5 research outputs found

    Blind source separation and feature extraction in concurrent control charts pattern recognition: Novel analyses and a comparison of different methods

    No full text
    International audienceControl charts are among the main tools in statistical process control (SPC) and have been extensively used for monitoring industrial processes. Currently, besides the single control charts, there is an interest in the concurrent ones. These graphics are characterized by the simultaneous presence of two or more single control charts. As a consequence, the individual patterns may be mixed, hindering the identification of a non-random pattern acting in the process; this phenomenon is refered as concurrent charts. In view of this problem, our first goal is to investigate the importance of an efficient separation step for pattern recognition. Then, we compare the efficiency of different Blind Source Separation (BSS) methods in the task of unmixing concurrent control charts. Furthermore, these BSS methods are combined with shape and statistical features in order to verify the performance of each one in pattern classification. In additional, the robustness of the better approach is tested in scenarios where there are different non-randomness levels and in cases with imbalanced dataset provided to the classifier. After simulating different patterns and applying several separation methods, the results have shown that the recognition rate is widely influenced by the separation and feature extraction steps and that the selection of efficient separation methods is fundamental to achieve high classification rates

    An Intelligent Metrology Informatics System based on Neural Networks for Multistage Manufacturing Processes

    Get PDF
    The ability to gather manufacturing data from various workstations has been explored for several decades and the advances in sensory and data acquisition techniques have led to the increasing availability of high-dimensional data. This paper presents an intelligent metrology informatics system to extract useful information from Multistage Manufacturing Process (MMP) data and predict part quality characteristics such as true position and circularity using neural networks. The input data include the tempering temperature, material conditions, force and vibration while the output data include comparative coordinate measurements. The effectiveness of the proposed method is demonstrated using experimental data from a MMP

    Method of lines and runge-kutta method in solving partial differential equation for heat equation

    Get PDF
    Solving the differential equation for Newton’s cooling law mostly consists of several fragments formed during a long time to solve the equation. However, the stiff type problems seem cannot be solved efficiently via some of these methods. This research will try to overcome such problems and compare results from two classes of numerical methods for heat equation problems. The heat or diffusion equation, an example of parabolic equations, is classified into Partial Differential Equations. Two classes of numerical methods which are Method of Lines and Runge-Kutta will be performed and discussed. The development, analysis and implementation have been made using the Matlab language, which the graphs exhibited to highlight the accuracy and efficiency of the numerical methods. From the solution of the equations, it showed that better accuracy is achieved through the new combined method by Method of Lines and Runge-Kutta method

    Recognition of Mixture Control Chart Pattern Using Multiclass Support Vector Machine and Genetic Algorithm Based on Statistical and Shape Features

    Get PDF
    Control charts have been widely utilized for monitoring process variation in numerous applications. Abnormal patterns exhibited by control charts imply certain potentially assignable causes that may deteriorate the process performance. Most of the previous studies are concerned with the recognition of single abnormal control chart patterns (CCPs). This paper introduces an intelligent hybrid model for recognizing the mixture CCPs that includes three main aspects: feature extraction, classifier, and parameters optimization. In the feature extraction, statistical and shape features of observation data are used in the data input to get the effective data for the classifier. A multiclass support vector machine (MSVM) applies for recognizing the mixture CCPs. Finally, genetic algorithm (GA) is utilized to optimize the MSVM classifier by searching the best values of the parameters of MSVM and kernel function. The performance of the hybrid approach is evaluated by simulation experiments, and simulation results demonstrate that the proposed approach is able to effectively recognize mixture CCPs

    Control chart patterns recognition with constrained data

    Get PDF
    Recognition and classification of non-random patterns of manufacturing process data can provide clues to the possible causes that contributed to the product defects. Early detection of abnormal process patterns, particularly in highly precise and rapid automated manufacturing is necessary to avoid wastage and catastrophic failures. Towards this end, various control chart patterns recognition (CCPR) methods have been proposed by researchers. Most of the existing control chart patterns recognizers assumed that data is fully available and complete. However, in reality, process data streams may be constrained due to missing, imbalanced or inadequate data acquisition and measurement problems, erroneous entries and technical failure during data acquisition process. The aim of this study is to investigate and develop an effective recognition scheme capable of handling constrained control chart patterns. Various scenarios of data constraints involving missing rates, missing mechanisms, dataset size and imbalance rate were investigated. The proposed scheme comprises the following key components: (i) characterization of input data stream, (ii) imputation and feature extraction, and (iii) alternative recognition schemes. The proposed scheme was developed and tested to recognize the constrained patterns, namely, random, increasing/decreasing trend, upward/downward shift and cyclic patterns. The effect of design parameters on the recognition performance was examined. The Exponentially-Weighted Moving Average (EWMA) imputation, oversampling and Fuzzy Information Decomposition (FID) were investigated. This research revealed that some constraints in the dataset can eventually change the distribution and violate the normality assumption. The performance of alternative designs was compared by mean square error, percentage of correct recognition, confusion matrix, average run length (ARL), t-test, sensitivity, specificity and G-mean. The results demonstrated that the scheme with an ANNfuzzy recognizer trained using FID-treated constrained patterns significantly reduce false alarms and has better discriminative ability. The proposed scheme was verified and validated through comparative studies with published works. This research can be further extended by investigating an adaptive fuzzy router to assign incoming input data stream to an appropriate scheme that matches complexity in the constrained data streams, amongst others
    corecore