5 research outputs found

    Review of Prevention Schemes for Modification Attack in Vehicular Ad hoc Networks

    Get PDF
    Vehicular Ad-hoc Network (VANET) technology is the basis of Intelligent Transportation System (ITS) connectivity that enables the delivery of useful information to and fro between vehicles in vehicle-to-vehicle communication mode; or between vehicle and infrastructure in vehicle-to-infrastructure mode for safety and comfort. However, due to the openness of the wireless medium used by VANET, the technology is vulnerable to security threats in both communication modes. In this study, the essential background of VANET from architectural point of view and communication types are discussed. Then, the overview of modification attack in VANET is presented. In addition, this paper thoroughly reviews the existing prevention schemes for modification attack in VANET. This review paper reveals that there is still a need for a better and more efficient preventive scheme to address the modification attack in VANET

    Review of Security and Privacy Scheme for Vehicular Ad Hoc Networks (VANETs)

    Get PDF
    Vehicles in a vehicular ad-hoc network (VANET) broadcast information about the driving environment in the road. Due to the open-access environment, this means that the VANET is susceptible to security and privacy issues. However, none of the related works satisfies all security and privacy requirements. Besides, their proposed has huge overhead in terms of computation and communication. The present paper is a provide a thorough background on VANETs and their entities; different security attacks; and all requirements of the privacy and security for VANETs. This paper may serve as a guide and reference for VANETs in the design and implementation of any new techniques for protection and privacy

    Review of Prevention Schemes for Man-In-The-Middle (MITM) Attack in Vehicular Ad hoc Networks

    Get PDF
    Vehicular Ad-Hoc Network (VANET) is an indispensable part of the Intelligent Transportation System (ITS) due to its abilities to enhance traffic management and safety. Many researchers have been focused on specific areas involving management and storage data, protocols standardization, network fragmentation, monitoring, and quality of service.  The benchmarks of security of VANET are studied and figured out in this paper. VANET provides the driver and passenger with the safety application as well as entertainment service. However, the communication between nodes in VANET is susceptible to security threats in both communication modes, which indicates the main hazard. In this paper, we identified different Man-In-The-Middle (MITM) attacks with various behaviors such as message tampering, message delaying, and message dropping, according to the literature. In this study, the essential background of VANET from architectural point of view and communication types are discussed. Then, the overview of MITM attack in VANET is presented. In addition, this paper thoroughly reviews the existing prevention schemes for MITM attack in VANET. This review paper reveals that there is still a need for a better and more efficient preventive scheme to address the MITM attack in VANET. This review paper could serve as evidence and reference in the development of any new security schemes for VANETs

    A lightweight authentication scheme for vehicular ad hoc networks based on MSR

    No full text
    Vehicular ad-hoc networks (VANETs) has become a promising technology for nowadays' intelligent transportation system (ITS). Secure communications in VANETs can help improve safe and comfortable driving environment for drivers. In order to guarantee secure communication, security, privacy, and efficiency should be carefully considered during the deployment of VANETs. In this paper, we propose a lightweight privacy-preserving authentication scheme to enhance the communication security in VANETs. The proposed scheme employs the modular square root (MSR) technique to achieve the design goals. The security analysis demonstrates that our scheme achieves more advantages on supporting mutual authentication and other security requirements by comparing with existing schemes. We also provide the authentication proof using BAN logic and analyze the security validation using ProVerif. Additionally, compared with existing schemes, our scheme significantly reduces the computation delay on message signing and verification by at least 150 times. Meanwhile, the communication cost of our scheme achieves a reduction of nearly 25%

    A Conditional Privacy Preserving Authentication and Multi Party Group Key Establishment Scheme for Real-Time Application in VANETs

    Get PDF
    Vehicular Ad-hoc Networks (VANETs) are a cardinal part of intelligent transportation system (ITS) which render various services in terms of traffic and transport management. The VANET is used to manage growing traffic and manage data about traffic conditions, weather, road conditions, speed of the vehicle, etc. Even though, VANETs are self-sufficient and effective networks but they still suffer from various security and privacy issues. VANETs need to ensure that an adversary should not be able to breach user associated data and delete or modify the exchanged messages for its gains, as these messages comprise of sensitive data. In this paper, we have proposed an authentication and key-agreement protocol based on cryptographic hash functions which makes it lightweight in nature and also suitable for VANET environment. Moreover, to enhance the security and reliability of the entire system, the proposed key-agreement protocol makes use of random session modulus to compute a dynamic session key i.e. for every session, vehicles generate their session specific secret modulus which are then converged to form a common group session key. The formal verification of the proposed work is done using Real - or - Random oracle model, AVISPA and BAN Logic while informal security analysis shows that the proposed protocol can withstand various attacks. The simulation results and analysis prove that the proposed work is efficient and has a real-time application in VANET environment
    corecore