12 research outputs found

    Diagnostics of an Aircraft Engine Pumping Unit Using a Hybrid Approach based-on Surrogate Modeling

    Get PDF
    This document introduces a hybrid approach for fault detection and identification of an aircraft engine pumping unit. It is based on the complementarity between a model-based approach accounting for uncertainties aimed at quantifying the degradation modes signatures and a data-driven approach aimed at recalibrating the healthy syndrome from measures. Because of the computational time costs of uncertainties propagation into the physics based model, a surrogate modeling technic called Kriging associated to Latin hypercube sampling is utilized. The hybrid approach is tested on a pumping unit of an aircraft engine and shows good results for computing the degradation modes signatures and performing their detection and identification

    Development of a prognostics and health management system for the railway infrastructure – Review and methodology

    Get PDF
    The Prognostics and Health Management (PHM) can be considered as a key process to deploy a predictive maintenance program. Since its inception as an engineering discipline, a lot of diagnostics and prognostics algorithms were developed and furthermore methodologies for health management and PHM development established. These solutions were applied in a lot of industrial cases aiming a maintenance transformation. In the Aerospace and Military systems, for example, the PHM has been applied more than 20 years with systems and components applications. During this last decade, the railway industry focused on maintenance issues and expressed a special interest on the PHM systems. The maintenance of the railway infrastructure requires considerable resources and an important budget. Many of the developed algorithms and methodologies can be imported to the Rail Transport systems. However, a methodology to develop a PHM system for a railway infrastructure must be established. This paper provides an overview on the key steps to design a PHM system regarding to the specific characteristics of the railway infrastructure. In addition, tools and procedures for each level of the PHM process are reviewed, as well as a summary of the existing monitoring, health assessment and decision solutions for the railway infrastructure

    Prediction of Remaining Useful Life of anAircraft Engine under Unknown Initial Wear

    Get PDF
    Abstract Effectiveness of Condition Based Maintenance (CBM) strategy depends on accuracy in prediction of Remaining Useful Life (RUL).Data driven prognosisapproaches are generally used to estimate the RUL of the system. Presence of noise in the system monitored data may affect the accuracy of prediction. One of the sources of data noise is the presence of unknown initial wear in the samples. Present paper illustrates the effect of such initial wear on prediction accuracy and presents the guidelines to handle such initial wears. Two Artificial Neural Network (ANN)models are developed. First model is developed with the help of completedata; while the second model is developed after removing samples with abnormal initial wear.â€«Ì…Ę”â€Ź and R control chart is used to screen the samples with abnormal initial wear. It is found that the presence of initial wear significantly affects the prediction accuracy. Also, it is found that RUL estimation for a unit with short history tends to produce great uncertainty.Hence, it is recommended that RUL prediction should be continuously updated with age of the unit to increase the effectiveness of CBM policy

    A prognostic approach to improve system reliability for aircraft system

    Get PDF
    The primary aims of prognostics encompass the timely detection of potential failures, mitigation or elimination of unscheduled maintenance, prediction of the most suitable timing for preventive maintenance replacement, optimization of maintenance cycles and operational readiness, and enhancement of system reliability by improving design and logistical support for existing systems. In order to facilitate the progress of these approaches, currently available datasets provide a unique and reliable compilation of flight-to-failure trajectories linked to small aircraft engines that have been observed in actual flight conditions. Furthermore, the paper offered an improved neural network that utilized the TanH hyperbolic tangent function. This neural network was enhanced later by integrating it with the TanH, linear, and Gaussian functions. Additionally, a random holdback validation approach was employed in the paper. The results suggest that the NN TanH technique, when implemented, has the potential to significantly enhance the reliability of an aircraft component. This is achieved through accurate estimates of the remaining useful life (RUL) and a proactive understanding of the failure system.European Commission: Grant Number 95568

    Combining business process and failure modelling to increase yield in electronics manufacturing

    Get PDF
    The prediction and capturing of defects in low-volume assembly of electronics is a technical challenge that is a prerequisite for design for manufacturing (DfM) and business process improvement (BPI) to increase first-time yields and reduce production costs. Failures at the component-level (component defects) and system-level (such as defects in design and manufacturing) have not been incorporated in combined prediction models. BPI efforts should have predictive capability while supporting flexible production and changes in business models. This research was aimed at the integration of enterprise modelling (EM) and failure models (FM) to support business decision making by predicting system-level defects. An enhanced business modelling approach which provides a set of accessible failure models at a given business process level is presented in this article. This model-driven approach allows the evaluation of product and process performance and hence feedback to design and manufacturing activities hence improving first-time yield and product quality. A case in low-volume, high-complexity electronics assembly industry shows how the approach leverages standard modelling techniques and facilitates the understanding of the causes of poor manufacturing performance using a set of surface mount technology (SMT) process failure models. A prototype application tool was developed and tested in a collaborator site to evaluate the integration of business process models with the execution entities, such as software tools, business database, and simulation engines. The proposed concept was tested for the defect data collection and prediction in the described case study

    Prognostic of RUL based on Echo State Network Optimized by Artificial Bee Colony

    Get PDF
    Prognostic is an engineering technique used to predict the future health state or behavior of an equipment or system. In this work, a data-driven hybrid approach for prognostic is presented. The approach based on Echo State Network (ESN) and Artificial Bee Colony (ABC) algorithm is used to predict machine’s Remaining Useful Life (RUL). ESN is a new paradigm that establishes a large space dynamic reservoir to replace the hidden layer of Recurrent Neural Network (RNN). Through the application of ESN is possible to overcome the shortcomings of complicated computing and difficulties in determining the network topology of traditional RNN. This approach describes the ABC algorithm as a tool to set the ESN with optimal parameters. Historical data collected from sensors are used to train and test the proposed hybrid approach in order to estimate the RUL. To evaluate the proposed approach, a case study was carried out using turbofan engine signals show that the proposed method can achieve a good collected from physical sensors (temperature, pressure, speed, fuel flow, etc.). The experimental results using the engine data from NASA Ames Prognostics Data Repository RUL estimation precision. The performance of this model was compared using prognostic metrics with the approaches that use the same dataset. Therefore, the ESNABC approach is very promising in the field of prognostics of the RUL

    An Inference-based Prognostic Framework for Health Management of Automotive Systems

    Get PDF
    This paper presents a unified data-driven prognostic framework that combines failure time data, static parameter data and dynamic time-series data. The framework employs proportional hazards model and a soft dynamic multiple fault diagnosis algorithm for inferring the degraded state trajectories of components and to estimate their remaining useful life times. The framework takes into account the cross-subsystem fault propagation, a case prevalent in any networked and embedded system. The key idea is to use Cox proportional hazards model to estimate the survival functions of error codes and symptoms (probabilistic test outcomes/prognostic indicators) from failure time data and static parameter data, and use them to infer the survival functions of components via soft dynamic multiple fault diagnosis algorithm. The average remaining useful life and its higher-order central moments (e.g., variance, skewness, kurtosis) can be estimated from these component survival functions. The framework is demonstrated on datasets derived from two automotive systems, namely hybrid electric vehicle regenerative braking system, and an electronic throttle control subsystem simulator. Although the proposed framework is validated on automotive systems, it has the potential to be applicable to a wide variety of systems, ranging from aerospace systems to buildings to power grids

    A COMPARISON BETWEEN DATA-DRIVEN AND PHYSICS OF FAILURE PHM APPROACHES FOR SOLDER JOINT FATIGUE

    Get PDF
    Prognostics and systems health management technology is an enabling discipline of technologies and methods with the potential of solving reliability problems that have been manifested due to complexities in design, manufacturing, environmental and operational use conditions, and maintenance. Over the past decade, research has been conducted in PHM to provide benefits such as advance warning of failures, enable forecasted maintenance, improve system qualification, extend system life, and diagnose intermittent failures that can lead to field failure returns exhibiting no-fault-found symptoms. While there are various methods to perform prognostics, including model-based and data-driven methods, these methods have some key disadvantages. This thesis presents a fusion prognostics approach, which combines or ―fuses together‖ the model based and data-driven approaches, to enable increasingly better estimates of remaining useful life. A case study using an electronics system to illustrate a step by step implementation of the fusion approach is also presented. The various benefits of the fusion approach and suggestions for future work are included

    Prognostics and health management for maintenance practitioners - Review, implementation and tools evaluation.

    Get PDF
    In literature, prognostics and health management (PHM) systems have been studied by many researchers from many different engineering fields to increase system reliability, availability, safety and to reduce the maintenance cost of engineering assets. Many works conducted in PHM research concentrate on designing robust and accurate models to assess the health state of components for particular applications to support decision making. Models which involve mathematical interpretations, assumptions and approximations make PHM hard to understand and implement in real world applications, especially by maintenance practitioners in industry. Prior knowledge to implement PHM in complex systems is crucial to building highly reliable systems. To fill this gap and motivate industry practitioners, this paper attempts to provide a comprehensive review on PHM domain and discusses important issues on uncertainty quantification, implementation aspects next to prognostics feature and tool evaluation. In this paper, PHM implementation steps consists of; (1) critical component analysis, (2) appropriate sensor selection for condition monitoring (CM), (3) prognostics feature evaluation under data analysis and (4) prognostics methodology and tool evaluation matrices derived from PHM literature. Besides PHM implementation aspects, this paper also reviews previous and on-going research in high-speed train bogies to highlight problems faced in train industry and emphasize the significance of PHM for further investigations
    corecore