithm [Ale19] to detect
which gateway shall forward a given interregional bundle. At the passageway bridging two
regions, SABR is used on both sides. A region shall have a region ID superior to any lower
regions accessible via this region.
If the interregional forwarding table does not carry an entry for a destination, the path

is found with probes sent through the interregional tree. A passageway operating with a
contact plan containing the target node would provide positive feedback, notifying all pas-
sageways along the reverse path that the target can be reached via those passageways re-
cursively.

1"An Approach for Forwarding in an Interplanetary Network", June 2022.
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The main difference between the version presented in [Ale19] and the earlier considered
version is the probing, to shift to a discovery approach very similar to the approach proposed
in section 6.4.3. Also, failover support is provided to replace a passageway node if a failure
occurs.

3.2 Contact graph routing

3.2.1 A non-replication routing scheme
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Figure 3.3: Representation of the route container expected by the SABR standard (observed
in ION-CGR).

In a space DTN, a contact between two nodes has a duration, and an arbitrarily long period
can separate this contact from the next one. Sending a bundle through a suboptimal contact
(i.e., no paths are available from the receiver of this contact to the destination for an extended
period) can drastically increase the bundle arrival time. In the same way, if the path is a dead-
end, the bundle will never reach its destination, creating unnecessary load on the network
and storage usage while decreasing the delivery rate.
Even if routing algorithms based on replication approaches [SPR05, VB+00] and probabilis-

tic approaches [BGJ+06, LDDG12] may be deployed in scheduled DTN, contact predictability
provides the possibility to deploy zero-replication using pathfinding methods.
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Figure 3.4: Simplified workflow of ION-CGR.

Contact graph routing [Bur09], which is the product of more than 15 years of develop-
ment efforts, led to the SABR specification from the CCSDS [CCS19]. Indeed CGR has been
productively used for communications with the International Space Station (ISS) 2 and is the
sole routing algorithm available with ION in addition to static routing.
Using non-replication deterministic approaches based on Dijkstra’s algorithm is appropri-

ate for topologies that show almost no link uncertainties. Indeed, quasi-full knowledge of
the network, resulting in high accuracy of the contact plan, permits CGR to provide excellent
delivery probability and avoid congestion resulting from sub-optimal routing decisions based
on probabilistic analysis or opportunistic behaviors.
At the scheduling phase, SABR proceeds to route selection. The route container structure

can be represented in three dimensions as shown in figure 3.3. For each destination, several
routes might be stored in the routing table. For completeness, a third axis is necessary
to show that the routes are not equal in size as they present different hop counts (a hop
corresponds to a transmission). Scheduling means a route (a sequence of specific contacts)
shall be selected from the routing table for a particular destination.
CGR encompasses two phases. In the first phase, the route lists shall be populated, and

the set of route lists constitutes the routing table. During the second phase, a route shall be
selected in the route lists to forward a bundle. The SABR standard is precise in describing
the second phase’s steps but vague concerning the first, where much freedom is left to im-
plementers. Yen’s algorithm is, for example, only mentioned as a means to find alternative
routes; its use is not mandatory.

2https://www.dlr.de/rb/en/desktopdefault.aspx/tabid-4769/5005_read-19087/
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S. Burleigh first drafted CGR [Bur09] at the Jet Propulsion Laboratory (JPL). The CGR imple-
mentation within ION (version 4.1.0) is considered the reference for the following sections,
and figure 3.4 depicts its workflow.

3.2.2 Route construction

This section will cover the implementation of the Dijkstra algorithm within ION (ION-CGR).
The presentation of a specific implementation of CGR is crucial. Asmentioned in the previous
section, the algorithmic structure of the route construction is not constrained by the SABR
specification.
The SABR specification, however, provides nomenclature for themetrics that are expected

to be leveraged during route construction and the relation between them.
For example, the One-Way Light Time margin (OWLT margin) is defined "as the maximum

delta by which the OWLT between any pair of nodes can change during the time a bundle is in
transit between them" (SABR, section 2.4.2, page 2-5). The purpose of thismargin is to take into
account the distance variation between two nodes during the transit of a bundle between
these two nodes and logically depends on the expected transmission delay between the two
nodes, the speed of light, and the maximum anticipated distancing per second between two
arbitrary nodes in the network (this is expected to be mission-specific).
The first byte arrival timemetric depends on the OWLTmargin: "The first byte arrival time for

a contact shall be the first byte transmission time for that contact plus the range in light-seconds
from the contact’s sending node to its receiving node, plus the applicable OWLT margin" (SABR,
3.2.6.5, page 3-6). In other words, the expected delay plus the contact-specific calculated
margin. It is assumed that a byte has a negligible transmission time.
The first byte arrival time can be considered the central metric within any SABR-compliant

route construction algorithm. Most of the other metrics described, for example, the last
byte transmission time, the last byte arrival time, and the projected bundle arrival time are
obviously bundle specific and only calculated during a dry run (or delivery prospect) for each
candidate route during the route selection. The concept of dry run is crucial for this thesis
and is defined as follows:

A dry run is a simulation of the expected subsequent transmissions along the path, including the
calculation of the transmission start and end times for each encompassed hop. The volume

awareness can be considered but shall not be updated.

A valid formulation of the route construction functioning is that the algorithm searches a
path for a virtual bundle of size 0 and a network without any load (volume awareness is not
consulted).
Figure 3.5 depicts a simplified version of the route construction within ION-CGR. Each node

in a DTN region is given a unique node number, and routing is processed from a source node
addressed by such an ID to a destination addressed by another.
ION-CGR is said to operate on a contact graph, i.e., the contacts as vertices, to reduce the

number of edges between two vertices to only one, to respect the original shortest path algo-
rithm definition. This "contact graph" label is misleading and will be discussed in section 4.1.
In the airline scheduling analogy, the vertices are flights, and the edges are layovers. It does
not change the core principle of the algorithm. By definition, the distance to a target node
in a contact graph is the first byte arrival time at a contact’s receiving node if this receiving
node is the target node.
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Figure 3.5: Simplified version of ION-CGR Dijkstra-based algorithm.

In ION, the contacts are stored in an ordered data structure, a red-black tree [GS78] with
a hierarchical ordering. In the red-black tree, the contacts are first ordered by transmitting
node numbers. The contacts having the same transmitting nodes are then sorted by re-
ceiving nodes. The contacts with the same transmitting and receiving nodes are sorted by
contact start times. The tree permits placing the cursor at the first relevant contact and it-
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erating over the next ones as long as these contacts remain in the appropriate range (e.g.,
contacts having the same transmitting nodes).
The search is processed with one outer loop and two inner loops:

1. The outer loop terminates as soon as the targeted destination is reached, i.e., the cur-
rent contact receiving node is the destination, or as soon as there is no further contact
suitable to be elected as the new current contact.

2. The first inner loop calculates the first byte arrival time at the direct neighbors from the
current contact. A contact is a neighbor if its transmitting node is equal to the receiving
node of the current contact. The current contact receiving node becomes the parent
of each neighbor contact visited this way if the new distance to this neighbor contact
is inferior to the former one.

3. The second inner loop then elects among the already-reached contacts and the new
current contacts. This contact is defined as having the lowest first-byte arrival time
(tie-break rules include hop and expiration checks in a SABR-compliant manner).

The reverse path can then be reconstructed easily from the final current contact by itera-
tively traversing the parent contact until the source is reached.
Exploration starts with a root contact as the current element. The root contact is a contact

between the source node and itself.
Entanglement exists between the route computation and the route selection in ION (the

route computation phase does not strictly precede the route selection phase). The alter-
native routes are found with Yen’s algorithm but implemented adaptively. The routes are
consequently not all computed beforehand but on demand. The consequences of this be-
havior will be covered in section 4.4.

3.2.3 Route selection

The routes calculated in the first phase are called computed routes. The second phase aims
to find which of these routes are "candidate routes", i.e., they can convey the current bundle
to the destination before the bundle’s expiration time, and which of the candidate routes is
the best and thus should be selected. Contrary to the route construction, a route selection
algorithm can easily be derived from the SABR specification.
The route selection procedure iterates over the routes in the route list of the bundle’s

destination.
A dry run is processed for each route in a routing table to detect if this route can be a

candidate. If the dry run fails, the route is discarded. Otherwise, the route can be a candidate,
and the Projected Bundle Arrival Time (PBAT), the route hop count, and the route termination
time are computed for this route. The termination time, or expiration, is the earliest contact
end time among the contacts along this path, and the hop count is the number of contacts.
The dry run ensures that the bundle can effectively reach the destination using the con-

sidered route without encountering a contact with a Effective Volume Limit (EVL), or residual
volume, lesser than the bundle size. The route can also be discarded at any hop if the bundle
arrival time at an intermediary node exceeds the bundle expiration time.
The candidate routes can then be sorted by PBAT to elect the best candidate for forward-

ing. If the PBAT alone is not sufficient to compare two routes (same PBAT), the hop count
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is considered (lower is better), and then the expiration time (later is better). If the applica-
tion of those rules is still insufficient, the route having the smaller entry node ID is arbitrarily
preferred. The entry node is the receiving node for the first contact of a route.

3.2.4 Enhancements and main features

CGR has been subject to improvements, with the three main domains of improvements be-
ing the earliest transmission opportunity, the priorities, and the overbooking management.
The resulting proposals have been integrated into SABR and are presented in the following
sections.

Earliest transmission opportunity and queue-delay

The current Earliest Transmission Opportunity (ETO) feature [BCT16], currently part of the
SABR standard, is derived from an earlier version showing non-negligible differences (refer
to [BTDT13] for the original ETO description).
This section describes the ETO functioning as described in SABR. It aims to adjust the first

byte transmission time to an arbitrary route entry node by considering the bundles already
enqueued for transmission to that node, pushing forward the first byte transmission time.
Because the bundles are not enqueued for a specific contact but for a specific node, i.e.,

the route entry node, the ETO is calculated for the cumulative duration of the contacts over-
lapped by the sum of the sizes of the previously enqueued bundles. The cumulative volume
of the bundles enqueued for transmission to a given neighbor node can be greater than the
cumulative volume of a couple of next contacts with this neighbor.
This approach has been extended to the next hops after the first by using the presumed

volume previously allocated for those contacts instead of a cumulative volume enqueued,
as the queue is accessible only locally. This extension is called queue-delay [CDCP21]. The
queue-delay feature was arguably already present in [BCT16] (also named ETO for the con-
tacts after the first hop). A non-negligible difference is that queue delay does not need to
maintain an ETO for each contact in a contact plan, calculating it on demand during the SABR
selection phase leveraging the volume awareness. While ION-CGR computes routes for ab-
stract bundles of size zero for a network without any load, the queue-delay approach is more
appropriate for real deployments.

Priority and overbooking management

In the previous section, the concept of priority was intentionally omitted to allow a smoother
apprehension of the SABR and ION-CGR design. The SABR standard defines the priority as
"an indicator of the required order of precedence in the transmission of this bundle among other
bundles" (SABR, section 3.2.6.8.1, page 3-6).
SABR defines an EVL for each priority level instead of describing an "unscheduling" proce-

dure to dequeue bundles of lower priorities to increase the contact EVLs for a higher priority
bundle.
When a bundle has to be scheduled, the route selection only uses the residual EVL of the

priority of the bundle. When a bundle of a given priority is scheduled, all the contacts along
the selected path see their EVL for this priority reduced, as well as the EVLs associated with
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the lower priorities. Depleting the EVLs associated with the lower priorities minimizes the
risk of rescheduling too many bundles.
This approach can be understood as virtual channels, with each priority channel having

access to a bandwidth shared with the lower priority channels.
The EVL management allows enqueuing of higher priority bundles to paths already con-

gested by lower priority bundles as soon as the overbooking takes place [BCT16]. The over-
booking management is meant to reschedule those lower-priority bundles. The SABR stan-
dard does not provide any recommendations and considers overbooking management an
implementation matter.

3.3 Graph theory and DTN routing

3.3.1 Mapping with DTN objects

The representation of network nodes and links as vertices and edges of a graph is visually
intuitive. With contact graph routing, vertices and edges are supposed to be contacts and
retention periods, respectively. However, the practical difference is debatable according to
the implementations. Indeed, whatever nature is given to a contact (edge or vertex), the
exploration consistently anchors to nodes and uses contact hop metrics (edge weights) for
distance calculation to reach neighboring nodes. Further analysis of the similarities will be
provided in section 4.1, and for convenience, the vertices will be the nodes in this thesis
unless otherwise specified.
The graph theory provides the tools tomapDTN properties accurately. For instance, a DTN

graph (the graph representation of a contact plan) is directed, i.e., the links are unidirectional
to reflect the unidirectional nature of theDTN contacts. Twonodesmay have several contacts
connecting them. A graph showing several edges between two edges can be referred to as
a multigraph.
The term multigraph can be considered deprecated or ambiguous, as stated in [W+01]3.

A less controversial language would be quiver. But since this thesis aims to tackle practical
network problematics rather than focusing on graph theory, the term multigraph will con-
veniently be used to recall the possible presence of multiple edges (contacts) between two
vertices.
Finally, a weighted graph is a graph that shows a single numerical value, the weight, as-

signed to each edge. Dijkstra’s shortest path algorithm uses these weights to calculate the
distance from the source vertex to an arbitrary destination vertex in the graph. Most of Dijk-
stra’s algorithm implementations would assign a pair distance and parent (or predecessor)
to each vertex the algorithm traverses during the search. At the initialization, the distances
are set to infinity. From a current vertex for which the distance from the source has already
been calculated, the algorithm checks if the distance of an adjacent vertex can be updated. A
node reachable with a single contact (an adjacent vertex) is called a neighbor. If the distance
assigned to the current vertex plus the weight of the edge connecting the current vertex to
the adjacent vertex is inferior to the current adjacent vertex distance, the adjacent vertex

3A multigraph is casually defined as a graph that may have multi-edges but no self-loops [GY05, HR13], while
others would allow bothmultiple edges between two vertices and self-loops [CLRS01]. In extreme cases like in
[T+98], the term graph is used regardless of its structure but states that multigraph is a possible more general
terminology, including graphs with at most one edge between a pair of nodes, but with possible self-loops.
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distance can be updated, and the current vertex becomes its parent. The paths can then be
retrieved from the reverse paths found by the algorithm.
The weights represent cost, lengths, or capacity. In a node graph, the cost of a DTN edge

(a contact) is not necessarily atomic and is calculated from several metrics. The distance
to a neighbor is then the return of a cost function, using as parameters the current node
(transmitter) distance and the edge metrics (at least the start time and the delay are involved
for this calculation).
If Dijkstra’s algorithm considers a given bundle for the search, the distance to a neighbor

(or bundle arrival time) shall be calculated using the edge data rate in addition to the edge
delay. The edge volume (the product of the contact data rate and contact duration) shall also
be calculated to check if the edge shows a sufficient residual volume for the bundle. If the
edge volume is inferior to the bundle size, the cost function will return a distance equal to
infinity. As described in the following section, this is separated into two phases as suggested
by SABR and observed in ION-CGR. First, the routes are computed regardless of the load to
schedule, and then the routes are tested to find the best candidate for a specific bundle.

3.3.2 Shortest path algorithm

Algorithm 1: Pseudo code of Dijkstra’s algorithm’s core when relying on priority queue
to compute a shortest-path tree in a simple directed graph (maximum one directed
edge between any pair of vertices).

Data: A simple directed weighted graph Gmap, (giving G[vertex]=edge_to_adjacent,
adjacent_vertex), a source vertex S. Each vertex carries its distance. Each edge
carries its cost.

Result: The parenting map P (giving P[vertex] = parent).
1 Initialize an empty map P
2 Initialize the priority queue accumulator Acc (lowest distance first)
3 Set distance of S to 0
4 Push the source vertex S in the accumulator
5 while True do
6 if Acc is empty then
7 break
8 Get the lower distance vertex U from Acc
9 foreach pair E, V in G[U] do
10 Set D to distance of U + cost of E
11 if V not in P then
12 Set P[V] = U
13 Set distance of V to D
14 Push V in Acc

15 else if distance of V > D then
16 Set P[V] = U
17 Set distance of V to D
18 Push or update V in Acc

19 return P

Modern implementations of Dijkstra’s algorithm computes a shortest-path tree using a
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priority queue as discussed in [WC04], and a minimal implementation derived from this ap-
proach can be found in algorithm 1. Some comments will highlight the differences with the
usual Dijkstra implementations within ION-CGR.
The weighted graphG is usually implemented as a hashmap. It sets the average complexity

access of line 9 of the algorithm to O(1), where a red-black tree would show a complexity
of O(log(N)), N is the number of vertices, i.e., nodes or contacts. The performance of the
hashmap depends on the function creating the hashes. If the hashes colid, the performance
can significantly decrease.
Also, the use of a priority queue usually exhibits an insertion time ofO(log(N)) and a negligi-

ble access time to the lower priority item (O(1)). ION-CGR does not need to insert in a priority
queue because it usually does not use one. However, the selection of the next current con-
tact (replacing the access line 8) exhibits a complexity of up to O(N), (N being the number of
vertices, i.e., nodes or contacts). Therefore, even if the insertion time of a priority queue is
discarded, access can be very costly (especially if the elements are contacts) and processed
once per outer loop iteration (line 8).
Dijkstra’s algorithm is designed to operate on a simple graph (at most one edge between

a pair of vertices), and switching to a node graph design would inevitably bring a multigraph
structure on the table, as subsequent contacts will exist in the contact plan between some
pair of nodes.
This difficulty can be overcome in a very trivial manner with nested data structures4.
It becomes clear that only the lowest cost edge of this list shall be used for the reverse-path

construction. Complete proof that this approach is sufficient will not be extensively covered.
Stating that a reverse path that does not use the lowest cost edge between two subsequent
vertices on the reverse path is the best reverse path to a destination vertex would not hold
very long against a proof by contradiction.
Adaptation to the DTN domain is also trivial. If the distance is defined as the earliest ar-

rival time, and subsequent contacts between a pair of nodes cannot overlap (as constrained
by SABR), then contact with an earlier start time has the lowest cost. Because the contacts
are not likely to show dynamic characteristics, sorting those lists occurs at multigraph initial-
ization only. It can be optimized by constraining the ordering of the contacts supplied by a
contact plan, but this will be considered out of scope.
Consequently, if the contacts are sorted, the contact plan size (for a given node count)

negligibly impacts the processing time.
It can not be considered as an original design, justifying its presence in the fundamentals

section, as a similar multigraph structure was already employed independently in [Wal20]. A
slight difference would be the priority queue design. The algorithm 1 suggests that the prior-
ity queue may be subject to an update operation (line 18) to change the priority of an object
already in the queue (to change its position). This operation is not a standard, and many
priority queue implementations do not provide it. When the operation is unavailable, just
pushing a new element in the queue is sufficient. In this thesis, an original implementation
that provides this operation is leveraged. However, this implementation is far from optimal,
but the experience shows that the priority queue does not cause processing time issues. The
priority queue design is considered out of scope and an optimization and implementation
detail in the context of this thesis.
The main difference between a shortest-path tree construction and the original single-

destination approach is the termination of the main loop. With the shortest-path tree, the

4In Python: multigraph[current_node][candidate_neighbor] would return the sorted list [edge_1, edge_2, edge_3].
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algorithm stops when the priority queue is empty. The original algorithm stops when the
destination vertex becomes the current vertex (line 8).

3.3.3 Edge and vertex contraction
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Figure 3.6: Edge and vertex contraction examples.

Edge contraction is a graph operation that merges two vertices by suppressing an edge
showing those two vertices as endpoints (i.e., the vertices were adjacent thanks to this edge).
This thesis describes the resulting node as "virtual" for convenience. This operation can
reduce the graph size when an edge is identified as irrelevant to a specific problem. For
example, an edge of cost zero in a graph leveraged for the shortest-path calculation can be
a candidate for edge contraction, as this edge does not impact the distance calculation.

Node Graph vertex

A A

B B

C VC,D
D VC,D

Contact Virtual receiver Real receiver

1 VC,D D

2 VC,D C

3 VC,D C

Table 3.1: Vertex mapping and contact fields the examples in figure 3.6.

Vertex contraction (or vertex identification) is a similar operation, but the constraint of se-
lecting an edge for suppression is discarded. This allows the merge of non-adjacent vertices
to simplify a graph in cases where vertices show similarities that can justify the merge. In the
case of pathfinding in a DTN, vertex contraction can be leveraged if reaching a single node
within a given subset is considered sufficient. This problem can be translated as finding the
shortest path to a virtual node created after merging the nodes part of this subset.
Those operations can, however, induce information loss if no countermeasures are de-

ployed. In figure 3.6, for example, the vertices C and D are merged. A first comment is that
edge 5 itself is lost, but this also implies collateral losses. The resulting virtual vertex VC,D
shows two issues. With DTN shortest-path calculation as an example, pathfinding to node C
or D is still possible but requires some external mapping to inform that pathfinding to C or
D should be translated to pathfinding to VC,D.
Additionally, if such a virtual vertex is part of a path and is exactly the next hop from a local

point of view, then information is missing to allow enqueueing to the correct transmission
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queue, i.e., the node does not know if the bundle should be enqueued for C or D. This
can also be addressed with mapping on the contact level, e.g., by attaching to a contact a
"real" receiver to allow correct queue selection for transmission, while a "virtual" receiver is
leveraged for pathfinding within the graph. Such mapping for the examples in figure 3.6 is
proposed in table 3.1.
Another concern is the handling of contacts 1 and 2. If node A presents two interfaces,

contacts 1 and 2 can overlap. After contraction, contacts 1 and 2 still overlap but now share
the same receiver node, a configuration normally not allowed by SABR. Such overlapping can
appear even if the contact plan (before contraction) is SABR-compliant. This requires either
modification within the pathfinding algorithm to support such overlapping or contraction
post-processing on the contacts to bring back SABR compliance.

3.4 Algorithmic determinism and predictability

An algorithm is deterministic if it always provides the same output for a specific input, in
opposition to non-deterministic algorithms [BB96]. The fact that the program implementing
such an algorithm will pass through the same states through the required control flow is
also part of the deterministic nature. The time required to execute the algorithm depends
on the underlying machine implementing the algorithm. However, the time needed to run
the algorithm is also deterministic for a given input if no external perturbations are involved
(e.g., the operating system scheduler).
Time execution prediction (or at least a trend) can be inferred from an algorithmic com-

plexity analysis, the time complexity being one of its components. The other component is
space complexity, leveraged to predict memory or disk usage. Therefore, if the time execu-
tion of a deterministic algorithm is known for a given input, the time execution will also be
deterministic and equal to the first execution time for a second execution using the same
input. The actual numbers for execution times, of course, depend on the hardware.
Taking Dijkstra’s algorithm as an example, two executions with the same source and desti-

nation nodes would represent the same execution time because the algorithm is determin-
istic. If the source and destination input changes, but not the graph, the processing time is
expected to be similar. The time execution variation might not be perceptible on a human
time scale. Even if the input slightly changes, the deterministic components of Dijkstra’s algo-
rithm render it highly predictable as its time complexity depends on the graph input and not
the source and destination inputs required for a single pathfinding iteration (the algorithm
complexity of Dijkstra applies to any source and destination pair).
Mapping this discussion to DTN routing and CGR, the graph would be the network repre-

sentation at a given time, and the source and destination input would be a bundle to sched-
ule. The underlying functions of CGR are deterministic: as a result, the execution time would
be the same for the same input (a graph representation with a given volume awareness and
a given bundle to schedule at a specific time) while returning the same output (the routes
computed and the candidate selected). Consequently, the memory and disk usage would
also be the same.
A reliable DTN routing algorithm shall both be deterministic and predictable. Predictability

would mean, for a given general input being the contact plan, that the execution time and
memory usage pressure shall be similar when scheduling different bundles.
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4 Preliminary analysis

The complexity of DTN routing, and the standardization of CGRwith SABR for scheduled DTN,
justifies a preliminary analysis to cover the intricated issues, known or newly discovered, that
can arise when using CGR’s pathfinding techniques. The border between concept design and
implementation is blurry, as SABR does not constrain the design of the pathfinding algorithm
for both the first path or the alternative paths to construct, rendering CGR’s implementation
within ION a reference material. SABR refers to the CCSDS standard, and ION-CGR refers to
the implementation of CGR in ION 1. CGR can refer to other implementations.
Although standardization is missing for pathfinding, the computational pressure and net-

work performance of CGR are bound to implementation tools (e.g., hashmap for quick access
in trees and priority queues for optimized Dijkstra implementation). Some of the issues are
hardly coverable in a comprehensive manner without a short overlap between design de-
scriptions and implementation examples. The introductory section 4.1 discusses the graph
design natures before the functional analysis.
This section also covers the challenges of volume management and highlights the gaps

that must be addressed in CGR.
Last but not least, the proposed approach for interregional routing (based on [Ale19]) will

be discussed for analysis.

4.1 Node and contact graphs

The term "contact graph routing" stands for a routing technique leveraging a non-varying
graph of contacts being vertices for pathfinding (and routing). The conducted analysis could
not identify the need for a graph nature differentiation. Indeed, apart from implementation
variations, operating with a contact graph data structure is conceptually indistinguishable
from using a node multigraph.
The main reason to justify this differentiation is to get a list of contacts as the output.

A route is a sequence of contacts rather than a sequence of nodes. Indeed, section 3.3.2
depicted a node parenting exploration technique for the reverse path rather than an edge
(or contact) parenting exploration technique. This way, having contacts as vertices and pro-
cessing exploration by updating a current contact as observed in ION-CGR (see section 4.3)
seems appropriate.

1Version 4.1.0
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Node Source node Contact Dijkstra hop

Root contact

2 routes 

Destination

1 route 

Contact reference for the hopParent overriding

5 iterations
(5 arrows)

4 iterations
(4 arrows)

Figure 4.1: Difference in pathfinding effort and route detection when using contact parenting
or node parenting.

However, pathfinding is still processed from a source node to a destination node. In the
same way, the graph exploration in ION-CGR stops as soon as a destination node is reached
(and not a destination contact). Even more explanatory, after the current vertex (contact)
election, the neighbor contacts are contacts showing their transmitting node equal to the
current contact receiving node, highlighting that the node can be considered the fixed point.
Other hints could inform about the conceptual nature of the graph. Firstly, a contact con-

necting a source with itself is an alias converting a node into a contact. This aliasing is nec-
essary if the current vertex is (strictly) a contact rather than a node. Secondly, constructing a
shortest-path tree as depicted in 3.3.2 seems meaningless if operating on a contact graph.
Shortest-path tree connecting all contacts of the contact plan (including all the successive
contacts between two given nodes) seems to show little practical uses. In contrast, a node
shortest-path tree construction in a network clearly can show a purpose for routing (e.g., for
multicast).
Finally, the contact graph data structure leveraged in ION-CGR is not a contact graph but

a list encompassing all contacts (a red-black tree) with arguably efficient cursor positioning
abilities. In comparison, an explicit mapping between a node graph and data structures is
possible, as implemented in [Wal20].
This suggests a redefinition of the terminology to map the meaning of contact graph rout-

ing with the conclusions of this analysis: Contact Graph Routing (CGR) shall stand for a rout-
ing technique leveraging a time-varying representation of the network derived for a given
contact plan for pathfinding.
A shiftmight be ongoing regarding the original contact graph design. Recent simulators like

aiodtnsim [Wal20, WF19] and early-stage prototype implementations like [DJ19] are shifting
to nodemultigraph representations, i.e., multiple edges representing contacts connect single
pairs of vertices representing nodes.
Graph-wise, no difference could be detected. There is, however, a difference when varying

the parenting strategy.
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If the parenting is vertex-based and unique, a vertex (a node) has a single parent and a
single "via contact" (the last hop contact used to reach the node), and they would be over-
ridden each time a shorter distance path to this node is identified, as shown in figure 4.1.
This could lead to suboptimal pathfinding results, but this can be considered rare and conse-
quently highly preferable (due to processing improvement) according to [Wal20]. However,
the negative effects of node parenting are expected to be more prominent if the topology
becomes more complex.
Maintenance of a current element being a contact (as in ION-CGR) can prevent, in most

cases, those issues and would not be incompatible with a multigraph data structure. How-
ever, other computational pressure issues would arise alongside other side effects (e.g., ef-
ficient support for shortest-path tree computation could be rendered more complicated).
Those aspects will be covered in section 4.3.

4.2 Scenario

SA

C

B F

D

[25,200]

[25,200]

[25,200] [25,200]

[75,200]

[100,150]

E

[50,200]

[50,200]

Figure 4.2: Example scenario to highlight path selection variation.

The scenario depicted in figure 4.2 will be considered for the following sections (contact
format: [<start time>, <end time>]). The local node is node S, and each contact shows the
same data rate. The links show no delays.
For a bundle of size zero having node D for the destination, the valid existing routes are:

• Route 1: S → A → B → C → F → D (arrival at t = 100 with 5 hops)

• Route 2: S → E → F → D (arrival at t = 100 with 3 hops)

• Route 3: S → F → D (arrival at t = 100 with 2 hops)

As a reminder, the SABR standard defines the best route during the route selection as the
route having the best arrival time. If two routes have the same arrival time, the route with
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fewer hops shall be preferred. Therefore, the existing routes shall be ranked as follows (by
distance, lower is better):

Route 3 < Route 2 < Route 1

4.3 Route construction in ION-CGR

This section will discuss the current route construction design in use within ION-CGR. Yen’s
algorithm [Yen71] is known to exhibit a high processing cost [Wal20]. The underlying Dijkstra
algorithm design is also subject to weaknesses increasing the cost of a single pathfinding
process.
The Dijkstra implementation of ION-CGR shows two subsequent loops nested in a main

loop. The first nested loop updates the distances of the neighbor contacts from the current
contact, and the second nested loop elects the next current contact. The main loop stops if
the new current contact is "final" (the contact’s receiver is the destination).
As briefly mentioned in section 4.1, ION uses a red-black tree to store the contacts. This

data structure is accessed from both nested loops. Red-black tree capabilities were also
mentioned in section 3.3.2.
Before entering the first loop, the red-black tree cursor is positioned at the first contact

showing a transmitting node equal to the current node receiver. The loop iterates from the
first neighbor contact pointed by the cursor and stops as soon as the transmitting node
of the neighbor contact pointed by the cursor becomes different from the current node
receiver. Two comments can be emitted from this design. Firstly, cursor positioning shows
an average algorithmic complexity of O(log(C)), C is the number of contacts in the contact
plan. Secondly, having them sorted is only leveraged for the pre-loop cursor positioning. All
the contacts showing the required transmitting node will be evaluated, even if most could
be skipped. Subsequent contacts between 2 given nodes do not overlap (as constrained
by SABR). Consequently, if two contacts between a pair of nodes can be used to reach the
receiver node, the later contact (and any other later contact) can be ignored.
The second loop iterates over all entries in the red-black tree (the cursor is positioned

at the first element) to elect the next current contact. The algorithmic complexity is O(C).
In the original paper of Dijkstra’s algorithm [Dij59], the use of a priority queue was already
suggested by defining the set of vertices already reached as: "the nodes for which the path
minimum length from P is known; nodes will be added to this set in order of increasing minimum
path length from node P" with P being the source. The absence of a priority queue in ION
can be explained by the fact that contacts are considered vertices (in reality, this means that
the current element is a contact) and would therefore be inserted in the priority queue. As
explained above, the first loop can iterate over many contacts, andmany of them would con-
sequently be inserted in the priority queue. The cumulative processing time of the insertions
could increase significantly as a single insertion shows an algorithmic complexity of O(log(N)),
N is the number of contacts in the queue. While with a multigraph, even if the number of
contacts is high (late horizon), the number of vertices can remain acceptable in regards to
the priority queue (nodes are pushed into the queue, and not contacts).
This functioning can appear counterintuitive as a route length is bounded by the number

of nodes in the network, regardless of the contact plan horizon, while the processing time
depends on the contact plan size. A small thought experiment can further highlight this
issue. Considering an imaginary network of 10 nodes operating with a contact plan with an
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infinitely late horizon, a route from a source to a destination would encompass nine contacts
in the worst case. Still, the computation of this route would last forever 2

This could be the first reason that constrains ION-CGR to operate on short contact plans
and have them updated more frequently (as, again, the contact plan size appears at least
two times in the algorithmic complexity). Frequent updates can bring, however, negative
consequences.
First, this puts pressure on the network operators, constraining them to design reduced-

size contact plans, multiplying as well the contact plan update administrative bundles that
have to reach their destinations for the good overall functioning of routing in the network.
Second, this implies that the routing table should be emptied to be repopulated with the

routes calculated with the updated contact plan. SABR does not clearly describe this transi-
tion and this process can induce the deletion of suitable routes.
Concerning the pathfinding capability, the best existing route (in the sense of SABR) is likely

to be found. At the same time, this statement does not hold when maintaining a current
node instead of a current contact. This constraint is due to Dijkstra’s algorithm limitations,
with distances calculated from several metrics (which are discarded if maintaining a current
contact rather than a current node). In figure 4.2, the first route found from S to D would be
Route 1, as the earliest contact to reach F is C → F. This contact is set as the taken contact of
node F and C as the parent vertex. As covered in [Wal20] and mentioned in section 4.1, this
behavior remains highly preferable regarding the computational pressure and networking
performance tradeoffs.

4.4 Alternative route search

4.4.1 Yen’s algorithm scalability

The current reference implementation of CGR in ION uses Yen’s K-shortest path algorithm
to search for alternative routes. Please refer to [FDJB21] for more information about the
functioning of Yen’s algorithm in ION. The argument for using Yen’s algorithm is that CGR
will effectively find the best routes for the route selection algorithm if the value of K is high
enough. If a route’s volume is exhausted, another route should be detected. Yen’s algorithm
can be used with both current element policies (contact or node).
The limitations of Yen’s algorithm are not bound to a current element policy. The following

analysis will consider a current node retainment.
Moreover, the adaptive implementation of Yen’s algorithm will be considered as leveraged

in ION. The main motivation is computational pressure reduction. It also presents mem-
ory pressure reduction and discards the challenge of defining the value K beforehand by
increasing it dynamically. However, it does not prevent computational explosion, as covered
in section 4.4.1. Yen’s algorithm is paused as soon as a newly found route is suitable for
a given bundle or resumed if a new route is required for a given bundle. It means that the
routes available in the routing table would be systematically used until non of them is suitable
during a bundle scheduling.
Considering figure 4.2, using a single parent node in Dijkstra’s algorithm, the first path

found to D would be route 1, because C would be the parent of F (arrival at t = 25). If a link

2The infinite list of contacts is not that absurd. The issue could occur if the list of contacts between 2 nodes is
implemented as a generator leveraging an orbital mechanic prediction approach. Still, a finite contact plan is
preferred.
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of the sub-path S → A → B → C → F is exhausted, a new Dijkstra search would find route
2 as the new best path from S to D because E would be the parent of F (arrival at t = 50).
Route 3 would only be found at last.
To schedule a bundle to this destination, CGR iterates over the available routes and picks

the best one. Given the order in which the routes are found, and the order in which the
available routes in the route list would be selected, the scheduling of the bundle of this
scenario would produce the following results3:

• If no alternative routes are requested, the bundle will reach nodeD via Route 1. A single
Dijkstra call is necessary.

• If one alternative route is requested, the bundle will reach node D via Route 2. Five
Dijkstra calls are necessary.

• If two alternative routes are requested, the bundle will reach node D via Route 3. Eight
Dijkstra calls are necessary.

S

G

D

Two ends of a very dense section of the network

C1 C2

Figure 4.3: Network example that can trigger a computational explosion with Yen’s algorithm.

Yen’s algorithm shows three weaknesses. Firstly, the best existing route is not found by
CGR if the value of K is not high enough. More specifically, this comes from the underlying
Dijkstra algorithm leveraged by Yen’s algorithm (here, by maintaining a current node rather
than a current contact). It could be expected that the best existing route is effectively the
first route found by Dijkstra’s algorithm, but this is not necessarily the case depending on the
implementation of Dijkstra (as covered in sections 4.1 and 4.3).
Secondly, the optimal value of K is load-dependent, which makes K impossible to define

unless the expected load is known in advance. Even if the selected routes are not optimal,

3These results were confirmed by simulations performed with the aiodtnsim simulator.
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    = max( C2 start time , ( C1 start time + OWLT C1 ) ) + OWLT C2
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The start time of contact C2 is late enough to render the characteristics of the
previous hops impactless. The distance calculation can be described as non-

additive because the only relevant addition exhibits arguments that are
characteristics of the same last hop contact. 

(*: Calculated from a possible previous hop, or equal to the current time if A is the source)

(A)

(B)

(X) Period of bundle retention on node X Single bit transmission

Figure 4.4: Example scenario highlighting non-additive behaviors during the distance calcu-
lation.

the delivery rate is not expected to decrease until congestion occurs. But if no alternative
routeswere requested, the load to nodeDwould be scheduled on the contacts along route 1,
reducing de facto the residual volumes of these contacts. This reduces the available contact
volumes for bundles having nodes A, B, or C for destinations. If the value K is high enough,
route 3 can be found and leveraged for the very first bundle that needs to be scheduled for
D.
Thirdly, the complexity of Yen’s algorithm makes it hardly scalable. The number of Dijkstra

calls needed to find K routes is way higher than K . As shown before, even in a simple network
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like the one depicted in figure 4.2, five calls are needed to find two routes and height to find
three routes. To be more precise, the algorithmic complexity of Yen’s algorithm depends on
three factors:

• The complexity of the underlying Dijkstra algorithm.

• The number of paths to find.

• The average path length.

In a graph ofN nodes and leaving aside the possible optimizations, Yen’s algorithm exhibits
a worst-case complexity of O(KN3) with N2 the complexity of Dijkstra’s algorithm without op-
timizations [Yen71], and with a worst-case average path length being equal to N. This means
that Yen’s algorithm requires up to K × N Dijkstra’s algorithm calls to find K routes in the
worst-case.
Switching Dijkstra’s current element policy from a node to a contact can be dramatic, as it

drastically increases the processing time of the innermost loop of Yen’s algorithm.

4.4.2 Blocking issues with Yen

Listing 4.1: Script leveraged to produce table 4.1.

def create_graph(size):

names = list(string.ascii_lowercase)

graph = {}

edges = 1

for i in range(0, size - 1):

for j in range(0, size - 1):

if i != j:

if names[i] not in graph:

graph[names[i]] = []

graph[names[i]].append(names[j])

edges += 1

graph[names[size-2]].append(names[size-1])

return names[0], names[size-1], graph, edges

def rec_function(graph, curr_path, found_routes, destination):

curr_node = curr_path[-1]

iterations = 1

for next_hop in graph[curr_node]:

if next_hop not in curr_path:

new_path = curr_path + [next_hop]

if next_hop == destination:

found_routes.append(new_path)

else:

iterations += rec_function(graph, new_path, found_routes, destination)

return iterations

def test_with(size):

found_routes = []

source, destination, graph, edge_count = create_graph(size)

start = process_time()

rec_iteration = rec_function(graph, [source], found_routes, destination)

stop = process_time()

return edge_count, rec_iteration, found_routes, stop - start

As stated in the previous sections, Yen’s algorithm is more likely to be implemented adap-
tively. This does not prevent problematic behaviors of Yen’s algorithm, rendering it unusable
depending on topological and traffic dynamics for relatively small networks (e.g., 30 nodes).

37



In the scenario depicted in figure 4.3, contact C1 occurs before C2, and they do not overlap.
The following routes can be considered:

• The best route to node D shows contact C1 as last hop contact.

• An arbitrarily high number of routes can exist with contact C1 as the last hop contact.

• If contact C1 becomes unsuitable (e.g., due to volume exhaustion), the next suitable
route to D shows C2 as the last hop contact.

While streaming bundles to node D, if a bundle scheduling renders C1 unsuitable, Yen’s
algorithm’s main loop must be resumed for the next bundle scheduling.
Because Yen’s algorithm finds the route in order (by increasing distance in the sense of

SABR), it becomes clear that all existing routes showing contact C1 as the last hop contact
need to be detected before detection of the first route replacing C1 by C2. Any routes showing
C1 as the last hop contact would be of shorter distance (earlier arrival time) if compared with
any route showing C2 as the last hop contact.
Finding the routes in order is the cause of this issue. Any optimization increasing the

performance of Yen’s algorithm cannot counterbalance the fact that numerous routes must
be found due to the combinatory explosion. Consequently, any K-shortest path algorithm
variant that finds the routes in the right order suffer from this issue.
In SABR, distance is casually calculated as if no addition were involved: the arrival time is

often constrained by the last contact start time rather than an addition of the delays of the
contact hops. SABR defines the best route as the route with the earliest arrival time and not
the route with the shorter transit time (in opposition to pathfinding based, for example, on
mileage, like pathfinding in a terrestrial road network). In a flight connections scenario, the
arrival time of a passengerwill be the arrival time of the last flight, regardless of the cumulative
transit times and arrival times of the previous flights taken to reach the penultimate airport.
The algorithmdescription puts a lot of emphasis on the support of the interplanetary range

delays or OWLT. If the OWLT of a contact is not null, the difference between the receiver and
the transmitter distances will be at least the OWLT, but only on this single hop scale. The
presence of an OWLT does not necessarily restore, on a path scale, an additive behavior to
the distance calculation, as shown in figure 4.4.
This figure shows that non-additive behaviors can occur even with subsequent contact

overlapping if, during construction, the arrival time at the first contact is before the second
contact start time. As long as the transmission start time from C1 plus its OWLT is inferior to
the start time of C2, the arrival time at node C of a bundle of size zero via this route (the null
size being a CGR construction constraint) is dependent on the start time of C2 only.
The first question would be to evaluate if this non-additive behavior of the distance calcula-

tion can be discarded. It implies that SABR’s best route definition would need to be modified
to casual prefer later arrival time routes. Earlier arrival times are preferable enough to be
standardized by the CCSDS, and an efficient solution to fulfill this requirement shall show a
higher priority. Discussions on best route redefinition are therefore out of the scope of this
thesis.
A second question would be how often computed routes share the same arrival time and

how impactful this behavior can be on the computational cost. For the latter, a strategy with
simple rules can highlight how rapidly issues grow and how serious they are. The scenario
will be, for a given node count N:
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Vertices Edges Recursions Routes Processing time (secs) Memory (bytes)

5 13 16 5 0.00001 528

6 21 65 16 0.00003 1800

7 31 326 65 0.00016 7808

8 43 1957 326 0.00112 41736

9 57 13700 1957 0.00962 266160

10 73 109601 13700 0.08090 1972808

11 91 986410 109601 0.87012 16659360

12 111 9864101 986410 10.17190 157825608

13 133 108505112 9864101 129.14977 1657168976

Table 4.1: Combinatory explosion results with increasing network sizes.

• Each node from node 1 to node N–1 is connected with the other nodes of this set with
a bidirectional edge (two unidirectional edges), in a complete graph fashion.

• Node N – 1 is connected with node N with a unidirectional edge E from N – 1 to node N.

• Edge E is unsuitable due to volume capacity shortage, and it is assumed that this edge
sets the arrival time of any existing route to node N.

• If a capacity shortage at edge E occurs, Yen’s algorithm requires the computation of all
the existing paths sharing this last hop edge before detection of another path using an
alternative last hop edge, i.e. a second contact between node N – 1 to node N, but with
later start time (this second edge is not part of the graph for the tests).

The impact of Yen’s behavior can be inferred empirically, thanks to the simple Python func-
tions provided in listing 4.1. Yen’s algorithm searches the routes in order until K is reached
and, therefore, cannot leverage the same strategy. Indeed, additional logic is required to
ensure that each found route is the nth best route for each nth iteration. This logic can be dis-
carded if all routes are needed, as leveraged with this script. Thus, the results presented in
table 4.1 can be considered optimistic regarding what can be expected with Yen’s algorithm.
The tests were conducted on a laptop with an Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz
processor and 16 GB of RAM with the script functions of listing 4.1.
This table shall be understood as follows:

• Vertices: the total vertex count, including the last vertex N showing a single inbound
edge named e.

• Edges: the total edge count, including the last inbound edge e.

• Recursions: the total recursive call count, the paths are computed by creating a longer
loop-less path to each neighbor from the last hop of a current path by calling the
pathfinding function recursively until the destination is reached. The metric gives an
idea of the minimum iteration count to find all possible paths.

• Routes: the total route count from node 1 to node N. This highlights the combinatory
explosion with an increasing number of edges.

• Processing time (secs): is the computational time required to detect the routes in sec-
onds.
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• Memory pressure (bytes): the memory required, in bytes, to store the routes. A route
is a Python list of node IDs (being integers).

Please note that the support scenario excludes the time component of theDTN topologies.
In a realistic scenario, many contacts can be encompassed between the local node’s current
time and the start time of a problematic last-hop contact. More than 150 contacts in a time-
bounded subgraph between a current time and the start time of the first contact to reach a
destination are not unrealistic, and the impact of this behavior had to be mitigated to allow
evaluation in a realistic timeframe for realistic ring road scenarios (section 7).
Indeed, a "misplaced" contact in a ring-road scenario can trigger such a combinatory ex-

plosion. This issue was discovered precisely in these circumstances, with simulations using
realistic ring road scenarios encompassing 30 nodes.
When the issue occurs, Yen’s algorithm only stops once a route is found for the bundle

that needs to be scheduled. This extreme behavior looks like a computational hang to an
external observer and will be called this way for convenience.
The behavior is intrinsic to the nature of the algorithm and always present, while a hang will

refer to caseswhere the behavior is not negligible anymore due to observable consequences.
Defining a threshold is also complicated (e.g., a specific processing time or route count), from
which the behavior shall now be described as a hang, as this threshold is probably hardware
or mission specific.
However, some serious concerns can be emitted regarding the hangs due to the following

characteristics:

• The risk of encountering a hang is hardly predictable, depending on the topology and
the load.

• The processing time of a single iteration of Yen’s algorithm can be predicted. But the
duration of a hang is hardly predictable, as it encompasses an unpredictable number
of Yen’s algorithm iterations.

• A hang can postpone the scheduling of the next bundles enqueued for scheduling if
the implementation is not multi-threaded.

• A hang can be damaging due to the memory pressure as the routes shall be stored. In
table 4.1, the route count applies to Yen’s algorithm container A but does not reflect the
memory pressure of the intermediary container (Yen’s B container). All those stored
routes are unlikely to be used for routing, as they can all share the same discarding
feature.

Thememory issue is particularly concerning. It was initially planned to provide the table 4.1
for node counts up to 15, representing a total edge count of 183. But the simulation platform
crashed at 14 nodes (157 edges) due to thememory pressure. Thememory required to store
the routes for the 13 nodes scenario has already reached 1.6 GB. Adding a few more nodes
would already overwhelm the capabilities of modern-day simulation platforms.
The scalability issue of CGR, with the reference implementation using Yen’s algorithm, is

attributed to the algorithmic complexity of Yen’s algorithm. This analysis is incomplete, as
the number of iterations (i.e., increasing K ) between two bundle scheduling is unpredictable.
A single Yen’s algorithm iteration shall not be considered an issue. However, a possible com-
binatory explosion requiring an arbitrarily high number of iterations for a single bundle is
problematic. The scalability issue, i.e., hangs, is due to load and topological characteristics,
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which are not reflected in the algorithmic complexity notation. If a single (or a couple of) Yen’s
algorithm iteration(s), i.e., a reduced number of Dijkstra calls, would be sufficient, Yen’s algo-
rithm scalability would be highly increased, as a single Dijkstra’s call can be considered fast
(at least while maintaining a current node rather than a current contact, more information
in section 7).
Considering the statementsmade in section 3.4, CGR can hardly be considered as showing

a predictable processing time and memory pressure when using Yen’s algorithm for a single
bundle scheduling.

4.4.3 Limiting contact approaches

To reduce the solicitation of Dijkstra’s algorithm, the CGR limiting contact flavors were devel-
oped [FMCF18]4. This approach reduces the number of Dijkstra’s algorithm calls from KN to
K . When a route is found, a contact of the path is elected as the limiting contact. This contact
is then suppressed for the next Dijkstra algorithm call, providing de facto alternative routes
(at least one contact is not shared with the previously computed route). This approach can
also be implemented adaptively.
Constructing a new route with Yen’s algorithm requires N Dijkstra calls (N being the aver-

age path length, bounded by the number of nodes in the worst case), while a single call is
required when leveraging a limiting contact approach. The most interesting characteristic
of the limiting contact approach is that it discards the risk of encountering a hang while still
being able to compute many alternative routes.
The two policies to elect the limiting contact are first-depleted and first-ending.

First-ending

When using the first-ending approach, the limiting contact is the contact with the lowest
transmission end time. The idea is to emulate time evolution by suppressing the contacts
expiring first.
The route computation is then referred to as time-based. The problem with this approach

is that several routes might share the limiting contact, and early suppression of such contact
rendersmany routes undetectable. In the scenario depicted in figure 4.2, the first path found
by Dijkstra’s algorithm will be route 1. It appears that the limiting contact of this route is the
contact F → D, which is shared among the three existing routes. Having route 1 as the
single route available in the route list of destination D shows the same limitations relative to
pathfinding accuracy (the first found routemight be suboptimal but still used until exhaustion
if using an adaptive implementation).

First-depleted

When using the first-depleted approach, the limiting contact is the contact with the lowest
available volume. The idea is to detect the first contact that would become depleted with
continuous traffic to the destination. The route computation is then referred to as volume-
based. But in the same way, the limiting contact might be shared by several routes, which
would render suitable routes out of reach. And again, in the scenario depicted in figure 4.2,
the contact F → D is the limiting contact, showing the lowest available volume.

4Limiting contact implementation available at https://bitbucket.org/juanfraire/pycgr
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Issues

It can be argued that the heuristic leveraged for the election of a limiting contact is sufficient
to compute new routes when required. If the contact volumes are not likely to be exhausted,
the best route will be used for forwarding until the earliest contact expires, and suppressing
this contact with the first-ending approach is sufficient to find the next best route. In the
same way, if the contacts are short and their volumes are likely to be booked before the
contact expirations, the first-depleted approach seems optimal.
However, the approaches become suboptimal if the limiting contact shall be excluded

casually due to expiration and casually due to exhaustion (priority-dependent). Leveraging
both methods at the same time could be an interesting option.
Another issue is suppressing a contact for a single destination, while a contact can be used

to reach several destinations. If a contact is shared by two routes leading to destinations A
and B, volume exhaustion of this shared contact for the route to destination Amight trigger
suppression of another contact for the construction of an alternative route to reach B (e.g.,
if using the first-ending approach).

4.5 CGR-multicast and shortest-path tree search

For a unicast bundle, the expected algorithmic complexity of the SABR route selection (no
route computation involved) is at least O(RN), with R being the average number of available
paths to a destination in the routing tables, and N being the path length.
For a multicast bundle, the complexity becomes O(RN2). Moreover, the available route

count per destination K can be very high in large networks. It is not unrealistic to observe
R > N, if Yen’s algorithm is used for alternative route construction.
The updates of the contacts’ residual volumes along the chosen paths were left aside to

calculate the route selection’s complexity. If this aspect is taken into account, the algorithm
should iterate over the contacts to update the residual volumes. This step is trivial for the uni-
cast case, showing a complexity of O(N), but for the multicast case, one route per destination
shall be taken into account, increasing the complexity to O(N2), even with a marking mecha-
nism to avoid multiple updates of a shared contact. The use of a shortest-path tree instead
(see section 3.3.2) could simplify the process for the multicast case because the number of
edges in a shortest-path tree is N–1, N being the number of reachable nodes (the number of
edges can be higher if the tree carries the best existing routes in a SABR compliant manner).
The scalability issue can be expected, as the route selection now has a cost possibly higher

thanDijkstra’s algorithm. A legitimate hypothesis would be that leveraging amodified shortest-
path tree search technique to get all the routes at once might be preferable instead of scan-
ning each route list for each destination. Leveraging a shortest-path tree instead of route lists
could be beneficial for a second reason, discarding the difficulties of the volume updates.
It shows some apparent benefits: if one path per destination is needed, the computational

pressure is divided by the number of destinations. CGR uses a delay-tolerant version of the
single destination search.
It is, however, complicated to integrate shortest-path tree concepts efficiently into CGR

because of the single destination approach, handling of routes found for all destinations,
and duplicate detection would also be required. Also, a "shortest-path tree version of Yen’s
algorithm" would be required, i.e., a delay-tolerant version of an algorithm specialized in
finding the K shortest paths from a given source to each vertex in the graph.
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In appearance, an attractive candidate for this purpose is Eppstein’s algorithm [Epp98],
which can find these pathswith a compelling algorithmic complexity, but with cycles (or loops)
of repeated vertices allowed. With a closer look, allowing loops can present a severe issue
for the DTN case.
Again, the K-shortest paths are sorted in ascending order for the arrival times. Short-range

communications are considered free of delays, which can leave infinite numbers of routes
presenting loops. Each loopy route would be considered better than other potential loop-
less paths with higher arrival times.
Replacing Yen’s algorithm or alternatives like Eppstein’s requires further research.
As routes may stay valid for some time, storing routes in a routing table or caching a

whole tree seem equally valid options. A conceptual sketch was presented in [Jon19] for
the shortest-path tree construction and volume management, but again, an actual routing
algorithm leveraging the prototypical back-end still needs to be presented.

4.6 Volume management

As mentioned in the previous sections, the volume of a given contact, or Effective Volume
Limit (SABR, section 3.2.6.8.9, page 3-7), is equal to its data rate multiplied by its duration.
This value is stored during the initialization phase of the contact graph. When a bundle is
scheduled for a route, each contact along the path sees its volume reduced by the bundle
size. Logically, when a bundle is transmitted, it uses the whole data rate for a given time.
However, the bundle transmission start time does not necessarily match the contact start

time or the transmission end time of the previously scheduled bundle. If it was always the
case, storing only the EVL for a contact would be sufficient. The actual representation of the
volumes kind of stacks the cumulative bandwidth utilization at the beginning of the contact,
even though complex networks are expected to create holes between the intervals of booked
bandwidth.
This issue was already mentioned in [FDJB21, FMCF18]. Moreover, the envelope network

scenario was presented in [Jon19] to highlight possible CGR routing failures caused by this
volume representation, and an adapted version of this scenario is depicted in figure 4.5.
Figures 4.5, 4.6, and 4.9 depict the same scenario and use the same coloring (two bundles,
red and blue).
In this scenario, two bundles of size 5 are scheduled at t = 0 on the local node S for the

destination D, all the contacts share the same data rate, and no variation can be observed
during the course of the contacts. The first bundle to get a path for CGR is the red one and
is scheduled for the route S → A → C → D. The residual volume along the path is then
updated. The second bundle, blue, receives the alternative route S → B → C → D, because
the contact B → C became depleted during the scheduling for the red bundle.
The conflict occurs on the contact C → D, with CGR having two bundles to schedule at

node C through the same link with insufficient available bandwidth, as depicted in figure 4.6.
Consequently, the red bundle red is dropped5.
The research field already attempted to solve this issue in two different iterations, with the

ETO and the queue-delay features presented in section 3.2.4.
Even if the ETO feature addresses this issue, if the bundles are small, scaling bundle sizes

will highlight some gaps in the approach.

5This behavior was confirmed empirically with simulations performed with the aiodtnsim simulator.
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Figure 4.5: Two subsequent bundle scheduling from S to D. Figure adapted from [Jon19].

In the same way, the queue-delay addresses the issue to some extent but still shows
some weaknesses. The queue-delay feature shows gaps in the presence of subsequent con-
tact overlapping (see section 4.6.2, as the actual usage of specific data rate intervals, is not
recorded.

4.6.1 Volume obstruction

The first issue, named volume obstruction in this document, occurs when the volume man-
agement of the routing algorithm does not recalculate an ETO at an intermediary node for
the following bundles, as shown in figures 4.7 and 4.8.
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The first bundle, identified as the red bundle, with D1 as the destination, is scheduled
normally (top graph). Then when the blue bundle, with D2 as the destination, has to be
scheduled, the ETO is correctly calculated for the first hop, but the bundle is then scheduled
as if there is no volume scheduled on the next hops (middle graph).
The correct expected scheduling behavior would be to detect that the bundle blue cannot
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Figure 4.8: Volume obstruction issue scenario. The dark blue boxes depict faulty volume
booking. Scenario topology is depicted in figure 4.7.

go through the path S → A → D1 → D2 and should be transmitted through another path
(bottom graph). In such a configuration, the queue-delay feature is sufficient to allow the
selection of the right routes.

4.6.2 Contact sink

In opposition to the volume obstruction, the second issue named here is the contact sink
behavior (the ETO falls "at the bottom of the sink" due to the early contact start time, i.e.,
the sink depth, instead of behind accurately set to a higher value). The issue occurs when a
contact acts as a sink for the volume booking, rendering the ETO calculated by the queue-
delay feature inaccurate. Figure 4.9 is another representation of the envelope network (figure

46



time

S A

S B

A C

B C

C D

S E

E D

red

red

QD

blue

blue

0 10 20 30 40 50

time

S A

S B

A C

B C

C D

S E

E D

red

red

blue

blue

0 10 20 30 40 50

red

tr
an

sm
itt

in
g 

no
de

s
tr

an
sm

itt
in

g 
no

de
s

receiving nodes
receiving nodes

blueQD red

3. FAULTY SCHEDULING OF THE BLUE BUNDLE

4. CORRECT SCHEDULING OF THE BLUE BUNDLE
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booking. Scenario topology is depicted in figure 4.5.

4.5).
The queue-delay calculation is applied at the start of an intermediary contact to get an ear-

lier transmission start time by offsetting the contact start time with the expected cumulative
transmission time for the already scheduled volume. But if the start time of the contact is
earlier than the first bundle’s real transmission start time, the "hole" is ignored.
Indeed, the queue-delay would always stack the transmission from the contact start time

for each bundle scheduled. Again, a resilient routing algorithm would select an alternative
path for the second bundle (bottom graph). In other words, overlapping is manageable by
queue-delay to prevent volume obstruction, as long as the second contact does not act as a
sink.
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4.6.3 Ghost queue

The last issue, named here the ghost queue issue, occurs when the blue bundle has to be
scheduled during the transmission of another large bundle, here the red one, as shown
in figures 4.10 and 4.11. The red bundle has for destination D1 and blue bundle has for
destination D2. The subfigures show three different cases, and the scheduling occurs at t0:

• The red bundle is considered out of the queue as soon as transmission starts (top
graph). The ETO is then teto1.

• The red bundle is considered out of the queue only after its transmission termination
(middle graph). The ETO is then teto2.
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• The red bundle transmission end time is calculated with other means than the current
queue analysis (bottom graph). The ETO is then teto3.
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Of course, only the ETO equal to teto3 can be considered correct, as it coincides with the
transmission end time of the red bundle and the real earliest transmission opportunity for
the blue one.
The scenario allows the bundles to reach their destination, whatever ETO calculation is

processed. But any volume awareness inaccuracy can have repercussions on the following
bundle scheduling. Correction of a volumebooking inaccuracy is only achievable if the bundle
has to be re-scheduled locally.

4.6.4 Data rate variations

A physical contact does not necessarily exhibit a constant data rate over time, as mentioned
in section 3.1.5 with the characteristic bell shape of the curve of the data rate over time for
ground-to-orbiting satellite contacts.
The current solution is to split a contact into several contiguous contacts of different data

rates [FDJB21]. The previous sections assumed constant data rates. In this section, splitting
a contact means having two distinct contacts in the contact plan.
A bell shape data rate over time would be represented with contiguous contacts show-

ing increasing and decreasing data rates. This approach presents a good tradeoff between
simplicity and accuracy.
However, splitting contacts can have an impact on routing for large bundles that cannot

be fragmented. In this case, the routing algorithm and the volume management solution
shall detect that transmission of a single bundle overlaps contiguous contacts and render
the scheduling possible as those contacts represent a single physical link. Such support does
not exist at the time of writing.

4.7 Hierarchical interregional routing

The hierarchical InterRegional Routing (IRR) based on [Ale19], modified and implemented in
ION [Bur07], addresses internetworking by using specific nodes as passageways between an
outer region and a home region. The regions are part of a hierarchical tree structure. IRR
passageways are unique for two neighboring regions and shall operate with both contact
plans. Organizational concerns shall also be considered, as different actors might operate
the regions, while a single actor might operate the passageway. A regional structure example
was already depicted in figure 3.2.
The main criticism was that passageways were single points of failure, endangering the

interregional routing for thewhole network in case of a single regional interface breakdown. If
a regional interface failure occurs, all the outer region nodes recursively cannot communicate
with any of the inner region nodes. This was addressed by the introduction of passageway
failover6.
Failover does not ensure minimal interregional delays, as it depends on the contacts be-

tween the primary passageway and not all available contacts between the passageways and
the neighboring region.
The current forwarding table structure (see ION code) and the probing mechanism seem

incompatible with multiple passageways. Those aspects of the approach were conceptual-
ized for single passageways at each recursion iteration (at each interface along a path).

6Information provided by ION’s author.
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Last but not least, the separation of concern is suboptimal. The passageways aremembers
of two regions simultaneously and need the contact plans of those regions. In the context of
interagency collaboration, this can bring operational tension if a single agency administrates
a passageway between two regions operated by different agencies. The agency which does
not have administration rights on the passageway would have to supply its contact plan to
the administrating agency.
Tension is understandable for an agency that does not operate the strategic node. Also,

the administrator node would need to assume the computational cost of running the CGR
with a second contact plan for a region that is not his own. Depending on the agencies’
relations and their region sizes, such simultaneousmembership can be arguably sustainable
for administration and operational reasons.

4.8 Other potential issues

Other concerns that were not covered in the previous sections exist:

1. Scheduling of fragments: the routing of bundle fragments is questionable. The Route
Volume Limit (RVL) of a route is defined as the smallest value of EVL among all contacts
included in the route. That being said, this RVL depicts the maximum load that can
reach the destination from the source in a streaming fashion. However, an interme-
diary node can only forward a bundle if the bundle (or bundle fragment) has entirely
been received from the previous transmitter (reactive fragmentation is possible). As a
result, the RVL is, in practice, smaller than stated in the SABR standard in the presence
of subsequent contact overlapping along the path. The RVL shall be considered as an
upper bound, but the need to calculate a Maximum Bundle Size Limit (MBSL) could be
appreciable to allow the anticipatory fragmentation.

If the bundle is fragmentable but anticipatory fragmentation is not appropriate, SABR
states that "again the bundle shall simply be enqueued for transmission to the entry node
of the best candidate route" (SABR, section 3.2.8.1.4, page 3-9), even if the RVL is lesser
than the bundle size. This is questionable as there is no guarantee that an alternative
route for the fragment can be found on the downstream node that will process frag-
mentation. In the same way, if anticipatory fragmentation is allowed, a fragment having
a size equal to the best route RVL will be created and enqueued for this route without
any dry run check. Creating a fragment of a size equal to this hypothetical MBSL would
be highly preferable.

2. Calculation of the effective stop time: SABR defines the effective stop time: "The effective
stop time of one of the contacts in a route is whichever is less, the stop time of that contact
or the smallest value of stop time among all successor contacts in the route." (SABR, section
3.2.6.8.6, page 3-7). This can be understood as the latest sending time from the source
at which delivery of a single bit of information is not ensured anymore. But the calcula-
tion proposed by SABR is incorrect, as it doesn’t take into account possible cumulative
OWLT. A trivial example scenario would be a three nodes network (A, B, and C), with
A being the source and C the destination. Two contacts with start time and end time
exist, from A to B and from B to C. The SABR stop time would then be the end time
shared by those two contacts. However, if the contact from A to B shows an OWLT, the
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expiration of the route shall be earlier to be able to reach node B before the stop time
of the contact from B to C.

3. OWLT margin: the calculation of the OWLT margin is used to offset the arrival due to
nodes’ mobility speed during transmission. This margin is mission-based and appears
to be calculated thanks to a global constant in ION. SABR also suggests that this mar-
gin is mission-specific. On the contrary, it could be suggested that the margin should
be contact-based with correct information supplied via the contact plan, allowing the
local node to calculate a fine-grained margin for communications with nodes showing
different speeds and ranges.

4. Handling of expiration time: a route can be discarded during selection if the projected
arrival time is later than the bundle expiration. A node might have no routes available
suitable for such a bundle, even if the routes were not leveraged before for scheduling
(i.e., unsuitability is not due to the past scheduling). This is a serious security issue
when using Yen’s algorithm with an adaptive implementation. It can be imagined that
if the expiration time is earlier than the current time, the bundle would be discarded.
However, if expiration is later than the current time, it should also be required to force
scheduling termination if the last found route by Yen’s algorithm had an arrival time
later than the current bundle arrival time. SABR does not give precisions about this
use case (this might be considered an implementation detail).

This expiration handling is a concerning issue, as Yen’s algorithm can experience amore
dramatic hang than the hangs described earlier. If no termination policies are available,
CGR keeps searching routes until all existing routes are found, whatever arrival time
they have. If the network is large enough (surpassing a couple of hundreds of contacts),
and if the attacker has some knowledge about the contact plan, he could paralyze the
whole network by sending bundles with early expiration times to trigger a hang on each
node in the network.

Those gaps and inaccuracy can justify motivations to be cautious with SABR. The concept
developed in this thesis does not strictly follow the standard but respects the best route
definition.
The current pathfinding designs, not constrained by SABR (but still influenced), are also

problematic, with Yen’s algorithm being unusable in large networks and alternative tech-
niques sacrificing networking performance by rendering routes undetectable for computa-
tional pressure reduction.
Alongside path detection and selection, the volumemanagement techniques of CGRmight

also be improved. Various features are deployed to address the same issues at different loca-
tions (e.g., ETO for the first hop, queue-delay for the next ones). At the same time, developing
a single general and more accurate approach seems achievable and required.
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5 State-of-the-art and related work

5.1 Taxonomy

Internet
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Figure 5.1: Considered taxonomy for the state-of-the-art analysis.

In the context of this thesis, a relatively simplified taxonomy of routing mechanisms will be
discussed as depicted in figure 5.1, to avoid more complex classification being too detailed
for classes of approaches that are less relevant for this thesis [Mal93, MM97]. The targeted
use cases highlight their scheduled nature, which can be highly beneficial for routing pur-
poses.
Deterministic approaches would be preferred, as highlighted by the SABR standard from

the CCSDS describing the recommended routing method for scheduled space DTNs. How-
ever, opportunistic anddeterministic approaches can be used in scheduledDTNs (theywould
ignore the contact plans); therefore, some of them will be presented in this section. As those
approaches rely on replication to increase the delivery rate, congestion risks also increase.
In a space DTN, links can show extreme constraints and are precious resources; replication-
based algorithms are consequently not the first choices.
Even though this thesis focuses on schedule DTN and the application of efficient determin-

istic behavior, an unplanned event like node failures might bring the need to fall back to a
non-deterministic routing strategy (this remains speculative, e.g., if the contact plans cannot
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be supplied or corrected on time). The motivation to present the following approaches is
twofold. On the one hand, mentioning the available backup options is essential if determin-
istic routing is no longer possible. On the other hand, to describe more precisely why those
approaches are sub-optimal on scheduled DTNs, even though they are applicable.

5.2 Opportunistic and probabilistic approaches

5.2.1 Flooding approaches

The most trivial approach is to flood the network by sending messages via each available
contact, eventually reaching a point when one copy reaches the destination. This approach
was initially coined epidemic [VB+00], and the core principle can be described with various
nuances.
For instance, spray-and-wait [SPR05] is an epidemic-like approach with the difference that

the number of copies cannot exceed a given value. Again this sub-approach itself shows
variations, limiting, for example, the number of hops by creating half as many copies as at
the previous hop, given the last hop replication count.
The epidemic approach has also been adapted to multicast purposes in [JWZS10] with

the Epidemic-based Controlled flooding and Adaptive Multicast for Delay Tolerant Networks
(ECAM).
The flooding approaches are known to be very simple and show very little computational

pressure. However, the replication pressure can induce congestion. Another aspect is the
exchange of summary vectors at the start of a contact to notify the other node of the bundle
stored locally. It permits avoidance of any transfer of bundle already present in the receiver’s
storage. This assumes that all contacts are bidirectional, which is not always the case, and
this limitation is shared with all vector-sharing-based approaches.

5.2.2 PROPHET

In a DTN, the nodemobility is not necessarily unpredictable, andmobility or contact patterns
can emerge. If the mobility patterns are entirely random, flooding the network is a legitimate
approach, as the subsequent contacts with a given node are hardly predictable. The Prob-
abilistic ROuting Protocol using History of Encounters and Transitivity (PROPHET) [LDDG12]
leverages the non-randomnature of themobility patterns to reduce the replication pressure.
Each node locally maintains a Delivery Predictability (DP) value per neighbor, updated dur-

ing each contact. If the local node frequently encounters another neighbor node, the DP
value for that neighbor will increase. In the same way, if no contact is observed with another
neighbor, the DP value for this neighbor will decrease.
Moreover, the nodes exchange all their local DP values when a contact occurs. Receiv-

ing the DP values from the neighbor allows the approach to recalculate the local DP values
transitively.
The forwarding process is then simple: the node will only transmit a message to a neigh-

bor having a higher DP value for the message’s destination. This approach shows a lesser
congestion risk but is not resilient to mobility pattern inconsistency.
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5.2.3 MaxProp

MaxProp presented in [BGJ+06] is very similar to PROPHET. It, however, introduces specific
queue management. Its main function is to sort the bundles by destination, ordering the
destination by their Delivery Likelihood (DL).
Another main difference with PROPHET is the interdependence of the DL probability val-

ues. The sum of those values shall always be equal to one. The local node stores then in a
vector a delivery likelihood for each other node in the network. When a node meets another
node, they exchange their vectors, and each node stores the vector of its neighbor.
And last, MaxProp leverages Dijkstra’s algorithm, proceeding to actual probabilistic end-

to-end pathfinding using the vectors. As Dijkstra’s algorithm finds the lowest cost path, the
delivery unlikelihood values are instead calculated, and the route cost is the sum of these
values along the path.
MaxProp also provides other priority rules. For instance, the messages destined to the

neighbor are transferred first. Also, messages that have not traversed far in the network are
given priority. This provides the benefit of creating copies of a message as early as possible
to increase its chances to be delivered instead of having it lie dormant, for an arbitrarily long
period, in the storage due to long forwarding queues.

5.2.4 Issues

Regarding the contact volume representation, the requirements /R4/, /R5/, and /R6/ are not
likely to be fulfilled, as the local node has no information about the connection termination
with the neighboring nodes, and thus cannot calculate available volume.
In the same way, as long as no end-to-end paths are calculated at each intermediary node,

the requirement /R1/ is also non-applicable.
As long as some protocols like the flooding-based approaches can be used for multicast

and unicast bundles, the requirement /R3/ can, in some cases, also be considered fulfilled.
The opportunistic approaches usually show low computational pressure for the next-hop

selection, fulfilling the requirement /R2/.
Given the large majority of the requirements that are not fulfilled, including all the CCSDS

recommendations about routing within a scheduled DTN, the opportunistic approaches will
all be discarded for the application domain of this thesis (SABR-based algorithms for the
optimized delay and reduced congestion risks, targetting scheduled DTNs).

5.3 Deterministic approaches

5.3.1 Movement-aware routing over interplanetary networks

The Movement-Aware Routing oVer Interplanetary Networks (MARVIN) approach, presented
in [SMM04] also relies on Dijkstra’s algorithm implementation for pathfinding. The contact
plan creation and the routing algorithm were not considered two different concerns. In con-
trast, modern approaches assume that the contact plans are just provided to the nodes with
external mechanisms.
This approach is relatively primitive, as MARVIN updates a single routing table in a classic

Internet fashion, with a single entry for each source and destination pair. To support the link
breaks, MARVIN includes proactive route reconfiguration concepts.
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This approach could work correctly with small packets but not with modern DTN bundles.
Even if somewhat ambiguous, the link breaks shall also be dependent on the bundle sizes.
More precisely, the MARVIN approach maintains a single route for a destination, regardless
of the actual bundle to send, and if the bundle is big enough, what could be related to a link
break, shall occur earlier to recalculate a route for this bundle.
On a rather serious aspect, the original paper does not provide any simulation results, only

the routing table calculated by MARVIN. Also, MARVIN calculates the subsequent contacts
between the planets with orbital trajectory analysis and so works with planet nodes. This is
insufficient to derive fine-grained contact properties depending on the hardware capabilities,
for instance, to calculate the volume allocation from the link data rates and the bundle sizes.

5.3.2 Delay-tolerant link state routing

Delay Tolerant Link State Routing (DTLSR) presented in [DF07] attempts to adapt, for the
DTNs, Internet link state protocols such as OSPF [FLM08]. The routing of a message is pro-
cessed with a delay-tolerant Dijkstra’s algorithm for pathfinding, and so exhibits the same
base functioning as SABR. The presence of regions called areas (as in OSPF) was already
introduced to reduce the pathfinding processing time.
Another reason for separating the network in areas is the absence of some central oracle

entity to distribute the contact plans to the network nodes. The nodes themselves would
flood link state announcements, as smaller subnetworks would probably increase the per-
formance of such announcements.
This approach shows two main issues. First, the DTN constraints do not support the scal-

ability of the delays within a single area. The link announcement propagation delays would
result in inaccurate contact awareness for distant nodes. Also, the paper does not support
time-varying graphs, i.e., the network graph is just a snapshot of the current link state knowl-
edge for a given local node. For the unavailable links, the outage is capped at 24 hours. This
is a questionable choice for scheduled DTN, as the next connectivity opportunity shall be
known in advance, thanks to the contact plan. This makes DTLSR more suitable for MANETs,
and less adapted for scheduled space networks.

5.3.3 DTN routing for quasi-deterministic networks

The DTN routing for Quasi-deterministic Networks (DQN) approach, presented in [DLF+17],
leverages the nodes’ positions for routing within satellite constellations.
The interesting aspect is the different usage of node mobility knowledge. Instead of de-

riving contact plans from the node mobility predictions and processing the shortest-path
algorithm against time-varying graphs, DQN uses directly the node positions.
The source sends copies fulfilling an alternation, marking each copy with its physical trans-

fer direction, east or west. The intermediary nodes search the physically closest neighbor K
to the destination, taking the direction of the bundle into consideration. The intermediary
nodes can also request the contacts of their neighbors to compose a larger set to search the
closest neighbor K (so K can be at a two hops distance from the intermediary node). DQN
then forwards the message directly to K or to the neighbor showing a contact with K .
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5.3.4 Issues

The MARVIN and DTLSR approaches benefited the field as pioneers in developing determin-
istic approaches for scheduled DTNs. They are, however obsolete, in the case of MARVIN,
because of its lack of practical use case and its lack of dynamic behavior that does not ad-
dress clearly the problem, or inapplicable in the case of DTLSR due to the higher delays of
space networks that cannot provide the required reactiveness when using state announce-
ment techniques.
The problem with DQN is that the algorithm has a two-hops depth knowledge, while the

average-path length can show high variation and range from a few hops to more than 20
[FW17]. This study, however, used CGR, which minimizes the end-to-end delays.
Those approaches are not suitable to fulfill at least partially the requirement /R4/, which is

unacceptable for deterministic approaches addressing the application domain of this thesis.

5.4 CGR variants and enhancements

5.4.1 CGR alternative routing table computation

As already stated in a previous section, the first-ending and first-depleted approaches have
been presented in [FMCF18] as alternatives to Yen’s algorithm, but again those methods are
likely to suppress contacts which could be relevant for the following Dijkstra’s algorithm calls,
and therefore thosemethods are likely tomiss some very interesting routes, and in the worst
case, the best existing one included.
The same paper also presented two other approaches, namely the one-route and per-

neighbor-route approaches.
For the one-route approach, the paper states that "the one-route approach drastically in-

creases the computation efficiency as the outcome of every Dijkstra calculation is effectively used
to assist in the forwarding of bundles".
This statement is likely true in comparison to Yen’s algorithm, the first-ending, and the first-

depleted approaches if the number of nodes or contacts explodes. However, this remains
heavily dependent on the load’s nature, but as long as large bundles might be preferable,
this statement can hold for a wider scope. This statement can also hold if the computational
time of a single route remains negligible. In this case, "negligible" can hardly be described
with numbers, as this probably depends on the node computational power and the opera-
tor expectations. But using less fine-grained criteria, one can assume that a routing decision
processing time within the millisecond range is acceptable, while one requiring several sec-
onds to minutes would be unacceptable. However, the paper does not mention any special
considerations about Dijkstra’s algorithm implementation but seems to use a design simi-
lar to the one from ION-CGR, which can, in some cases, output a route that is not the best
existing route.
The per-neighbor-route approach acts as an intermediate between the static approaches,

which calculates the possible routes beforehand to populate the routing table, and the on-
demand approach, like the one-route approach. When operating with the per-neighbor-
route design, the local node stores for each destination at most N route in the table, N being
the number of neighboring nodes, each route being computed with the neighboring node
being the first hop receiving node (by suppressing the other first-hop contacts). This intends
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to support critical bundles, which are ’expected to be forwarded through all possible paths to a
destination’.
Concerning volume management, the same paper introduced the volume updates of all

the contacts along a path, which is now part of the SABR standard. But as already stated in
the previous sections, it is only with the queue-delay enhancement, presented in [CDCP21],
that the volume updates are taken into account to calculatemore accurate projected delivery
times for the next route selections. However, this approach does not cover all edge cases.

5.4.2 CGR-multicast

CGR-multicast [DJ19, Jon19] is a feature proposed in 2019 and then incorporated in ION-
CGR for the release 4.0.1, and is also an adaptation of eXplicit Multicast (Xcast) [OFI+07]. This
approach, built on top of ION-CGR, supports all of the currentmodern DTNmechanisms. The
bundle protocol does not provide anymulticast header capabilities. It has then been decided
to use an extension block to carry the destination responsibility list for a given bundle.
This approach is inspired by Dynamic Tree-Based Routing presented in [ZAZ05]. Even

though old, this approach gathers the current ION-CGR multicast base principles for non-
replication multicast routing in space-scheduled DTNs. A multicast routing algorithm fol-
lows the non-replication paradigm only if duplication is meant to support downstream path
branching and not processed in other cases. DTBR leverages a backend unicast routing ap-
proach using the Dijkstra’s algorithm from [JFP04] and uses on top a header mechanism
similar to Xcast.
CGR-multicast is independent of the underlying unicast pathfinding approach, i.e., the op-

erating CGR variant for unicast.
In CGR-multicast, the destination responsibility list is referred to as a gang, and the process

of creating a gang for a downstream branch is called ganging.
This approach has been adopted to replace the historical static multicast tree of ION, but

it still shows some weaknesses. Firstly the ganging process uses the unicast route selection
process to find the best routes, forwarding the bundle to the first hop of the best route to
each multicast destination. The ganging process then merges the first hop and destination
pairs into a list of first hops with a list of destinations (a gang) attached to each of these first
hops. The concept is not necessarily problematic; however, the route selection process is
expected to show a higher cost in large networks (O(N2) instead of O(N)).
Secondly, volume updates are not supported in a fully SABR-compliant manner. In 2019,

this was not necessarily considered a problem, as ION-CGR was still updating only the first
hop contact upon scheduling a unicast bundle. But now SABR specifies that the volume of
the contacts along the bundle path shall be updated.
It is interesting to point out some slight variations observed in some very related ap-

proaches regarding the management of the header (extension block in the case of CGR).
In Differential Destination Multicast (DDM) [JC01] or On-demand situation-aware multicast-
ing (OS-multicast) [YCCD06], the headermanagement is alsomeant to support opportunistic
behavior.
DDM, for instance, only describes quite sophisticated header management with soft-state

capabilities. In the soft-state mode, the nodes retain some memory about the tree and be-
come responsible for the delivery to a certain set of destinations. In soft-state mode, the
DDM header also acts as an administration message to notify downstream nodes of the
new set of destinations they should take care of. This approach is not incompatible with
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the space network high delays as long as a given destination responsibility list of a receiver
remains relevant for a single transmitter.
In OS-multicast, the header carries a tree rather than a destination list, but the intent can

be considered equivalent. The main difference is that OS-multicast allows bundle transmis-
sion to nodes that are not on the depicted downstream path. This allows to leverage of
opportunistic links to increase the delivery ratio and decrease delay, but the approach can-
not be considered a non-replication multicast approach.
Space Minimizing Tree-Based Routing (SMTBR) presented in [Tri13] is related to CGR-

multicast but intends to reduce congestion. The backend shortest path algorithm computes
thin trees, reducing the number of participating nodes and de facto reducing the number of
bundle copies needed to reach each destination.
The tree can be constructed with two different variants, both leveraging the election of

important nodes, which are more likely to be included in a path. This algorithm shall also
ensure that the nodes agree on the paths for accurate volume management and reduce the
showing risk of network loops (leaving aside the unforeseen possible downstream conges-
tion). This seems achievable as long as the coefficients used to calculate the node importance
property are identical on each network node.
Again this approach brings questioning regarding its possible implementation for modern

DTN. The bundle protocol does not present anymulticast header (but an extension block can
achieve the same goal as seen with CGR-multicast). The tree construction does not conform
to the SABR standard expectations. Certainly, creating a thin tree requires some trade-offs
regarding the bundle delivery delays, while SABR requires that the fastest route be selected
in the routing table.

5.4.3 CGR extensions

CGR-EB [Bir11] is an extension of CGR that proposes to attach the whole path of a bundle
in an Extension Block (EB) from the source. With such a mechanism, the processing time is
spared for the next hops, as the forwarding nodes can just check the extension block for the
next forwarding decision. More than a processing improvement, a source node might have
a better view of the topology than the next nodes along the path, justifying a pathfinding
decision from the source leveraged by the forwarding nodes.
CGR-BF [DBDG18] and CGR-SPI [DGDG19] are two extensions that intend to optimize vol-

umemanagement. CGR-BF proposes to optimize bundle fragmentation strategy, while CGR-
SPI proposes queue occupancy sharing with the neighboring nodes.
A common characteristic of those extensions is their apparent compatibility with any un-

derlying pathfinding algorithm for CGR-EB and any underlying volume management caring
algorithm for CGR-BF and CGR-SPI.
Opportunistic capabilities were also proposed in [BBC+17], to allow CGR to leverage dis-

covered links. This capability is considered out of scope as long as this thesis focuses on
predicted contacts.

5.4.4 RUCoP and CGR-hop

The Routing under Uncertain Contact Plans (RUCoP) approach depicted in [RFM+21] lever-
ages the Markov decision process over a Markov chain graph depicting the probabilities of
the contacts to extend CGR for operation under inaccurate contact plans.
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CGR-hop mentioned in [RFM+21] is also a pathfinding modification (and not an alternative
path construction method), which proposes to modify the metrics priority by lowering the
hop count first during construction. Consequently, contact utilization is reduced, but delays
are increased.
RUCoP targets networks with inaccurate contact plans, while CGR-hop targets congested

topologies. In this thesis, the contact plan as accurate and inaccuracy countermeasures are
left for future work (or by introducing existing extensions to the proposed approach). CGR-
hop does not respect SABR’s expectations.

5.4.5 Issues

Approach /R1/ /R2/ /R3/

CGR-yen H# # H#

CGR-limiting H# H# H#

CGR-one-route #  H#

Table 5.1: Requirements fulfillment relative to volume pathfinding by the state-of-the-art ap-
proaches.

Approach /R4/ /R5/ /R6/

ETO H# H# #

Queue-delay H# H# #

Table 5.2: Requirements fulfillment relative to volume management by the state-of-the-art
approaches.

Regarding the networking performance, /R1/ could only be fulfilled by CGR-yen. The fulfill-
ment of the requirements by CGR can be found in tables 5.1 and 5.2. The symbols , H#, and
# depict sufficient support, partial support, and no support, respectively. However, adaptive
behavior can lower the selection quality. The limiting contact approach (CGR-limiting in the
table) can also show non-negligible side effects by suppressing important contacts. Retaining
the routes can permit, in some cases, to achieve better selection (by providing candidates).
In opposition, the one Dijkstra per bundle approach (CGR-one-route) would suffer from inac-
curate pathfinding at each bundle scheduling if the current element is a node, or increased
processing time if the current element is a contact. The /R2/ is not fulfilled with CGR-yen.
CGR-limiting on its side shows a fewer computational and memory pressure. The one-route
approach has an inexistent memory pressure, but the computational pressure can be high if
the bundles are small and plentiful. Multicast is an extension of CGR and inherits the behav-
ior of the underlying CGR implementation. The one-route approach would need to compute
for each bundle one route per multicast member, which can, in some cases, be considered
worse but not comparable to the risks of hangs with CGR-yen. In all cases, volume manage-
ment is an issue if using CGR for multicast due to single destination pathfinding.
The volume management, as performed with the EVLs for different priorities, ETO, and

queue delay, was shown to be inaccurate in some special cases but effective in addressing
volume management in other cases.
The optional CGR-EB, CGR-BF, and CGR-SPI features do not affect the pathfinding of a

single bundle fragment. In the case of CGR-EB, the path is just attached to the bundle. In
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the case of CGR-BF, a different fragmentation strategy is applied before the scheduling of
the fragments. In the case of CGR-SPI, a new means for volume management updates is
proposed. As those extensions use the same pathfinding algorithm, they are not likely to
increase the scalability of CGR as they do not modify its core characteristics (processing time,
pathfinding, and volume management).
RUCoP operates in a different use case and cannot be considered here, while CGR-hop

modifies the end-to-end transmission expectations. CGR-hop is compatible with all CGR
variants depicted in tables 5.1 and 5.2. It would exhibit the characteristics of leveraged variant
for the considered requirements and therefore do not motivate the addition of a dedicated
row in the tables.

5.5 Interregional routing

Even with a drastic reduction of the computational pressure of deterministic routing, it is not
expected to be able to scale the network indefinitely without the need to introduce subnet-
works. A space DTN subnetwork is called a region, and interregional routing is expected to
be a key component for scalability. The following section covers approaches that are related
to interregional routing.

5.5.1 Border gateway protocol

The Border Gateway Protocol (BGP) [RHL06] is an Exterior Gateway Protocol (EGP) and key
Internet technology. However, this protocol is not expected to perform correctly in a DTN.
The protocol usually relies on sessions, which is hardly compatible with delays. Acknowledg-
ment on session opening, closing, or failure might not be received in time to actually allow
those sessions to be leveraged.
For example, if we assume the regional structure to be topology-based, the session be-

tween two BGP routers (e.g., one on Earth and one onMars) orbiting their planetsmay hardly
get the chance to make this protocol work appropriately as the session management time
are not negligible when compared with the potential contact durations (Earth LEO satellites
orbit periods are about 90 mins, Earth-Mars delays of about 20 mins on average). BGP orga-
nizes the exchange of routing information but will hardly provide efficient end-to-end routing
capabilities from a source to a destination at a given time when operating in a DTN.

5.5.2 Hierarchical interregional routing

Interregional Routing (IRR) was already covered in sections 3.1.6 and 4.7.
Hierarchical Interregional Routing was proposed in [?] to provide EGP capabilities for hi-

erarchical partitioned space networks. A gateway (called a passageway) is a bridge node
between two regions. It is part of the two regions simultaneously, the home region, which
is accessible from outer regions only via this passageway. A home region can encompass
several inner regions, accessible via nodes being passageways for those inner regions. This
home region is consequently the outer region of the two regions those passageways are part
of, the inner regions being their home regions.
Routing is quite simple. If the source knows the destination, i.e., the node is part of the

contact plan, CGR is used. Otherwise, nodes access forwarding tables that provide, for an
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interregional destination, the next passageway along the end-to-end path. If such an entry
is absent, probing is triggered.

5.5.3 Issues

On the one hand, BGP should be disqualified entirely right away due to its absence of delay-
tolerant features. On the other hand, the use of a Multi-Exit Discriminator in BGP seems
plausible, and an analog approach would be highly beneficial for DTNs, to address dynami-
cally the requirement /R7/.
This requirement can only be fulfilled partially with the current IRR concept, as single nodes

act as passageways (no multiple passageways simultaneously). The single point of failure
issue was addressed in ION with failover support. A passageway that proved to be the best
option during probing (by receiving the acknowledgment first by one of the passageways) will
be selected for IRR forwarding for the next bundle sharing the same destination. As soon as
forwarding to this passageway fails, failover to another passageway is organized. The code
base for the IRR support is still under development in ION, and no publications are available
to support this section. Thus, this information shall be taken with care.
However, load balancing-like behavior, to increase throughput and decrease interregional

routing delays, shall allow sending an interregional bundle to the best passageway of a neigh-
boring node for a given current time. No evidence of such support was observed at the time
of writing.
IRR uses a relatively static tree, rendering it impossible to leverage shortcuts. The require-

ment is /R8/ unreachable for fulfillment. The introduction of shortcuts could be organized
if a network loop control is provided. Assigning specific nodes (the passageways) for inter-
regional forwarding does not seem flexible. If failures occur, and if the passageway node
becomes a node that was not a passageway before, previous probing phases are rendered
useless as the IRR forwarding tables point to nodes that are not operating anymore.
The simultaneous presence of two region contact plans on a single node also conflicts with

requirement /R9/.

5.6 Further approaches

Those approaches cannot be considered ready for comparison with CGR, due to a lack of
performance or the ongoing development they are subject to. They are, however, presented
here for convenience.

5.6.1 Machine learning approaches

The increasing interest in the machine learning field also overflowed to the DTN routing do-
main. However, machine learning for schedule DTNs can still be considered to be in an early
stage, with critical issues not addressed to this day.
In [DHP17], the evaluation does not include CGR, and the reinforcement learning approach

is only evaluated for the end-to-end delay against a shortest-path algorithm without clear
SABR compliance statements. Also, the proposed algorithm seems to only replace the route
selection process, while most of the issues related to SABR come from pathfinding. The real
CGR issues detected in this thesis are computational pressure, the best route detection,
and volume management. As those issues are closely entangled with route construction,
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replacing only the route selection might be insufficient. Another reinforcement proposal in
[SOBH16] proposed a more extensive networking evaluation, but CGR is not evaluated at all.
In [DP18], a supervised learning technique is leveraged, but only the machine model is

evaluated, and no networking evaluation is provided, in comparison to [Len20] where a spik-
ing neural network is leveraged and evaluated against CGR. However, the topology used
for evaluation is questionable. The absence of congestion or dead-ends allows the bundle
to eventually reach its destination, whatever forwarding decision is applied. The response
times are also very low in comparison with the other approaches, and an interpretation of
this behavior is complicated, as SABR is supposed to optimize the end-to-end path. As the
training method is unclear, the reasons why this approach can surpass CGR are also unclear.
The main issues shared among those approaches are mainly the evaluation strategy and

information about the dependence on training and responsiveness to unplanned node intro-
duction and the networking capabilities of those approaches just after a contact plan update.
The training is also crucial, as training against CGR routing decisions might be sub-optimal
regarding CGR next-hop selection issues.

5.6.2 Tropical geometry

Tropical geometry is a mathematical field that has already shown interest in optimization
problems, e.g., in the domain of transportation networks [Kri14].
Geometric solutions were historically intuitive in the train scheduling field, as the trains

could be represented as points in a space-time plan (their lengths being omitted). Drawing a
line translates the movement of the train when having a constant speed from one station to
another (also being lines perpendicular to the time axis), and scheduling can be processed
by drawing the train lines. If two lines cross, there is a collision, i.e., the scheduling is faulty.
Such geometric solutions were proposed as early as 1878 [Mar78].
Direct mapping of DTN scheduling with such a geometric solution would be more compli-

cated, as the rails (contacts) would not be static, and the trains (bundles) would not have a
negligible length (bundles might be large).
Recently introduced by [CHS+22, SHC+22], tropical geometry solutions are being devel-

oped for DTN scheduling but can be considered in an early stage still. No routing algorithms
are available today for networking evaluation as those publications propose, for themoment,
theoretical advancements in the field rather than practical advancements.
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6 Scalable schedule-aware bundle
routing

6.1 Overview

Contact passageways

define contact plan structures for interregional traffic support
provide capabilities for the routing algorithm to infer intraregional

destination when given an interregional destination

SPSN

construct and leverage routes for intraregional routing
leverage the underlying volume management

technique for decision

 

Contact segmentation

maintain volume awareness on
 single contacts

Figure 6.1: Relations between SPSN, contact segmentation, and contact passageways.

Three relatively independent approaches are proposed to provide a scalable solution for
the addressed domain of space networks. Although they can be deployed separately to
replace only sub-parts of the state-of-the-art approach, they can be joined together to form
a routing approach addressing the three main topics of this thesis (as depicted in figure 6.1):

• Shortest-Path tree routing for Space Networks (SPSN) for intraregional routing scala-
bility.

• Contact segmentation for volume management scalability.
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• Contact passageways for interregional routing scalability.

Shortest-Path tree routing for Space Networks (SPSN)

Tr
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Destinations

Dep
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Cache Tree
Selection for
a bundle
scheduling

Figure 6.2: Representation of the route container within SPSN.

SPSN proposes a paradigm shift to organize the routes container by layers, as shown in
figure 6.2, in comparison to the single destination-based memory blocks of SABR (figure 3.3).
SPSN merges the routes alongside the destinations axis by computing shortest-path trees
instead of single destination routes. Consequently, all routes of the same tree (i.e., same
layer) share the same characteristics. The layers can show variable length alongside the
destinations axis, as some nodes might be unreachable due to the constraints supplied for
specific tree construction.
A shortest-path tree presents up to V –1 edges for a V nodes graph and is not supposed to

overlap three dimensions, as the retainment of the parent for each vertex is sufficient. The
need for this third dimension is part of the multipath tracking feature, covered in section
6.2.2.
The cache typically shows an upper bound for the number of trees it can store to limit

memory usage. Each tree is stored with the constraints used for its computation, and the
tree selection procedure leverages that information for the decision.

Contact segmentation

Contact segmentation proposes amore strict and accurate way to book volume on a contact.
This shifts themanagement from a residual volume and cumulative booked load perspective
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to a time interval booking mechanism. Contact segmentation presents the advantages of
addressing the bandwidth utilization at any contact, even for the first hop, as the cumulative
transmission time required for the bundle enqueued (first contact) or the booked load (next
contacts) is now encoded in the same fashion on the contacts.

Contact passageways

The contact passageway design also proposes a relatively significant shift from the existing
node passageway design while relying on similar administration management. The shift re-
sides in the dynamic assignment of the role of a passageway to a node for interregional
transmission while allowing those nodes to remain members of single regions. Any node
acts as a border node if it is a transmitter or a receiver of a passageway contact. Border
nodes do not require specific configuration. This naming differentiation is only a matter of
convenience: the passageway contacts are not intrinsically special, as the contact plan is still
unique for a given region (all nodes use the same contact plan). No limitation can be ob-
served regarding the border nodes. A node can be a border node and sustain interregional
traffic intermittently each time it is the transmitter or receiver of the passageway contact. It
can also sustain interregional traffic only once (due to the occurrence of a single passageway
contact involving this node) before the contact plan horizon.
Moreover, the number of passageway contacts between two regions can be arbitrarily

high, with high flexibility in the involved node designation (more than one border node can
exist on each side). Node configuration is identical from one to another within the same
region.

6.2 Shortest-path tree routing for space networks

6.2.1 Structure

Shortest-Path tree routing for Space Networks (SPSN) intends to reach the scalability goals
with high accuracy (reaching state-of-the-art networking performance) and acceptable com-
putational pressure (being free of hangs and being part of the same order of magnitude).
Computational performance highly constrains scalability, and positioning a cursor accord-

ingly between accuracy (e.g., recomputing the best route for each bundle) and reusability
(reusing the same cached route as long as possible) is challenging. Further implications are
the absence of useless route computation and effort sharing. Observing the unsuitability of
a new path after its computation is suboptimal. Negligible overhead computation support-
ing a wider scope can prevent future computation for other needs (i.e., a tree for several
destinations).
For accuracy, SPSN ensures that any computation is relevant for at least one bundle thanks

to its volume awareness within its Dijkstra implementation. This discards any useless com-
putations. For effort sharing, SPSN computes shortest-path trees to be used for unicast or
multicast bundle scheduling. For reusability, SPSN stores trees that can be elected for reuse
depending on the bundle and tree characteristics. In other words, a single Dijkstra call can
suffice for multiple bundle scheduling, even if they do not share the same destination.
The following aspects are core to SPSN:
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• The tree construction, with amodified version of Dijkstra’s shortest-path tree algorithm,
allows tracking of simultaneous paths to the same node or optimized contact utilization
(multipath tracking).

• The treemanagement, caring of operations applied to single trees for routing decisions.
It processes calls to the underlying volume management functions for dry runs and
volume booking.

• The tree caching, caring of the storage policy, and the reuse strategy.

The implementation of an SPSN flavor is therefore adaptable by selecting a tree construc-
tion backend (three available), the volume management backend (two available), and the
cache management backend (one available with configurable size). For the latter, further
flexibility is possible by defining a maximum cache size to fine-tune the memory usage, ac-
curacy, and computational pressure.
SPSN does not leverage routing tables. This key conceptual shift will be covered in the

following sections.

6.2.2 Tree construction

Three different flavors are available for tree construction:

• The basic tree construction creates a simple tree following a standard Dijkstra imple-
mentation with node-based current element retainment.

• The multipath tracking tree construction creates a tree variant allowing the tracking
of several paths to individual nodes simultaneously. The goal is to get the accuracy
provided by maintaining a current contact during exploration while operating as if a
current node was maintained (please refer to section 4).

• The hop tree construction creates a simple tree prioritizing minimal hop counts.

The constructions of those three flavors are covered in the following sections, with the base
tree construction as an introductory flavor describing tree construction basics required to
tackle multipath tracking tree construction. The hop tree construction is also provided as it
is leveraged as a control during the evaluation.

Basic tree construction

SPSN proposes to create the working areas during the construction, similar to what is sug-
gested in algorithm 1.
The work areas are termed RouteStage in SPSN. A RouteStage is attached to a given node

with the mean of a map, providing a reached destination as a key, the best RouteStage de-
tected until this state of the algorithm. A RouteStage is similar to a CGR work area, carrying
similar metrics (e.g., arrival time, hop count, and expiration). The parent of a RouteStage is
also a RouteStage (and not a contact of a node). This permits the implementation of various
flavors flexibly (e.g., maintaining a current contact rather than a current vertex is rendered
possible).
The paths could be retrieved from the reverse paths encoded by the RouteStage parenting,

but it is not processed at this algorithm stage.
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Figure 6.3: State snapshots of the basic tree construction.

Figure 6.3 depicts two snapshots taken during the iterations of the basic tree construction
algorithm. The RouteStages are sorted by arrival times: r1 < r2 < r4 < r5 < r3. Both
snapshots are taken at the end of an iteration (i.e., just before modification of the current
RouteStage for the next iteration). The current element is provided, r2 in snapshot 1 and r4
in snapshot 3. The Priority queue container stores the next RouteStages eligible to be the
next current element. The shortest path tree container depicts the abovementioned map.
In snapshot 1, a path to C is discovered from the current RouteStage r2 being a path to B.

This newly found route is encoded as RouteStage r4 and was pushed into the priority queue.
The best path to C was updated accordingly in the shortest path tree. This is not depicted in
the figure, but there were no routes to C before this snapshot, the same way E is not part of
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the map keys, as E still needs to be discovered.
For the next iteration, the shortest distance (earliest arrival) RouteStage was retrieved from

the priority queue to be the new current element (r4), and snapshot 2 describes the state at
the end of this iteration. It can be seen that a new path to D was detected and encoded as
r5. This RouteStage appeared to have a shorter distance to D as the former best path to D
encoded with the RouteStage r3 was replaced in the map. When such an event occurs, the
replaced RouteStage can also be removed from the priority queue if still part of it, which was
the case, as seen in snapshot 1.
Another important aspect is the ability to supply a bundle size for the tree construction

to filter paths that would not allow the bundle to reach the destinations. This is referred to
capacity oriented search (or volume-aware search) and is a key component of SPSN. This
extends the one-route approach to trees.
Because of this bundle size awareness, a single-hop metric calculation is not necessarily

trivial, depending on the concepts deployed for volume management. This shall be consid-
ered a volumemanagement concern, and it is assumedhere that a candidate RouteStage can
be created thanks to the volumemanagement framework. For example, creating RouteStage
r2 retained contact 1 rather than contact 2. This selection is processed on the one hand with
the help of appropriate sorting (by start time) of the contacts between A and B, and on the
other hand, with the help of volume management, to discard unsuitable contacts.
In other words, sorting the contacts allows the algorithm to ignore the next contacts as

soon as a contact can be selected (a variation of this approach is required if the contacts
overlap). While the volumemanagement framework allows proceeding dry runs on individual
contacts for exploration.
The first tree construction backend provided by SPSN is this basic pathfinding algorithm,

implementing strictly Dijkstra’s algorithm.

Multipath tracking tree construction

As an alternation to the basic tree construction, MultiPath Tracking (MPT) intends to address
the accuracy issues inherent to current node retainment with a modification to the core of
the Dijkstra algorithm.

Single destination
best path

Shortest-path tree
parent

Multipath-tracking tree
RouteStage (parent)

D
e
st
in
a
ti
o
n
s

A: S A S A(S)
B: S A B A B(A)
C: S A B C B C(B)
D: S F D F D(F1)
E: S E S E(S)
F: S A B C F C F2(C) F1(S)

(Depth up to 5) (Flat) (Depth up to 2)

Table 6.1: Path structures for single destination paths and shortest-path tree.

Multipath tracking shall be understood as something other than the ability to find multiple
routes at once, either for different destinations or for the same destination. It stands for an
ability to track simultaneously paths that would require a vertex to be able to have multiple
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Figure 6.4: State snapshots of the multipath tracking tree construction.

parents. Considering figure 6.3, if the best route to node E leveraged r3 instead of r5 (e.g.,
because contact 6 starts late enough), then the shortest path tree shall track r3 and r5 si-
multaneously, as r5 encodes the best path to D and r3 is a dependency to the best path to
E.
Consequently, the shortest path tree now holds, for each destination as a key, a list of

RouteStages instead of a single one. This explains the MPT depth third dimension from
figure 6.2. A comparison for the scenario depicted in figure 4.2 is proposed in table 6.1.
The implementation of this strategy is depicted in figure 6.4 as the multipath tracking ver-

sions of the snapshots taken in figure 6.3. The RouteStages are sorted by arrival times in
the same way (r1 < r2 < r4 < r5 < r3). Snapshot 1 is identical from one figure to another
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Figure 6.5: Insertion mechanism of multipath tracking.
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because no multipath tracking capabilities are required for this specific iteration. However,
snapshot 2 shows the behavior mentioned above by appending r5 to the list of RouteStage
reaching node D.
It shall be noted that r5 is placed at the first position of this list rather than being appended

at the end, as the list shall be sorted in the sense of SABR (considering the arrival time, hop
count, and expiration). This ensures that the first element of a list is the best RouteStage to
a node, the one leveraged for forwarding. Because r3 is not replaced, it is also not removed
from the priority queue. This pathfinding technique can eventually detect the best route to
E during the iteration, where r3 is the current element retrieved from the priority queue.
At this stage, it can be observed that this approach can be seen as a variation of a cur-

rent contact retainment, as pushing several RouteStage leveraging different contacts to the
same node without strict replacement within the shortest path treemap is analog to pushing
contacts in the priority queue as processed in ION, but the analogy stops here.
A notable difference is an ability to ignore contacts thanks to the sorting policy of the

contacts between a pair of nodes but to mitigate greedy behaviors drastically. It is important
to detect whether a candidate deserves to be appended to a RouteStage list. To this end,
the RouteStages sorting is leveraged.
Sorting is maintained in a SABR-compliant manner, and the insertion mechanism works as

follows:

1. The process iterates from the best to the worst element in the list and stops as soon
as the correct index for the candidate is identified (prioritizing first earlier arrival times,
followed by lower hop counts and later expiration times).

2. After insertion, the process iterates from the next element to the last element. For
each RouteStage element, if the inserted candidate is better than this element for all
considered metrics, this element is removed from this list (and from Dijkstra’s priority
queue).

Figure 6.5 depicts the workflow of this insertion. PV is the list of routes to node V. R is
a new candidate route leading to V . The accumulator Acc is Dijkstra’s priority queue. The
insertion can be divided into two steps. First, the right index for the new candidate shall be
found in the current list of candidates for this node (sorted in a SABR-compliant manner). If,
during the search for this index, a known candidate appears to be better for all metrics when
compared to the new candidate, the new candidate can be discarded, and the procedure
stops. Otherwise, the candidate is inserted at the right index, and the second step starts. This
second phase checks the next candidates in the list to detect if the newly inserted candidate
can justify the deletion of previously found candidates.
At the end of the computation, the container T can be returned the sameway it is returned

without multipath tracking. The first element of each list is the best RouteStage for a desti-
nation and can be used for path retrieval from the reverse path starting at this RouteStage.

Hop tree construction

As an alternative to the basic andmultipath tracking constructions, the hop tree construction
is also provided to reduce the path lengths based on hop counts.
Thismodification provides a shortest-path tree version of the CGR-hop approach sketched

in [RFM+21]. In the same way, this approach can be leveraged for congested environments.
With this flavor, a single RouteStage is retained at each node.
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Figure 6.6: State snapshots of the hop tree construction.

If considering figure 6.6, snapshot 1 would again be identical if compared with figures 6.3
and 6.4. However, the RouteStage r5 would never get the chance to be inserted in the tree
or the priority queue, as depicted in snapshot 2. Indeed, the existing RouteStage r3 leading
to D is strictly shorter in hops, discarding r5 before any insertion. In the next iteration, r3 will
become the current element, and the final path to E will be identical to the one that would be
found with multipath tracking. However, the path leading to D would remain suboptimal in
the sense of SABR, as the RouteStage r5 leading to D (which was discarded) is strictly shorter
regarding the arrival time.
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6.2.3 Tree management
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Figure 6.7: Caching mechanism.

The tree management component is the entry point for routing purposes. Given a bun-
dle to schedule, this component will process requests to the cache and use the underlying
volume management functions for dry runs and volume booking updates.
A prefiltering is conducted to verify that failure to schedule a similar bundle did not occur

in the past. Otherwise, the bundle can be ignored right away.
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Listing 6.1: Python pseudo code for dispatching map generation.

dispatching_map = {}

for dest in remaing_destinations:

if target_route.to_node == dest:

continue

else:

next_route = target_route.children[dest]

if next_route not in dispatching_map:

dispatching_map[next_route] = [dest]

else:

dispatching_map[next_route].append(dest)

Then, the cache is accessed to request a tree, with the bundle characteristics as argu-
ments. If a tree is returned, the scheduling attempt function is called, and the procedure
stops if the call is successful. The first hop contact and the list of booked intervals are re-
turned. Overbooking can also be supported at this step. If applicable, the list of bundles that
must be rescheduled is also returned.
The scheduling function relies on two recursive sub-functions. Recursivity is particularly

practical for trees, especially for multicast bundles. In SPSN, unicast and multicast bundles
are scheduled with the same procedures.
Due to this aspect, construction of the path from the reverse path for each destination is

insufficient, and a dispatching map is required (creation of the dispatching map is described
in listing 6.1). Thanks to the dispatching map, the dry run and booking sub-functions can be
called one after another. If the tree is fresh, the dry run can be omitted.
The dry run recursive function includes calls to the volume manager for single-hop dry

runs on individual contacts along the path. The recursive booking function contains calls to
the volume managers for volume updates on those same individual contacts carried by the
RouteStages constituting the tree.

6.2.4 Tree caching

For a given set of constraints associated with a bundle, the cache shall provide a suitable tree
that shows compatible characteristics. Compatibility is detected thanks to the constraints
applied to the tree construction and stored alongside the tree.
If the cache fails to provide a tree, a new tree shall be computed, and each time a tree is

computed, an attempt to store the tree in the cache is processed.
Figure 6.7 depicts the current mechanism leveraged in SPSN. The caching strategy is node

exclusion-based, i.e., at most, one tree per exclusion set is retained: a tree is eligible to be
used by all destinations sharing the same exclusion set.
The motivation of the node exclusion-based strategy is to maintain those performance in

a congested environment, where a single tree for all destinations would trigger the recom-
putation of the tree if the bundle to schedule shows a different exclusion set to the previous
one.
Another motivation is volume booking conflicts that can occur in the multicast case. Pro-

ceeding to one scheduling per exclusion or using basic tree construction can help address
those issues.
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6.3 Contact segmentation

This section is divided into three subsections. Firstly, a general proposal for volumemanage-
ment will be described to render any routing algorithm compatible with any volume man-
agement technique if the latter implements a generic volume management interface and if
the former is designed to operate with this interface.
Then, contact segmentation will be covered, with two different flavors, the simple volume

manager and the enhanced volume manager.

6.3.1 Volume management interface

Volume management is operated with generic managing components attached to the con-
tact (one per contact). Using an abstract interface permits the routing algorithm to work with
any volume management technique implementing the interface.

X

Other node

Local node

High prediction confidence contact

Volume manager implementationETO

ETO

ETO

CS CS

CS

CS

Low prediction confidence contact

CS

ETO

Contact segmentation

Earliest transmission opportunity

Figure 6.8: Deployment of heterogeneous volume management techniques implementing
the abstract volume manager interface.

In SPSN, the RouteStages act as dry-run objects and are supplied to the volume manager
for operations. This choice is conceptually and performance-wise adapted to single-hop
management techniques. The schedule functions output the booked interval: after book-
ing, SPSN stores on the bundle object for each contact it is planned to traverse the planned
transmission start time, as well as a reference to the volumemanager of the contact, to ease
potential unscheduling.
Because SPSN proceeds to capacity-oriented tree construction, the dry run function is

leveraged during pathfinding and tree management. If the tree is fresh, the dry runs pro-
cessed during tree construction can be leveraged directly for scheduling, and the dry runs
within tree management can be skipped.
The abstract manager can be an interesting tool for complex networks with heterogenous

nodes and links. Nodes with sufficiently high processing power can attach to the contact ob-
jects more complex managers, while resource constraint nodes can leverage simpler man-
aging techniques. It can be interesting to attach different managers to different contacts
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on a single-node basis. A static wired link, for example, would not need the same data rate
variation support as a ground-to-LEO satellite link with its characteristic bell shape data rate
variations over time.
Decoupling pathfinding and volume management would be valuable to the field for re-

search and development concerns: moving away from monolithic routing algorithm imple-
mentation lowers the software complexity and simplify the development of particular con-
cerns. A generic interface allowing different implementations is also suitable for evaluation
purposes.
The volume managers allow, on the same node, to use different techniques for different

contacts of the same contact plan. As shown in figure 6.8, some first-hop contacts use an
ETO manager, while others use another technique (here, contact segmentation), still imple-
menting the same interface.

6.3.2 Simple volume manager

In the base version, the contact list of intervals only carries the intervals of bandwidth avail-
ability. At contact initialization, a single interval is present in the list, with start and end times
equal to the contact start and end times. The dry runs select the best intervals that can be
leveraged while the update procedures apply the changes.
Figure 6.9 depicts the subsequent scheduling of three bundles on a contact. The segments

in white are stored on the concerned bundles. The remaining available segments (in green)
are stored on the contact (within the volume manager). Considering interval 1, it can be
observed that the name remains unchanged after being modified.
For the first bundle to be scheduled, the radiation time (transmission duration) is calcu-

lated with bundle size and the nominal data rate of the contact. The transmission start time
is found by iterating over the given intervals of availability. As a single interval of availability
is present, the transmission start time coincides with its start time because the bundle was
injected before this time at node A. The interval is then stripped from this radiation inter-
val, and the stripped interval (projected transmission start and end times) is stored on the
bundle object.
For the second bundle, a single interval is available (interval 1 was stripped and not split),

but the injection time of the bundle is later when compared with the interval start time. If
such a situation occurs, the interval shall be split to retain an interval of availability starting
at the former interval start time and ending at the predicted bundle transmission start time.
For the third bundle, the first available is not the first one in the list, and the injection occurs

prior to this interval start time. The interval does not need to be split and is only stripped
according to the projected transmission start and radiation times.
It can be observed that interval 1 is not strictly split (with, for example, the introduction of

intervals 1.1 and 1.2) but is stripped from the left, and a new interval is inserted before it.
This reflects the implementation mechanism of interval management, allowing to maintain
coherence if RouteStages metrics hold specific intervals in addition to specific contacts.
A second observation is that the example merges dry run and volume update. In practice,

dry run information can be stored in the manager object to avoid recalculations during an
update process. Also, if an interval is too short, the next one is considered. If no interval is
suitable, the dry run is considered unsuccessful, and no dry run information is stored on the
manager object.
Thanks to the booked interval information stored in the bundle directly, unscheduling a
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Unscheduling Bundles 1, 2, 3, pushed out by bundle 4
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Figure 6.10: Volume management with varying data rates and bundle priority support. An
interval is available if its priority is equal to -1.
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bundle is processed by calling unscheduling procedures thanks to the planned transmission
times and the references to the volume managers.

6.3.3 Enhanced volume manager

The simple volume manager is sufficient to support the bundle protocol version 7. This sec-
tion proposes extensions to cover priority support and data rate variations for backward
compatibility and finer-grained representation of the contact volumes.
In SABR, priority support is organized as virtual channels, one per priority level, and each

channel shares the bandwidth with the higher priority channels (see section 3.2.4). This
means that if a bundle of low priority is scheduled for an interval, the scheduling of a higher
priority bundle for the same period can claim the same interval even though this interval is
not available.
It is proposed here to detect the bundles that must be rescheduled when such a reclaim

occurs.
Simultaneously, data rate variation shall be supported, as if the contact fragmentation was

processed, but without drawbacks relative to the support of non-fragmentable bundles. A
contact can be fragmented into smaller contiguous contacts of different data rates. Sup-
port of transmission overlapping several contacts would have to be managed on a top layer
(overlapping two ormore contacts). It is proposed here to support this feature on the contact
layer.
To this end, the manager data structure shows:

• A list of segments for each data rate considered (this list is expected to be static).

• A list of aggregates1, carrying the intervals of bandwidth of availability or bandwidth
utilization for specific levels of priority.

• For each aggregate, a list of intervals tracking for each bundle scheduled its start and
end transmission time.

At the initialization, a single aggregate of bandwidth availability with start and end times
equal to the contact start and end times is created.
When a bundle must be scheduled, it can claim a bandwidth interval overlapping one or

more aggregates of lower priority or available bandwidth. If some aggregates of equal or
higher priority exist, the bundle can only be scheduled after their termination. Each time
an aggregate is claimed or released, the algorithm can split or merge existing aggregates.
When an interval is claimed, the bundles that overlap the claimed interval are returned for
rescheduling.
The transmission start time is trivial to calculate. The transmission end time shall be cal-

culated thanks to the data rate segments. The transmission start and end times can be on
different data rate segments.
Figure 6.10 proposes a complete scenario implementing this system. Scheduling of bundle

4 is a single step. For convenience, it is split into two steps (D and E).

1Special thanks to Scott C. Burleigh for his contribution by suggesting the use of aggregates.
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6.4 Contact passageways

The concept of contact passageway will be covered in this section. The first subsection will
discuss the nature of the passageways with a new border definition. In a second subsection,
the concept of virtual nodes will be depicted. Lastly, a third subsection will cover administra-
tion and pathfinding.

6.4.1 Regional border definition

With contact passageways, the nodes are no longer passageways on a conceptual layer, and
the border is shifted to contacts between two regions. A node casually operates as a border
between two regions when transmitting or receiving a bundle via a passageway contact, but
it is not part of the two regions simultaneously.
This brings high flexibility by allowing the nodes to act dynamically as border nodes thanks

to pathfinding and the set of contacts defined as passageway contacts rather than static
configuration. This also means no nodes are special anymore and can share the same con-
figuration.
Forwarding to a neighbor region is therefore defined as the shortest path finding to the

neighbor region, i.e., the last hop contact is a contact passageway to this region. Thus, a
bundle destination shall first be translated before a scheduling attempt. If the destination is
part of the local region, the destination remains unchanged. If the destination is interregional,
the destination is translated to a neighbor region (see section 6.4.3 for details).
A subject of criticism could be the increase in the number of nodes in the graph if the

number of contact passageways (with different receivers) increases. The concept of virtual
nodes introduced in the next section addresses this issue.
A wider scope permits better pathfinding, and the absence of nodes aware of the two

region contact plans could be seen as a weakness. However, there is no good reason to
think that the passageway contact would not leverage the best path in most cases, and the
following argument can support this. If multiple-node passageway support is available, a
non-passageway node that needs to forward a bundle to a neighbor region will choose the
fastest path leading to any passageway node. This would be the same behavior as with
contact passageways. However, providing an optimal mapping between contact and node
passageways design is complicated.
Even if a wider scope could effectively increase the performance, all the nodes involved in

the passageways contacts between two regions would be required to constitute an interface
region. This, however, includes the addition of an extra region.
Adding regions makes mapping between the two approaches complicated, if not impos-

sible. More importantly, it would render the node passageway design hardly scalable and
harder to administrate if the region count increases drastically, as one interface region would
need to be added to optimize each regional neighbor-to-neighbor forwarding.
Also, the destination regional membership is an input for destination translation, and the

output is a neighbor region. The following assumptions shall therefore be considered:

• A node knows the regional membership of an interregional bundle.

• A node can infer the next regional hop from a destination region.
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Such information can be retrieved thanks to local information or thanks to the informa-
tion provided by the bundle (in an extension block). The administration will be discussed in
section 6.4.3.
Support for shortcuts turns the tree into a mesh (see figure 2.1). This thesis still refers to

a tree, as the tree approach might be helpful, at least for region naming (see section 3.1.6).
Also, if two paths appear to have the same distance (see section 6.4.3), a path encompassing
fewer hops leveraging a shortcut could be preferred if the trust in the original tree structure
is considered higher than the trust in the possible shortcuts. In the same way, after the
detection of a loop, hops using the original tree structure could be preferred. Those concerns
will be considered in future work.

6.4.2 Virtual nodes
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Figure 6.11: First step to create a global representation: choose the passageway contacts.

If the passageway contact count between two regions is high, a non-negligible number of
new nodes may appear in the home region contact plan. It is proposed here to leverage
vertex contraction to create a virtual node resulting from merging all nodes that are mem-
bers of a given neighbor region. This way, the network graph representing the region would
present a single extra vertex per neighbor region to avoid the overhead of adding a vertex
for each egress passageway contact receiver.
The passageway contacts, therefore, present a virtual receiver or a virtual transmitter

node. No interregional router exists, as a destination is translated to an intraregional des-
tination, an actual node, or a virtual node representing a neighbor region. For an effective
application of the (intraregional) router, the contact objects shall present at least an extra
attribute: the actual receiver in addition to the standard one. If the receiver is a virtual node
and the local node is the sender of the contact passageway, a real node ID is required for
enqueuing. Consequently, the standard or virtual receiver is considered for pathfinding, and
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Figure 6.12: Second step to create a global representation: apply vertex contraction on the
nodes that belong to the same neighbor region.

the real one is considered for enqueuing.
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Figure 6.13: Third step to create a global representation: if two regions are neighbors, apply
vertex contraction on the dedicated virtual nodes.

Creating a connected global representation of such a network (while still representing the
virtual nodes) requires three steps. The first step is to assign a region to each node and elect

83



the contact passageways, as depicted in figure 6.11. Regional membership is represented
with colors.
The second step allows the creation of intraregional topology representations as seen

locally by the regions. Those graph representations are the ones on which SPSN operates.
Each local region node gathers all contacts of the contact plan to create the graph (vertices
for nodes, edges for contacts). The presence of contact passageways allows the creation
of vertices (nodes) that do not belong to the local region (senders or receivers of contact
passageways). Vertex contraction is then applied to all the nodes belonging to the same
neighbor region. This allows the presence of a single virtual node per neighbor region. The
resulting graph is depicted in figure 6.12.
Discussing an interregional structure with a disconnected graph as a support can be con-

sidered unintuitive and impractical. The third step can then be leveraged to create a con-
nected graph while still representing virtual nodes. This is possible by applying vertex con-
traction on the virtual nodes of regions that are neighbors. Consequently, the passageway
contacts are represented twice (on both ends of a merged virtual node). The resulting rep-
resentation is depicted in figure 6.13. This representation highlights that a node can be a
border node for two neighbor regions (there are no actual limitations) without the need to
support three contact plans (node C).
With the virtual nodes implemented, pathfinding becomes trivial. For a given interregional

bundle, the destination is translated to a neighbor region represented by a virtual node, and
the bundle can be scheduled with the corresponding virtual node as the destination.
The contact plan format is considered out of scope. Regional membership should be pro-

vided alongside the contact plan for each node present in the plan and can be updated
during the operational period. The graph initialization can be adapted to create the virtual
nodes accordingly. There is, however, one behavior that needs to be handled: contacts 1
and 2 can overlap in time, which is prohibited by SABR.
Overlapping cannot be considered a problem. The first contact (earliest start time) will

be leveraged, and the performance should remain acceptable. However, capacity-oriented
search does not protect against issues that arise from overlapping contacts showing differ-
ent data rates, delays, or booked volumes. Consequently, a contact that would normally be
ignored can show a better arrival time than the selected one.
This overlapping issue cannot be considered a challenge and is handled in SPSN. Apart

from this use case, it could ease contact planning to discard this SABR limitation. It could
also be interesting to be able to choose a specific interface for a bundle, but the benefits are
highly speculative and far beyond the scope of this thesis.

6.4.3 Pathfinding and administration

As this approach is region-based, the nodes shall know to which neighbor region a bundle
shall be forwarded rather than to which specific border node. The source knows the re-
gional membership of the destination, but the other nodes might not. Bundle encapsulation
[Bur18] or extension block can be leveraged to either get a bundle with a destination region
as the bundle destination or attach the destination region to the bundle in an extension
block. The former would require discussions about naming and addressing. Details about
the final handling decisions are considered future work, and the final region will be termed
attached to the bundle for convenience.
Also, the approach’s effective application relies on the component’s good functioning that

84



translates interregional destinations to intraregional virtual nodes, presupposing the exis-
tence of a global or partial knowledge of the regional structure within this component. Two
approaches are proposed: static and dynamic configurations.
With static configuration, each node stores locally the regional membership of the nodes

(destination) they are interested in and a set of regional neighboring information to construct
the regional graph. The graph is leveraged to build a forwarding table thanks to Dijkstra’s
shortest path tree algorithm each time the regional neighboring is updated. When a bundle
is forwarded, translation occurs, and the destination region is attached to the bundle. The
regional forwarding table is then leveraged to forward the bundle to the next-hop neighbor
region (by finding the shortest path to the correct virtual node). As all nodes in the network
know the regional structure and the destination region is attached to the bundle, each node
along the path can proceed to forward until the destination region is reached.
With dynamic configuration, the nodes are not aware of the regional membership of the

nodes in other regions. They are only aware of regions that are neighbors to the local region
(they see the virtual nodes representing those regions in the local graph representation).
When a bundle has a destination not part of the local region and not yet known by the trans-
lating component, probes are sent to each neighboring region. The probe is an extension
block attached to the bundle. The nodes traversed by the probe bundle shall add to the
extension block their regional membership if not present (in a stacked manner). When the
bundle reaches the local region of the destination, backpropagation occurs thanks to the
path encoded in the probe, sending back to the source a message carrying the regional
path that allowed the bundle to reach the destination. The source may receive more than
one response. Each response allows the source to update its local view of the global region
neighboring to maintain a regional graph. Thanks to this knowledge, the forwarding table
is computed with the Dijkstra algorithm. The forwarding table is used within the translating
component for the next bundles sharing the same destination.
Considering figure 6.13, and an interregional bundle that has to be sent from S to D, prob-

ing works as follows:

• In the source region blue, S sees two virtual nodes. The bundle is sent as two copies to
those two virtual nodes with a probing extension block attached, probe 1 to VNB/VNY
and probe 2 to VNG/VNB. Both probes carry a single value, RB (for region blue).

• In region yellow, probe 2 is received via E. Node E detects that the final destination node
is not part of the region. Probing shall be pursued. As RY is not part of the extension
block, this value is appended to the block, and the bundle is forwarded to the sole
virtual node representing a region not part of the extension block, VNY/VNG. Nodes
of the region yellow along the path leave the extension block untouched, as RY was
already inserted by node E.

• In region green, 2 probes are received, probe 1 from region blue (block values: RB) and
probe 2 from region yellow (block values: RB,RY ), by nodes I and J. Both nodes append
RG to the probe blocks, and the probes are forwarded to the single region that is not
part of the block, the region red, i.e., to virtual node VNR/VNG.

• In region red, 2 probes are received from region green, probe 1 (block values: RB,RG)
and probe 2 (block values: RB,RY ,RG). The receiving nodes in region red detect that
destination is part of the local region. Backpropagation occurs with a response mes-
sage (one per probe) using the reverse path encoded in the received probe (could be
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sent via the shorter path if more regional neighboring information is available locally).
The response messages carry the path the probes took from the S to the local region
red.

• Node S receives the 2 probe responses, one with the values RB,RG,RR, the other with
the values RB,RY ,RG,RR. Those two messages are stored persistently. From the first
response, the neighboring between green and red regions can be inferred. The second
also informs about this neighboring, but also about the neighboring of regions yellow
and green. With all those neighboring information, a graph can be constructed, and
Dijkstra can be applied for pathfinding.

The probing strategy is similar to the one used for the state-of-the-art design depicted in
section 3.1.6. The difference is that the probes are forwarded to the other passageways in
the region rather than being forwarded to virtual nodes. The state-of-the-art design does not
present shortcuts. The regional structure is a tree and not a mesh, discarding the possible
presence of loops during probing. Consequently, the interregional path stack present in
the extension block and the preliminary checking to avoid the insertion of duplicates are
mechanisms only relevant to the design presented in this thesis.
Please note that this approach allows probing to build a graph to reach regions that were

never discovered with direct probing for those regions. Indeed, paths to yellow and green
regions are available, even if probing was only processed to find the membership of node D
in the red region. Discussion about this behavior is considered future work. Also, the inter-
regional interfaces are considered bi-directional. Evaluation of variations of this assumption
is future work.
However, the knowledge inferred from the probing response is at the current step of the

description, only available at the source. For another bundle that needs to be forwarded
to D, the region red can be attached to it, but the next node after the source would not be
able to find a path to region red. To cope with this issue, either the source shall attach the
complete path to the bundle, or the backpropagation shall also inform all the nodes of each
traversed region about the response (for example, with broadcast). The former approach
would probably be preferred, but further investigation shall be conducted.
A combination of those two approaches could be used. It seems realistic to maintain on

each node the regional structure with static configuration and occasional updates while dy-
namic destination regional membership and pathfinding discovery is leveraged. Also, instead
of adding only a region id in the extension block, a node could add the local region and neigh-
boring regions. This would also help the source to build its regional awareness.
In this first version, a static configuration is used. The interregional distance is considered

to be the regional hop count. This approach is adapted for cases where contact passage-
ways are selected as long-range links, e.g., for planetary regional structure. If the regions are
not planetary-based, if contact planning includes intermittent shortcuts (with non-negligible
delays between two periods of availability), or if shortcuts show expirations, the pathfinding
distance should be adapted to support such topologies. In this case, the distance calcula-
tion would be analogous to the intraregional routing one. The interregional pathfinding itself
would become dynamic. This aspect is beyond the currently considered future work in the
context of this thesis. Using Dijkstra already allows the support for shortcuts, turning the
tree into a mesh.
Last but not least, all nodes in the network can be part of a single region, and all nodes of

a region share the extra same contact plan. This could ease administration if regions are ad-
ministrated, for example, by different agencies, but further investigation shall be conducted

86



on this topic. The operators only have to agree on the passageway contacts, while the re-
maining links of a given contact plan can remain private. Compared to the node passageway
design, increasing the size of a home region in terms of nodes and contacts would not dam-
age the performance (node passageways are affected by the growth of any contact plan they
carry). This holds even if new contact passageways are introduced: the virtual node depicting
a local region remains unique in the contact plan of the neighbor region.

6.5 Integration
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Figure 6.14: Sequence diagram for the interregional bundle scheduling workflow with vol-
ume management.

SPSN

SPSN was designed as an approach that could be provided as a routing service operated
separately from the further networking stack. The current design allows the creation of an
SPSN component by supplying contacts in an SPSN-specific format. A simple wrapper to con-
vert contacts is therefore required. As a research implementation, this is not considered an
issue, and support of other formats could be introduced later in a production-ready version
of SPSN.
The information required to revert the volume booking of a previously scheduled bundle

is, at the moment, not stored within the engine and shall be stored in the wrapper bridging
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the utilizing DTN software and SPSN. This decision is practical if the DTN software cannot
notify that a bundle has been successfully transmitted. Such information could be stored
in SPSN directly if callbacks to SPSN are processed upon transmission success of a given
bundle. In the same way, expired contacts are pruned automatically. Callbacks could also be
leveraged to deal with such concerns.
Eventually, a production-ready implementation shall be compatible with a standardized

DTN routing API (e.g., [Wal22]). Adapting SPSN to such API is relatively easy due to the already
high independence of the current SPSN research implementation.

Contact segmentation

Contact segmentation is supplied with three main components. The first supplied compo-
nent is an abstract volume manager class, and the inheritance of this manager (i.e., correct
implementation of this interface) renders SPSN compatible with the volume management
method. The two other components are two contact segmentation flavors supplied as vol-
ume managers implementing this interface to be easily exchangeable within SPSN.
Contact segmentation is compatible with CGR. However, deploying this approach is more

complicated if CGR is incompatible with the interface. Thee interactions with the volume
manager occur during route construction and route selection, requiring modifications in the
inner parts of the targetted routing algorithm.

Contact passageway

The contact passageway concept deployment also requires specific considerations. First, the
routing algorithm shall be compatible with the concept. SPSN would be a suitable candidate.
Then, the routing engine shall be initialized with extra configuration, identical for any node
sharing membership to a region. At last, the administration shall be adapted to be region-
focused and not destination-focused by creating destination-based forwarding information
on top of a regional structure. To this end, regional membership knowledge is important.
The administration messages are expected to be rare in a quasi-static hierarchical design. In
the same way, the administration of themulticast membership is not covered, as its required
administration is identical to CGR-multicast in ION.

Workflow

To summarize the interdependency between the components, a completeworkflowexample
is proposed in figure 6.14, depicting the scheduling of an interregional bundle. At the entry
point of this workflow, the cache presents a suitable tree for this bundle characteristics,
showing a two hops path to the virtual node of a neighbor region. The term InterRegional
Routing (IRR) is used for convenience.
The User depicts any higher layer component leveraging SPSN for routing purposes. The

SPSN Router is the entry point for scheduling. The IRRManager cares aboutmaintaining the in-
terregional forwarding table. In this version, the IRR Manager is not accessed within the SPSN
Router but by the User directly (subject to changes). The Tree Cache and SPSN pathfinding (in
blue) are internal components of the SPSN Router. SPSN pathfinding can support various tree
construction strategies (basic, multipath tracking, and hop tree constructions). The Volume
Manager, one per contact, implement the requested volume management technique.
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Component Function Input Action Ouptut

IRR Manager
get_irr_destination destination id

access the interregional forwarding
table

next hop region

update_neighboring region id, ids of the new neighbors
update the graph and recompute

the forwarding table
N/A

SPSN Router route
list of destinations, bundle

characteristics (priority, size, etc.)

create or load a tree, proceed
to a dry run, proceed to

volume updates

a list of destinations for each
first hop, the list of update
intervals, references of the
bundles to reschedule

Volume Manager
dry_run

current time, bundle size, bundle
priority, dry run object reference

proceed with a dry run, store
in the dry run object the

dry run details
success or failure

schedule
bundle size, bundle priority, dry run

object, bundle reference
leverage dry run information to

update the volume state
N/A

unschedule
planned transmission time,

bundle size
unbook volume from a specified
time for a specified volume

N/A

Cache
load

bundle characteristics (size, node
exclusion list for the
destinations, etc.)

select a tree respecting the
provided constraints

the selected tree

store
tree, computation constraints
(node exclusion list, size, etc.)

stores the tree as a new entry,
another entry can be deleted

N/A

SPSN compute
source node, current time, bundle

characteristics (priority,
bundle size, etc.)

computes a tree suitable for the
provided constraints

the computed tree

Table 6.2: Components and functions of the scalable schedule-aware bundle routing ap-
proach.

The User provides the node id to the IRR Manager to translate this id to a home region
destination. The destination is not part of the home region and the next regional hop virtual
node id is returned. The User can then request bundle scheduling with the translated node
destination id, the current time, and the other bundle constraints (e.g., node exclusions and
expiration).
The SPSN Router forwards those constraints to the Tree Cache to retrieve a suitable tree.

The SPSN pathfinding component will not be involved as a tree is available. The returned tree
was cached and is consequently not fresh so the dry run information generated during its
construction (or the last previous bundle scheduling) was already leveraged and rendered
invalid for this scheduling. The SPSN Router proceed to a dry run of the whole path against
the tree thanks to the recursive functions, triggering a dry run call to the dedicated Volume
Manager for each hop contact. The term dry run is defined in section 3.2.2.
The dry run is successful (destination reachable before expiration, segments can be up-

dated safely), the SPSN Router can update the segments recursively along the tree branches
but this time with calls to the booking procedure on each Volume Manager along the path.
The SPSN Router returns for each first hop contact (several first hops formulticast) the list of

destinations downstream for multicast purposes. A single destination being the next region
hop virtual node id is part of the list. The SPSN Router also returns the booked intervals. If
the bundle has to be rescheduled, the User can revert the changes due to those intervals.
Finally, the list of references to the bundles that need to be rescheduled is provided. If the
User organized the storage of the booked intervals alongside the bundles, cancellation of the
booking is trivial before rescheduling.
A non-exhaustive list of the components and function are provided in table 6.2.

6.6 Summary

SPSN, contact segmentation, and the contact passageway concepts were proposed as a co-
herent routing approach with multicast, volume awareness, and interregional support.
SPSN proposes to provide reuse for trees rather than single-path destinations and pro-

vides modifications to Dijkstra’s algorithm to allow the creation of SABR-compliant trees
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thanks to multipath tracking. In addition, SPSN is built to work with abstract volume man-
agers attached to the contacts.
Two volume manager implementations were proposed to provide contact segmentation

capabilities with two levels of feature support. Contact segmentation intends to accurately
track the contact’s bandwidth utilization by recording the available and transmission periods.
The contact passageway design allows failover, optimized delays, and load-balancing-like

behavior for interregional forwarding. The ability of the design to allow any node to be in a
single region can ease the configuration. The approach is also expected to have a negligible
overhead: at most, one node per neighbor region is added to the home region graph. Single
nodes can bridge multiple regions without contact plan overhead.
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7 Evaluation

The evaluation mainly focuses on comparison with SABR. Consequently, the evaluation will
compare the proposed concepts with different CGR flavors. This decision is motivated by the
wide spectrum of CGR concerns that had to be covered and its predominance for existing
and future space networks. This statement is confirmed by the CCSDS standardization of
CGR and the future Mars communication architecture described in the IOAG report [ioa22],
which defines SABR as an essential data structure in the service management process.
Firstly, the methodology will be described, with the simulation tools, algorithms, and sce-

narios that will be leveraged for evaluation.
The computational pressure will then be evaluated for single bundle scheduling and vol-

ume management on single contacts.
Preliminary simulations will follow to eliminate routing approaches showing discarding fea-

tures to ease further evaluation. Also, retaining those algorithms for simulation with larger
networks would complicate the evaluation due to their processing time.
An evaluation of the algorithms under congestion will then be proposed to highlight other

possible discarding features that remained for the algorithm flavors that were not discarded
during the preliminary simulations. The impact of those features will also be discussed to
allow a better interpretation of the results. For instance, unjustified drops are hardly accept-
able but can lower congestion to a point that can show misleading results.

7.1 Methodology

7.1.1 Simulation tools

The evaluation leverages the aiodtnsim simulator toolchain developed by Felix Walter. The
framework includes the simulator, the tools to create realistic inputs for the simulator, and
orchestration tools for result gathering and plot creation.
The aiodtnsim simulator1 is developed in Python with asyncio and permits mono-threaded

reproducible simulations by externalizing the creation of the bundle injection plans supplied
as a configuration. The injection plan is a configuration file leveraged to create the bundles
during simulation. A bundle injection plan entry encompasses a source node, a destination
node, the bundle size, its creation time, and its expiration times.

1https://gitlab.com/d3tn/aiodtnsim
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The simulator permits the development of new algorithms by leveraging the inheritance
of base implementations for opportunistic approaches or SABR.
Alongside aiodtnsim, the package dtn-tvg-util2 permits the generation of the bundle injec-

tion plan using a contact plan as input. This contact plan, also generated by dtn-tvg-util, can
be created with a dtn-tvg-util-generated scenario as input.
Additionally, dtn-tvg-util provides the capability to create ring road scenarios (presented in

section 2) by using Celestrak3 data to get realistic trajectories for the orbiters and generate
the according contacts between the nodes (satellites or ground stations).
This framework was initially described in [Wal20].

7.1.2 Simulator extensions

SPSN wrapperpySPSN

hop

cvic

yen-ion

RRN scenario

IRR contact plan 

RRN contact plan

tvg-dtn-util aiodtnsim

Python package

Tool

Routing algorithm

Option

Dependency Text Extension

contact
segmentation

queue-delay

CGR

Figure 7.1: Contribution map to the existing components.

Figure 7.1 depicts the extensions required for evaluation. Modifications were introduced
for aiodtnsim to embed SPSN as a wrapper using the pySPSN research implementation4.
CGR was also modified to allow multicast and is now part of CGR’s core (extension not rep-
resented in the figure). An alternative path search strategy was added to test the adaptive
behavior of Yen’s algorithm (option ion-yen). Regarding pathfinding itself, two options were
introduced to either optimize the hop count (hop) or maintain a current contact instead of
a current vertex (option cvic). The simple contact segmentation and the queue-delay ap-
proaches were also introduced for CGR, and the latter is used alongside the ETO for the first
hop contact.

2https://gitlab.com/d3tn/dtn-tvg-util
3http://www.celestrak.com
4https://bitbucket.org/olivier-dj/pyspsn
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Additional modifications were introduced to dtn-tvg-util, to allow the creation of interre-
gional scenarios. This permits the creation of IRR trees compliant with the original approach
(a single upper region for several lower regions). The regions are generated as ring road
networks, bridged with long delay contacts. The realism of the scenario shows limits, as each
region is generated as a realistic Earth ring road and not for specific other planets. However,
this was convenient due to data access limitations and remains satisfactory for pathfinding
evaluation.
The interregional routing approach does not mandate showing a binary tree structure.

However, the systematic use of a binary tree structure will be practical in the evaluation
context. Stating first that increasing the depth by one doubles the number of regions would
be obvious. The binary tree has a second attractive property by showing a higher average
path length if compared, for example, with a ternary tree. A binary tree of 15 regions would
already have a higher depth than a ternary tree of 14 regions. The decision allows scaling up
the scenario size in a controlled manner while increasing the topological complexity (here,
the path lengths) to the maximum, stressing as much as possible the tested designs.
The interregional shortcuts are created but integrated into the simulated nodes’ contact

plans if shortcut support is enabled. As mapping between the node and contact passageway
designs cannot be defined optimally, only the influence of shortcut support will be evaluated,
alongside the good functioning of the proposed contact passageway design.
Additionally, a precise offline (i.e., not part of an aiodtnsim simulation) computational pres-

sure evaluationwill be conducted, withmeasurements on randomly generated contact plans,
to be exempt from any load-dependent perturbation, and get precise per node and contact
count pressure evaluation.
The volume management technique that supports all the optional features is expected to

present some overhead. Therefore, the pathfinding offline evaluation shall be accompanied
by an offline evaluation of the volume management.
More details about the algorithm options are described in the next section.

7.1.3 Algorithms and scenarios

The algorithms covered by the evaluation will leverage deterministic pathfinding. The algo-
rithms against which SPSN will be compared are SABR implementations.
CGR (cgr) will be evaluated with the following options:

• Pathfinding options:

– Minimize the hop count first (-hop).

– The current elementmaintained during the shortest path construction is a contact
instead of a vertex (-cvic).

• Alternative path construction options:

– Use the limiting contact approach first ending (-1st-end).

– Use the limiting contact approach first depleted (-1st-dep).

– Use the adaptive yen algorithm (-yen-ion).

• Volume management options:

– Use ETO (-eto).
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– Use ETO and Queue-delay (-eto-qd).

– Contact segmentation (-cs).

SPSN (spsn) will be evaluated with the following options:

• Pathfinding options:

– Single parent per vertex (-basic).

– Minimize the hop count first (-hop).

– Multipath tracking(-mpt).

• Interregional management options:

– Enable shortcut support (-shortcuts).

All SPSN flavors use contact segmentation.
Regarding the pathfinding characteristics of CGR within aiodtnsim, the implementation

leverages a node graph backend, and the contacts are easily accessible (nested maps) and
sorted for each transmitter and receiver pair. The algorithm’s core is way faster than a con-
tact graph red-black tree design. Dijkstra’s exploration stops as soon as the destination is
reached. Work areas are also initialized, but on a node basis, the overhead is negligible com-
pared to contact-based work areas. Consequently, pathfinding issues regarding the best
route detection described in section 4.3 can occur.
When using option -cvic, the pathfinding approach falls back to an ION-like behavior by

maintaining contact work areas and a current contact during exploration but still uses a
node graph data structure. This confirms the statement made in section 4.1: contact graph
shall refer to a data structure rather than a technique for maintenance of a current element.
For CGR’s second loop (election of the following current contact), a list of suitable candidates
is maintained, rather than iterating over the whole contact plan 5.
The scenarios leveraged for evaluation are6:

• The 15s15g scenario encompasses 30 nodes (15 satellites and 15 ground nodes).

• The 30s30g scenario encompasses 60 nodes (30 satellites and 30 ground nodes).

• The 50s50g scenario encompasses 100 nodes (50 satellites and 50 ground nodes).

• The 7r15s15g scenario encompasses 7 regions, 15 satellites, and 15 ground nodes per
region (210 nodes).

• The 127r5s5g scenario encompasses 127 regions, 5 satellites, and 5 ground nodes per
region (1270 nodes).

The scenarios 15s15g, 30s30g, and 50s50g are realistic scenarios according to the predicted
Martian network size by IOAG (figure 1.1). Scenario 7r15s15g is the use case interregional
scenario depicted in figure 2.1. In contrast, scenario 127r5s5g proposes to scale up the
regional tree size (but reduces the region sizes for simulation ease). The scenario sizes are
designed to reach the network size requirements of hundreds of nodes and hundreds of
regions. The interregional scenario reaching this requirement shows 127 regions due to the
binary tree structure approach (depth of 6).

5A similar method can be observed in the unibo-cgr implementation (https://gitlab.com/unibo-dtn/
unibo-cgr).

6Scenario names format similar to [FW17].
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Listing 7.1: Regional configuration file example.

{

"root_region": 1,

"neighboring": {

"1": [2, 3],

"2": [4, 5, 1],

"4": [2],

"5": [2],

"3": [6, 7, 1],

"6": [3],

"7": [3]

},

"shortcuts": [

[5, 6], [7, 5], [5, 7], [6, 5]

],

"membership": {

"1": [

"NANOSATC-BR1 (r1)",

"PROMETHEUS 2-1 (r1)",

"ZACUBE-1 (TSHEPISOSAT) (r1)",

"gs0 (r1)",

"gs1 (r1)",

"gs2 (r1)"

],

"2": [

"AEROCUBE 4.5A (r2)",

"BRITE-PL2 (HEWELIUSZ) (r2)",

"CUBESAT XI-IV (CO-57) (r2)",

"gs0 (r2)",

"gs1 (r2)",

"gs2 (r2)"

],

"4": [

"BRITE-CA1 (TORONTO) (r4)",

"MOVE-II (r4)",

"SIRION PATHFINDER-2 (r4)",

"gs0 (r4)",

"gs1 (r4)",

"gs2 (r4)"

],

"5": [

"BEESAT-1 (r5)",

"POLYITAN-1 (r5)",

"SWISSCUBE (r5)",

"gs0 (r5)",

"gs1 (r5)",

"gs2 (r5)"

],

"3": [

"AEROCUBE 8C (r3)",

"DELFI-N3XT (r3)",

"QB50P2 (r3)",

"gs0 (r3)",

"gs1 (r3)",

"gs2 (r3)"

],

"6": [

"AEROCUBE 7 (r6)",

"CORVUS BC4 (r6)",

"FUNCUBE-1 (AO-73) (r6)",

"gs0 (r6)",

"gs1 (r6)",

"gs2 (r6)"

],
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"7": [

"AEROCUBE 6B (r7)",

"BRITE-PL2 (HEWELIUSZ) (r7)",

"CUTE-1 (CO-55) (r7)",

"gs0 (r7)",

"gs1 (r7)",

"gs2 (r7)"

]

}

}

Scenario
name

Contact
count

Contact
volumes
(bits)

Contact
durations
(seconds)

Scenario
duration
(hours)

Data rate
(bit/s)

Ring road
inter-satellite

links

15s15g 3608 ∼4244001 ∼442 48 9600 Yes

30s30g 22242 ∼4295805 ∼447 48 9600 Yes

50s50g 63678 ∼4351558 ∼453 48 9600 Yes

7r15s15g 21144 ∼4353896 ∼454 24 9600 No

127r5s5g 160772 ∼4366237 ∼455 24 9600 No

Table 7.1: General metrics for each scenario.

Scenario
name

Border
nodes

per region
Shortcuts

Border
nodes

per shortcut

7r15s15g 5 2 5

127r5s5g 5 10 5

Table 7.2: Interregional metrics for each scenario.

The scenario details are gathered in tables 7.1 and 7.2. Border nodes refer to nodes being
receivers or transmitters of contact passageway.
For the interregional scenarios, each region is a ring road network, and the contact pas-

sageways are inter-satellite links. For simulation convenience, the regional membership of
the nodes is known by all nodes from the beginning of the simulation, supplied alongside
the regional neighboring leveraged to initialize the regional graph. The shortcuts are also
provided alongside the tree neighboring but separately to enable or disable support easily
for evaluation (an example is available in listing 7.1).
The values for contact data rates are the default values the framework provides. As this

thesis focuses on routing rather than contact prediction, variations of the bundle sizes rather
than variations of the contact data rates will be preferred.

7.2 Offline analysis

An offline method for isolated features is required for a fine-grained processing evaluation.
Feature isolation renders online evaluation complicated (simulation against scenarios to re-
trieve network performance results). The -basic SPSN flavor is provided for convenience to
compare with a standard Dijkstra algorithm.
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Figure 7.2: Tree construction times.
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Figure 7.3: Graph initialization times associated with the simulations of figure 7.2.
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Figure 7.4: Scheduling per second for the enhanced manager.

The most important information is that shortest-path tree construction is successfully un-
affected by variations of the contact plan horizon for the same node count, whatever tree
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Figure 7.5: Scheduling success rates associated with the simulations of figure 7.4.

Contact
duration (seconds)

120

Tx data rate (bit/second) 10000

Contact
volume (bits)

100000000

Bundle count 10000

Average
bundle size

10000 × multiplier

Table 7.3: Contact and bundle characteristics for figures 7.4 and 7.5.

construction technique is being leveraged. The processing time shall be very stable while the
number of contact increases. In other words, SPSN shall be predictable, and as long as at
most one tree is computed (by design), a predictability check of the tree construction shall
be conducted.
Figure 7.2 depicts the offline evaluation results for the tree construction, and figure 7.3

provides the corresponding graph initialization processing times. Each three-dimensional
point (contact count, node count, processing time) represents the average processing time
over 20 tests for the same contact and node count. The contact plans used for evaluation
are SABR compliant (no contact overlapping between two nodes) and randomly generated.
The maximum egress link is limited to 20 (a node has contacts with at most 20 other nodes).
Still, 20 ingress and 20 egress links can be active simultaneously. This will highly impact the
pathfinding of multipath tracking while being hardly realistic, which does not limit the quality
of the evaluation. As the main goal of this section is to show the predictability of SPSN, any
network size sufficiently large fits this purpose.
The predictability check is successful, as when given a node count, the construction time

remains stable while the number of contact (i.e. the contact plan horizon) increases.
On the other hand, the increase in the contact plan size shows a significant impact on the

graph initialization by showing a volatile behavior. A better trend could maybe be observed
if the number of tests was increased, but the main pieces of information that should be
inferred from those results are:

• Contacts are generated randomly and appended to a list (contact plan). The ordering of
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those contacts can affect the graph initialization due to its nested hashmaps structure.

• Contacts ordering for contact plan could be standardized to optimize initialization times.

• Contact plan updates remain rare. Initialization times of two seconds can be consid-
ered negligible for 200000 contacts (in comparison, the scenario 30s30g shows only
22242 contacts for a two days contact plan horizon).

The graph initialization times are provided for informational purposes. The nature of the
DTN topology representations, being multigraphs, offers contact plan ordering optimization,
as highlighted by figure 7.3.
Contact segmentation in its enhanced version motivates fine-grained processing evalua-

tion, as it maintains aggregates, segments, and bundle reference lists with relatively heavy
list updates if the bundles are small, plentiful, and of highly variable priorities. Enhanced
manager usage is still possible if priority and data rate variation support is not required (all
bundles have priority 0, use of a single data rate segment). Still, the simple manager, evalu-
ated in the next section, would be preferred.
The goal is to analyze the capabilities in worst-case scenarios. The evaluation metrics are

gathered in table 7.3, and the results in figure 7.4, giving the bundle per second scheduling
rates (one dry run and a volume update in case of dry run success), as well as the associated
scheduling success rates in figure 7.5. One volume multiplier per column is considered in
both figures.
The first aspect is the negligible impact of the data rate segment count. Indeed, the seg-

ments are considered only during the dry run phase, and the bundles are, in this scenario,
not likely to overlap more than 2 segments. The overhead would also be negligible if the
bundle would overlap more segments.
The second aspect is that the scheduling per second and success rates are lower if the

maximum priority is low. This is coherent: if there is a reduced number of priorities, a bundle
is unlikely to be able to reclaim an interval already used by another lower-priority bundle,
reducing the success rate. Simultaneously, this inability to reclaim an interval requires more
computational effort to search for an interval that can be claimed.
The third aspect is the decrease of the scheduling per second rate if the number of pri-

ority levels is superior to 3 (max priority being 2). This is imputable to a higher number of
priority aggregates. If the max priority is relatively low, aggregate splitting and merging seem
optimized, while a higher max priority could induce interval claim of various priority aggre-
gates, complexifying the list management. Indeed, if the max priority is low, aggregates are
expected to be longer, and booking would most likely involve a reduced count of aggregates.
SABR mentions three levels of priority. It is highly appreciable to opportunistically observe

the best performance for the same amount of priority levels for the enhanced segmentation
manager.

7.3 Eliminatory processing pressures

The reference implementation of CGR in IONmaintains a current contact during exploration
and uses Yen’s algorithm for alternative route search construction, as suggested by the SABR
standard. Therefore, this section evaluates Yen’s algorithm (alternative route construction
option) and the maintenance of a current contact during exploration (pathfinding option).
Those options’ expected processing times motivate a separate preliminary evaluation.
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Scenario 15s15g 30s30g

Interval between
injections (seconds)

80 20

Minimum bundle size (bits) 1600000 1600000

Maximum bundle size (bits) 1600000 1600000

Bundle TTL (seconds) 86400 86400

Last injection
(hours after scenario
start time)

32 32

Bundles injected 1445 5784

Table 7.4: Contact injection plan creation parameters for each scenario (20 different plans
per scenario).
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Figure 7.6: Delivery rates and delays for evaluating Yen’s algorithm.
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Figure 7.7: Simulation runtime and simulation runtime per transmission for Yen’s evaluation.

They are therefore evaluated with relatively small scenarios (15s15g and 30s30g), using the
bundle injection plan creation parameters from table 7.4.
Moreover, to limit the processing time, the maintenance of the current contact will be

testedwith the first ending limiting contact approach for alternative route construction rather
than Yen’s algorithm (cgr-1st-end-cvic), while Yen’s algorithm (cgr-yen-ion) will be tested with
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the maintenance of a current node in addition to the following countermeasures:

• For a given bundle, CGR can only increment K for two iterations if Yen’s main loop has
to be resumed. If the newly found routes are still unsuitable, the bundle is dropped.
This permits the mitigation of the computational hangs.

• The upper bound value of K is 1000. If K has already reached this value and the available
routes are unsuitable for the next bundles (i.e., new routes have to be computed), the
bundles are dropped.

Even if networking performance results are provided, the main focus of this section is the
processing time. Results for other CGR flavors are provided as scientific controls (cgr-1st-dep
and cgr-1st-end).
Using Yen’s algorithm, those countermeasures do not permit the detection of a route for

each bundle for the 30s30g scenario, according to the figure 7.6. The superiority cgr-1st-
dep over the other variants is imputable to congestion, as this variant would suppress the
small volume contacts first. The inferiority of cgr-yen-ion for those metrics is imputable to the
countermeasures.
Regarding the computational pressure, depicted in figure 7.7 shows that the countermea-

sures, while preventing the presence of hangs, do not, however, prevent the unsustainable
increase of the computational pressure if the network size increases, with cgr-yen-ion pre-
senting a 6 seconds average runtime per transmission for the 30s30g scenario. The sim-
ulation overhead cannot cause this computational time, as the bundles are more likely to
be dropped than transmitted. Completing a single test for this scenario already represents
more than 13 hours of simulation time.
The scientific controls (cgr-1st-dep and cgr-1st-end) highlight that routes exist for the in-

jected bundles. Consequently, most bundle drops of cgr-yen-ion can be considered unac-
ceptable regarding the networking performance achievable with lower processing cost fla-
vors. Addressing this issue, allowing CGR Yen’s algorithm to perform better in delivery rate,
would require lifting the countermeasures. As the processing time is already unrealistically
sustainable by any resource-constrained spacecraft, a better-performing variant would also
be unsuitable.
Using the current contact retention technique (cgr-1st-end-cvic), the networking perfor-

mance is way better and also confirm the results found in [Wal20], at least for such hetero-
geneous topologies, stating that current vertex retention can show similar networking per-
formance. The completion time of a single simulation is by far the worst, with more than 27
hours for the 30s30g. However, the average runtime per transmission represents more than
3 seconds for this same scenario, which will still be unacceptable for the targeted network
sizes. Last, the current state-of-the-art implementations, which combine the two approaches
(current contact retention and Yen’s algorithm), can also be considered unsuitable.
Further evaluation with comparison using Yen’s algorithm or maintenance of a current

contact during exploration is unrealistic in the context of a thesis about scalability. As already
pointed out in [Wal20], the use of those variants is heavily impacted by the contact plan size,
even with a node graph implementation of Dijkstra when using Yen’s algorithm. The newly
discovered issues in the preliminary analysis (section 4) furthermotivate an early exclusion of
Yen’s algorithm for the evaluation. Maintaining a current contact rather than a current node
during exploration was also expected to show an increased processing time, and showing
the limits of those approaches is sufficient to discard them (again, the current reference
implementations of CGR use them conjointly).
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This decision was first difficult from a theoretical point of view, as Yen’s algorithm is sup-
posed to be the state-of-the-art correct way to populate the routing table. However, the
adaptive behavior, coupled with the possible issues of Dijkstra to find the best route when
using the current node maintenance technique, weakens the argumentation that would jus-
tify the retention of Yen’s algorithm for further evaluation.
From a practical point of view, the increasing sizes of the scenario rendered unrealistic the

completion of the simulation within an acceptable timeframe due to the processing times of
single simulations, the processing power required for possible parallelism, and the amount
of memory needed. In any case, including cgr-yen-ion and cgr-1st-end-cvic for all scenarios
represents simulation times measured in months. For the same reason, it can be observed
that this preliminary evaluation of the cgr-yen-ion and cgr-1st-end-cvic flavors did not include
the 50s50g scenario. Testing this scenario would have been superfluous as the results on
the 30s30g scenario already showed discarding features.

7.4 Networking performance

7.4.1 Intraregional unicast routing tests

Scenario suffix +lb +mb +sb

Interval between
injections (seconds)

50 10 5

Minimum bundle size (bits) 1500000 30000 15000

Maximum bundle size (bits) 1700000 34000 17000

Bundle TTL (seconds) 86400 86400 86400

Last injection
(hours after scenario
start time)

32 32 32

Bundles injected ≈2300 ≈11500 ≈23000

Table 7.5: Contact injection plan for each scenario (20 different plans per scenario).
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Figure 7.8: Intraregional delivery rates and delays (small topology).
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Figure 7.9: Intraregional hop and transmission counts (small topology).
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Figure 7.10: Intraregional simulation runtime and simulation runtime per transmission (small
topology).
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Figure 7.11: Intraregional delivery rates and delays (medium topology).

The evaluation of the unicast capabilities of SPSN is conducted thanks to three different
injection plans, tested against the 15s15g, 30s30g, and 50s50g scenarios.
Three sets of injection plan creation metrics will be used. Each set will be leveraged to

create randomly 20 injection plans for each scenario, and for each scenario, each algorithm
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Figure 7.12: Intraregional hop and rescheduling counts (medium topology).
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Figure 7.13: Intraregional simulation runtime and simulation runtime per transmission
(medium topology).

50s50g+lb 50s50g+mb 50s50g+sb
scenario

0

20

40

60

80

100

120

140

160

de
liv

er
y 

ra
te

 / 
%

cgr-1st-dep-cs
cgr-1st-dep-eto-qd
cgr-1st-end-cs
cgr-1st-end-eto-qd

spsn-basic
spsn-mpt
spsn-mpt-nocache

50s50g+lb 50s50g+mb 50s50g+sb
scenario

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

av
er

ag
e 

de
la

y 
/ h

ou
rs

cgr-1st-dep-cs
cgr-1st-dep-eto-qd
cgr-1st-end-cs
cgr-1st-end-eto-qd

spsn-basic
spsn-mpt
spsn-mpt-nocache

Figure 7.14: Intraregional delivery rates and delays (large topology).

will be tested with the 20 injection plans.
It shall be noted that if the metrics of a given set (e.g.+lb) are leveraged for injection plan

creations for scenarios of different sizes, the load will be reduced for the larger scenario if
compared with the smaller one. For example, the +lb set of metrics results in 2300 injections
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Figure 7.15: Intraregional hop and rescheduling counts (large topology).

50s50g+lb 50s50g+mb 50s50g+sb
scenario

103

104

105

av
er

ag
e 

si
m

ul
at

io
n 

ru
nt

im
e 

/ s

cgr-1st-dep-cs
cgr-1st-dep-eto-qd
cgr-1st-end-cs
cgr-1st-end-eto-qd

spsn-basic
spsn-mpt
spsn-mpt-nocache

50s50g+lb 50s50g+mb 50s50g+sb
scenario

0.0

0.1

0.2

0.3

0.4

0.5

0.6

av
er

ag
e 

ru
nt

im
e 

pe
r 

TX
 / 

s

cgr-1st-dep-cs
cgr-1st-dep-eto-qd
cgr-1st-end-cs
cgr-1st-end-eto-qd

spsn-basic
spsn-mpt
spsn-mpt-nocache

Figure 7.16: Intraregional simulation runtime and simulation runtime per transmission (large
topology).

for both the 15s15g and 50s50g, and the former show fewer links to allow the bundles to
reach their destinations if compared with the latter.
This aspect is not problematic, as space networks are scheduled, and operators would not

createmore load than the network can support. Any injection plan and scenario combination
permits all bundles to reach their destinations. Table 7.5 gathers the injection plan creation
metrics. The suffixes lb,mb, and sb stand for large, medium, and small bundles, respectively.
A larger scenario presents, however, a larger amount of existing routes to a destination.

This higher amount of existing routes allows the simulation to highlight the pathfinding dif-
ferences of the tested algorithms. If congestion is absent, the -hop variants of the algorithms
can be discarded, and the SABR standard (optimizing the arrival time) is preferred.
On the 15s15g scenario, the impact of SPSN can be considered limited. The delivery rates

and delays do not present improvements (figure 7.8), and contact segmentation doesn’t
seem to impact the results for CGR (-cs variants). The CGR -1st-dep variants show higher
delivery delays. The differences in average hop count and overall transmissions (figure 7.9)
is also very limited. When the bundles are smaller but more numerous (+sb suffix), SPSN
manages to lower by 1000 the total amount of transmissions (for a total of about 70000
transmissions, representing a decrease of about 1.7%). The difference can seem negligible
but is noticeable compared to the other networking metrics considered.
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Regarding the processing time (figure 7.10), multipath tracking shows a non-negligible
overhead. It shall, however, be recalled that the reference CGR implementation SPSN was
supposed to be compared with was CGR with Yen’s algorithm, which was disqualified. Also,
the results cannot be considered inadequate, as the average runtime per transmission does
not exceed 4 milliseconds (simulation overhead included). The caching effectiveness, if com-
pared with a zero caching strategy (-nocache), computing one tree per bundle, is twofold.
Firstly, it can represent a decrease of up to 85%of the processing pressure. Secondly, reusing
a tree does not seem to affect the networking performance compared with -nocache.
Recomputing a tree for each bundle ensures optimal performance. Reusing a tree can

present suboptimal paths after a couple of bundle scheduling. The caching strategy and the
recomputation of all paths (one per destination) if one of those paths becomes unsuitable,
seems to be a valid heuristic for efficient networking performance and computation pressure
tradeoffs.
By increasing the network size with the 30s30g scenario, the impact of SPSN starts to be

clearly noticeable. Considering the delivery delays (figure 7.11), the delays can be reduced
by about 5% on average for the large bundle injection plans (+lb). This improvement can
be considered very limited, but a clear trend starts to be observable when considering the
average hop counts and total transmissions (figure 7.12).
If comparedwith the results of the 15s15g scenario, the increase of the average path length

(hop count) and the increase in the total amount of transmissions are imputable to the net-
work size increase (even if an identical amount of bundles was injected). Longer hop count
paths with earlier arrival times are indeed more likely to exist and sometimes undetectable
by CGR. Conversely, CGR would sometimes leverage a route for scheduling even if a route
with a lower hop count and the same arrival time exists.
Multipath tracking is designed to detect those better paths, and the results regarding de-

livery delays and hop counts confirm the expectations. On this 30s30g scenario, a higher
impact on the hop count can be observed, with more than a 7% decrease of the average
hop count if compared with the best CGR variant, cgr-1st-end-cs, which represents a total
transmission count reduction of about 8000 transmissions.
The positive impact of contact segmentation (-cs) can be observed with this network size.

When using -1st-end alternative route strategy, CGR reduces the average path length bymore
than 3% by replacing ETO and queue-delay (-eto-qd) by contact segmentation. This reduces
the total transmission count by about 3500. The improvement is limited but reflects the
expected higher accuracy. Any potential gains might be considered significant regarding the
financial costs of an extreme space environment: contact volumes are precious resources.
The processing times (figure 7.13) for SPSN are still a bit higher, but the same comments

expressed for the results of the 15s15g scenario are applicable.
Reaching network sizes of 100 nodes confirms the trend, with a decrease of the end-to-

end delays of about 9% for the +lb injection plans (figure 7.14) when comparing SPSN with
cgr-1st-end-cs. In the same way, a decrease of about 9% can also be observed for the average
end-to-end path length (figure 7.15).
The total bundle transmission count makes this gap more visible while highlighting a de-

crease in the required transmission when contact segmentation is leveraged (about 3% for
the +sb injection plans).
The processing time per transmission (figure 7.16) is again higher for SPSN compared to

the limiting contact flavors. However, the pathfinding quality is enhanced, and section 7.4.4
will highlight that the limiting contact flavors decrease the processing time thanks to hardly
acceptable tradeoffs. For the sake of fairness, the implementation of CGR also leverages
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node multigraph implementation with a priority queue, while production implementations
of CGR did not proceed yet to this transition. Still, the reference implementations use Yen’s
algorithm, and section 7.3 proved that node multigraph implementation does not permit
CGR to show acceptable processing time.

7.4.2 Intraregional multicast tests

Scenario 15s15g+lb 15s15g+sb 30s30g+lb 30s30g+sb

Interval between
injections (seconds)

500 50 50 5

Minimum bundle size (bits) 1500000 150000 150000 15000

Maximum bundle size (bits) 1700000 170000 170000 17000

Bundle TTL (seconds) 86400 86400 86400 86400

Last injection
(hours after scenario
start time)

32 32 32 32

Bundles injected 232 2312 2314 23136

Multicast members 5 5 5 5

Table 7.6: Contact injection plan for each scenario (20 different plans per scenario).
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Figure 7.17: Multicast delivery delays (all copies on the left, first copy on the right).

Multicast support evaluation is based on the 15s15g and 30s30g scenarios, with two dif-
ferent injection plan strategies for each topology (table 7.6). Considering the figure 7.17, the
results of SPSN can seem suboptimal regarding delivery delays.
However, the delivery rates (figure 7.18) show that SPSN is significantly more likely to de-

liver to all the group members. An exception can be observed for the 15s15g with large
bundles (+lb). However, the contact utilization on this topology is much higher (figure 7.20),
and the results of the limiting contact CGR variants in such more congested scenarios can
easily be misinterpreted, justifying the need for a dedicated discussion (section 7.4.4).
The most significant increase in the delivery rate is observed in the 30s30g+sb scenario,

with an increase of about 14% (from 82% to 93.5%). This can highlight that SPSN puts more
effort into permitting each copy to reach its destination(s) and that CGR fails to find correct
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Figure 7.18: Multicast delivery rates (one member on the left, all members on the right).
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Figure 7.19: Multicast hop and rescheduling counts.
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Figure 7.20: Multicast contact utilization and simulation runtime per transmission.

paths. Indeed, figure 7.19 shows that the average hop count is highly reduced with SPSN
in this scenario, while CGR appears to reschedule a high amount of copies. A rescheduling
means that the receiving node already knows the bundle (i.e., the presence of network loops).
It shall be noted that the network loops control is disabled for both algorithms. There-

fore, those results shall be taken with care. Networks loops are more likely to occur with
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CGR-multicast, as its volume management does not update all the contacts of the routes
selected. This is more concerning than disabling network loop control, as the former is a
design issue while the other is a configuration issue. In any case, this section compares algo-
rithms developed by the same author. Handling of network loops will be further discussed
in section 7.5.
The computational pressure of SPSN for multicast (with multipath tracking) is still a bit

higher if compared with CGR (figure 7.20), but again, due to the unrealistic possibility of com-
paring SPSN with the actual reference implementation being cgr-yen-ion. Regardless of the
other CGR variants, the average simulation runtime per transmission remains short, with
more than 20 milliseconds in the worst cases (simulation overhead included).

7.4.3 Interregional routing tests

Scenario 7r15s15g 127r5s5g

Interval between
injections (seconds)

10 100

Minimum bundle size (bits) 1500000 1500000

Maximum bundle size (bits) 1700000 1700000

Bundle TTL (seconds) 172800 172800

Last injection
(hours after scenario
start time)

16 16

Bundles injected 5777 1158

Table 7.7: Contact injection plan for each scenario (20 different plans per scenario).

The support of interregional shortcuts will be evaluated with a single injection plan set of
metrics for each scenario, gathered in table 7.7.
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Figure 7.21: Interregional delivery rates and delays.

This evaluation intends to test the correct functioning of the contact passageway design,
including the pathfinding and the interregional interfaces.
So the comparison with the approach depicted in 3.1.6 is hardly possible because still be-

ing subject to continuous non-negligible changes while operating with different assumptions
and providing different features.
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Figure 7.22: Interregional hop and rescheduling counts.
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Figure 7.23: Interregional simulation runtime and simulation runtime per transmission.

The evaluation of the shortcut support impact can be considered more as a use case for
validating the concept rather than a means to answer a real research question. Effective
interregional pathfinding can be leveraged with shortcuts will, unsurprisingly, increase the
throughput and decrease the delivery delays, as depicted in figure 7.21.
As expected, the average hop count decreases when shortcuts are present, and network-

ing loops are less likely to occur if interregional throughput increases (figure 7.22).
Concerning the computational pressure (figure 7.23), shortcut support slightly increases

the simulation run time. A slight increase could indeed be expected. When a shortcut is
added in the scenario 127r5s5g, two virtual nodes are added (one per region), which in-
creases the node count by 50 as 10 shortcuts are added. Adding an extra region has a
smaller impact than adding a node. The node translation (getting the next virtual node hop
from a distant node id) uses a quasi-static forwarding table, while the node count impacts
the tree construction. SPSN tree (re-)construction is more likely to happen in comparison
with the interregional routing table update. Last but not least, the runtimes provided do
not exclude the simulation runtime, and it could be observed that the average transmission
count per bundle was significantly higher in the 127r5s5g scenario.
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Scenario
name

Contact
count

Contact
volumes
(bits)

Contact
durations
(secs)

Scenario
duration
(hours)

Data rate
(bits)

fg1mb+hg 16138 ∼457000 ∼48 8 8000000

Table 7.8: General metrics for each scenario.

Scenario 15s15g 30s30g fg1mb+hg

Interval between
injections (seconds)

80 10 1

Min bundle size (bits) 1500000 1500000 44000000

Max bundle size (bits) 1700000 1700000 46000000

Bundle TTL (secs) 86400 86400 24000

Last injection
(hours after scenario
start time)

32 32 8

Bundles injected 1445 11568 28740

Table 7.9: Contact injection plan for each scenario (20 different plans per scenario).
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Figure 7.24: Delivery rates and delays.

7.4.4 Behavior with congestion

This section will cover CGR behaviors with the support of congested scenarios. To this end,
the additional fg1mb+hg topology (206 nodes) is introduced (table 7.8). This public trans-
portation scenario of the city of Freiburg is particularly interesting for testing as it encom-
passes very heterogeneous node mobility patterns. The weakness of the previously consid-
ered scenario is their relative homogeneity. Most nodes, satellites or ground stations, are
reachable via multiple paths. This factor is increased by late contact plan horizon, while in
a transportation scenario, some nodes might be reachable only via vehicles driving through
specific roads. The introduction of this topology can be motivated by potential future Mars
surface networks encompassing line mobility patterns (e.g., public trains showing contacts
with stations or mining transportation nodes).
The limiting contact variants of CGRmight suppress important contacts, with more serious

consequences when compared with more homogeneous networks. Analysis of that matter
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Figure 7.25: Hop and rescheduling counts.
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Figure 7.26: Simulation runtime and simulation runtime per transmission.

is essential, as future space networks can be much more complex and encompass node
mobility patterns or topological characteristics that would render the suppression of some
contacts dramatic.
Table 7.9 gathers the injection plan creation metrics.
The main purpose of this section is to recall that, even if SPSN was mainly evaluated with

comparisons against the limiting contact approaches, those variants can sometimes present
unacceptable behaviors, which are at best undetectable by basic network performance eval-
uation, and at worst even increase those performance. A lack of awareness of those behav-
iors could lead to misinterpretations about the real behavior of those variants.
In a homogeneous topology, the suppression of contacts shows a rather limited impact if

congestion isn’t present, as multiple paths are available. But if congestion occurs, suppres-
sion of contacts might casually render some routes undetectable.
At first glance, this is a drawback for network performance. But congestion renders this

behavior advantageous on a macro scale for homogeneous networks, as limited premature
drops increase the probability of the other bundles reaching their destination.
Analysis of this behavior proved that bundles were casually dropped very early during sim-

ulation, sometimes directly at the source. In contrast, the same bundles have been sched-
uled when using SPSN (tested while discarding possible load perturbations).
From a micro scale, e.g., a local node point of view, this is unacceptable to drop a bundle if
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a suitable route exists. This can be considered quite unfair behavior for evaluation, as it can
increase the overall network performance even though the cause is an evident weakness.
For instance, taking the delivery rates into account (figure 7.24), it can be observed that

this behavior permits the non -hop CGR variants to performwell in homogeneous networks if
congestion increases while the performance were similar or slightly lower than SPSN’s before
congestion (scenarios 15s15g and 30s30g). Congestion can be asserted as only the -hop
variants (known to reduce the contact utilization) reach a delivery rate of 100% in the 30s30g
scenario, with a more than significant margin. In the same scenario, the delivery rate of
SPSN completely dropped, with about 48%, against more than 56% for cgr-1st-end-eto-qd (an
increase of 15%).
But switching to a heterogenous network like fg1mb+hg, the deception does not hold true,

and the lower congestion induced by the premature drops does not counterbalance the im-
pact of important contact suppressions anymore. SPSN reaches a delivery rate of more than
57% against about 54% for cgr-1st-end-cs (an increase of 6%). That behavior consequently
allows a decrease in the hop counts, as shown in figure 7.25. The lower rescheduling count
(network loops) for CGR variants that perform worse than SPSN in the fg1mb+hg can be due
to premature drops. SPSN does not present this issue.
Regarding computational pressure, the fg1mb+hg scenario presents the most similar re-

sults between SPSN and CGR for a relatively short scenario duration (8 hours). Previous
sections showed that SPSN is not impacted by late contact plan horizon when compared
with CGR. The higher scalability of SPSN, if compared to Yen’s algorithm variant of CGR, did
not oppose any resistance. The results of the fg1mb+hg are therefore promising for the scal-
ability of SPSN with later horizons, including comparisons with the limiting contact variants
of CGR.

7.5 Requirement fulfillment

The evaluation proposed to test SPSN with the support of CGR variants for comparison. Un-
fortunately, direct comparison with the state-of-the-art variant of CGR proved to be hardly
possible. This evaluation aspect can be considered a negligible issue, as Yen’s algorithm
could be discarded for scalability thanks to strong arguments. The inherent computational
pressure of Yen’s algorithm (its algorithm complexity), coupled with the presence of hidden
variables (single scheduling can trigger hangs) and pathfinding inaccuracy (incapacity to find
the best path in a single search, unable to leverage the best path due to the adaptive behav-
ior) proved CGR with Yen’s algorithm to be unrealistically applicable to large networks, with
an apparent absence of SABR-compliance. Even if the route selection is effectively SABR-
compliant, this can be considered only as a facade as long as the routing table populating
phase cannot insert in time the best existing route for a bundle to schedule.
The issues (mentioned above) of CGR with Yen’s algorithm are shared by the limiting con-

tact approaches, as they share the same behaviors (adaptive implementation, Dijkstra stops
as soon as the destination is reached). They provide a relatively good reference for compar-
ison. Those variants present, however, at best, unfair behavior and, at worst, unacceptable
pathfinding strategy, as covered in the section 7.4.4.
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Pathfinding

SPSN exhibited equivalent or better networking performance compared to those variants
in realistic scenarios. In a congested environment, SPSN can still improve the performance
in heterogeneous challenging topologies, while the apparent decrease in performance in
homogeneous networks is imputable to the unfair CGR behaviors mentioned above. The
requirement /R1/ is successfully fulfilled.
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Figure 7.27: Intraregional evaluation summary for delays in the 50s50g scenario.

The offline analysis of SPSN also proved the predictability of the computational pressure.
With a given number of nodes, SPSN’s tree construction time is entirely resilient to the con-
tact plan horizon. Moreover, the guarantees that, at most, one tree will be computed for a
bundle and that a tree will at least be used once for routing purposes renders SPSN’s pro-
cessing pressure highly predictable, discarding the risks of memory usage and processing
time explosions, fulfilling requirement /R2/.
If the SPSN and CGR multicast integrations had to be compared, it could be pointed out

that multicast was integrated around unicast in the case of CGR, while SPSN took the path
of considering unicast as a special multicast case. Designing a more encompassing solution
provides straight forward support for reduced-scope use cases while extending a solution
to use cases they were not designed for can be challenging. The main components of SPSN
proved to be effective for the multicast load, with more accurate volumemanagement. How-
ever, disabling the network loop controls for multicast evaluation can arguably motivate only
a partial fulfillment of requirement /R3/. Volume management conflict can occur when using
CGRor SPSNwithmultipath tracking. Multicast deservesmore time and attention and further
investigations, as the options to address this aspect are plentiful: embedding in pathfinding
countermeasures to the volume management challenges, creating one copy per exclusion
list set, overbooking the ganging process by duplicating some destinations among several
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Figure 7.28: Intraregional evaluation summary for hop counts in the 50s50g scenario.
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gangs, decrease volume management accuracy to decrease the copy count, just to name
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a few aspects. This concern is shared with CGR, preventing CGR from fulfilling this require-
ment. A simple solution would be to use a basic tree construction. Basic construction will
also reduce contact utilization if the multicast member is large.
Figures 7.27 and 7.28 are provided to represent the computational pressure and network-

ing performance tradeoffs visually. The axes’ directions are inverted to allow the target area
to be located in the top right of the figure (the goal is to decrease the hop counts, the de-
lays, and the average runtime per transmission). Regarding efficacy (delays and hop counts),
the multipath tracking flavors are consistently better than CGR, when comparing dots of the
same sizes (same injection plans). The basic tree construction allows a better efficacy for the
delays but not consistently for the hop counts. For CGR, the first ending approach is usually
better than the first depleted flavor. Regarding efficiency, the CGR flavors are similar but less
efficient than SPSN with basic tree construction. Multipath tracking requires slightly more
resources than CGR, but those CGR flavors exhibit unacceptable behaviors to achieve this
efficiency. If no caching strategy is organized for SPSN, efficiency can be improved in some
cases, but with a non-negligile processing pressure overhead.
To allow the presence, within a single summary figure, of the reference implementation

(CGR using Yen’s algorithm), the dots can be placed thanks to the networking performance
trends for the 50s50g scenario (figures 7.27 and 7.28), experimental observations (section
7.3), and theoretical expectations (section 4). Consequently, the dot for CGR using Yen’s
algorithm is placed to show similar efficacy but very low efficiency in figure 7.29.
This scatter plot is provided for convenience, and the placements should be taken care-

fully. For example, the current element retainment strategy being leveraged can impact the
networking performance of CGR and consider the best possible performances (in line with
multipath tracking with caching). However, the scale of the axes was not assumed to be lin-
ear during the placement, and the presence of cgr-yen-ion in this figure does not express in
any case some degree of suitability.

Volume management

Concerning the requirement /R4/, contact segmentation provides a better volume aware-
ness, with the condition to operate with an accurate contact plan. Contact segmentation
tracks precisely the intervals of bandwidth utilization for the transmissions of a given bun-
dle. The approach is resilient to the edge cases. The decrease of the hop count in complex
topologies when CGR operates with contact segmentation supports this statement. Contact
segmentation is expected to perform well if the topology is complex, with frequent subse-
quent contact overlapping along the paths. If the contact plan is not accurate, the introduc-
tion of the abstract volume management interface permits to use of heterogeneous tech-
niques for the contacts of the network, i.e., contact segmentation if the prediction accuracy
confidence is high and another technique otherwise. The fulfillment of the requirement can
consequently be considered successful.
With data rate variation and priority support, the enhanced manager proved that those

constraints are not incompatible with contact segmentation. This proof of concept fulfills
requirement /R5/. The evaluation coverage of the enhanced manager was, however, lim-
ited. A computational pressure analysis is proposed in the offline analysis section, but no
networking performance evaluation was included. Of course, the abovementioned volume
conflicts also need to be addressed. Even if proof of concept simulation was conducted suc-
cessfully, the priority handling could bring important questions: shall the priority support be
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processed only for bundles with the same source? Can the transmission queues be sorted
by priority? Shall priority support be observed only in the source home region? Is priority
appropriate in a multi-tenant interplanetary network? Also, priority support is, in essence,
schedule destructive and decreases the delivery rate. It can be considered hardly scalable if
priority variations for the bundles are frequent.
The requirement /R6/ can hardly be evaluated with simulations and can be considered

rather subjective. Some arguments can be provided to support at least its partial fulfillment.
Firstly, the abstract interface provides high flexibility for future development in volume man-
agement, as covered in the concept description chapter. Secondly, considering contact seg-
mentation, it can be observed that segmentation can authorize linear data rate variation
support because it provides accurate bandwidth utilization tracking. The real impact of the
following proposal is speculative: contact segmentation could allow data rate variation sup-
port by discarding the mean data rate segments, replacing them with a single segment en-
coding the data rate variation as a function of time. For a given bundle size and transmission
start time, the correct transmission end time, respecting linearly, for example, the character-
istic bell shape data rate over the time curve of a ground-to-LEO-satellite transmission, could
be calculated to update the bandwidth utilization intervals accurately. Polynomial regression
could be leveraged to define those functions.

Interregional support

The contact passageway design permits the scheduling of bundles to the neighbor regions
using the shortest path leading to any node of those regions by abstracting the non-home re-
gion membership with virtual nodes within the graph representation. The benefit is twofold:
firstly, any network node operates with a single contact plan, and the graph size is increased
by adding a single vertex per neighbor region, whatever number of nodes and contacts
are involved in the interregional interface. Secondly, this renders the handling of interre-
gional bundles within the home region identical to an intraregional bundle while optimizing
the throughput and delays by leveraging the underlying intraregional routing capabilities in
a load-balancing and high-availability fashion (thanks to volume management and multiple
nodes acting passageway simultaneously). The requirement /R7/ is therefore fulfilled.
The approach is highly flexible, as a given node can be a border node with an arbitrarily

high number of neighboring regions without overhead. The configuration is simplified. The
contact plan supplied to a border node is identical to that provided to a non-border node.
Forwarding using a next-region mechanism rather than a next-passageway mechanism at
each interregional hop is also more flexible. The interregional forwarding table remains valid
if some border nodes with a neighbor region lose their passageway behavior after a contact
plan update (or upon node failure). The nodes would know the next regional hop for a given
destination region. The forwarding would, however, require the source to know the home
region of the destination node (to be attached with an extension block set as the destination
or by encapsulating the bundle, as the other nodes along the path might miss such informa-
tion). This could be seen as a weakness (due to the need for remote area knowledge), but
it can be considered a strength. Firstly, with such handling, pathfinding relies on the knowl-
edge of a single node (the source), while a next-passageway forwarding mechanism makes
pathing rely on as many nodes as node passageways along the end-to-end path by actually
diluting the information among all involved passageways. This is a rather high-risk choice,
as this results in as many single points of failure as passageways (if they are unique) or in-
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terregional interfaces along the path. Secondly, knowing the path to a region is sufficient to
route any bundle having as destination a node that is a member of this region, decoupling
interregional pathing and regional membership. The pathing is not passageway-based but
region-based. The support of shortcuts can be seen as an excuse for discarding the hier-
archical tree structure and leveraging more advanced interregional routing pathfinding. An
argument for an interregional hierarchical structure can be the absence of possible network
loops. This is a weak argument: the intraregional topologies are way more dynamic than the
predicted quasi-static interregional structure, and still constraining a hierarchical tree struc-
ture inside a region to discard possible loops would be unacceptable. And again, the absence
of multiple paths creates single points of failure. Free from those potential drawbacks, the
contact passageways fulfill the requirement /R8/.
The need for a unique contact plan for any node of a region (including border nodes)

lowers the operational tension, successfully fulfilling requirement /R9/. The computational
overhead of the neighbor region nodes would be negligible as a single virtual node would be
added to the neighboring region’s contact plan.
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8 Summary and Outlook

8.1 Conclusion

This thesis shows a strong emphasis on SABR, and the evaluation was centered on compari-
son with different CGR implementation options. This decision wasmotivated by the apparent
conceptual density of CGR, and its predominance for existing and future space networks, as
attested by its standardization under the SABR specifications or by the place it is expected
to take in the future Mars communication networks as stated in the IOAG report [ioa22].
In this context, the following research question for this thesis was stated in section 1.3:

Can a routing algorithm increase scalability, network performance, and computational
performance simultaneously, with respect to the state-of-the-art expectations, for both unicast

and multicast bundles?

This question was decomposed into three different theses to address three specific as-
pects of space DTN scalability. The preliminary analysis (section 4) defined the improvement
levers, and the concept chapter proposed new solutions to be resilient to the identified is-
sues. The analysis of simulation results from section 7.5 evaluated the fulfillment of the
requirements detailed in sections 2.2.1, allowing the following assessments:

/T1/ An intraregional scheduled DTN routing algorithm for unicast and multicast bundles
can show enhanced networking performance and reduced computational cost regarding the
SABR standard expectations for the foreseen network sizes.

Assessment: The proposed routing algorithm shows networking performance that is equiv-
alent or better when compared with the current SABR implementations for unicast and mul-
ticast load with the test configurations. The computational pressure of the approach proved
to be controlled by discarding the former hardly predictable dangerous behaviors while still
being sustainable in larger scenarios if compared with the reference variant of CGR. The
computational pressure was comparable to or slightly higher than CGR variants that aim
to reduce the computational pressure but freed from unacceptable behavior occurrences.
Evaluation of those CGR flavors on heterogeneous topologies highlighted a significant de-
crease in networking performance due to important contact suppressions.
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/T2/ The volume management can be processed accurately with a unified and efficient al-
gorithm compatible with the support of priority and data rate variation extensions.

Assessment: The new volume management concept proposed to accurately track time
intervals of bandwidth utilization rather than inferring the transmission window from queue
analysis or booked volume metrics. The approach was expected to be resilient to the cur-
rent edge cases and to bring resilience while operating within future topologies where such
issues are expected to be more frequent. The approach’s effectiveness relies on the accu-
racy of the contact plan, and special dispositions were proposed to leverage heterogeneous
volume management techniques if this requirement cannot be observed for each network
contact. Proofs of concept were also proposed to demonstrate the flexibility of the approach
for support of existing and future volume management features.

/T3/ The interregional routing for multiple actors can be supported with flexibility and re-
duced configuration pressure.

Assessment: To address the predictable issues associated with interregional routing sup-
port, a design redefining the interregional borders was proposed. Shifting the border from
the nodes to the contacts and abstracting the interregional neighboring nodes with a sim-
ple graph theory principle allows any region node to operate with a single contact plan.
The nodes can therefore be configured regardless of their regional characteristics. Given
a fixed regional neighboring, single nodes can communicate with an arbitrarily high number
of neighboring regions without overhead. From an operational point of view, the support for
multiple border nodes simultaneously and the support for shortcuts increase the through-
put and the robustness of the network. In contrast, the new border definition allows the
design to decrease possible configuration tensions.

Consequently, a positive answer to the main research question can be derived, thanks
to mechanisms capable of increasing the performance on three different aspects of sched-
uled space DTN: pathfinding, volume management, and interregional routing.

8.2 Future works

8.2.1 Next development steps

This thesis addressed known and newly discovered issues by proposing new concepts with
limited coverage of administration concerns. For intraregional routing, this reduced covering
can be considered negligible, as the approach is applicable to the current administration
strategy deployed, for example, in ION. For interregional routing, however, the administration
strategy differs slightly from the original node passageway design, as the source shall know
the regional membership of the destination and attach it to the bundle. The path to this
destination region shall either be known by all network nodes (i.e., the nodes shall maintain
their knowledge of the interplanetary backbone structure) or attached to the bundle.
If the constraints required for operations are verified, the sources sending interregional

bundles would be less impacted by single regional interface issues along the paths. Still, they
must maintain interregional pathing to the destination regions they are interested in. Again,
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the interregional backbone is expected to be quasi-static. Still, further investigations on that
matter would be appropriate.
Pathfinding on an interregional mesh rather than following forwarding rules on the inter-

regional tree seems like a first step towards recursive internetworking. Possible mapping
with the RINA principles [Joh07] could also be further investigated.
Concerning multicast, accurate volume updates become challenging in complex topolo-

gies if node exclusion lists are associated with only a subset of the multicast destination
nodes. Using a basic tree construction instead of CGR or SPSN with multipath tracking does
not suffer from this problem. Further research to identify the most appropriate strategy has
to be conducted.
In the context of volumemanagement, SABR treats route expiration for single bits of infor-

mation. The bundles can be arbitrarily large, and the expiration of a route is, therefore, bun-
dle dependent if subsequent contact overlapping occurs. The bundle fragmentation strategy
leverages the route expirations for maximum contact utilization, endangering end-to-end
transmission due to the simplification mentioned earlier in the route expiration definition.
Moreover, even if no overlapping can be observed, this strategy is viable only if the contact
plan is accurate. The absence of sufficient margin or the use of average data rates instead of
more accurate data rate variation handlingmakes those fragmentsmore likely to be dropped
due to a premature contact termination or a data rate inferior to the considered average data
rate for the planned transmission timeframe.
Lastly, implementing a production-ready version could permit SPSN to be flight-tested.

Python is quite adapted to research activities but rapidly shows limits regarding a complex
algorithm targeting space devices, requiring all optimization and safety tools available. An
implementation in C++ or Rust would therefore be welcome to integrate SPSN easily into
various bundle protocol implementations for production.

8.2.2 Contact graph routing

The preliminary analysis of CGR exposes newly discovered concerning issues. Even if a pos-
sible adoption of SPSN is envisaged, the transition might be lengthy and represent a non-
negligible timeframe (apart from potential SPSN democratization delays, standardization can
be a long process) during which CGR will still be used for operations.
The discovered issues are of two natures. A first set of issues decreases CGR’s SABR com-

pliance. Those issues are not necessarily critically dangerous for operations but allow CGR
to operate with unintended behaviors.
Yen’s algorithm issues can endanger operational activities and be considered critical issues

that must be fixed as soon as possible. With its hangs, Yen’s algorithm behavior can be highly
damageable by rendering the routing algorithm unresponsive for arbitrarily long periods and
allocating memory to possible breaking points.
With such peculiarities and section 3.4 as a reference for discussion, CGR can hardly be

considered an algorithm showing predictable behavior for both the expected processing
time and memory pressure, as the outcome of bundle scheduling is topological and load
dependent. CGR will not always compute the shortest distance path (at least for secondary
metrics when using the current node-based approach) as intended by the original Dijkstra
algorithm, depending on topological characteristics, and the hangs observed with Yen’s al-
gorithm renders the processing time and memory pressure highly variable.
Here follows a non-exhaustive list of suggestions that could permit relative mitigation of
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the issues covered in section 4:

• Dijkstra’s algorithm core should be replaced by a node graph implementation leverag-
ing hashmaps. This would allow the detection of a route with the earliest arrival time
possible. This would drastically lower the computational pressure. The hop count can
still be suboptimal, but SABR compliance could be reached for at least the primary
metric.

• Yen’s algorithm should be dropped. The possible advantages of using Yen’s algorithm
are completely absent if an adaptive behavior is leveraged. The pathfinding inaccu-
racies could be addressed by finding the best existing routes in the set of alternative
routes found by Yen. As long as Yen’s main loop is paused as soon as a suitable route
is found, the previous pathfinding weaknesses never get the chance to be addressed
by Yen’s algorithm in time. As the adaptive behavior can hardly be abandoned due to
processing time concerns while being ineffective in preventing combinatory explosions
and hangs, the only rational option is to replace Yen’s algorithm. According to the cur-
rent adaptive behavior, replacing Yen’s algorithm with a single volume-aware Dijkstra
search would have the same effect. This volume-aware search could still be inserted in
the routing table.

• If the volume-aware Dijkstra search is deployed, the bundle size that triggered the
search must be attached to the route before insertion in the routing table. During
route selection of a bundle, if the size attached to a candidate route is higher than the
bundle size, the route should not be selected. In the same way as SPSN, and especially
for large bundles, the computation of a route (or a tree) for a given bundle size can
ignore paths suitable for smaller bundles.

• The same way, all bundle-specific forwarding constraints shall be considered during
route construction. This can include node exclusions, priority, expiration, or a list of
destinations formulticast. Such constraints shall also be handled correctly during route
selection for other bundles.

Those countermeasures are expected to bring back predictability to CGR’s behavior, at
least to some extent. Full compliance to the SABR’s expectations seems complicated with-
out the introduction of concepts like multipath tracking, and multicast handling is rendered
more challenging by single destination route structure if compared with trees. Concerning
interregional routing, implementing the contact passageway design with CGR seems like a
manageable challenge, with the condition of discarding the contact overlapping constraint
of SABR.
Short term, at least a subset of those modifications are required to extend the lifespan

of CGR. In the long term, shifting from CGR to an alternative approach like SPSN could be
valuable for effective and scalable schedule-aware bundle routing.
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