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Abstract. Biological ontologies, such as the Human Phenotype Ontol-
ogy (HPO) and the Gene Ontology (GO), are extensively used in biomed-
ical research to investigate the complex relationship that exists between
the phenome and the genome. The interpretation of the encoded in-
formation requires methods that efficiently interoperate between mul-
tiple ontologies providing molecular details of disease-related features.
To this aim, we present GenOtype PHenotype ExplOrer (GOPHER), a
framework to infer associations between HPO and GO terms harness-
ing machine learning and large-scale parallelism and scalability in High-
Performance Computing. The method enables to map genotypic features
to phenotypic features thus providing a valid tool for bridging functional
and pathological annotations. GOPHER can improve the interpretation
of molecular processes involved in pathological conditions, displaying a
vast range of applications in biomedicine.

Keywords: Biological ontologies, Genomics, ML, HPC, Graph explo-
ration.

1 Introduction

Understanding the complex processes taking place in a cell or disease requires
powerful computational frameworks, able to effectively provide meaningful inter-
pretations of large volumes of high-throughput data and clinical information [6].
In the grand challenge of biomedical data integration and interpretation, biolog-
ical ontologies are recognized as essential tools [11]. An ontology is a domain-
specific knowledge formalization, based on sets of entities and relations [16].
Two of the most popular biological ontologies are the Human Phenotype On-
tology (HPO) [12], describing phenome abnormalities, and the Gene Ontology
(GO) [20], describing genome activities.

The integration of multiple ontologies, i.e., ontology mapping or alignment,
is posing great challenges to Artificial Intelligence (AI) [5]. Despite substantial
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efforts have been put on the integration of ontology-based biological informa-
tion [17], computationally tractable approaches exploiting the interconnectivity
between multiple large-scale ontological graphs still needs substantial investiga-
tion. To this aim, it is crucial to design HPC solutions and novel parallel algo-
rithms that support fine-grained parallelism, while overcoming memory costs.

We develop and evaluate GOPHER, a system for the efficient traversing and
exhaustive path enumeration in interconnected biological ontologies, enabled
by the large-scale parallelism and scalability of HPC. In addition to efficient
graph exploration functionalities, GOPHER harnesses machine learning to in-
fer a precise mapping between given ontologies, allowing knowledge processing
and discovery beyond limited cross-references. We applied GOPHER to study
associations between disease-related phenotypic features and distinct molecular
processes in humans, as well as in other model organisms (e.g., mouse and fruit
fly). The approach exploits a very simple and yet very strong principle of biolog-
ical ontologies: Preferential attachment, also known as rich get richer. The huge
accuracy obtained in our experiments illustrates the utility of such property.

2 Related Work and Context

Biological ontologies are widely used. For instance, the functional interpretation
of sets of genes is commonly achieved throught statistical enrichments of on-
tological annotations, such as GO terms [15]. Given the pervasive application
of biological ontologies in the biomedical area, community efforts like the Open
Biomedical and Biological Ontologies (OBO) Foundry [18] have been created to
disseminate best practices and curated corpora of ontologies.

A pivotal application of biological ontologies is to study the relationships be-
tween phenotypic and genotypic characteristics [22,9]. While the genome refers
to the full set of genetic material, the phenome is defined as the totality of all
traits expressed by an organism [1]. Finding associations between the phenome
and genome is of utmost priority in biomedicine as it could lead to the identifi-
cation of the molecular drivers underlying human diseases.

Although genome-wide association studies (GWAS) have been carried out
to dissect phenome-genome associations [19], biological complexity [3] and lack
of consensus on pathogenicity and susceptibility [4] entail great limitations. By
querying on annotated datasets to infer novel associations, the grand challenge of
characterizing phenome-genome relationships would greatly benefit from the fine
mapping of ontological terms that tools such as GOPHER are able to generate.

Along the years, Artificial Intelligence (AI) approaches have enabled to model
the behavior of a given system or agent. Recently, data oriented modeling solu-
tions have been gaining propularity and skill, thanks to the increasing digitaliza-
tion of data. Nowadays, its increasingly frequent to see how simple models and
a lot of data trump more elaborate models based on less data [10]. Furthermore,
when working with biological data, complex and detailed modeling solutions
can be plain unfeasible. For this reason, in this work we chose to produce a
very simple modeling solution which is based on the most basic aspects of inter-
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action, empowered by a network structure thoroughly refined by experts along
years. This is made possible by the power, scalability and parallelism provided
by High-Performance Computing (HPC). A series of popular graph processing
frameworks already exist (e.g., igraph, networkX), however, since our task is
highly specific, we choose to implement an ad-hoc solution which can be thor-
oughly optimized.

HPC systems allow to process data and run complex computations at a high
degree of productivity (in terms of runtime speed, memory usage, or allowed stor-
age). These HPC solutions are commonly based on supercomputers, containing
thousands of compute nodes (e.g., processors) working together to complete one
single task (i.e., parallel processing).

In order to manage such a complex scenario exist a vast number of tools
that ease the use of HPC systems by abstracting the user from the underlying
architecture: the Message Passing Interface (MPI) [13] is the most used parallel
programming model in distributed systems (where memory is not shared, and
thus the data must be explicitly sent by messages); the Open Multi-Processing
(OpenMP) [14] is the standard de facto parallel programming model for shared
memory environments (where the communication is done implicitly via the same
Memory Address Space); and/or the OpenMP SuperScalar (OmpSs) [7], a task-
based parallel programming model, considered as a forerunner for OpenMP (its
ideas have been transferred into the OpenMP standard on several occasions).

3 GOPHER: Analysis, Design, and Implementation

Our goal is to predict when a pair of ontology terms, henceforth referred to as
<genotype, phenotype>, could be directly associated through an intermediate
gene. We build a model to represent direct association, and another to represent
the lack of direct association. Given both models we can measure the probability
with which a new pair belongs to either one of those. To build these models we
use examples from the ontologies. Models are designed to strive for simplicity,
prioritizing volume over complexity. To that end, we estimate the distribution
of distinct paths (of a given maximum length) that connect <genotype, pheno-
type> pairs for both sets. We hypothesize that the type of path (the ordered
sequence of vertex type traversed) may contribute to an accurate modeling.

For simplicity, we assume that the frequency of type of path follows a Gaus-
sian distribution, which has amean and standard deviation that can be estimated
empirically. We note that this assumption is taken due to the unimodal distri-
bution empirically observed, and we use the pervasive Gaussian to be able to
perform inference. Therefore, given a <type of path, number of paths>, we can
compute the probability of that number of paths being generated by each of the
two corresponding gaussians (one for each of the two sets) using Eq. 1.

P (c|µ, σ) = 1

σ
√
2π
e−(x−µ)

2/2σ2

(1)

By making the quotient of these two probabilities we obtain the odds of each
path type. We model the odds of connection of a new pair as the product of



4 Marc Josep-Fabregó, Xavier Teruel, Victor Gimenez-Abalo, et al.

each path-specific odds, for a finite number of path types (i.e., all paths up to a
maximum length) as seen in Eq. 2.

Odds(connected|Counts) =
∏

pt∈pathtypes

P (Count(pt)|µcon(pt), σcon(pt))
P (Count(pt)|µdiscon(pt), σdiscon(pt))

(2)

3.1 Analysis of requirements

Modelling the association between <genotype,phenotype> pairs is subject to
scientific investigation. It is desirable that both the design and the implemen-
tation of the system is highly programmable. Besides programmability, we also
pursue a modular design to enable possible extensions of the system components.

GOPHER offers an efficient solution to modelling an embarrasingly parallel
problem. Indeed, building the model is achieved by sampling pairs of directly
associated (or not) pairs and finding all possible paths of a maximum length
taking from one element of the pair to the other. Meanwhile, the total number
of possible pairs to sample from is huge, which calls for a parallel approach.

3.2 Design and implementation

Graph topology We create a comprehensive graph based on the relationships
between phenotypes, genotypes, and genes. Figure 1 shows an example of this
graph’s structure. Ontology relations between phenotypes (blue nodes) and geno-
types (green nodes) are shown as pointed arrows, and association to genes (red
nodes) as dashed lines.

Fig. 1: Example of the graph’s structure.
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We define a type of path as the sequence of steps between two nodes in the
graph, according to the nature of each one. We label phenotypes as ‘p’, geno-
types as ‘g’ and genes as ‘G’. Then, a path of type ppGg starts on a phenotype
(p), connects to another phenotype (p) (either its parent or its child), which is
associated to a gene (G), which in its turn is finally associated to a genotype (g).
We also define as a “directly associated pair” a pair of phenotype and genotype
where there exists at least one path of type pGg.

Data structures An element is the basic component of the graph, and it can
either be a phenotype, a genotype or a gene. In terms of implementation and
of element structure, there is no difference between phenotypes, genotypes, and
genes. As depicted in Figure 2a, an element has the following fields:

(a) Structure of an element. (b) Map and vector structures.

Fig. 2: Ontology and pool structures used to represent a GOPHER graph.

– Id: The identifier is an integer defined by the input files. Not all sequential
integer values need to be defined (i.e., phenotype 4 may exist without the
need of the existence of phenotype 3).

– Index: The index is an integer defined by the application. The index can
take values from zero up to the total number of nodes minus one (no gaps,
no duplications within each ontology).

– Children: Vector of pointers to all the children of the element. If the element
is a leaf or a gene, this vector will be empty.

– Parents: Vector of pointers to all the parents of the element. If the element
is a root or a gene, this vector will be empty.

– Neighbours: According to the element type, these vectors can have two
differents uses:
• If the element is a phenotype or genotype, it will have a single vector con-

taining pointers to its associated genes. It may be empty if the element
has no associations.



6 Marc Josep-Fabregó, Xavier Teruel, Victor Gimenez-Abalo, et al.

• If the element is a gene, it will have two vectors, one containing pointers
to its phenotypes associations, and another one pointing the its geno-
types associations. Vectors may be empty, if the gene has no associations
to one of the two ontologies.

Each ontology and the gene pool are defined by two different types of struc-
tures (see Figure 2b). First, the Map structure allows to access any element of
the graph providing its Id as the key value. Second, the Vector structure allows
to access any element of the graph providing its Index as a key value (i.e., which
actually matches with its position in the vector)3.

Algorithms GOPHER’s core algorithm is a recursive exploring function, which
searches for all existing paths between a given pair of elements. Using this core
algorithm, we centered on two different functionalities:

– Number of paths for each path type: for each phenotype-genotype pair,
we search for the number of existing paths following each of the possible path
type patterns up to a given maximum length (e.g., 5).

– Average number of paths of a given path type: for each phenotype-
genotype pair, we search for the number of existing paths following the pat-
tern of a given path type. The obtained data is then aggregated in order to
produce the average and the standard deviation.

Due to the high computational cost of these functions, we implemented the
option to only explore a random part of those pairs.

MPI Parallelization To avoid unneeded MPI communication between pro-
cesses, there is no graph data distribution; all processes read the input files an
populate a whole graph each. Our first MPI parallelization approach consists of
equally distribute one of the two ontologies (e.g., phenotypes) between the pro-
cesses, and each process explore the pairs starting from its assigned elements.

When finding the number of paths for each path type, no additional commu-
nication is needed (see Algorithm 1). Instead, when we want the average number
of paths of a certain path’s type and its standard deviation, we need to share
the results between processes to calculate the average values after all processes
have finished its assigned iterations. Algorithm 2 describes this functionality.
We can see that there are two communication phases. The first one adds up
the obtained number of paths and pairs from all processes, so each process can
calculate the global average number of paths per pair. When all processes have
the average value, each one calculates its local standard deviation. During the
second communication phase, the local standard deviations values are reduced
at the first process, which afterward calculates the global standard deviation.

This first approach of distributing phenotypes among MPI processes pro-
duces a huge load imbalance between processes. We tracked the origin from this
3 Vectors are parallel-friendly structures that allow to easily split the elements among
different compute elements.
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Algorithm 1 MPI parallelization without communication
1: chSize← Ontology 1 size / num Ranks
2: (start, end)← (my Rank ∗ chSize,my Rank ∗ chSize+ chSize)
3: for i← start, end do
4: for j ← 0, Ontology 2 size do
5: for k ← 0, num path types do
6: Search Paths(Ontology 1(i), Ontology 2(j), path type(k))

Algorithm 2 MPI parallelization with communication
1: chSize← Ontology 1 size / num Ranks
2: (start, end)← (my Rank ∗ chSize,my Rank ∗ chSize+ chSize)
3: (nPaths, nPairs)← (0, 0)
4: for i← start, end do
5: for j ← 0, Ontology 2 size do
6: nPaths← nPaths+ Search Paths(Ontology 1(i), Ontology 2(j), path type)
7: nPairs← nPairs+ 1

8: MPI_AllReduce (nPaths, nPairs)
9: (average, st dev)← (nPaths/nPairs, Calculate Local St Dev)
10: MPI_Reduce (st dev)
11: if my Rank = 0 then
12: st dev ← Calculate Overall St Dev

imbalance down to the number of direct connections per element. As can be
seen in Figure 3, there is a correlation between the average number of first-
degree connections the elements assigned to a processor have and the time it
takes to explore the paths starting from these elements.

Fig. 3: Correlation between the average number of connections per element and
the useful execution time per thread ID.
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To improve the load balance, we change the work distribution policy. As
described in Algorithm 3, the new approach distributes the elements from the
starting ontology among processes based on the number of the first-degree con-
nections. First, we calculate the total number of connections, and then we dis-
tribute the phenotypes between the MPI processes trying to keep this number
balanced among processes. In Section 4 we will compare these two versions.

Algorithm 3 MPI parallelization with new work distribution
1: total work ← 0
2: for i← 0, Ontology 1 size do
3: total work ← total work + connections(i)

4: chSize← total work / numRanks
5: (start, end)← (begin(my Rank, chSize), end(my Rank, chSize))

OpenMP/OmpSs Parallelization A second level of parallelism based in
shared memory has been implemented to palliate even more the imbalance
problem previously described. OpenMP and other parallel programming models
based on shared memory are inherently easier to load balance, as the threads
share memory is easy to redistribute work among them without data exchange.

In our case we use OmpSs, as it offers the same benefits as OpenMP but it
simplifies the use of task reductions and, in addition, it has better interoperability
with respect to future techniques we also want to analyze in the future (see
Section 5). Our approach is to create a task per path exploration function call.

Algorithm 4 OmpSs parallelization with reduction
1: (nPaths, nPairs)← (0, 0)
2: for i← start, end do
3: for j ← 0, Ontology 2 size do
4: # pragma omp task reduction(+, nPaths)
5: nPaths← nPaths+ Search Paths(Ontology 1(i), Ontology 2(j), path type)
6: nPairs← nPairs+ 1

7: # pragma omp taskwait / barrier
8: MPI All Reduce (num paths, num pairs)
9: (average, st dev)← (nPaths/nPairs, 0)
10: # pragma omp parallel for reduction(+, st dev)
11: for i← 0, start− end do
12: st dev ← st dev + (nPaths(i)− average)2

13: MPI Reduce (st dev)

In addition, when we calculate the average number of paths of a certain type,
we need to perform a local reduction on the number of found paths. In this case,
we also parallelize the computation of the standard deviation. This approach
can be seen in Algorithm 4.
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4 Experimental Results

We obtained all the results on the MareNostrum IV system located at the
Barcelona Supercomputing Center. Each node contains two Intel Xeon Platinum
8160, each one with 24 processors running at 2.1 GHz and 33 MB L3 Cache.
Memory is organized in two NUMA sockets (i.e., one socket per processor), with
a total amount of 192GB per socket (high-mem nodes).

For software, we used: GNU Compilers Collection (gcc) version 7.2.0, Mer-
curium source-to-source compiler (mcxx) version 2.3.0, Nanos++ Runtime Li-
brary version 0.16a, and the OpenMPI Message Passage Interface version 3.1.1.

4.1 Evaluation of model results

As introduced in Section 3.2, we estimate the parametres of the gaussians for
each path type, so that we can perform inference on unseen pairs by using the
odds ratio. To validate we use the Receiver Operating Characteristic (ROC) and
Precision-Recall (PR) curves, which illustrate overall performance. These curves
are typically evaluated through the area-under-the-curve (AUC). To validate the
outcomes of GOPHER, we evaluate under the following conditions:

– Ontologies: GO and HPO, only human, version: January 2019.
– Path size: all types of paths with size 4 or 5 elements.
– Pairs nature: from phenotypes to genotypes.
– Samples: 85,750 randomly sampled pairs.
– Direct edge removal: yes4.

We estimate the components of the gaussians required for classification using
an equal number of connected and disconnected pairs. To validate the classifi-
cation results we extract the ROC and PR curves from the odds ratio obtained
from Eq. 2, from 85,750 pairs of each type (different from the previous ones). The
AUC of both curves is 0.96, significantly close to perfect performance (i.e., 1).
This means that, even though we removed relevant information (the edges con-
necting pairs directly in the graph), our classifier is able to correctly discriminate
connected from disconnected pairs with minimal error. Further experimentation
on older versions of the ontology is not conducted, as these are known to include
a significant amount of noise [21]

4.2 Performance results

Performance experiments have been executed with the algorithm Number of
paths for each path type (as described in Section 3.2). The decision is based
upon the complexity of the function, which clearly shows the imbalance problem
between MPI processes. It is also the most relevant function for our studies. For
experimenting purposes, we have run this function with the following parameters:
4 Path frequencies for connected pairs are computed without considering the edges that
directly connect the phenotype and genotype to the same gene, to avoid biasing the
model towards already existing pairs.



10 Marc Josep-Fabregó, Xavier Teruel, Victor Gimenez-Abalo, et al.

– Ontologies: GO and HPO, only human, version: January 2019.
– Path size: all types of paths up to a size of 5 elements.
– Pairs nature: from phenotypes to genotypes.
– Samples: 100,000 randomly sampled pairs (constant seed).
– Direct edge removal: yes.

The timing results have been collected only from the computation (graph
exploration) phase, since it takes most of the execution time in relevant cases.
Previous phases, such as graph population and work distribution between pro-
cesses, have been ignored.

Both versions of the algorithm have been tested and compared. In the initial
version (labeled as baseline in Figure 4), we equally distribute elements from
the origin ontology just considering the number of elements (see Algorihthms 1
and 2). While in the second version, labeled as balancing in the same Figure,
we try to equally distribute the number of direct connection from the origin
ontology (see Algorithm 3) rather than just the number of elements.

0

500

1.000

1.500

T
im

e 
(s

)

MPI X Threads

Baseline
Balancing

Fig. 4: Overall performance results (including baseline and balancing).

When we execute enabling none of those optimizations, shown as blue bars
in Figure 4, in all the case we achieve our better results when we running a
MPI-Threads configuration which uses a high number of threads (and, there-
fore, a small number of MPI processes). This is because imbalance problems in
GOPHER reside mostly in its MPI parallelization, not in OmpSs’.

When we apply the MPI balancing technique, depicted in orange bars in
Figure 4, we achieve an average speedup of 4,24x (comparing balancing with non-
balancing versions) for the cases with 1, 2 and 4 threads for each MPI processes,
and of 3,21x for the case with 24 threads per MPI process (mostly due to the
lower baseline). When executing within a single node (i.e., first pair of columns
in each group: 48x1, 24x2, etc.) is when it yields a higher impact, showing no
significant differences among the different MPI-Threads configurations. As we
increase the number of nodes, this version produces better results with higher
thread counts, the gap getting wider with each additional node.
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5 Conclusions and Future Work

In this paper we introduce the GOPHER framework for large graph exploration
and inference, specially designed to run on HPC systems. GOPHER is developed
to investigate the relationship between the phenome and genome using machine
learning techniques to infer these complex relationships. In particular, it enables
to estimate the likelihood that two ontology terms are associated when missing
a direct connection through a co-annotated gene.

The work presented is extremely interdisciplinary, starting at understanding
the biological questions that we want to answer through preferential attachment.
We use a machine learning approach to infer associations between HPO and
GO terms while working on large graphs. Built on top of an HPC oriented
framework, designed to be modular and adaptable to solve a broad range of
questions regarding a variety of ontologies.

We show that our approach obtains an AUC score of 0.96 over 1. We have also
studied the parallel performance of GOPHER detecting that the main issue is
related to the inherent load imbalance produced by the disparity in the number
of connections. To address this issue we present an improved load balancing
implementation, the evaluation shows that the load balancing implementation
can overcome the performance loss due to the different number of connections
and that it can scale up to 32 nodes with a relative speed-up of 4.24x.

This work opens a wide range of future work opportunities, we plan to study
in detail the performance of GOPHER to find optimization opportunities in dif-
ferent architectures, including the use of a Dynamic Load Balancing library [2,8].
We will apply GOPHER to actionable use cases, such as anticancer treatment
recommendations, as well as other biological ontologies, such as those of key
model organisms (mouse and fruitfly).
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