1,101 research outputs found

    GOPHER, an HPC framework for large scale graph exploration and inference

    Get PDF
    Biological ontologies, such as the Human Phenotype Ontology (HPO) and the Gene Ontology (GO), are extensively used in biomedical research to investigate the complex relationship that exists between the phenome and the genome. The interpretation of the encoded information requires methods that efficiently interoperate between multiple ontologies providing molecular details of disease-related features. To this aim, we present GenOtype PHenotype ExplOrer (GOPHER), a framework to infer associations between HPO and GO terms harnessing machine learning and large-scale parallelism and scalability in High-Performance Computing. The method enables to map genotypic features to phenotypic features thus providing a valid tool for bridging functional and pathological annotations. GOPHER can improve the interpretation of molecular processes involved in pathological conditions, displaying a vast range of applications in biomedicine.This work has been developed with the support of the Severo Ochoa Program (SEV-2015-0493); the Spanish Ministry of Science and Innovation (TIN2015- 65316-P); and the Joint Study Agreement no. W156463 under the IBM/BSC Deep Learning Center agreement.Peer ReviewedPostprint (author's final draft

    Multi-omics integration accurately predicts cellular state in unexplored conditions for Escherichia coli.

    Get PDF
    A significant obstacle in training predictive cell models is the lack of integrated data sources. We develop semi-supervised normalization pipelines and perform experimental characterization (growth, transcriptional, proteome) to create Ecomics, a consistent, quality-controlled multi-omics compendium for Escherichia coli with cohesive meta-data information. We then use this resource to train a multi-scale model that integrates four omics layers to predict genome-wide concentrations and growth dynamics. The genetic and environmental ontology reconstructed from the omics data is substantially different and complementary to the genetic and chemical ontologies. The integration of different layers confers an incremental increase in the prediction performance, as does the information about the known gene regulatory and protein-protein interactions. The predictive performance of the model ranges from 0.54 to 0.87 for the various omics layers, which far exceeds various baselines. This work provides an integrative framework of omics-driven predictive modelling that is broadly applicable to guide biological discovery

    86 PFLOPS Deep Potential Molecular Dynamics simulation of 100 million atoms with ab initio accuracy

    Full text link
    We present the GPU version of DeePMD-kit, which, upon training a deep neural network model using ab initio data, can drive extremely large-scale molecular dynamics (MD) simulation with ab initio accuracy. Our tests show that the GPU version is 7 times faster than the CPU version with the same power consumption. The code can scale up to the entire Summit supercomputer. For a copper system of 113, 246, 208 atoms, the code can perform one nanosecond MD simulation per day, reaching a peak performance of 86 PFLOPS (43% of the peak). Such unprecedented ability to perform MD simulation with ab initio accuracy opens up the possibility of studying many important issues in materials and molecules, such as heterogeneous catalysis, electrochemical cells, irradiation damage, crack propagation, and biochemical reactions.Comment: 29 pages, 11 figure

    Survey of scientific programming techniques for the management of data-intensive engineering environments

    Get PDF
    The present paper introduces and reviews existing technology and research works in the field of scientific programming methods and techniques in data-intensive engineering environments. More specifically, this survey aims to collect those relevant approaches that have faced the challenge of delivering more advanced and intelligent methods taking advantage of the existing large datasets. Although existing tools and techniques have demonstrated their ability to manage complex engineering processes for the development and operation of safety-critical systems, there is an emerging need to know how existing computational science methods will behave to manage large amounts of data. That is why, authors review both existing open issues in the context of engineering with special focus on scientific programming techniques and hybrid approaches. 1193 journal papers have been found as the representative in these areas screening 935 to finally make a full review of 122. Afterwards, a comprehensive mapping between techniques and engineering and nonengineering domains has been conducted to classify and perform a meta-analysis of the current state of the art. As the main result of this work, a set of 10 challenges for future data-intensive engineering environments have been outlined.The current work has been partially supported by the Research Agreement between the RTVE (the Spanish Radio and Television Corporation) and the UC3M to boost research in the field of Big Data, Linked Data, Complex Network Analysis, and Natural Language. It has also received the support of the Tecnologico Nacional de Mexico (TECNM), National Council of Science and Technology (CONACYT), and the Public Education Secretary (SEP) through PRODEP

    MultiPhyl: a high-throughput phylogenomics webserver using distributed computing

    Get PDF
    With the number of fully sequenced genomes increasing steadily, there is greater interest in performing large-scale phylogenomic analyses from large numbers of individual gene families. Maximum likelihood (ML) has been shown repeatedly to be one of the most accurate methods for phylogenetic construction. Recently, there have been a number of algorithmic improvements in maximum-likelihood-based tree search methods. However, it can still take a long time to analyse the evolutionary history of many gene families using a single computer. Distributed computing refers to a method of combining the computing power of multiple computers in order to perform some larger overall calculation. In this article, we present the first high-throughput implementation of a distributed phylogenetics platform, MultiPhyl, capable of using the idle computational resources of many heterogeneous non-dedicated machines to form a phylogenetics supercomputer. MultiPhyl allows a user to upload hundreds or thousands of amino acid or nucleotide alignments simultaneously and perform computationally intensive tasks such as model selection, tree searching and bootstrapping of each of the alignments using many desktop machines. The program implements a set of 88 amino acid models and 56 nucleotide maximum likelihood models and a variety of statistical methods for choosing between alternative models. A MultiPhyl webserver is available for public use at: http://www.cs.nuim.ie/distributed/multiphyl.php

    Research and Education in Computational Science and Engineering

    Get PDF
    Over the past two decades the field of computational science and engineering (CSE) has penetrated both basic and applied research in academia, industry, and laboratories to advance discovery, optimize systems, support decision-makers, and educate the scientific and engineering workforce. Informed by centuries of theory and experiment, CSE performs computational experiments to answer questions that neither theory nor experiment alone is equipped to answer. CSE provides scientists and engineers of all persuasions with algorithmic inventions and software systems that transcend disciplines and scales. Carried on a wave of digital technology, CSE brings the power of parallelism to bear on troves of data. Mathematics-based advanced computing has become a prevalent means of discovery and innovation in essentially all areas of science, engineering, technology, and society; and the CSE community is at the core of this transformation. However, a combination of disruptive developments---including the architectural complexity of extreme-scale computing, the data revolution that engulfs the planet, and the specialization required to follow the applications to new frontiers---is redefining the scope and reach of the CSE endeavor. This report describes the rapid expansion of CSE and the challenges to sustaining its bold advances. The report also presents strategies and directions for CSE research and education for the next decade.Comment: Major revision, to appear in SIAM Revie

    Diversification In The Neotropics – Evolution And Population Genetics Of The Armored Catfish Hypancistrus Sp. From The Xingu River

    Get PDF
    The Xingu River, one of the largest tributaries of the Amazon River, is currently in peril due to the recent construction of hydroelectric dams, but little is known about the numerous fish species it supports. This dissertation focuses on three pleco catfish species belonging to the genus Hypancistrus from the Xingu River with partially overlapping distributions: H. zebra, H. sp. (L174), and H. sp. (L66/333). Chapter 1 is a bibliographic review of Amazonian freshwater fish diversity, with the goal of discussing the hypotheses of speciation mechanisms that can be tested in this system, including the relative importance of ecological adaptation and vicariance caused by topographical divides and waterfalls and rapids, and arguing this is an important overlooked model for the study of speciation processes. The goal of Chapter 2 was to use genomic data to unravel the basic relationships among eight described and eleven undescribed species belonging to the genus Hypancistrus distributed across the Orinoco and Amazon Basins. The phylogenetic analyses support the existence of two clades corresponding to each basin, but relationships among some of the species are poorly supported. Further exploratory analyses in combination of hypotheses testing indicate there are at least four admixed lineages in the Amazon clade. Chapter 3 investigated the evolution of Hypancistrus from the Xingu River based on genomic data. With dense sampling of H. sp. (L66/333), phylogenetic and population genetic analyses reveal a gradient of genetic structure along the river, with introgression from lineages of Hypancistrus from other Amazon River tributaries close to the mouth of the Xingu. On the upstream limit of the distribution of H. sp. (L66/333), a population hybridized with H. sp. (L174) is found just upstream of waterfalls, that act as a partial barrier to gene flow. Tests for past gene flow suggest there is signal for multiple introgression events between these lineages, but the direction, timing, and intensity of these events is still unclear. Overall, these results indicate the evolution of Hypancistrus was exceptionally complex. Fascinating patterns of diversification are emerging from this system that is unfortunately in risk of extinction due to the impacts of damming
    corecore