66,920 research outputs found

    A Heuristic for the Two-Echelon Multi-Period Multi-Product Location–Inventory Problem with Partial Facility Closing and Reopening

    Get PDF
    In this paper, the two-echelon multi-period multi-product location–inventory problem with partial facility closing and reopening is studied. For each product and period, plants serve warehouses, which serve consolidation hubs, which service customers with independent, normally distributed demands. The schedule of construction, temporary partial closing, and reopening of modular capacities of facilities, the continuous-review inventory control policies at warehouses, the allocation of customer demands to hubs, and the allocation of hubs to warehouses are determined. The service levels for stockout at warehouses during lead time and the violation of warehouse and hub capacities are explicitly considered. The proposed mixed-integer non-linear program minimizes the weighted summation of the number of different facilities and logistical costs, so that the number of different facilities can be controlled. Since the proposed model is np-hard, the multi-start construction and tabu search improvement heuristic (MS-CTSIH) with two improvement strategies and the modified MS-CTSIH incorporating both strategies are proposed. The experiment shows that the two improvement strategies appear non-dominated, and the modified MS-CTSIH yields the best results. The comparison of the modified MS-CTSIH and a commercial solver on a small instance shows the efficiency and effectiveness of the modified MS-CTSIH. The sensitivity analyses of problem parameters are performed on a large instance

    An Improved Algorithm for Fixed-Hub Single Allocation Problem

    Full text link
    This paper discusses the fixed-hub single allocation problem (FHSAP). In this problem, a network consists of hub nodes and terminal nodes. Hubs are fixed and fully connected; each terminal node is connected to a single hub which routes all its traffic. The goal is to minimize the cost of routing the traffic in the network. In this paper, we propose a linear programming (LP)-based rounding algorithm. The algorithm is based on two ideas. First, we modify the LP relaxation formulation introduced in Ernst and Krishnamoorthy (1996, 1999) by incorporating a set of validity constraints. Then, after obtaining a fractional solution to the LP relaxation, we make use of a geometric rounding algorithm to obtain an integral solution. We show that by incorporating the validity constraints, the strengthened LP often provides much tighter upper bounds than the previous methods with a little more computational effort, and the solution obtained often has a much smaller gap with the optimal solution. We also formulate a robust version of the FHSAP and show that it can guard against data uncertainty with little cost

    Solving the Uncapacitated Single Allocation p-Hub Median Problem on GPU

    Full text link
    A parallel genetic algorithm (GA) implemented on GPU clusters is proposed to solve the Uncapacitated Single Allocation p-Hub Median problem. The GA uses binary and integer encoding and genetic operators adapted to this problem. Our GA is improved by generated initial solution with hubs located at middle nodes. The obtained experimental results are compared with the best known solutions on all benchmarks on instances up to 1000 nodes. Furthermore, we solve our own randomly generated instances up to 6000 nodes. Our approach outperforms most well-known heuristics in terms of solution quality and time execution and it allows hitherto unsolved problems to be solved

    The technological model of operating area by the combined transport

    Get PDF
    The contribution deals with design technology service model using the combined transport. It assesses the performance indicators in relation to price and quality of services provided and on this basis decides on the type of the transport. This is the decision-making processes, which should answer the question, whether used directly in road freight transport, direct rail freight transport or combined transport. In this contribution is the combined transport meant as a system between the conventional modes, which are transhipped goods from road vehicles to the rail cars or river boats

    Air Taxi Skyport Location Problem for Airport Access

    Full text link
    Witnessing the rapid progress and accelerated commercialization made in recent years for the introduction of air taxi services in near future across metropolitan cities, our research focuses on one of the most important consideration for such services, i.e., infrastructure planning (also known as skyports). We consider design of skyport locations for air taxis accessing airports, where we present the skyport location problem as a modified single-allocation p-hub median location problem integrating choice-constrained user mode choice behavior into the decision process. Our approach focuses on two alternative objectives i.e., maximizing air taxi ridership and maximizing air taxi revenue. The proposed models in the study incorporate trade-offs between trip length and trip cost based on mode choice behavior of travelers to determine optimal choices of skyports in an urban city. We examine the sensitivity of skyport locations based on two objectives, three air taxi pricing strategies, and varying transfer times at skyports. A case study of New York City is conducted considering a network of 149 taxi zones and 3 airports with over 20 million for-hire-vehicles trip data to the airports to discuss insights around the choice of skyport locations in the city, and demand allocation to different skyports under various parameter settings. Results suggest that a minimum of 9 skyports located between Manhattan, Queens and Brooklyn can adequately accommodate the airport access travel needs and are sufficiently stable against transfer time increases. Findings from this study can help air taxi providers strategize infrastructure design options and investment decisions based on skyport location choices.Comment: 25 page

    Enriching the tactical network design of express service carriers with fleet scheduling characteristics

    Get PDF
    Express service carriers provide time-guaranteed deliveries of parcels via a network consisting of nodes and hubs. In this, nodes take care of the collection and delivery of parcels, and hubs have the function to consolidate parcels in between the nodes. The tactical network design problem assigns nodes to hubs, determines arcs between hubs, and routes parcels through the network. Afterwards, fleet scheduling creates a schedule for vehicles operated in the network. The strong relation between flow routing and fleet scheduling makes it difficult to optimise the network cost. Due to this complexity, fleet scheduling and network design are usually decoupled. We propose a new tactical network design model that is able to include fleet scheduling characteristics (like vehicle capacities, vehicle balancing, and drivers' legislations) in the network design. The model is tested on benchmark data based on instances from an express provider, resulting in significant cost reductions

    Cargo Consolidation and Distribution Through a Terminals-Network: A Branch-And-Price Approach

    Get PDF
    Less-than-truckload is a transport modality that includes many practical variations to convey a number of transportation-requests from the origin locations to their destinations by using the possibility of goods-transshipments on the carrier?s terminals-network. In this way logistics companies are required to consolidate shipments from different suppliers in the outbound vehicles at a terminal of the network. We present a methodology for finding near-optimal solutions to a less-than-truckload shipping modality used for cargo consolidation and distribution through a terminals-network. The methodology uses column generation combined with an incomplete branch-and-price procedure.Fil: Dondo, Rodolfo Gabriel. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Santa Fe. Instituto de Desarrollo TecnolĂłgico para la Industria QuĂ­mica. Universidad Nacional del Litoral. Instituto de Desarrollo TecnolĂłgico para la Industria QuĂ­mica; Argentin
    • …
    corecore