
This is a repository copy of Multi-cultural visualization : how functional programming can
enrich visualization (and vice versa).

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/1895/

Book Section:

Borgo, Rita, Duke, David, Wallace, Malcolm et al. (1 more author) (2006) Multi-cultural
visualization : how functional programming can enrich visualization (and vice versa). In:
Vision, Modeling, and Visualization 2006 : Proceedings, November 22 - 24, 2006. AKA
Verlag - IOS Press , pp. 245-252.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

VMV Copyright Notice

Title of Work: Multi-cultural visualization: How functional
programming can enrich visualization (and vice versa)

Author(s): Rita Borgo, David Duke, Malcolm Wallace, Colin
Runciman

Publication in the Proceedings of Vision, Modeling, and
Visualization 2006,
edited by T. Aach, C. Bischof, L. Kobbelt, R. Westermann

Copyright to the above work (including without limitation, the right
to publish the work in whole or in part in any and all forms of media,
now or hereafter known) is owned by the editors of Vision,
Modeling, and Visualization 2005. However, the authors are
permitted to publish author-versions of preprints. They must be
limited to non-commercial and personal use by others. If you agree
to these terms and are eligible for obtaining a copy, you may
continue. Otherwise, please contact http://www.aka-verlag.de

Multi-cultural visualization: How functional programming can enrich

visualization (and vice versa)

Rita Borgo†, David Duke†, Malcolm Wallace‡, Colin Runciman‡

†School of Computing ‡Dept. of Computer Science

University of Leeds University of York

Leeds, UK York, UK

Email: {rborgo,djd}comp.leeds.ac.uk {\{Malcolm.Wallace,Colin.Runciman}\}cs.york.ac.uk

Abstract

The past two decades have seen visualization flour-

ish as a research field in its own right, with ad-

vances on the computational challenges of faster

algorithms, new techniques for datasets too large

for in-core processing, and advances in understand-

ing the perceptual and cognitive processes recruited

by visualization systems, and through this, how

to improve the representation of data. However,

progress within visualization has sometimes pro-

ceeded in parallel with that in other branches of

computer science, and there is a danger that when

novel solutions ossify into ‘accepted practice’ the

field can easily overlook significant advances else-

where in the community. In this paper we de-

scribe recent advances in the design and implemen-

tation of pure functional programming languages

that, significantly, contain important insights into

questions raised by the recent NIH/NSF report on

Visualization Challenges. We argue and demon-

strate that modern functional languages combine

high-level mathematically-based specifications of

visualization techniques, concise implementation of

algorithms through fine-grained composition, sup-

port for writing correct programs through strong

type checking, and a different kind of modularity in-

herent in the abstractive power of these languages.

And to cap it off, we have initial evidence that in

some cases functional implementations are faster

than their imperative counterparts.

1 Visualization Goals

Visualization as a discipline is a relatively new con-

cept. In 1987 the U.S. National Science Foundation

(NSF) established a Panel of experts [1] to report

on the state and potential of visualization as a new

science, bringing together graphics and computa-

tional technologies. This was not the first promi-

nent call to focus attention on visualization; as far

back as 1966, Sutherland [2], following the tradition

common to scientists and mathematicians of creat-

ing lists of important open problems to focus at-

tention, had compiled a list of ‘unsolved problems’

in computer graphics. Nor was the 1987 NSF re-

port the last word; several new lists have been com-

piled since: a 1994 special Issue of IEEE Computer

Graphics and Applications [17] was dedicated en-

tirely to research issues in scientific visualization;

in 1999 Hibbard [4] created a list of the top ten visu-

alization open problems; and Johnson [5] presented

a list of the most important issues crucial to the de-

velopment of research in scientific visualization, a

subset of which can be found in the recent official

NIH/NSF report on Visualization Challenges [19].

Identifying a problem is a prerequisite to its so-

lution, and such lists of open problems help to eval-

uate the state of the art of a field and suggest new

research directions. In the context of this paper we

take the 2006 NIH/NSF report as representative of

the major issues raised by the visualization commu-

nity. The report is broad, and contains questions we

do not even consider here. Rather, we focus our at-

tention on a subset of the open problems, which we

will look at from a perspective that spans research

in both visualization and functional languages.

An important statement made by the report is that

there is currently a need for approaches that go be-

yond incremental improvements. The capability of

evaluating results, sharing of resources, integrating

with other disciplines represents a fundamental step

towards an answer to visualization challenges. To

achieve the result the NSF panel nominated several

interesting areas of action:

Domain Integration and Collaboration with

Neighbouring Disciplines. There is a need at the

domain level to focus on real rather than ideal data,

addressing aspects like heterogeneity, change over

time, error and uncertainty, scale and data scope.

Scientific visualization is a cross-disciplinary pro-

cess, statistics, data mining and image processing

techniques play an important role in the understand-

ing of a phenomena. New applications need to be

able to easily integrate with techniques and tools

coming from other disciplines.

Exploration of Novel Visualization Techniques

and Metaphors. As datasets keep growing both

in size and complexity, there is a need for ex-

ploration of new visualization techniques and ap-

proaches. Challenges coming from heterogeneous,

multivariate, dynamic data require to easy iden-

tify and qualify the design space of visualization

techniques. Heterogeneities and complexity apply

not only to datasets but also hardware resources.

Rapid technology development asks for flexible

techniques able to cope with the wide variety of

available devices: high resolution and lightweight

projectors, flat panel displays, ubiquitous technolo-

gies etc.

Systems Evaluation. The field of visualization

has unique evaluation challenges. Quantitative

evaluation can be easily performed, measuring

time and memory required by an application or

algorithm, however such metrics do not provide

any information about the qualitative impact of a

system. Case studies are a means to achieve such an

evaluation although they come at a stage where the

system design has been already settled and is hard

to modify deeply. The ability to develop prototype

systems and perform usability studies is a winning

quality. Although the outgrowth of these qualities

relies in the ontological organization of the visu-

alization process itself and in the formalization of

visualization design. Formalization of visualization

techniques and approaches (expressiveness of tools

and design principles) would help in answering not

only ‘whether’ something helps but also ‘why’ and

‘how’.

Scalability, efficiency in utilizing novel hard-

ware, multifield visualization, visual abstraction

are all requirements to allow visualization to

move from being seen as a postprocessing step of

the scientific computing pipeline, to represent a

more complex discipline able to merge different

aspects of a common target: modeling, simulation

and visualization of data. In the spirit of exper-

imenting with novel approaches, we present in

Section 2 some interesting aspects of functional

programming that seem to answer some of the

desired requirements outlined throughout the NSF

report. We then take surface fitting techniques as

an example and show in Section 3 results obtained

by applying our approach to a well-known surface

extraction algorithm: contour following.

2 Functional Programming Goals

Functional programming has at times been seen

as an academic tool, an elegant but computation-

ally expensive way of expressing basic problems

like the Fibonnaci series or the Towers of Hanoi,

or an obscure notation used in esoteric branches

of AI such as theorem proving. While this could

be partially true for earlier functional languages

like Lisp, it no longer holds as a generalization.

Modern functional languages such as Haskell [25],

Gofer and Clean [24] have expressive polymorphic

type systems and are inherently lazy; that is, un-

like languages such as Lisp and ML, an expres-

sion is evaluated at most once, if its result is re-

quired to construct an output. They have been

used within scientific domains and in graphics. For

example, Chakravarty and Keller [14] develop a

Haskell library to solve some of the problems aris-

ing from sparse matrix multiplications, while Kar-

czmarczuk [7] expresses some of the fundamentals

of Quantum Mechanics in Haskell. Both Haskell

and Clean have been employed in the development

of videogames platforms including texture gener-

ation [15] and mapping [8]. We consider visual-

ization applications separately. Our concern here

is how functional programming provides a view

on NSF report challenges, different from the more

incremental perspective of the technologies ‘tradi-

tionally’ used in visualization.

Functional Languages as a Specification Tool

The importance of a flexible type system is too of-

ten overlooked; the polymorphic system used in

functional languages, and the fact that programs

are constructed by composition of small(er) func-

tions, means that type definitions act as a form of

machine-checkable documentation. One finds that

once a functional program is compile-time correct,

there is more likelihood that it is run-time correct

than for other classes of language, both because

the type system captures more (e.g. constraints on

types), and because through fine-grained composi-

tion, it is harder to put together two components

that don’t make sense. Dually, function specifica-

tion deals only in data-flow, what the function does;

there is no prescription of how the result is com-

puted1. Programs expressed in a functional lan-

guage are also concise, making it easier to com-

prehend significant computational patterns directly.

In contrast, description of imperative algorithms re-

quire more use of natural languages to distinguish

the ‘what’ from the ‘how’; and the pitfalls of natu-

ral languages as a specification technique are well

known.

Heterogeneity of data and data-structure A

polymorphic function is one that is independent of

the type of data on which it operates; for example,

computing the length of a list is independent of the

kind of data held in the list. Polymorphism sup-

ports one kind of generic programming, but recent

advances in this area make it possible to go further.

A polytypic function is generic over the organiza-

tion of its data; thus a polytypic ‘size’ function can

generalize the notion of ‘length’ from just lists to a

whole class of data organization that includes trees

and queues. Such a function is written only once,

defined over the structure of types, and can then be

applied to most types. The ability of generic pro-

gramming to address heterogeneity issues in visu-

alization draws critically on the ‘functional’ aspect

of FP. Functions are first-class citizens: they can

be passed as parameters, and returned as results,

from so-called higher-order functions. These ab-

stract from common patterns of computation, for

example we can map a function over a data struc-

ture to produce a new version of the structure but

where individual data have been transformed by the

function.

System Evaluation Although functional pro-

grams can be judged quantitatively just like their

1This applies also to seemingly ‘imperative’ features like IO

and exception handling, which in functional languages are handled

through composition of commandswithin a mathematical structure

called a monad.

imperative counterparts, they also admit to a quali-

tative evaluation. The inherent mathematical struc-

tures and foundations of systems based on func-

tional programming make them amenable to proof

of correctness:

• each function in a program corresponds to a

referentially transparent equation, i.e. it is in-

dependent of any dynamic global state

• each side-effect-free equation can therefore be

tested or analysed separately from the rest of

the code, with full confidence of completeness.

Functional programs can be used as specification of

final products that will be implemented in a proce-

dural language thus acting as an executable speci-

fication of an algorithm while being a program as

well. This property makes them suitable to be used

for prototyping, furthermore since they resemble

a collection of mathematical equations, functional

programs are ruled by the ordinary laws of mathe-

matics and thus easier to derive, transform and ver-

ify.

With respect to the need for novel approaches to

visualization, the use of functional languages meets

the requirement. There has been some effort carried

out in the visualization and related fields. In [10] El-

liott presents a purely functional Haskell-embedded

language for 3D graphics cards, the language in-

tegrates procedural surface modeling, shading and

texture generation. A less ambitious, but not less in-

teresting, project has been performed in [11] where

Fokker provides a functional specification of the

JPEG algorithm, showing the gain in terms of clar-

ity and readability of the code obtained through the

functional implementation of a complex graphics

algorithm. Another work worth mentioning is Page

and Moe [12] where the authors report earliest re-

sults on the development of a reservoir simulation

system in a purely functional language. An impor-

tant issue raised by the Page and Moe paper is that

of the ability of functional languages to scale to dis-

tributed or parallel kinds of resources. Functional

programs are inherently parallelizable if we take

into consideration that the evaluation of an expres-

sion cannot have side effects, independent subex-

pressions can be evaluated in any order or in par-

allel. In the next section we present some of the

results obtained and limits encountered in merg-

ing functional languages with classic visualization

problems like surface fitting techniques.

3 Merging The Two Views

As a starting benchmark and illustrative exam-

ple, we choose a widely used surface extraction

algorithm—contour following—and the lazy func-

tional language Haskell, to show the benefits of

clear and concise expression combined with fine-

grained, demand-driven computation. As visualiza-

tion provides insight into data, functional abstrac-

tion provides new insight into visualization.

3.1 Contour Following Functionally

Contour following defines a class of algorithms

which are capable of preserving both coherence and

connectivity of cells. The algorithm’s behaviour

can be summarized as follow:

1. choose a cell that intersects with the field

value;

2. construct the surface representing the intersec-

tion of cell and field;

3. for each face of the cell that intersects with this

surface, the adjacent cell must also intersect

with the surface;

4. follow the surface into each adjacent cell re-

peating steps 2 to 4 for that cell.

The aforementioned process guarantees continuity

and topological connectivity of the generated con-

tour, cells are reached through a path of neighbours

and inspected only if intersected by the contour.

The contour following method sketched above pro-

duces only a single connected contour, however a

single field value usually corresponds to multiple

contours and therefore multiple starting cells are

needed. Such cells are called seeds, and a set of

cells that represent the starting point from which

all possible contours in a field can be generated is

called a seed set. A seed cell is traditionally com-

posed by three fields: an identifier within the seed

set, its (i,j,k) indices within the dataset and the range

of spanning values. Our implementation of the seed

structure in Haskell looks as follows:

data Seed a = S PostCode Address (Range a)
deriving (Eq, Show)

type PostCode = Int

type Address = (Int, Int, Int)

data Range a = Range a a
| Empty deriving (Eq, Show)

A seed cell is represented as an algebraic data

type. Algebraic data types in Haskell are intro-

duced by the keyword data, followed by the name

of the type (in our example Seed), an equal sign

and then the constructors (in our example S) of

the type being defined. A constructor builds a

record from several other types (here, PostCode,

Address, and Range are the components of a

Seed), and can also be used to pattern-match (or

destruct) a record.2 The name of types and of con-

structors begin with capital letters. The type vari-

able (lower-case a) in the Seed type indicates that

the type of the samples themselves is generic (poly-

morphic). Generic programming is an important

concept for software development and many mod-

ern programming languages provide support for it.

Haskell itself provides polymorphic functions and

datatypes which together are sufficient to imple-

ment polymorphic data structures. As for [16] with

respect to generics, modern functional languages

provide an expressive power which languages like

Java, C# and C++ still lack (although language sup-

port for generics of these language is continuing to

evolve). In the present context genericity is shown

in the possibility to reuse the algorithm with bytes,

signed words, floats, complex numbers, and so on

without change, although it could be pushed much

further.

The types PostCode and Address are declared

as synonyms for a triple and an integer element.

Range is another algebraic data type, polymorphic

on the type variable a, as previously explained, and

with two constructors, Range and Empty, which

define respectively a proper Range with two ex-

tremes (a a) or an Empty range. The deriving

clause after the Seed (and Range) datatype decla-

ration states that the compiler shall implicitly pro-

duce an instance of the classes Show and Eq for the

newly defined datatype Seed. Both Show and Eq

are built-in classes of Haskell; deriving Show

tells the compiler that it can automatically derive

a suitable implementation for the show and read

functions; deriving Eq tells the compiler that

it can generate a suitable implementation for equal-

ity ==. Haskell’s classes have a surface similarity to

2In general, a data definition may introduce several al-

ternative constructors for a given type; for example, a type

Dataset that allowed both regular and rectilinear grids

might appear as Dataset a = Reg XYZ [a] | Rect

([Float],[Float],[Float]) [a]. Different kinds of

dataset are then distinguished by their constructor.

object oriented classes, but in fact the system is in-

dependent of any specific data representation; only

the common behaviours are factorized. This allows

to model properties retroactively, currently avail-

able only in Haskell and ML derived languages.

Let’s move to the real algorithm specification. In

the Haskell implementation we have split the con-

tour following algorithm into two main functions:

• Traverse Seeds: which given a seed set and a

threshold value, searches the seed set for all

the cells that constitute a seed for the given

value;

• Grow Contour: which given a seed grows the

contour, following the contour path through

cells adjacent to the seed.

In Haskell:

traverse_seeds :: Dataset a → a → [Seed a]
→ [Triangle]

grow_contour :: Dataset a →a →a →[Triangle]

These two declarations represent the type sig-

natures of the functions. The first type signature

shows that traverse seeds takes three argu-

ments, a dataset, a value and a list of seeds (i.e.

the seed set), and returns a list of Triangles approx-

imating the surface (the triangles can be directly

fed up into OpenGL through the Haskell wrapper

HOpenGL for rendering). We skip the trivial def-

inition of the Dataset datatype since it is se-

mantically similar to the earlier datatype definition

for Seed. The second type signature shows that

grow contour takes three arguments, a dataset

and two values, and returns a list of triangles as

well. The implementation of the two functions is

as follows:

traverse_seeds d thr seeds
= concat $ map (grow_contour d thr) $

filter (contains thr) seeds
where

contains thr (Seed _ _ r) = thr ‘inR‘ r

grow_contour d thr (Seed c _ _)
= grow_from d thr (enQueue c)

(MS.insert c MS.empty)

In Haskell, application of a function to arguments

is by juxtaposition – no parentheses are needed – so

in the definition of traverse seeds, the argu-

ments are d (the dataset), thr (the isovalue thresh-

old) and seeds (the seed set). The contains

function tests if a seed is intersected by the isovalue

checking if the threshold value is ‘in’ (inR) the

seed range r. The underscore keyword is called

wildcard, it is normally used to replace parame-

ters that are not needed or that can be replaced by

anything, in the present case since only the range

field is used on the right-hand side of contains,

the first two components of Seed (PostCode and

Address) can be replaced by the wildcard. It is at

this point important to introduce higher-order func-

tions. From the very name “functional language”

one can surely guess that functions are important.

Indeed, passing functions as arguments, and receiv-

ing functions as results, comes entirely naturally. A

function that receives or returns a function is called

higher-order. An example of higher-order function

is map, which takes a function f and applies it to

every element of a sequence:

map :: (a→b) → [a] → [b]
map f [] = []
map f (x:xs) = f x : map f xs

This definition uses pattern-matching to distin-

guish the empty sequence [], from a non-empty

sequence whose initial element is x, with the re-

mainder of the sequence denoted by xs. Colon :

is used both in pattern-matching, and to construct a

new list. The filter function is another example

of a higher-order function; when applied to a pred-

icate function and a list, it returns the list of those

elements that satisfy the predicate.

In the definition of traverse seeds,

filter removes from the seed set all the seeds

that do not contain the given threshold value,

map then applies grow contour to each of the

remaining elements in the filtered seed set. The

$ symbol is a Haskell operator that expresses

right-associative binding precedence, in some cases

it allows parentheses to be omitted, and to make the

code better readable, e.g.

f $ g $ h x = f (g (h x))

Finally the multiple sequences of Triangles gen-

erated by grow contour are joined into a sin-

gle sequence, by the standard function concat. A

contour is grown through a breadth-first traversal of

the cells intersected by the contour, starting from

the seed cell. At each point the queue of cells to be

traversed is augmented by those neighbours of the

cell under inspection, that intersect the conotour as

well. During the traversal there is the need to record

the cells that have been already inspected. To track

visited cells, an imperative implementation might

implement a bit-array; here, we can simply draw on

a standard generic library for sets, and write

type MarkSet = MS.Set Int

specialising the generic type into one that stores

the integers used to refer to cells in the dataset (the

MS prefix is used to qualify definitions imported

from the set library and prevent name clashes). The

traversal is performed by the grow from function;

enQueue is a Haskell library function, polymor-

phic over the type of element stored in the queue

structure (in this case, a PostCode):

grow_from :: Dataset a → a → Queue PostCode

→ MarkSet → [Triangles]
grow_from d thr q marked =case viewList q of

Empty → []
(cell : rear) →
let neighbours = continuations d thr cell

unvisited = filter (¬⋅(MS.member
marked)) neighbours

q’ = foldl (|>) rear unvisited
marked’ = foldl MS.insert marked

unvisited
in (mcube (at g) (address d cell) thr)++

(grow_from d thr q’ marked’)

grow from consumes all the seeds contained

in the postcode queue. The continuations

function given a location within a grid and

a contour value, determines the neighbouring

(neighbours) locations that will also intersect

that contour. A neighbour is valid if the face de-

fined by the intersection between it and the current

cell has a range that includes the threshold.

continuations :: (Ord a) => Dataset a
→ a → Int → [Int]

continuations d thr code =
map encode $ filter penetrates
[(i>0, [v0,v1,v2,v3], (i−1,j,k))

,(i<isz−2, [v4,v5,v6,v7], (i+1,j,k))
,(j>0, [v0,v2,v4,v6], (i,j−1,k))
,(j<jsz−2, [v1,v3,v5,v7], (i,j+1,k))
,(k>0, [v0,v1,v4,v5], (i,j,k−1))
,(k<ksz−2, [v2,v3,v6,v7], (i,j,k+1))]

where

(i,j,k) = address d code
penetrates (non_boundary, vs, _) =

non_boundary ∧ thr ≥ minimum vs
∧ thr ≤ maximum vs

encode (_, _, addr) = postcode d addr
line = isz
plane = isz*jsz
v0 = d!(code)
v1 = d!(code+line)
...
v7 = d!(code+plane+line+1)

The predicate Ord a constrains the polymor-

phism: samples must have ordering operations de-

fined over them. Function penetrates just tests

if the cell is on the boundary, while encode re-

turns the cell index inside the dataset interpreting

its postcode and address; isz, jsz, ksz are

the three dimensions of the dataset along the x,y,z

axes. The v0 ...v7 represents the indices to

the eight neighbouring cells computed sweeping the

dataset with a plane (in this case samples are spread

over a regular grid). The map function iterates

penetrates over each of the elements within

the list. Note that if one of the non boundary-

tests fails, the remainder of the expression is not

evaluated and the corresponding vi not computed.

The aforementioned behaviour allows for clean-

ing the code from extra statements like redundant

if . . . then . . . else or extra function or exception

guards, making the code much more compact.

unvisited contains all the neighbouring cells

that have yet not been visited while q’ contains

the new queue to which all the unvisited neigh-

bours have been added. marked’ instead repre-

sents the new markset to which the indices of the

tested (therefore “traversed” in terms of threshold

intersection) neighbouring cells have been added.

The foldl function is another mportant higher-

order function in Haskell. A fold applies a func-

tion to a list in a similar way to map, but it accu-

mulates a single result instead of a list. foldl is a

left-associative type of fold which processes the list

from left to right:

foldl :: (a → b → a) → a → [b] → a
foldl f z [] = z
foldl f z (x:xs) = foldl f (f z x) xs

In the present case foldl applies the merging

operator (|>) on the two parameters rear (back of

the Queue) and unvisited (list of cells belong-

ing to the neighbourhood of cell). An interesting

aspect of the present code is the mcube function

which corresponds to the Haskell implementation

of the Marching Cubes approach. The Marching

Cubes code, implemented in an optimized version

in [13], has been easily re-used within the contour

following implementation.

mcube :: a → (PostCode→Cell a) → PostCode →
[Triangle]

mcube thresh lookup (x,y,z) =
group3 (map (interpolate thresh cell

(x,y,z)) (mcCaseTable ! bools))

where

cell = lookup (x,y,z)
bools = toByte (map8 (>thresh) cell)

The cell of vertex sample values is found us-

ing the lookup function that has been passed in.

We derive an 8-tuple of booleans by comparing

each sample with the threshold (map8 is a higher-

order function like map, only over a fixed-size tuple

rather than an arbitrary sequence), then convert the

8 booleans to a byte (bools) to index into the clas-

sic case table. The result of indexing the table is the

sequence of edges cut by the surface. Using map,

we perform the interpolation calculation for every

one of those edges, and finally group those interpo-

lated points into triples as the vertices of triangles

to be rendered. The linear interpolation is standard:

interpolate ::Num a => a → Cell a → PostCode

→ Edge → TriangleVertex

interpolate thresh cell (x,y,z) edge =
case edge of

0 → (x+interp, y, z)
1 → (x+1, y+interp, z)
...
11 → (x, y+1, z+interp)

where

interp = (thresh − a) / (b − a)
(a,b) = selectEdgeVertices edge cell

Although interpolate takes four arguments,

it was initially applied to only three in mcube.

This illustrates another important higher-order tech-

nique: a function of n arguments can be par-

tially applied to its first k arguments; the result is

a specialised function of n − k arguments, with

the already-supplied values ‘frozen in’. The predi-

cate Num a constrains the polymorphism: samples

must have arithmetic operations defined over them.

3.2 Observations

The code developed so far features some of the

interesting properties of a language like Haskell.

While code readability can be seen as a matter of

personal flavour, expressiveness and abstract power

of the language make the code much more com-

pact and clean with respect to the original imper-

ative coding of the same algorithm. A scientist,

researcher or teacher does not always cope easily

with high tuned but illegible code: when the desired

aspect is the methodology of the computation, a

more abstract approach to programming is needed.

Haskell syntax is extremely compact, the elegant

use of layout allows to get rid of redundant key-

words and parentheses (i.e. indenting means contin-

uation of the previous construction). The possibil-

ity to partially “clean” the code from administrative

details like verbose loops with dozens of exception

guards is a real gain. Support for type aliasing re-

stricts the verbosity of complex data structures es-

pecially when dealing with generic data. The pro-

cesses of thinking, algorithmization and coding are

intertwined in our specification: although the above

code is high-level and uses simplistic type struc-

tures, it is already complete and executable (Fig-

ure 1 is the result of applying the given code to a

seed set generated for the neghip dataset), and can

be used to test the correctness of the specification.

The functional specification can be used as an ex-

ecutable program specification (formal prototype)

even if the final product must be implemented in

a procedural language.

4 Considerations

Functional programming can be successfully used

to specify and implement complex visualization al-

gorithms. In [13] it is shown how an FP ap-

proach can be used to efficiently engineer a full

scale visualization problem in terms of performance

and memory issues; the context of the current pa-

per widens the approach, extending the view to a

broader set of scientific visualization issues. If we

consider the desirable characteristics of a specifi-

cation language, we can outline expressive power

and unambiguous semantics as the preferred ones.

From this point of view functional languages are

computationally complete: a modern language like

Haskell exhibits minimal ambiguity and high read-

ability, due to a tight binding with its denotational

semantics. Functional languages are actively used

in industry as shown in [21], though several is-

sues related to their use remain to be solved. The

most common barrier is a lack of some domain-

specific libraries, lack of platform support (debug-

ging, profiling and tuning tools), and as a conse-

quence, occasionally poor performance. However

when applied to some kinds of problems (for ex-

ample when involving space allocation) the perfor-

mance of functional languages rivals C and in the

average case they underperform at most on a fac-

tor of two. When applied to visualization problems

it is shown that implementation of algorithms like

Figure 1: Isosurface Extraction from a Set of Seeds

generated for the Neghip dataset. Different colors

indicate different seeds.

Marching Cubes and Marching Tetrahedra with a

functional approach [13] can outperform the VTK

counterparts for certain large datasets. The pur-

pose of this work is not claim that functional ap-

proaches should replace optimized imperative code.

We show instead how functional programming can

be successfully applied to face some of the prob-

lems peculiar to the visualization field, and how

it represents a challenging field worthy of further

investigation if we wish to gain useful insight on

topics where the integration of results and tech-

niques, human collaboration, and a need for general

reusable patterns play a master role.

References

[1] B. McCormick and T. DeFanti and M. Brown. Vi-
sualization in scientific computing. Journal of Com-
puter Graphics, 21, 1987

[2] I. E. Sutherland. Ten Unsolved Problems in Com-
puter Graphics. Journal of Datamation, 12(5):22–
27, 1966

[3] J. Blinn. Keynote Address: SIGGRAPH 98. Journal
of Computer Graphics, 33(1):43–47, 1999

[4] B. Hibbard. Top Ten Visualization Problems. Jour-
nal of Computer Graphics, 33(2):21-22, 1999

[5] C. Johnson. Top Scientific Visualization Research
Problems. Journal of IEEE Computer Graphics and
Applications 24(4):13–17, 2004

[6] A. U. Frank, and W. Kuhn. Lecture Notes in Com-
puter Science, 951:184, 1995

[7] Jerzy Karczmarczuk. Scientific computation and
functional programming. Comput. Sci. Eng.,
1(3):64–72, 1999

[8] M. Wiering and P. Achten and M. J. Plasmeijer,
Using Clean for Platform Games. In Lecture Notes

in Computer Science: Selected Papers from the

11th Int. Workshop on Implementation of Func-

tional Languages 1868:1–17, 2000
[9] W.E. Lorensen and H.E. Cline. Marching cubes: A
high resolution 3D surface construction algorithm.
In . SIGGRAPH, 1987, 163–169

[10] C. Elliott. Programming graphics processors func-
tionally. In ACM SIGPLAN Workshop on Haskell,
2004, 45–56

[11] J. Fokker Functional Specification of JPEG Decom-
pression, and an Implementation for Free. In EG
Workshop on Programming Paradigms in Graphics

1995, 102-117
[12] R. L. Page and B. D. Moe Experience with a large

scientific application in a functional language. In
Int. Conf on Functional programming languages

and computer architecture 1993, 3–11
[13] D. Duke and M. Wallace and R. Borgo and C.

Runciman. Fine-grained Visualization Pipelines and
Lazy Functional Languages. In IEEE Visualization
Conf., 2006, (under final review)

[14] M. Chakravarty and G. Keller. An Approach to Fast
Arrays in Haskell. In Advanced Functional Pro-
gramming 2002, 27–58

[15] J. Karczmarczuk. Functional Approach to Texture
Generation. In PADL ’02: Proceedings of the 4th
International Symposium on Practical Aspects of

Declarative Languages 2002, 225–242
[16] R. Garcia and J. Jarvi and A. Lumsdaine and J.G.

Siek and J. Willcock. A comparative study of lan-
guage support for generic programming. In OOP-
SLA ’03: Proceedings of the 18th annual ACM SIG-

PLAN conference on Object-oriented Programing,

Systems, Languages, and Appl. 2003, 115–134
[17] L.J. Rosenblum. Research Issues in Scientific Visu-

alization. In IEEE Computer Graphics and Applica-
tions vol.14, n.2, March/Apr 1994

[18] J. Blinn, What I Like and Don’t Like About the State
of Visualization Today. In VIS ’03: Proc. of the 14th
IEEE Visualization 2003 (VIS’03), 2003, 68

[19] C. R. Johnson and R. Moorehead and T. Munzner
and H. Pfister and P. Rheingans and T. S. Yoo.
NIH-NSF Visualization Research Challenges Re-

port IEEE Press, 2006
[20] P. S. Heckbert. Ten Unsolved Problems in

Rendering-Workshop on Rendering Algorithms and

Systems. 1987
[21] A. Moran Report on the First Commerical Users

of Functional Programming Workshop, 2004 P.
Wadler, University of Edinburgh.

[22] C. L. Bajaj and V. Pascucci and D. R. Schikore
Seed Sets and Search Structures for Optimal Iso-

contour Extraction. Technical Report 99-35, Austin,
TX, 1999

[23] N. Nethercote and A. Mycroft The cache behaviour
of large lazy functional programs on stock hard-
ware. In MSP ’02: Proceedings of the 2002 work-
shop on Memory system performance, 2002, 44–55

[24] Clean http://www.cs.ru.nl/ clean
[25] Haskell: A Purely Functional Language

http://www.haskell.org

