2,543 research outputs found

    Quality 4.0 in action: Smart hybrid fault diagnosis system in plaster production

    Get PDF
    UIDB/00066/2020Industry 4.0 (I4.0) represents the Fourth Industrial Revolution in manufacturing, expressing the digital transformation of industrial companies employing emerging technologies. Factories of the future will enjoy hybrid solutions, while quality is the heart of all manufacturing systems regardless of the type of production and products. Quality 4.0 is a branch of I4.0 with the aim of boosting quality by employing smart solutions and intelligent algorithms. There are many conceptual frameworks and models, while the main challenge is to have the experience of Quality 4.0 in action at the workshop level. In this paper, a hybrid model based on a neural network (NN) and expert system (ES) is proposed for dealing with control chart patterns (CCPs). The idea is to have, instead of a passive descriptive model, a smart predictive model to recommend corrective actions. A construction plaster-producing company was used to present and evaluate the advantages of this novel approach, while the result shows the competency and eligibility of Quality 4.0 in action.publishersversionpublishe

    Method of lines and runge-kutta method in solving partial differential equation for heat equation

    Get PDF
    Solving the differential equation for Newton’s cooling law mostly consists of several fragments formed during a long time to solve the equation. However, the stiff type problems seem cannot be solved efficiently via some of these methods. This research will try to overcome such problems and compare results from two classes of numerical methods for heat equation problems. The heat or diffusion equation, an example of parabolic equations, is classified into Partial Differential Equations. Two classes of numerical methods which are Method of Lines and Runge-Kutta will be performed and discussed. The development, analysis and implementation have been made using the Matlab language, which the graphs exhibited to highlight the accuracy and efficiency of the numerical methods. From the solution of the equations, it showed that better accuracy is achieved through the new combined method by Method of Lines and Runge-Kutta method

    Blind source separation and feature extraction in concurrent control charts pattern recognition: Novel analyses and a comparison of different methods

    No full text
    International audienceControl charts are among the main tools in statistical process control (SPC) and have been extensively used for monitoring industrial processes. Currently, besides the single control charts, there is an interest in the concurrent ones. These graphics are characterized by the simultaneous presence of two or more single control charts. As a consequence, the individual patterns may be mixed, hindering the identification of a non-random pattern acting in the process; this phenomenon is refered as concurrent charts. In view of this problem, our first goal is to investigate the importance of an efficient separation step for pattern recognition. Then, we compare the efficiency of different Blind Source Separation (BSS) methods in the task of unmixing concurrent control charts. Furthermore, these BSS methods are combined with shape and statistical features in order to verify the performance of each one in pattern classification. In additional, the robustness of the better approach is tested in scenarios where there are different non-randomness levels and in cases with imbalanced dataset provided to the classifier. After simulating different patterns and applying several separation methods, the results have shown that the recognition rate is widely influenced by the separation and feature extraction steps and that the selection of efficient separation methods is fundamental to achieve high classification rates

    Intelligent systems in manufacturing: current developments and future prospects

    Get PDF
    Global competition and rapidly changing customer requirements are demanding increasing changes in manufacturing environments. Enterprises are required to constantly redesign their products and continuously reconfigure their manufacturing systems. Traditional approaches to manufacturing systems do not fully satisfy this new situation. Many authors have proposed that artificial intelligence will bring the flexibility and efficiency needed by manufacturing systems. This paper is a review of artificial intelligence techniques used in manufacturing systems. The paper first defines the components of a simplified intelligent manufacturing systems (IMS), the different Artificial Intelligence (AI) techniques to be considered and then shows how these AI techniques are used for the components of IMS

    Teaching approaches employed in teaching literature component in english in urban and rural secondary schools

    Get PDF
    Literature component in English programme (LiEP) is included in the English language syllabus for all secondary schools in Malaysia, aiming at engaging students in reading literature for enjoyment and self-development. Different approaches to literature teaching can be used, ranging from teacher-centered approach to student-centered approach. However, it is difficult to implement these approaches when teaching literature component in the real English language classroom setting either in urban or rural secondary schools. Therefore, this study aims to identify the teaching approaches that English language teachers use when teaching literature in rural and urban secondary schools. Questionnaire was used in collecting the data from 20 secondary schools in Pontian and Johor Bahru districts. In this study, it was found that teacher-centered approach is used in rural secondary schools while student-centered approach is employed in urban secondary schools when teaching literature component

    Control chart patterns recognition with constrained data

    Get PDF
    Recognition and classification of non-random patterns of manufacturing process data can provide clues to the possible causes that contributed to the product defects. Early detection of abnormal process patterns, particularly in highly precise and rapid automated manufacturing is necessary to avoid wastage and catastrophic failures. Towards this end, various control chart patterns recognition (CCPR) methods have been proposed by researchers. Most of the existing control chart patterns recognizers assumed that data is fully available and complete. However, in reality, process data streams may be constrained due to missing, imbalanced or inadequate data acquisition and measurement problems, erroneous entries and technical failure during data acquisition process. The aim of this study is to investigate and develop an effective recognition scheme capable of handling constrained control chart patterns. Various scenarios of data constraints involving missing rates, missing mechanisms, dataset size and imbalance rate were investigated. The proposed scheme comprises the following key components: (i) characterization of input data stream, (ii) imputation and feature extraction, and (iii) alternative recognition schemes. The proposed scheme was developed and tested to recognize the constrained patterns, namely, random, increasing/decreasing trend, upward/downward shift and cyclic patterns. The effect of design parameters on the recognition performance was examined. The Exponentially-Weighted Moving Average (EWMA) imputation, oversampling and Fuzzy Information Decomposition (FID) were investigated. This research revealed that some constraints in the dataset can eventually change the distribution and violate the normality assumption. The performance of alternative designs was compared by mean square error, percentage of correct recognition, confusion matrix, average run length (ARL), t-test, sensitivity, specificity and G-mean. The results demonstrated that the scheme with an ANNfuzzy recognizer trained using FID-treated constrained patterns significantly reduce false alarms and has better discriminative ability. The proposed scheme was verified and validated through comparative studies with published works. This research can be further extended by investigating an adaptive fuzzy router to assign incoming input data stream to an appropriate scheme that matches complexity in the constrained data streams, amongst others

    Recognition of Process Disturbances for an SPC/EPC Stochastic System Using Support Vector Machine and Artificial Neural Network Approaches

    Get PDF
    Because of the excellent performance on monitoring and controlling an autocorrelated process, the integration of statistical process control (SPC) and engineering process control (EPC) has drawn considerable attention in recent years. Both theoretical and empirical findings have suggested that the integration of SPC and EPC can be an effective way to improve the quality of a process, especially when the underlying process is autocorrelated. However, because EPC compensates for the effects of underlying disturbances, the disturbance patterns are embedded and hard to be recognized. Effective recognition of disturbance patterns is a very important issue for process improvement since disturbance patterns would be associated with certain assignable causes which affect the process. In practical situations, after compensating by EPC, the underlying disturbance patterns could be of any mixture types which are totally different from the original patterns. This study proposes the integration of support vector machine (SVM) and artificial neural network (ANN) approaches to recognize the disturbance patterns of the underlying disturbances. Experimental results revealed that the proposed schemes are able to effectively recognize various disturbance patterns of an SPC/EPC system

    Control chart patterns recognition using run rules and fuzzy classifiers considering limited data

    Get PDF
    Statistical process control chart is a common tool used for monitoring and detecting process variations. The process data streams, when graphically plotted on control chart reveal useful patterns. These patterns can be associated with possible assignable causes if properly recognized. These patterns detections are useful for process diagnostic. Different types of control chart pattern recognition methods are reported in literature. Most of the existing data-driven methods require a large amount for training data before putting into practice. Short production run and short product life cycle processes are usually constrained with limited data availability. Thus there is a need to investigate and develop an effective control chart pattern recogniser (CCPR) methods for process monitoring with limited data. Two methods were investigated in this study to recognize fully developed control chart patterns for process with limited data on X-bar chart. The first method was combination of selected run rules, as run rules do not require training data. Classifiers based on fuzzy set theory were the second method. The performance of these methods was evaluated based on percent correct recognition. The methods proposed in this study significantly reduced the requirements of training data. Different combination of Nelson’s run rules; R2,R5,R6 for shift and trend, R3,R5,R6 for cyclic, R4,R5,R8 for systematic and R7 for stratification patterns were found effective for recognizing. Differentiating between the shift and trend patterns remains challenging task for the run rules. Heuristic based Mamdani fuzzy classifier with fuzzy set simplification operations using statistical features gave more than ninety percent correct patterns recognition results. Adaptive neuro fuzzy inference system (ANFIS) fuzzy classifier with fuzzy c-mean using statistical features gave more prominent results. The findings suggest that the proposed methods can be used in short production run and the process with limited data. The fuzzy classifiers can be further studied for different input representation

    Second CLIPS Conference Proceedings, volume 1

    Get PDF
    Topics covered at the 2nd CLIPS Conference held at the Johnson Space Center, September 23-25, 1991 are given. Topics include rule groupings, fault detection using expert systems, decision making using expert systems, knowledge representation, computer aided design and debugging expert systems
    corecore