1,342 research outputs found

    Dynamic Channel Access Scheme for Interference Mitigation in Relay-assisted Intra-WBANs

    Full text link
    This work addresses problems related to interference mitigation in a single wireless body area network (WBAN). In this paper, We propose a distributed \textit{C}ombined carrier sense multiple access with collision avoidance (CSMA/CA) with \textit{F}lexible time division multiple access (\textit{T}DMA) scheme for \textit{I}nterference \textit{M}itigation in relay-assisted intra-WBAN, namely, CFTIM. In CFTIM scheme, non interfering sources (transmitters) use CSMA/CA to communicate with relays. Whilst, high interfering sources and best relays use flexible TDMA to communicate with coordinator (C) through using stable channels. Simulation results of the proposed scheme are compared to other schemes and consequently CFTIM scheme outperforms in all cases. These results prove that the proposed scheme mitigates interference, extends WBAN energy lifetime and improves the throughput. To further reduce the interference level, we analytically show that the outage probability can be effectively reduced to the minimal.Comment: 2015 IEEE International Conference on Protocol Engineering (ICPE) and International Conference on New Technologies of Distributed Systems (NTDS), Paris, France. arXiv admin note: text overlap with arXiv:1602.0865

    Improving performance of body sensor networks in moderate-scale deployment scenarios

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Interference Mitigation for Cyber-Physical Wireless Body Area Network System Using Social Networks

    Get PDF
    Wireless body area networks (WBANs) are cyber-physical systems that emerged as a key technology to provide real-time health monitoring and ubiquitous healthcare services. WBANs could operate in dense environments such as in a hospital and lead to a high mutual communication interference in many application scenarios. The excessive interferences will significantly degrade the network performance, including depleting the energy of WBAN nodes more quickly and even eventually jeopardize people\u27s lives because of unreliable (caused by the interference) healthcare data collections. Therefore, it is critical to mitigate the interference among WBANs to increase the reliability of the WBAN system while minimizing the system power consumption. Many existing approaches can deal with communication interference mitigation in general wireless networks but are not suitable for WBANs because of ignoring the social nature of WBANs by them. Unlike the previous research, we for the first time propose a power game based approach to mitigate the communication interferences for WBANs based on the people\u27s social interaction information. Our major contributions include: 1) modeling the inter-WBANs interference and determine the distance distribution of the interference through both theoretical analysis and Monte Carlo simulations; 2) developing social interaction detection and prediction algorithms for people carrying WBANs; and 3) developing a power control game based on the social interaction information to maximize the system\u27s utility while minimize the energy consumption of WBANs system. The extensive simulation results show the effectiveness of the power control game for inter-WBAN interference mitigation using social interaction information. Our research opens a new research vista of WBANs using social networks

    The Internet of Humans: Optimal Resource Allocation and Wireless Channel Prediction

    Get PDF
    Recent advances in information and communications technologies (ICT) have accelerated the realization of the Internet of Humans (IoH). Among the many IoH applications, Wireless Body Area Networks (BANs) are a remarkable solution that are revolutionising the health care industry. However, many challenges must be addressed, including: a) unavoidable inter-BAN interference severely degrading system performance. b) The non-stationarity and atypical dynamics of BAN channels make it extremely challenging to apply predictive transmit power control that improves the energy efficiency of the network. In this context, this thesis investigates the use of intelligent and adaptive resource allocation algorithms and effective channel prediction to achieve reliable, energy-efficient communications in BAN-enabled IoH. Firstly, we investigate the problem of co-channel interference amongst coexisting BANs by proposing a socially optimal finite repeated non-cooperative transmit power control game. The proposed method improves throughput, reduces overall power consumption and suppress interference. The game is shown to have a unique Nash equilibrium. We also prove that the aggregate outcome of the game is socially efficient across all players at the unique Nash equilibrium, given reasonable constraints for both static and slowly time-varying channels. Secondly, we address the problem of overlapping transmissions among non-coordinated BANs with multiple access schemes through intelligent link resource allocation methods. We present two non-cooperative games, employed with a time-division multiple access (TDMA) based MAC layer scheme that has a novel back-off mechanism. The Link Adaptation game jointly adjusts the sensor node's transmit power and data rate, which provides robust transmission under strong inter-BAN interference. Moreover, by adaptively tuning contention windows size an alternative game, namely a Contention Window game is developed, which significantly reduces latency. The uniqueness and existence of the games' Nash Equilibrium (NE) over the action space are proved using discrete concavity. The NE solution is further analysed and shown to be socially efficient. Motivated by the emergence of deep learning technology, we address the challenge of long-term channel predictions in BANs by using neural networks. Specifically, we propose Long Short-term Memory (LSTM)-based neural network (NN) prediction methods that provide long-term accurate channel gain prediction of up to 2s over non-stationary BAN on-body channels. An incremental learning scheme, which provides continuous and robust predictions, is also developed. We also propose a lightweight NN predictor, namely 'LiteLSTM', that has a compact structure and higher computational efficiency. When implemented on hand-held devices, 'LiteLSTM' remains functional with comparable performance. Finally, we explore the theoretical connections between BAN on-body channels' characteristics and the performance of NN-based power control. To analyse wide-sense stationarity (WSS) characteristics, different stationarity tests are performed for a range of window lengths for on-body channels. Following from this, we develop test benches for NN-based methods at corresponding window lengths using empirical channel measurements. It is observed that WSS characteristics of the BAN on-body channels have a significant impact on the performance of NN-based methods

    Technology Implications of UWB on Wireless Sensor Network-A detailed Survey

    Get PDF
    In today’s high tech “SMART” world sensor based networks are widely used. The main challenge with wireless-based sensor networks is the underneath physical layer. In this survey, we have identified core obstacles of wireless sensor network when UWB is used at PHY layer. This research was done using a systematic approach to assess UWB’s effectiveness (for WSN) based on information taken from various research papers, books, technical surveys and articles. Our aim is to measure the UWB’s effectiveness for WSN and analyze the different obstacles allied with its implementation. Starting from existing solutions to proposed theories. Here we have focused only on the core concerns, e.g. spectrum, interference, synchronization etc.Our research concludes that despite all the bottlenecks and challenges, UWB’s efficient capabilities makes it an attractive PHY layer scheme for the WSN, provided we can control interference and energy problems. This survey gives a fresh start to the researchers and prototype designers to understand the technological concerns associated with UWB’s implementatio

    Challenges and Opportunities of Optical Wireless Communication Technologies

    Get PDF
    In this chapter, we present various opportunities of using optical wireless communication (OWC) technologies in each sector of optical communication networks. Moreover, challenges of optical wireless network implementations are investigated. We characterized the optical wireless communication channel through the channel measurements and present different models for the OWC link performance evaluations. In addition, we present some technologies for the OWC performance enhancement in order to address the last-mile transmission bottleneck of the system efficiently. The technologies can be of great help in alleviating the stringent requirement by the cloud radio access network (C-RAN) backhaul/fronthaul as well as in the evolution toward an efficient backhaul/fronthaul for the 5G network. Furthermore, we present a proof-of-concept experiment in order to demonstrate and evaluate high capacity/flexible coherent PON and OWC links for different network configurations in the terrestrial links. To achieve this, we employ advanced modulation format and digital signal processing (DSP) techniques in the offline and real-time mode of the operation. The proposed configuration has the capability to support different applications, services, and multiple operators over a shared optical fiber infrastructure

    From MANET to people-centric networking: Milestones and open research challenges

    Get PDF
    In this paper, we discuss the state of the art of (mobile) multi-hop ad hoc networking with the aim to present the current status of the research activities and identify the consolidated research areas, with limited research opportunities, and the hot and emerging research areas for which further research is required. We start by briefly discussing the MANET paradigm, and why the research on MANET protocols is now a cold research topic. Then we analyze the active research areas. Specifically, after discussing the wireless-network technologies, we analyze four successful ad hoc networking paradigms, mesh networks, opportunistic networks, vehicular networks, and sensor networks that emerged from the MANET world. We also present an emerging research direction in the multi-hop ad hoc networking field: people centric networking, triggered by the increasing penetration of the smartphones in everyday life, which is generating a people-centric revolution in computing and communications
    corecore