12,876 research outputs found

    Feedback Generation for Performance Problems in Introductory Programming Assignments

    Full text link
    Providing feedback on programming assignments manually is a tedious, error prone, and time-consuming task. In this paper, we motivate and address the problem of generating feedback on performance aspects in introductory programming assignments. We studied a large number of functionally correct student solutions to introductory programming assignments and observed: (1) There are different algorithmic strategies, with varying levels of efficiency, for solving a given problem. These different strategies merit different feedback. (2) The same algorithmic strategy can be implemented in countless different ways, which are not relevant for reporting feedback on the student program. We propose a light-weight programming language extension that allows a teacher to define an algorithmic strategy by specifying certain key values that should occur during the execution of an implementation. We describe a dynamic analysis based approach to test whether a student's program matches a teacher's specification. Our experimental results illustrate the effectiveness of both our specification language and our dynamic analysis. On one of our benchmarks consisting of 2316 functionally correct implementations to 3 programming problems, we identified 16 strategies that we were able to describe using our specification language (in 95 minutes after inspecting 66, i.e., around 3%, implementations). Our dynamic analysis correctly matched each implementation with its corresponding specification, thereby automatically producing the intended feedback.Comment: Tech report/extended version of FSE 2014 pape

    The KB paradigm and its application to interactive configuration

    Full text link
    The knowledge base paradigm aims to express domain knowledge in a rich formal language, and to use this domain knowledge as a knowledge base to solve various problems and tasks that arise in the domain by applying multiple forms of inference. As such, the paradigm applies a strict separation of concerns between information and problem solving. In this paper, we analyze the principles and feasibility of the knowledge base paradigm in the context of an important class of applications: interactive configuration problems. In interactive configuration problems, a configuration of interrelated objects under constraints is searched, where the system assists the user in reaching an intended configuration. It is widely recognized in industry that good software solutions for these problems are very difficult to develop. We investigate such problems from the perspective of the KB paradigm. We show that multiple functionalities in this domain can be achieved by applying different forms of logical inferences on a formal specification of the configuration domain. We report on a proof of concept of this approach in a real-life application with a banking company. To appear in Theory and Practice of Logic Programming (TPLP).Comment: To appear in Theory and Practice of Logic Programming (TPLP

    Symbolic Exact Inference for Discrete Probabilistic Programs

    Full text link
    The computational burden of probabilistic inference remains a hurdle for applying probabilistic programming languages to practical problems of interest. In this work, we provide a semantic and algorithmic foundation for efficient exact inference on discrete-valued finite-domain imperative probabilistic programs. We leverage and generalize efficient inference procedures for Bayesian networks, which exploit the structure of the network to decompose the inference task, thereby avoiding full path enumeration. To do this, we first compile probabilistic programs to a symbolic representation. Then we adapt techniques from the probabilistic logic programming and artificial intelligence communities in order to perform inference on the symbolic representation. We formalize our approach, prove it sound, and experimentally validate it against existing exact and approximate inference techniques. We show that our inference approach is competitive with inference procedures specialized for Bayesian networks, thereby expanding the class of probabilistic programs that can be practically analyzed

    Multi-cultural visualization : how functional programming can enrich visualization (and vice versa)

    Get PDF
    The past two decades have seen visualization flourish as a research field in its own right, with advances on the computational challenges of faster algorithms, new techniques for datasets too large for in-core processing, and advances in understanding the perceptual and cognitive processes recruited by visualization systems, and through this, how to improve the representation of data. However, progress within visualization has sometimes proceeded in parallel with that in other branches of computer science, and there is a danger that when novel solutions ossify into `accepted practice' the field can easily overlook significant advances elsewhere in the community. In this paper we describe recent advances in the design and implementation of pure functional programming languages that, significantly, contain important insights into questions raised by the recent NIH/NSF report on Visualization Challenges. We argue and demonstrate that modern functional languages combine high-level mathematically-based specifications of visualization techniques, concise implementation of algorithms through fine-grained composition, support for writing correct programs through strong type checking, and a different kind of modularity inherent in the abstractive power of these languages. And to cap it off, we have initial evidence that in some cases functional implementations are faster than their imperative counterparts

    Canonical Abstract Syntax Trees

    Get PDF
    This paper presents Gom, a language for describing abstract syntax trees and generating a Java implementation for those trees. Gom includes features allowing the user to specify and modify the interface of the data structure. These features provide in particular the capability to maintain the internal representation of data in canonical form with respect to a rewrite system. This explicitly guarantees that the client program only manipulates normal forms for this rewrite system, a feature which is only implicitly used in many implementations

    Implementing and reasoning about hash-consed data structures in Coq

    Get PDF
    We report on four different approaches to implementing hash-consing in Coq programs. The use cases include execution inside Coq, or execution of the extracted OCaml code. We explore the different trade-offs between faithful use of pristine extracted code, and code that is fine-tuned to make use of OCaml programming constructs not available in Coq. We discuss the possible consequences in terms of performances and guarantees. We use the running example of binary decision diagrams and then demonstrate the generality of our solutions by applying them to other examples of hash-consed data structures
    corecore