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Abstract—In dense deployments of Wireless Body Sensor 
Networks (WBSNs), inter-user interference significantly degrades 
network performance when multiple WBSN users stay in a small 
area such as hospitals. Due to the high dynamics of the 
environments, it is usually hard to schedule the transmissions of 
multiple WBSNs without a central controller.  In this paper, we 
propose a robust and lightweight interference mitigation scheme 
for realistic WBSN systems through adaptive channel hopping. A 
WBSN testbed is set up to investigate the impact of inter-user 
interference on various performance metrics when different 
severity levels of interference are present. Based on the 
measurement results, we propose a distributed interference 
detection and mitigation scheme without any central controller.  A 
WBSN prototype system has been set up and shown that our 
proposed scheme can effectively detect and mitigate the 
multi-user interference, with tripling the network throughput in 
severely interfered environments.   

 
Keywords—Wireless Body Sensor Network; IEEE 802.15.4; 

Interference Detection; Interference Mitigation; Transmission 
Efficiency 

I. INTRODUCTION 
Wireless Body Sensor Networks (WBSNs) have recently 

attracted much attention due to their high potential to be used in 
many human-centric applications in healthcare, fitness, sports 
training, entertainment, and military operations. In realistic 
deployment cases, multiple WBSN users may stay in a specific 
small area such as a hospital ward and sports field. Due to the 
broadcast nature of wireless transmissions, inter-user 
interference, caused by concurrent transmissions from multiple 
WBSN users, usually leads to the degradation of network 
performance such as throughput, delay, and energy efficiency. 
As a consequence, the service quality is compromised and hard 
to support strict requirements of human-centric applications.   

 
As the performance degradation is possibly caused by 

inter-user interference and/or deteriorated channels when body 
posture changes, it is important to detect the actual causes and 
find suitable solutions accordingly. For example, if the 
performance is degraded due to deteriorated channels, an 
effective method would be increasing transmission powers or 
transmitting via a relay node. However, if inter-user 
interference causes performance degradation, the above 

methods are not able to effectively improve the performance, 
and hence an interference mitigation scheme is necessary in this 
situation.   

 
 In this paper, we focus on designing an effective scheme to 
detect and mitigate the inter-user interference. Our work is 
significantly different from earlier related research in the 
literature, as our approaches for detecting and mitigating 
interference are distributed, without the need of a central 
infrastructure or message exchanges among WBSN users. In 
addition, our work is based on a realistic WBSN system instead 
of simulation platforms. Our main contributions in this paper 
are as follows. Firstly, we present the empirical evidence 
through extensive experiments, to show the impact of inter-user 
interference on various network performance metrics. 
Secondly, from the above results, we propose a method to 
effectively detect the severity level of inter-user interference. 
Thirdly, we propose a lightweight and robust scheme to 
mitigate inter-user interference through distributed channel 
hopping, according to the severity of the interference. Lastly, 
we implement the proposed schemes on a CrossBow 
MicaZ-based WBSN system and evaluate the performance 
through extensive experiments1. 

 
The rest of the paper is organized as follows. Section II 

describes the related research. Section III presents the 
performance indicators for inter-user interference and the 
design of channel hopping schemes. Section IV presents the 
experiment results to evaluate the performance of the proposed 
interference mitigation scheme. Finally, Section V concludes 
the paper. 

II. RELATED WORK 
Much research work has been published to address 

interference issues for wireless networks. Liu et. al. presented a 
passive interference measurement approach [1] by measuring 
packet-level interference from  neighboring nodes. In [2], Son 
et. al. proposed a transmission power control mechanism 
incorporating blacklisting channel to minimize interference. 

 
1 We implemented our schemes on the TKN MAC developed by Technical 

University Berlin in this research. 
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Figure 1 Superframe structure in IEEE802
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i). Impact of interference under perfect ch
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In summary, all the above performance
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ii). Impact of interference under dynamic ch
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            (a)  Throughput.                                     (b) BDR.    
 
Figure 2 Performance metrics affected by interference in o
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In our experimental study, if there is only one active WBSN, 
the BDR of all nodes can achieve at least 90%, and the BDR 
does not decrease regardless of the number nodes in the 
WBSN3. However, in multi-user scenario, the BDR can drop to 
20% (see Figure 5 (b)), even when the link quality is good 
(RSSI > -85 dBm), which shows the significant impact of 
inter-user interference on BDR. Therefore, BDR is a good 
indicator to detect inter-user interference.   

 
 The average number of backoffs per successful packet is 
calculated from dividing the total number of backoffs in a 5 s 
window by the total number of packets successfully received 
during the same window. The average number of transmissions 
per successful packet is also calculated in a 5 s window.  From 
Figures 4 (c) and (d), in Scenario 1, the above two metrics are 
more stable and much lower at the node at left arm, as 
compared to the node at right arm, which is caused by the link 
quality difference. In the multi-user scenario, however, the two 
metrics are much higher (see Figures 5 (c) and (d)) than the 
one-user scenario. Obviously, the greater backoffs and 
retransmissions are caused by severe interference, as both links 
show sufficiently good quality for successful transmissions (see 
Figures 5 (e)). We also observe that link quality can be easily 
affected by moving body, which leads to RSSI variations (see 
Figures 4 (e) and 5 (e)). However, the RSSI is not sensitive to 
interference (see Figure 2(e)). Hence, RSSI can be used as an 
auxiliary parameter for interference detection. 

 
In summary, from our experimental study, the combinational 

analysis of throughput, BDR, the average number of backoffs 
and transmissions per successful packet, as well as RSSI, can 
provide good indications for inter-user interference. 

IV. INTERFERENCE MITIGATION SCHEME 
Based on the experimental study of interference indicators, 

we propose a lightweight and robust interference detection and 
mitigation scheme through channel hopping. The functional 

 
3 We tested the cases with 1-8 sensor nodes in a WBSN. Such results are not 

presented due to space limit.  

modules at the coordinator and the sensor device are shown in 
Figure 6. The procedure of the proposed scheme is described as 
follows: 

Step 1 (Interference Detection): During data transmissions, 
each sensor node monitors on-the-fly the performance metrics 
in terms of BDR, average number of backoffs and 
transmissions, and RSSI. From the collected performance data, 
it evaluates the severity of interference using our proposed 
interference detection scheme. Once the severity of interference 
is identified to be beyond the pre-defined threshold, the sensor 
node sends a channel hopping request to the coordinator, 
indicating the needs for hopping (see Section IV.A for details).  

Step 2 (Interference Computing): The coordinator records 
the number of hopping requests from different nodes and 
computes the severity level of interference in its network. Once 
the coordinator identifies the needs of channel hopping from 
the fusion of the collected requests, it sends a scanning request 
to a selected sensor node, to request the node to seek for a good 
channel for hopping (see Section IV.B for details).  

Step 3 (Channel Inspection): The selected node, called 
watcher, scans the channels and finds a good target channel. It 
then reports the information to the coordinator.  

Step 4 (Channel Hopping): Once the coordinator gets the 
report from the watcher, the coordinator informs its network the 
target channel, and then switches to the new channel.    

 
A. Interference Detection  

To measure the interference, a sensor node has to calculate 
multiple metrics as indicators. First, BDR is calculated based 
on a fixed window to ensure sufficient accuracy. In our study, 
the sampling window is configured to be 5 s (20 superframes). 
To smooth out the instantaneous variations, we use the 
exponential averaging method to estimate BDR at time ݐ, as   

෠௧ܤ  ൌ ௧ܤ  ൈ ߙ ൅ ܤ෠௧ିଵ ൈ ሺ1 െ  ሻ                             (1)ߙ
Where ܤ෠௧  and ܤ෠௧ିଵ  are respectively the estimated BDR at 
time ݐ  and ݐ െ 1 ௧ܤ ,  is the sampled BDR in the current 
window, and the smoothing factor α is set to 0.8 in our 
experiments. 

 
           (a)  Throughput.                                   (b) BDR.                    (c) Avg. backoffs per success pkt.  (d) Avg. TXs per success pkt.                (e) Packet RSSI. 
 

Figure 4 Performance results in one-WBSN scenario (Scenario 1).   

  
            (a)  Throughput.                                  (b) BDR                    (c) Avg. backoffs per success pkt. (d) Avg. TXs per success pkt.                   (e) Packet RSSI. 
 

Figure 5 Performance results in multiple-WBSN scenario (Scenario 2).   
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Figure 6 Functional modules of interference mitig
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and WBSN3 are both activated at Channel 23. It is observed 
that WBSN2 does not change its channel during the experiment, 
while WBSN3 adjusts its channel to 14 after a while. As the 
mobile jammers and observed users move randomly in the 
meeting room, the encountered severity of interference may be 
different at each WBSN user. As such, a WBSN may not switch 
its channel when its detected interference is still within the 
tolerable level. After WBSN4 and WBSN5 are activated in 
Channel 23, they are observed to adjust their channels to 26 and 
17, respectively, after they detect heavy utilization in channel 
23.  

 
Table I Recorded channel usage in experiment.  

 0~2mins 2~4mins 4~6mins 6~8mins 
Static jammers(1~3) 12 12 12 12 
Static jammers(1~3) 18 18 18 18 
Static jammers(1~3) 24 24 24 24 

Human jammers(1~3) 23 23 23 23 
WBSN1 23 26 26 26 
WBSN2 - 23 23 23 
WBSN3 - 23 14 14 
WBSN4 - - 23 26 
WBSN5 - - 23 17 

  
The performance results are recorded in the flash memory of 

each WBSN device. Due to the space limit and the similarity, 
we only present the performance metrics of WBSN5, shown in 
Figure 7. From the record, WBSN5 adjusts its channel at the 
time of 50 s, to avoid severe interference in Channel 23. The 
RSSIs of the two links in WBSN5 are always greater than -86 
dBm and do not show significant difference before and after 
channel hopping. Such an observation confirms our earlier 
finding that interference does not have obvious impact on link 
quality.   

 
From our benchmark study with two transmitters in a 

network, the individual throughput for each transmitter can 
reach 40 Kbps on the condition of perfect channels and without 
external interference. When WBSN5 just starts, the individual 
throughput of the two transmitters is only around 10 Kbps, 25% 
of the perfect condition, due to the severe interference from 
jammers. After hopping to Channel 17, the individual 
throughput increases to around 35 Kbps, close to the 
benchmark result (see Figure 7 (c)). As shown in Figure 7 (d),    
BDR increases from level of 50% to 90%, which significantly 
increases transmission opportunities for a node. As shown in 
Figure 7 (e), the Transmission Efficiency is also significantly 
increased, from level of 50% to 80% when channel hopping is 
conducted. As a result, the throughput and energy efficiency are 
significantly improved.  
 

In summary, the experimental results verify the effectiveness 
of the proposed interference detection and mitigation scheme 
through channel hopping, and demonstrate that data throughput, 
BDR, and transmission efficiency are significantly improved in 
the severely interfered environment. 

VI. CONCLUSION 
In this paper, we proposed lightweight and robust schemes 

for interference detection and mitigation in WBSN, to address 
the problem of performance degradation caused by inter-user 
interference. From the measurement results, we first identified 
the suitable performance metrics to be used in detecting the 
severity of interference in a robust way without any additional 
energy consumption.  We then presented a distributed method 
to conduct dynamic channel hopping to avoid heavy 
interference. Our proposed schemes was verified through 
extensive experiments and proved its effectiveness and 
performance improvement.  
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Figure 7 Performance improvement of WBSN5 after channel hopping. 
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