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ABSTRACT

This research addresses the problem of prolonging the life of aged structures of historical
value that have already outlived their original designed lives many times. While a lot of
research has been carried out in the field of structural monitoring, diagnostics and prognostics
for high tech industries, this is not the case for historical aged structures. Currently most
mantenance projects for aged structures have focused on the instrumentation and diagnostic
techniques required to detect any damage with a certain degree of success. This research
project involved the development of diagnostic and prognostic tools to be used for monitoring
and predicting the ‘health’ of aged structures. The diagnostic and prognostic tools have been

developed for the monitoring of Cutty Sark iron structures as a first application.

The concept of canary and parrot sensor devices are developed where canary devices ar
small, accelerated devices, which will fail according to similar failure mechanisms occurring
in an aged structures and parrot devices are designed to fail at the same rastrasttine,

thus mimicking the structure. The model-driven prognostic tool uses a Physics-of-Failure
(PoF) model to predict remaining life of a structure. It uses a corrosion model based on the
decrease in corrosion rate over time to predict remaining life of an aged iron stru€hees.
data-driven diagnostic tool developed uses Mahalanobis Distance analysis to detect anomalies
in the behaviour of a structure. Bayesian Network models are then used as a fusion method,
integrating remaining life predictions from the model-driven prognostic tool with information

of possible anomalies from data-driven diagnostic tool to pravlebability distribution of
predicted remaining life. The diagnostics and prognostic tools are validated and tested through

demonstration example and experimental tests.

This research primarily looks at applying diagnostic and prognostic technologies used in high-
tech industries to aged iron structures. In order to achieve this, the model-driven and data-
driven techniques commonly used had to be adapted takingonsideration the particular

constraints of monitoring and maintaining aged structures. The fusion technique developed is
a novel approach for prognostics for aged structures and provides the flexibility often needed

for diagnostic and prognostic tools.
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1.Introduction

1.1.Overview

This research project involves the development of diagnostics and prognostic tools to be used
for monitoring and predicting the ‘health’ of aged structures of great historical value. Such

activities present particular challenges when applied to aged structures. This chapter
introduces the diagnostics, prognostics and structural health monitoring research field, which
are then detailed further in the following chapter. This chapter also describes the types of
structures considered for this research project. A few examples of aged structures are
presented along with the Cutty Sark, which is used as the demonstration application of the
diagnostic and prognostic tools developed. The challenges in maintaining such structures and
in particular the Cutty Sark ship are discussed. The motivations for undertaking this research
work is presented along with the aims and objectives. The chapter ends with an outline of the
general methodology for the diagnostic and prognostic tools developed and the contribution
made towards the research field of health monitoring, diagnostics and prognostics for aged

structures.

Aged structures encompass a broad range of civil and engineering structures thatdrave
built and used for a long period. Any structure in service is affected by age-related
deterioration that can lead to failure of the structure. The deterioration occurring is caused by
many factors related to the material composition, the architecture, the usage and the
environment of the structure. Structural deterioration comes in many forms: coating damage,
corrosion, cracking, deformation, stress, fatigue and wear and tear. These factaist can
individually or in combination, and their effects are hard to quantify. Corrosion and fatigue
are the predominant modes of failure that affect aged iron structures. Fatiguetds tbae
fluctuating nature of load and corrosion, and is primarily due to environmental effects. A

detailed analysis of failure modes and mechanisms of aged structures is provided in chapter 3.

1.1.1. Use of diagnostics and prognostics technology

The prognostics and diagnostics terminologies are used to describe the broad range of
processes, which aim to determine material condition at present time and predict material
condition at a later predetermined time. Diagnostics is the process of determining émé¢ curr

“health” of a structure while prognostic is the process of predicting the future “health” of a
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structure. Structural health monitoring is a term used to describe the sensor system and
diagnostics and prognostics technologies used to monitor systems and structures.

Monitoring of aged structures is essential as most of these structures have exceeded their
original design life, but are expected to operate reliably and safely over their ektende
operational lives. The maintenance of these structures would usually be carried out on an ad
hoc basis as and when required and little documentation of such repair work is available. The
most common form of monitoring the degradation of such structures is visual inspection,
which is carried out at varying intervals depending on the usage and age of the structure and
the funding available. Visual inspection is a labour intensive and subjective approach to
monitoring aged structures and more cost-effective and reliable monitoring strategy is
required. Additionally, standard visual inspection techniques do not necessarily detect
insidious deterioration that can lead to substantial damage but only detect defects that are

clearly visible and most likely easily controllable.

With diagnostic and prognostic tools in place, monitoring of a structure would provide better
understanding of the response of the structure under real operational and environmental
conditions. Knowledge of where to inspect a structure should damage start to develop would
be available, thus reducing inspection time and maintenance costs. Additionally, monitoring
can be carried in inaccessible areas. Maintenance decisions can then be taken based on

monitoring and prediction results well ahead of time in order to prevent catastrophic failures.

For new structures, diagnostics has been successfully implemented up to a certain extent in
many diverse fields such as manufacturing, civil structures, electronics, aerospace, etc.
However, this is not the case for prognostics, which has higher requirements compared to
diagnostic analysis. For prognostic purposes, assessment of performance of a structure is
required, which involves matching the performance and behaviour signatures from recent data
with data representing normal performance and behavior. Using these assessment results,
prediction algorithms are then used requiring correct interpretation of the data and insightful

understanding of degradation processes of the structure monitored. This development of

accurate prediction algorithms is usually the most challenging part.

Typically a diagnostic analysis for new structures would involve data collection, signal

processing, feature extraction and selection. Additionally, a knowledge base of failure modes
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and mechanisms would be available from expert knowledge, physical models and historical
data. However, for aged structures, the knowledge base available for use in diagnostic and
prognostic analysis is minimal if not completely nonexistent. This may be due to lack of

original documentation of the architectural structure, lack of maintenance logs and lack of

understanding of properties of materials used at the time and lack of physical models. Thus,
very often, the history of the operational and environmental load experienced by an aged
structure is unknown. This further complicates the already challenging task of diagnostic and

prognostic analysis.

1.2.Motivation

Aged structures play an important role in heritage tourism and thus have a positive economic
and social impact. In 2010, the heritageriou industry’s annual contribution to UK’s gross
domestic product was worth almost £21 billion (HERITAGE LOTTERY FUND, 2011)
which is a bigger contribution than car manufacturing or advertising and film industries to the
UK industry. Tourism continued to increase while the wider economy was shrinking. Thus,
the preservation and maintenance of heritage structures is of utmost importance in order to
preserve our historical and cultural heritage and provide identity to the local community as
heritage structures raise pride in the local area and create a distinct sense of belonging.
Additionally, with heritage being one of the biggest drivers of tourism in the UK, maintaining
heritage structures is a vital part in order to continue to grow the tourism industry as it helps

to attract new businesses and residents to an area.

Heritage structures usually have different degrees of degradation dependingexithgues

used to build them as well as the length of time they have been exposed to their environmental
conditions. There is major motivation in the heritage community to modernise maintenance
operations to reduce costs as well as to ensure the structures are preserved for future
generations (ANASTASI, G. et al., 2009) (GARZIERA, R. et al., 2007). Ideally, the structural
integrity of heritage structures should be preserved for as long as possible such thahthey

serve their original or new purposes as well as preserving a cultural legacy.

Heritage structures such as the Cutty Sark are a great cultural inheritance frpasttiaad
need to be preserved. The conservation Viseikg carried out on the ship is “state of the art”,
but there is no evidence at present for predictions of the effectiveness of the conservation

work over the next 50 years. The main motivation for this PhD project is to develop
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prognostic and diagnostic tools to help in maintenance decisions for heritage structures such
as the Cutty Sark. This has the potential to make huge savings in terms of cost of maintenance
while increasing safety and reliability as well as safeguarding a national treasurheF

scope of this project, only the iron structures are considered for the diagnostic and prognostic

tools.

1.3. Cutty Sark Ship

The Cutty Sark is a composite-built vessel, built 140 years ago with a wrought iron frame
skeleton and teak and rock elm strakes fastened to it. Conservation work is currently being
carried out because of extensive deterioration of the wrought iron frames and timber planking
(CAMPBELL, Sheelagh A et al., 2005). The main cause of damage of the wrought iron
framework is corrosion with various forms of corrosion prevalent in different parts of the
ship. The conservation aims to minimize the potential for degradation by removing some
agents of deterioration. The strategy is to ensure that dissimilar metals and materials are not in

contact and to use surface coatings, which should form a barrier between the iron and agents

of deterioration. Figure 111 illustrates examples of severe corrosion and mattsiairdéon

that are present in the original fabric of the ship.

Figure 1-1: the composite built vessel (a) and examples of severe corrosion and
material deterioration (b and c) that are present in the original fabric of the ship.



The diagnostic and prognostic tools developed within this research project will be used to
predict the current and future “health” of Cutty Sark iron structures. Research and
implementation of these tools are a necessary continuation of these conservation works to
ensure that the original aim of a 50-year life with only minor and acceptable deterioration (in

conservation terms) can be met.

The fastenings sl in Cutty Sark are made of Muntz metal (alloy of copper and zinc). Iron
and wood are two different types of materials that behave differently under different loads in
similar environments. Thus, structures made from these two different materials should be
monitored in both parts that use metal or wood. The areas where the iron and wood are in
contact are also of importance. For example, iron structures under a particulamsgiess
experience deformation and affect the wood structures (by applying an indirect stress on the
wood structures) and thus although the wood structures are not affected by the original

applied stress, the structures might still undergo deformation.

The Cutty Sark being around 140 years of age, creep and fatigue would be fzilova®r
concern for the ship. Corrosion is also one of the main aspects of failure to consider as
corrosion accelerates creep and fatigue in various different ways for metals, woods and alloys.
Sinceits launch in 1869, the Cutty Sark has been sailangaround 70-80 years until it was
dry-docked in 1954. The types of creep, fatigue and corrosion, which the CuttlyeSakeen
experiencing, would be different types during these two periods because the ship has been

used for carrying goods at sea and later converted into a museum in a dry dock.

The development of diagnostic and prognostic tools, which will later be incorporated into a
maintenance decision support system, requires input and collaboration of technology and
knowledge from different digglines. Such an inter-disciplinary effort has not yet been
developed for heritage structures such as the Cutty Sark. Similar endeavours can be found in
the building and maintenance of iron and steel bridges across the world where long-term
monitoring systems of bridges is necessary in order to secure structural and opesataigal

as well as issue early warning on deterioration of structures. The main difficulties here again
lie in the technological fusion of different disciplines, which include distributed and
embedded sensing, data management and storage, data mining and knowledge discovery,
diagnostic and prognostic methods and decision support systems (KO, J. M. and Ni, Y. Q.,
2005).



1.4.Challenges in Maintaining Aged Structures

In order to detect and predict faults and failures, it is essential to understand the structures and
their behavior. The lack of documentation explaining the design and construction of aged

structures makes structural assessment difficult. Intrusive measurement techniques common
in monitoring cannot be applied as these have high risk of damaging the structure. The

challenges described are commonly observed in aged structures where the lack of technical
details of the structures hinder the maintenance process to a great extent (MANDENO, W. L.,

2008).

For example, in reference to (GARZIERA, R. et al., 2007), a new technique is pdesente
which involves the use of a laser Dopper vibrometer to measure displacement with great
accuracy and reliability. In this project, the aim is to identify the dynamiactarstics of a
building, which then help to locate damaged zones, cracks due to structural degradation in
historical churches, bells and masonry towers. Wireless sensor networks are also being
investigated for the monitoring of historical buildings to facilitate monitoring of appropriate
physical characteristics from sensors placed in basakcess areas (ANASTASI, G. et al.,
2009). Reference (GLISIC, B. and al, 2007) provides more examples of structural monitoring
of historic buildings, which have undergone extensive repair and the conservation program
where both conventional sensors as well as optical fibre sensors have been used. Such
monitoring systems for aged structures have mainly diagnostic capabilities with little or no

prognostic capabilities.

The iron structures of the Cutty Sark are made of wrought iron. While considerableoattenti
and a lot of research continues to be directed towards corrosion of iron and steel structures, no
comprehensive study has been carried out to date on corrosion models for wrought iron
structures (SOARES, C G and al., et, 2008) (SOARES, C. G. and al., et, 2008) (YUANTAI,
2008) (MELCHERS, R. E., 1999) (MELCHERS, R. E. and Jeffrey, R. J., 2008). Information

is scarce on corrosion models for prediction of corrosion rates with respect to different
influencing factors such as relative humidity, temperature, time of wetness, surface area,
chloride concentration and other contaminants. Therefore, uncertainties in quantitative
corrosion models are quite high. Straub (STRAUB, Daniel, 2004) reports that physical

models of corrosion processes are hard to build, as these require knowledge of the
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concentration of oxygen in the environment, the diffusion coefficient in the corrosion
products and many other factors, which are not generally available. Additionally, purely
empirical models have little value, as the extrapolation of the models outside the calibration

range is not possible.

Furthermore, the environmental conditions on a ship such as the Cutty Sark will be different
in the future once the restoration work is complete. Added to that, the iron structures would
have been treated to decrease corrosion and to protect them from any furtbsioor
Therefore, extrapolation of data and information from historic behaviour cannot be carried out
and processed in a straightforward manner to provide predictions of future degradation for the
ship. Conventional inspections approaches, such as inspect and repair, are not viable options
for the ship, as any harmful effects must be detected well in advance of any significant

damage on the structures.

Due to the complexity of the corrosion processes, measuring and predicting future corrosion
rates for iron structures is a challenge. Corrosion encompasses complex electrochemical
reactions for which corrosion rates vary significantly depending on the composition of the
materials, the shape of the structures and the surrounding environmental conditions. As
mentioned above, many corrosion processes are little understood to date making it difficult to
predict corrosion rates of particular structures of particular material within a specific and/or

changing environment. The specific challenges for Cutty Sark can be listed as the following:
e Understanding to what extent corrosion affects iron structures.

e Determining the corrosion rates for wrought iron structures as well as composite

structures made of wrought iron and timber

e The corrosion rates will be different throughout the ship due to difference in shapes of

structures and different environmental conditions
¢ Finding out to what extent will corrosion affect already aged material

e Developing a correlation between environmental factors and actual corrosion

occurring



1.5. Aims and objectives of the research

1.5.1. Aims

There are four main aims for this research. The first isuomarise the major areas of
research currently being carried out in the field of maintenance of aged structwretsiraitr

health monitoring, diagnostics and prognostics. This project being an interdisciplinary effort,

a thorough investigation of the state-of-art in the different disciplines involved is essential.
The second aim is to investigate the use of sensors to gather environmental and performance
data. Due to restrictions in terms of installation of monitoring equipment, bespoke sensors are
required to acquire data. The development and implementation of diagnostic and prognostic
tools is the third aim of this research. In brief, within this framework, performance data will

be processed to determine at diagnostic level whether the structutiecaishy’ or
experiencing damage. If damage is detected, a trending process is initiated to estimate the
remaining useful life of the structure in the prognostic stage. Various methodologies can be
used at both diagnostic and prognostic level. Most importantly, the diagnostic and prognostic
tools should provide an accurate update on the extent of corrosion damage and its
development such that maintenance actions can be planned at convenient times. Finally, the
fourth aim is to demonstrate the utility of the tools developed using some notional examples.

1.5.2. Obijectives

To achieve the aims set above a list of objectives has been identifieddetailed below:

e Define conservation in terms of primary parameters for which changes over time is
measured. Additionally, the likely values of these parameters over a period of 50 years
need to be established. This also involves understanding how the restored structures
are expected to perform over time. The parameter(s) chosen should be indicative of
the state of the corrosion of that structure, easily measured and provide a continuous

update of the state of the structure.

e Damage detection: Design sensors to use around the structure and determine optimal
placement of those sensors to detect with high probability and reliability, any damage
before it becomes critical. The number of sensor should be kept to a minimum due to

operational cost issues.



PHM Framework: The objective is to investigate model driven and data driven
algorithms for diagnostic and prognostic purposes. An appropriate fusion technique
should then be used to combine all the diagnostic and prognostic analysis into a PHM
framework that will also provide the ability to manage uncertainty

Diagnostics The diagnostic tool will compare the 50 years predicted value for a
parameter with threshold values that have been chosen to represent a lower bound of
acceptable deterioration with time. If any predicted parameter exceeds its threshold
value, this should be detected early enough for remedial action to take place. Data
trending algorithms will be developed to detect anomalies in chosen parameter

measurements that would indicate possible failure in the near future.

Prognostics: While faults are identified at diagnosis level, usually immediate action

will not be required at that stage. The development of a fault is tracked and

maintenance is scheduled at the most appropriate time. The prognostic system is
expected to have low predictive accuracy at the beginning (which is acceptable and
unavoidable) and maximum accuracy towards the end of the life of the structure

(which is too late to be useful). Hence, one main objective is to achieve adequate
accuracy of predictions of remaining life (for a 50-year period ahead for Cartky S

example) in the next five to ten years.

1.6. General Methodology

Prognostics and health management (PHM) techniques combine sensing, recording, and

interpretation of environmental, operational, and performance-related parameters, which are

indicative of a system’s health. Prognostics and health management can be implemented using

various techniques to sense and interpret the parameters indicative of:

performance degradation, such as deviation of operating parameters from their

expected values

physical or electrical degradation, such as material cracking, corrosion, interfacial

delamination, or increases in electrical resistance or threshold voltage

changes in a life-cycle environment, such as usage duration and frequency, ambient

temperature and humidity, vibration, and shock.



Different approaches can be used individually or combined together to predict fatiemeas

of a distribution of remaining life and/or level of degradation.

A set of diagnostic and prognostic tools have been developed and a new sensor system has
been devised as part of a prognostics and health management system. The diagnostic tool
performs anomaly detection using Mahalanobis distance (TAGUCHI, Genichi et al., 2000) as
the reasoning algorithm. Mahalanobis distandD) is a distance measure based on
correlation between two or more variables from which patterns can be identified and
analysed. It produces a single metric from multiple sensor data to represent anomalies in the

system.

The first prognostic tool is based on the Physics-of-Failure approach, which consists of
predicting remaining life of a structure using deterioration models based on environmental
factors and any other relevant factors that can lead to deterioratianswticture. This

generally involves a physical/empirical model best fit to predict the future state of a structure
Here, a temporal model is used to predict the amount of corrosion at a specified point in time

and the evolution of corrosion penetration with time.

The second prognostic tool developed uses a fusion approach that is implemented using
Bayesian networks. Bayesian Network models are developed to predict remaining life of a
structure by integrating predictions of remaining life (using PoF) with real-time information

of possible anomalies in the system(using MD an3glydikis fusion approach has been
adopted with the aim of developing a prognostic tool that can accommodate the initial lack of
information and knowledge regarding the corrosion processes on the Cutty Sark iron

structures and handling data uncertainty.

The new sensor system devised consists of two types of devices: Canary and Parrot devices.
Canary devices are small-accelerated devices, which will fail according to sfaiilae
mechanisms occurring on Cutty Sark. Canary devices will fail faster than the sydterh

thus giving advance warning of impending failure. Parrot devices are similar to canary
devices but fail at the same rate as Cutty Sark structures. These devices will bamgandd

the ship for monitoring purposes.
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1.7.Contribution

The key contributions of this thesis are highlighted below:

1. Development of a sensor monitoring system comprising of canary and parrot
devices in order to measure environmental and performance variables for the iron

structures.

2. Development of a prognostic tool that incorporates a PoF model for remaining life

prediction of iron structures through the adaptation of the linear-bilogarithmic law.

3. Development of a data-driven diagnostic tool that uses Mahalanobis Distance

analysis for anomaly detection.

4. Development of a prognostic tools based using fusion approach to integrate
information obtained from the PoF model and anomaly detection to provide
updated remaining life prediction using Bayesian Networks.

The diagnostic and prognostic tools developed in this thesis are expected to have a broader
impact to the heritage industry as their applications can be extended to aged structures where
historical data is scarce, appropriate sensor monitoring techniques are few and understanding
of complex failure mechanisms is still incomplete. The results of the research work have been
presented at three international conferences and have been published in two journal papers.

1.8.Thesis Structure

The thesis is organised in seven chapters including this chapter. The general layout of the

thesis and the topics discussed in each chapter are as follows:

Chapter 2 reviews the Prognostics and Health Management approach on which the PHM
framework is based. The following areas are covered in more details: Use of Canary devices,
Model-driven methods, Data-driven methods and Fusion methods. A brief overview of
maintenance strategies used in the field is also provided. Additionally PHM and SHM efforts

for historic structures are reviewed.

Chapter 3 provides background information regarding structure degradation of other maritime
heritage structures, failure modes and mechanisms experienced by historic structurass such a
the Cutty Sark.
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In chapter 4, the diagnostic and prognostic tools developed for aged structures are described
using the Cutty Sark as example. The use of canary and parrot devices is also détailed.
model-driven method used to predict corrosion rates of iron structures as well as the data-
driven method using precursor monitoring and anomaly detection are presented. Then the use
of Bayesian networks as a fusion approach for updated remaining life probability distribution

is detailed.

Chapter 5 illustrates a demonstration example setup to test the diagnostic and prognostic tool
framework. The background information used to develop the demonstration example is

presented along with the results from the diagnostic and prognostic tools.

Chapter 6 describes the laboratory experiment carried out to evaluate the methodologies

presented within the PHM framework. The results are also detailed and discussed.

Chapter 7 concludes the thesis with a summary of research work carried out, its scientific
contribution, the recommendations for diagnostic and prognostic tools and future research

areas.
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2.Literature Review

2.1.Prognostics and Health Management

2.1.1. Introduction

Prognostics and health management (PHM) is an approach that is used to evaluate the
reliability of a system in its actual life-cycle conditions, to determine the initiatidailure,

and to mitigate the system risks (MATTHEW, S et al., 2008). The prognostics and diagnostics
terminologies are used to describe the broad range of processes, which aim to determine
material condition at present time and at a later predetermined time. Diagnostics is as
described in (HESS, A. et al., 2005) is the process of determining the state of a component to
perform its functions, high degree of fault detection and fault isolation capability with very
low false alarm rate. In (GREITZER, F. and al, 2001), Prognostics is descsiltieel process

of predicting the future state of a system based on current state and predicted future usage
Diagnostics is carried out to investigate any current failure in a component whereas
prognostics will give warning of possible failure in the future and/or predict remaining life of

a system such that there is enough time for any preventive measure to be taken to extend life

of the system.

Diagnostic methods of PHM systems for fault detection and isolation have achieved good
levels of effectiveness depending on the field of application. However, prognostic abilities of

PHM systems are still at infancy levels in many application areas as the requirements are
often more challenging than those for diagnostic methods. The performance of the prognostic
part of a PHM system is dependent on the quality of the diagnostic part. A PHM system can
provide many different kinds of predictions. These could be the probability associated with a
particular system event occurring or the probability of failure of a system within a set period

of time or determining the remaining lifetime of the system under set conditions.

Development of PHM systems depends on the specific requirements of the application.
Amongst the main requirements is the amount of time in advance that faults should be
detected and how far in future is the prediction of failure required for. In fulfilling these

requirements, several factors need to be taken into consideration: the capabilities of the
sensors, the logistics available, the current technology shortfalls and the level of safety and

reliability that needs to be attained. Additionally, the following factors are critical to perform
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prognostics: current health state, historical health state, past maintenance history, and
expecedfuture usage (GOH, K M et al., 2006).

There are four general methods for conducting prognostics and health management of

systems, which are:

e Fuses and Canaries - also called prognostic cell approach. The prognosticecells ar
integrated into a specific component or device; these cells incorporate the same failure
mechanisms as the embedded device, but fail faster than the actual product by means
of scaling.

e Model Driven Methods - such as Physics-of-Failure (PoF) methggolehich is
founded on the premise that failures result from fundamental mechanical, chemical,
electrical, thermal and radiation processes. It consist of four steps: (1) Failure mode
and effect analysis, (2) Life cycle loading monitoring, (3) data reduction and load

feature extraction and (4) Damage assessment and remaining life calculation.

e Data Driven Methods - These methods are typically derived from machine learning
techniques such as (i) models that establish a set of interconnection relationships
between input and output where the parameters of the relationship are adjusted with
more information and (ii) detection algorithms that learn a model of the nominal
behaviour of a system and then indicate an anomaly when new data fails to match that
model (SCHWABACHER, M and Goebel, Kai, 2007)

e Fusion Methods - The aim of fusion/hybrid methods is to integrate both model-based
and data-driven methods in order to benefit from the merits of both approaches.

The term Structural Health Monitoring is used also to describe diagnostic and prognostic
technologies used to monitor systems and structures. In reference (SPECKMANN, Holger
and Roesner, Henrik, 2006), Structural Health Monitoring is described as the continuous,
autonomous in-service monitoring of a structure by means of embedded or attached sensors
requiring minimal manual intervention to monitor the structural integrity of a structure. This
typically involves a large number of sensors used at the front-end to gather dita on
condition of the structure. This data is then used in structural analysis and failure models to
assess the state of a structure and to predict the remaining useful life (ACHENBACH, J D,
2009).

-14 -



Structural health monitoring is usually carried in fields such as the electronics industry,
aviation industry, civil industry and many others. Boeirgy currently looking at
implementing a structural health monitoring system focusing on detection and prediction of
the corrosion of metallic structures in ageing aircrafts (COLE, I, 2008). In the civil
engineering sector, the focus is on the maintenance of increasingly ageimg civi
infrastructures, especially bridges and high-rise buildings (AUWERAER, H. V.D., 2003). For
example, in Japan, there is major concern for the integrity of civil structures with respect to
damage caused by earthquakes. Furthermore, it is anticipated that investments in new
buildings and infrastructure will decrease while maintenance and renovation of existing

structures will increase.

The main motivations for SHM are the optimal use of a structure, minimized downtime and
the avoidance of catastrophic failures (BALAGEAS, Daniel, 2010). SHM also aims to
minimise human involvement thus reducing labour, downtime and human error, which leads
to improved safety and reliability. Additionally, the economic benefits are also considerable

in that constant maintenance costs would be expected instead of increasing maintenance costs
for classical maintenance approaches. Some of the features usually associated with SHM are
(SPECKMANN, Holger and Roesner, Henrik, 2006):

e Sensors permanently attached to the structure
¢ No physical access to inspection area necessary (safe inspection of hazardous areas)
e Automated inspection without manual operation in the inspection area required

e Questioning several locations at the sameti

The transition from research to practice of SHM however is reported to be quite slow. There
are many technical challenges still to overcome particularly with regard to sensor
development and data transmisSi@CHENBACH, J D, 209). Sensors need to be small and

ideally with suitable wireless transmission capabilities to the central station.

The purpose of this chapter is to provide an overview of the diagnostics and prognostic
methodologies currently in development and/or in use for aged structures such as ships,
bridges and historical buildings as well as aircrafts and electronics. The first sectiobegescr

the different categories of diagnostic/prognostic methods in PHM. The second section

describes the use of canaries as advance warning devices. The third section describes the

-15 -



model-driven methodologies for prediction of corrosion rates in varied structures. In the
fourth section, an overview of data-driven techniques is provided with focus on technologies
used for precursor monitoring and anomaly detection. The fifth section describes research
carried out on using fusion approaches for prognostics and especially Bayesian Networks,
which is, used the fusion prognostic tool developed. The penultimate section provides an
overview of current SHM and PHM efforts for historic buildings and ships. The last section

summarizes the information provided in this chapter.

2.1.2. Challenges & Issues

The challenges of PHM systems are varied and depend on the application field "Wukil

likely scenarios and future events and behavior can be quantified to a certain extent, the future
is not known at the time of prediction. Thus, prediction needs to be treated as a probabilistic
process where the predicted remaining time is represented by a probability density function.
As a result, we cannot eliminate the inaccuracy and uncertainty (precision and confidence) of

the predicted remaining life but only minimize it (HESS, A. et al., 2005).

A common paradox associated with PHM due to the use of Probability Density Functions

(PDFs) to represent predicted remaining life is the more precise the remaining life estimate,
the less probable this estimate will be correct. In reference (ENGEL, S J et al., 2000), Engel et
al demonstrates the distinction between four idealized Probability Density Functions (PDFs)

for remaining life. Prognostic methods need to be able to handle real world uncertainties that
lead to inaccurate predictions. These uncertainties are groupetinee categories (SUN, Bo

et al., 2010):

¢ Model uncertainty caused by model simplification and model parameters

e Measurements and forecast uncertainty induced by environmental and operational

loads

e Uncertainties associated with the characteristics of parameters of a system caused by

the production and implementation process of that system.

Thus prognostic accuracy assessment technologies with methods that impartially evaluate the
effectiveness and accuracy of a PHM system are required for quantifyiogrtfigence level
of the PHM system. Often prognostic methods cannot be used due to lack of empirical data or

experience knowledge required to develop and test the methods. This occurs mainly due to the

-16 -



lack of failure data for systems, as they get safer and more reliable. Additionally some legacy
systems lack the necessary documentations (HADDEN, G D et al., 2000).

Sun et al, also discuss the difficulty of determining the Return on Invest (ROI) of a PHM
system as it is difficult to quantify the benefits of PHM results. ROI is a process based on cost
avoidances associated using PHM and the costs associated with the implementation of PHM.
Thus performance measures for PHM need to be well defined in order to assess the
anticipated ROI and these would include the overall logistics system, supply chain
management and other related resources required for the implementation and running of a
PHM system. Finally, maintenance applications tend to be complex (in both volume and
substance) which overwhelms users. This leads to users developing mistrust in the system
whenever a false alarm occurs or prediction of a failure is missed (KOTHAMASU,
Ranganath et al., 2006).

2.1.3. Benefits of PHM

The use of a prognostics health management approach for maintenance of systems provides
many advantages in terms of reliability, safety, maintainability and other aspects (SUN, Bo et

al., 2010). These are summarised beI 2-1.
Criteria Benefits

Reliability (SUN, Bo With monitoring of environmental and usage loads, i
et al., 2010) possible to take active control actions increase the lifetim
a system through changes to environmental and/or U
conditions. Collection of data enables PHM to assess
actual condition of a system and predict remaining life wi
in turn is used to replace components of a system as and
required resulting in improved reliability.
Safety (SUN, Bo et PHM provides the ability to anticipate incipient faults prior
al., 2010) their progressing to final system failure and time to
problems before the faults cause a catastrophic failure.
Maintainability (SUN, PHM helps eliminate redundant inspections, minin
Bo et al., 2010XNIU, unscheduled maintenance, extend maintenance cycle, de
Gang et al., 2010) test equipment requirements and ultimately reo
maintenance costs.
Logistics (NIU, Gang PHM improves and assists the logistical support syster
et al., 2010XSUN, Bo integrating reliable real time information on current and fut
et al., 2010) status of systems which aid planning maintenance anc
logistics associated with maintenance such as transpor,
and supply chains for spare parts.
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System design an Through investigation of failure modes, mechanisms,
Analysis (NIU, Gang effects of systems, potential design flaws can be found.
et al., 2010) helps in improving design and qualifications processes
systems.
Risk Managemen Some level of risk is inevitable with maintenance decisi
(HESS, A et al., where the balance is required between removing a f:
2006) component while it still possesses useful capabilities
achieving the limit of 100% failure avoidance. PHM enal
the user to make maintenance decisions by providing
necessary information to evaluate and manage the
associated with the actions to be taken.
Table 2-1: Benefits of PHM

2.1.4. Overview of Prognostics Techniques

From the literature, many research groups have presented a typical PHM system, which would
take sensor values as inputs and ideally perform the following (HADDEN, G D et al., 2000)
(SCHWABACHER, M and Goebel, Kai, 2007), (PATNAIK, A R et al., 2006):

e System Monitoring using Sensors - sensors located at critical points
e Fault detection - detecting that something is wrong (diagnostics)
e Faultisolation - determining the location of the fault (diagnostics)

e Fault identification - determining what is wrong, i.e. determine the fault mode
(diagnostics)
e Fault prediction - determining when a failure will occur based conditionally on

anticipated future usage (prognostics)

e Maintenance Scheduling - determining the appropriate times for maintenance

activities based on a cost-benefit analysis

Many PHM algorithms exist whose applicability is highly dependent on the available
knowledge of the monitored system. These algorithms can be classified into three main

categories: (1) Model-driven, (2) Data-driven and (3) Fusion, which can be furthefiethssi

as shown in Figure 2r1 which is based on similar representations in (SCHWABACHER, M
and Goebel, Kai, 2007) (ZHANG, Huiguo et al., 2009).
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Figure 2-1: Types of Prognostic Algorithms

Model-driven algorithms are hand-coded representation of the system. These can be either
physics-based or Artificial Intelligence-based. Physics-based models involve accurate
mathematical models encapsulating first principles knowledge of the system. Such models are
highly desirable but often difficult to build for complex systems (PATNAIK, A R et al.,
2006). Thus, most physics-based models do not capture every details of the system, but
capture the essentials features with minimum complexity. Al-based algorithms include rule-

based expert systems and finite state machines amongst others.

Schwabacher et al, define data-driven approaches as methods that automatically fit a model of
system behavior to historical data rather than hand coding a model (SCHWABACHER, M

and Goebel, Kai, 2007). Data-driven methods use real data to approximate and track features
revealing the degradation of systems and to forecast the behavior of a system. As a result
data-driven approaches are highly dependent on the quantity and quality of data. As such,
data-driven models can be applied immediately in situations for which appropriate physics-

based models do not exist or are too expensive and/or complicated to develop. Data-driven
approaches are further categorized into machine learning approaches (such as neural

networks, fuzzy systems, decision trees, etc.) and statistical approaches. Machine learning
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techniques are usually very flexible and can easily adapt to changes resulting frgesdhan
the system itself, in its operating environment or expectapnsNG, Huiguo et al., 2009)
Further review of data-driven methods used in Prognostics and Health management is

provided section 2.3|2.

More recently fusion or hybrid approaches to perform diagnostics and prognloaties
emerged with the aim of combining the advantages of PoF models and data-driven methods to
provide a more reliable prediction of remaining useful life (ZHANG, Huiguo et al., 2009)
(CHENG, Shunfeng and Pecht, Michael, 2008)referencgZHANG, Huiguo et al., 2009)the
datadriven method is used to “calibrate” the PoF model. Meanwhile, the PoF model is used

to define failure criteria and thresholds for the data-driven method and provide an estimate of

remaining life based on data-driven results.

2.1.5. Prognostics in application

Prognostics and Diagnostic systems have recently gained strong interest from diverse fields
(mechanical and electrical systems, logistics, and construction, medical). Prognostic tools are
now researched widely under industrial, government and academia projects. An overview of

some projects in various sectors is provided in the following subsections.
2.1.5.1. GE Aviation

GE Auviation is engaged in developing prognostics health management applications for
mechanical and electronics systems in the avionics industry. In (SMITHS AEROSPACE,
2004), the ProDAPS project application is described as providing intelligent tools to facilitate
the following tasks:

e Extraction of new knowledge and information from system health data
e Reasoning with this knowledge and information to diagnose system state
e Anomaly detection and trending for prognostics

e Determine the optimum actions to meet system management goals.
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The ProDAPS application consists of a number of components (Probabilistic High Level
Reasoning Engine, Decision Support, Network Editor, Causal Network Editor, Data Mining
& Knowledge Discovery, and Reasoning Function) as detailed in (SMITHS AEROSPACE,
2004).

2.1.5.2. PHM for Energetic Materials

Niu et al, are looking into the development of a PHM-based system to ensure the unique and
demanding reliability and safety requirements of energetic material systems are méld¢o ena
widespread use in both military and civilian applications (NIU, Gang et al., 2010). Energetic
materials are a class of materials with a high amount of stored chemical energy that can be
released (e.g. hydrogen fuel cells). Traditionally the predicted remaining life of eaergeti
materials was based on an assumed rate of deterioration, which did not account for usage and

environmental stresses encountered in real life.

The PHM-based technology would be implemented from initial stage with embedded sensors
installed on the actual system for future data collection and health assessment. Investigation
into the use of canary materials that exhibit similar behaviours to the energetic material itself
are also being carried out. The physicochemical properties and parameters often define how
the performance degradation of energetic materials will occur. Currently asséssing
material’s energy consumption, predicting the remaining useful life, and enhancing the
reliability of the energetic material are concerns. A fusion approach combining both the PoF
and data-driven approaches are being investigated for energetic material with the aim of
benefitting from the merits of both approaches.

2.1.5.3. Integrated Vehicle Health Management in the Auto Industry

Holland presents the Integrated Vehicle Health Management (IVHM) as are activ
management system of the automotive vehicle’s health to guarantee performance of key
functions to ensure the requirements for safe and reliable transportation are met (HOLLAND,
Steven W, 2008). The aim is to port integrated vehicles health management concepts

originally developed for aerospace into automotive industry.

The need for IVHM is motivated by the need for car manufacturers to deliver dligi at an
affordable price while remaining highly customer-focused. Currently depending on the

frequency and severity of faults, different approaches are used to deal with thestraldggy
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of “operate till failure” is used for fault with very low frequency and severity. For faults of
very high frequency and severity, the product or process is reeestgneliminate the
problem at the source. IVHM is mostly concerned with the strategies to employ in between
these extremes. Mathematical models can be used to exploit information available from
existing sensors to predict future faults and/or remaining life. Currently condition-based
approaches while effective are currently considered too costly due to the need to install

additional sensors and the need of considerable engineering effort.
2.1.5.4. Condition-Based Maintenance for Naval Ships

This project supported by the Office of Naval Research of the U.S. Department of defence
aims to develop the MPROS architecture (Machinery Prognostics and Diagnostics System)
which hosted multiple online diagnostic and prognostic algorithms that can efficiently
undertake real time analysis from appropriately instrumented machinery aboard naval ships.
Feedback to users regarding the status of the machinery would then be provided to aid in
maintenance decisions before embarking on their next mission. MPROS had two phases: the
first phase was installed and running in a lab and the second phase was installed on the Navy

hospital ship Mercy in San Diego.

One prototype contained four sets of algorithms developed by four different teams. Data
concentrators (devices with embedded computers for processing the diagnostic and prognostic
algorithms) were placed near the ship’s machinery. The information processed from the data
concentrators were then sent over the ship’s networks to a centrally located machine
containing the Prognostic/Diagnostic/Monitoring Engine (PDME). The PDME implement a
subsystem called Knowledge Fusion (KF) using Dempster-Shafer belief, which combines the
information processed from all the data concentrators to form a prioritized list of mairgenanc
tasks. The PDME also serves as a repository for the diagnostic/prognostic conclusions from
the data concentrators and the KF processing. Currently the set of algorithms being
implemented still needs to be validated in large parts as well as optimized for various

purposes.

-22 -



2.2.Canary and Parrot Devices Approach

2.2.1. Origin of Canary Devices

The word “canary” is derived from one of the coal mining’s earliest systems for warning of

the presence of hazardous gas using the canary bird. Because the canary is moreteensitive
hazardous gases than humans, the death or sickening of the canary was an indication to the
miners to get out of the shaft. The canary thus provided an effective early warning of
catastrophic failure that was easy to interpret (VICHARE, N and Pecht, M, 2006).

In prognostics and health management, the same idea is adapted such that canary devices are
used in the actual systems and thus providing advance warning of failures. This technique is
widely used in the electronics industry to sense excessive current drain and to disconnect
power from the concerned part for example (VICHARE, N and Pecht, M, 2006). Canary
devices are accelerated devices, which will fail according to similar failure meclsanism
which could possibly occur in actual system being monitored. Canary devices are designed to
fail faster than the actual system as an early warning of failure. Canary dee@scused

to learn about the effect of several factors, which could lead to failure in the system.

Additionally, as shown iE Figure 2-2, the canaries can then be calibrated to provide advance

warning of failure (the prognostic distance) to allow appropriate maintenance operations
(PECHT, Michael, 2006).

Failure probability density Failure probability
distribution for in-situ density distribution
health monitors for actual circuitry
\ Prognostic
. distance  J
-
Time ——

Figure 2-2: Advanced warning of failure using canary devices
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2.2.2. Canary Devices: Current State of the Art

2.2.2.1. Use of canary devices in electronics industry

Fuses and canary devices have been used for a while as a means of detecting and preventing
failure in the electronics. Vichare (VICHARE, N and Pecht, M, 2006) describes various uses

of fuses and canaries, which include circuit breakers to sense excessive curreaindrain
disconnect power from the concerned part and thermostats to sense critical temperature
limiting conditions and shut down part of the structure until the temperature returns to normal.
Ridgetop Group have commercialized prognostic cells for semiconductor failure mechanisms
such as electrostatic discharge, hot carrier, metal migration, dielectric breakdown and
radiation effects for which time to failure with respect to the actual product can be pre-
calibrated (RIGETOP SEMICONDUCTOR-SENTINEL SILICON LIBRARY, 2004).

2.2.2.2. Corrosion sensors in Structural Health Monitoring of Aircrafts

CSIRO, in conjunction with Boeing Phantom Wormnd Australia’s Defence Science and
Technology Organisation (DSTO), has developed structural health monitoring system, which
is based on an agent-based system that uses sensor microclimate, and corrosion data to
diagnose corrosion and infer the presence of corrosion in locations such as crevices where it
cannot be sensed directly (COLE, I, 2008). Clusters of sensors in small local regions of the
aircraft measure local microclimate factors, including temperature, humidity, surface wetness
and conductivity of surface moisture. The sensor cluster also includes a galvanic corrosion
sensor, fabricated from mated strips of copper and aluminum allow. Each agent forms an
autonomous sensing unit by including data acquisition, processing and communications

capability with each sensor cluster.

Sensors can however only monitor a small percentage of the aircraft structureisandtit
possible to install sensors in some of the areas of high corrosion risk, such as crevices and
fastener holes. Thus, the structural health monitoring system also needs a reliable way of
inferring the likely progression of corrosion damage at “unsensed” points in the aircraft. The

galvanic corrosion sensors (damage sensors) used in the system measure tife rate o
degradation of the material of the sensor itself, rather than that of the structure to which it is
attached.
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Correlation relationships between the actual component damage and the sensor damage have
been developed through experiments run in environmental chamber tests (MUSTER, T et al.,
2005). A model is derived from data streams of the microclimate and damage sensors by an
optimization procedure that establishes the bestitationship” between the damage data

streams and the microclimate data streams. The model is then used to predict the future
progression of damage over immediate time spans (up to 6 months). The model is
continuously modified while the system is in use. One of the features of this system is its
capability to predict corrosion damage for unsensed points that do not have a sensor array
attached by matching the materials, geometry and local microclimate to those at sensed points
and making modifications to allow for specific features such as fastener holes.

2.2.3. Use of canary devices for corrosion monitoring

Garnett classifies corrosion detection methods into two major categories (GARNETT, E S,
2005). First, there are corrosion detection devices and techniques used to supplement visual
inspection at routine maintenance intervals. Those techniques include Visual, Eddy Current,
and Ultrasonic, Electrochemical Impedance Spectroscopy (EIS), Colour Visual Imaging
(CVI), Radiography and Infrared imaging. Most of those techniques required skilled operators
with knowledge of where to focus the detection. Additionally these devices are only used at

maintenance intervals, so damage arising between routine service intervals is problematic.

The second group of corrosion and crack monitoring tools is sensors and/or actuators
integrated into automated SHM systems. The sensors subgroup passively measures at discrete
predetermined locations: acceleration, ph, humidity, acoustic emission, ion concentration,
linear polarization resistance, and chemical potential detectors. The self-sensing actuator
subgroup uses the properties of piezoelectric smart materials to actively generate high
frequency nondestructive vibrations to inspect a structure for cracks and/or corrosion using
Lamb Wave or impedance methods. The advantage of the second group of corrosion and
crack detectors is the ability to do real-time monitoring and alert maintenance technicians as
the structure changes. A listing of the corrosion and crack detection methods and how they
work canbe found in (GARNETT, E S, 2005).

Each of the corrosion detection methods listed above has unique properties that make them
useful for detecting certain types of corrosion. As of yet, no one method can detect and
quantify all types and forms of corrosion in all types of joints, fasteners, and materials. Thus,
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it requires multiple techniques to detect corrosion. The advantages and disadvantages of each
method are described in (GARNETT, E S, 2005).

The PHM framework being developed here adopts the use of canary devices for monitoring
purposes. Intrusive measurement methods cannot be used due to the risk of damaging
structures of great historical value within Cutty Sark. The canary devices are smalienser

of the iron structures found on Cutty Sark. The canary devices are designed as such with the
aim of accelerating the impact of the factors that cause failure based on the saree fall
mechanisms as those on the actual structures. The canary devices also undergo treatments
such as being soaked in chlorine concentration solution for a predetermined period and/or
placed in harsher environments to accelerate corrosion of the structures hence accelerating

failure of the structures.

2.3.Data Driven Methods

2.3.1. Overview

Data-driven methods encompass algorithms that learn models directly from the data rathe
than using a hand-built model based on human expertise (SCHWABACHER, Mark, 2005)
Such methods are particular useful when understanding of first principles of a system is not
comprehensive or when developing an accurate model to represent a complex system is too
expensive. The two main strategies of data-driven methods are: (1) model cumulative damage
and then extrapolate out to obtain a damage threshold and (2) learn the remaining useful life
directly from data. Some of the common approaches taken are: (i) variants of neural networks,
(i) fuzzy logic, (iii) Bayesian networks, (iv) Case Based Reasoning and (v) various fypes o

anomaly detection algorithms.

Application of data-driven approach to PHM in industry has been successful to a certain
extent for diagnostic purposes whereas implementation of these approaches for prognostic
purposes is still very much at an exploratory stage. The efficacy of data-driven &gsroac
depends on the quantity as well as the quality of training data.

Artificial neural networks is one of the most popular machine-learning approaches to
prognostics where a model that establishes a set of interconnected functional relationships
between input data and desired output is created (SCHWABACHER, M and Goebel, Kai,
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2007). The parameters of the functional relationship are adjusted for optimal performance
using various techniques. Fuzzy logic is another Al technique that is frequently used for
prognostic purposes. Fuzzy logic provides a language (with syntax and local semantics) into
which one can translate qualitative knowledge about the problem to be solved thus allowing
the use of linguistic variables to model dynamic systems (SCHWABACHER, M and Goebel,
Kai, 2007). Case based reasoning is also used to look up a best match in a database of
diagnostic cases containing typical problems and solutions encountered while diagnosing a
system (PRZYTULA, Wojtek and Thompson, Don, 2000).

2.3.2. Precursor Monitoring and Anomaly Detection

A failure precursor is defined as an event or series of events that is indicative of impending
failure (MATTHEW, S et al., 2008). For example, an increased electrical resistance and/or
material loss would suggest impending structural failure due to corrosion leading to decreased
strength of a metallic component. Precursor monitoring is the continuous measuring of
selected parameter(s) for which a change in its value can be associated with a subsequent
failure (anomaly detection). Failures can then be predicted using a causal relationship between
a measure parameter that can be correlated to a failure. Usually parameters monitored are
those that are essential for the reliability of the system and critical for safety. Knevdédg

such parameters can be gathered through experience and using historical data of failures.

Precursor monitoring and anomaly detection is useful in situations where the physic-of-failure
models for a system are too expensive to build and run due to complexity and insufficient
knowledge of the application environment. A generic approach to carrying out precursor

monitoring and anomaly detection can be described as follows:

e Through analysis of trends within data, precursors are derived from one or more
parameters that show measurable changes based as a result of changes in performance
of the system.

e Feature extraction from the selected precursors is carried out to provide better

explanation of the current and possible future state of a system.

e To perform anomaly detection, data trend analysis algorithm is developed to detect
changes in the values of the measurement variables and to correlate these changes with

impending failure of the system.

-27 -



2.3.2.1. Anomaly Detection Techniques

2.3.2.1.IMSET

Multivariate State Estimation Technique (MSET) is used to monitor the current state of a
system and provide information to make a remaining useful life (RUL). MSET monitors
multiple parameters of a system such as temperature, humidity and vibration, and calculate
the residuals between the actual and the expected values of these parameters based on the
healthy historic data. MSET uses pattern recognition from healthy product data to generate an
estimate of current health. The historic data is assumed to cover and provide data for the
entire healthy range of the system. The results of MSET are residuals that descrilbeathe ac
monitored data in terms of the expected healthy values and can thus detect faults by

comparing the residuals with the threshold.

Figure 2-3 shows the MSET process as described in reference (CHENG, Shunfeng and Pecht,

Michael, 2007). New observations«:X are acquired for the monitoring parameters selected.
Training data (T) is built using healthy data from historic or current acquired data. Then
special data from the training data is picked to create memory matrix D, after which MSET
will go through two processes to calculate (1) the actual residuals and (2) the healthy
residuals. To calculate the actual residualg,tike new observations,.X is subtracted from

the estimate of the observationsXi.e. the expected value calculated from the healthy data).
To calculate the healthy residuals,, fhe estimates,ek of all the remaining training data, L

is calculated first, then the residuals between the estimates and remaining training data L is
calculated. The fault detection process then compares actual residuals with healthy residuals
to decide whether the current product is healthy or not. The common method is to employ a
hypothesis test, such as the Sequential Probability Ratio Test (SPRT), to produce alerting
patternsA detailed description of the MSET process can be found in (CHENG, Shunfeng and
Pecht, Michael, 2007).
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Figure 2-3: MSET Process

2.3.2.1.2Mahalanobis Distance

Mahalanobis Distance (MD) is a statistical tool developed by Mahalanobis in 1930, to
distinguish of a certain group from other groups (akin to the process by which a doctor
determines the degree of heath of a patient during an examination and classified the health of
the patient within a range from healthy to severely ill) (NIE, L et al., 2007). MBed to

find the “nearness” of an unknown point from the mean point of a group (PINJALA, K K et

al., 2003). Thus the nearer the unknown point to the mean point of the group (assumed as the
“healthy” group), the more likely that point represents a “healthy” state. MD is used mostly to

reduce a multivariate system to a univariate system by considering correlation among the
parameters. MD is often preferred to other distance measures such as the Euclidean distance,
which does not capture correlation between variables and needs to be scaled to reflect
differences in variances. The general steps employed for MD analysis are as follows (NIE, L
et al., 2007):

e Generation of the Mahalanobis (Normal) Space
o Define the “Normal” group (the healthy group)

o Define the y system variables (the performance parameters of a system, e.g.

vibration)
o Gather data for the normal group with sample size N>>y

o Calculate the Mahalanobis distance MD) for each sample from the defined

centre of the normal group.
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o Determine the MD threshold value distinguishing the normal group
e Evaluation of system data (outside the normal group)

o Gather data on the y defined system variables for samples outside the normal

group (data from real system being diagnosed)
o Calculate MD for each sample

o Compare MD values with MD threshold values to determine whether sample

belongs to normal group (healthy) or other groups (unhealthy, faults present)

MD has been applied with a varying degree of success in many applications such as medical
diagnostics, fire alarms, automotive, business forecasting and fault detection (CUDNEY
Elizabeth A et al., 2007) (KUMAR, S et al., 2008) (CUDNEY, Elizabeth A et al., 2006).

2.3.2.2. Application Examples

Nie et al (NIE, L et al., 2007), present a prognostics approach using the MD method to predict
the reliability of multilayer ceramic capacitors (MLCC) in temperature-humidity bia®8jTH
conditions. Capacitance, dissipation factor and insulation resistance were the three parameters
for which data was collected. A Mahalanobis space (MS) was formed from the MD values of

a set of the three identified parameters for non-failed MLCCs. In constructing the
Mahalanobis space, the values for the initial period (first 50 data points) were not used due to
unusually high MD values at the beginning attributed to transient phenomena. The modified
Mahalanobis space had less variation and provided better sensitivity for detection of
anomalies. They also suggested an alternative, which was to construct a separate Mahalanobis

space for the initial test period with a different MD threshold value.

The MD values for the remaining MLCCs were compared with an MD threshold value. Data
for MLCCs, which exceeded the threshold, were examined using the failure criteria for the
individual electrical parameters to identify failures and precursors to failure. Although the
detection rate was not perfect, the MD method was able to detect failures of the capacitors and
identify precursors to failure. They found that for discontinuous or intermittent failures, MD
was not successful in identifying these failures as anomalies. The quantity of historical data
required is identified as enough data to capture at least the whole life cycle of the system.
Additionally, if there is a change the conditions defining “normal” data, then Mahalanobis

space should be updated accordingly. They deduced that the quality and construction of the
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MS, together with the choice of the MD threshold, were the critical factors determining the
sensitivity of the MD method.

D’Silva et al, use the MD distance metric in the development of a vehicle stability indicator to
correlate the various current vehicle chassis sensors (e.g. hand wheel angle, yavd rate
lateral acceleration) (D'SILVA, Siddharth H et al., 2007). This endeavour had the aim of
developing a single metric that represents the performance of the vehicle as whole to
complement the individual subsystems that quantify the level of vehicle stability enhancement
in their domain through measurement of key vehicle signals. MD analysis was used to assess
the degree of correlation of the sensor signal, as in general there is a correlatiom betwee
various pairs of sensor signals when the vehicle operation is linear and stable and a lack of
correlation when the vehicle is becoming unstable or operates in a nonlinear region. Currently
MD analysis treats unstable and nonlinear operation as unwanted operation and flags their
presence with a high scalar metric. They report that preliminary simulation results indicate
that the scalar MD metric compares favourably with the traditional multi-metric approach.

2.3.3. Data-Driven methods for Corrosion-Related failures

Dawotola et al (DAWOTOLA, Alex W et al., 2011), use a data-driven approach to find the
optimal inspection interval for a petroleum pipeline that is subject to long-term corrosion.
This approach takes into consideration both the failure frequency and the consequences of
failure due to three forms of corrosion: uniform corrosion, pitting corrosion and stress
corrosion. The failure frequency is estimated by fitting historical failure data intar @ithe
homogeneous Poisson process or power law while the consequences of corrosion is calculated
in terms of economic loss and environmental damage caused by small and large leaks and
rupture of pipeline. Both failure frequency and consequences are then used to estimate the

total loss due to pipeline operation.

Gu et al (GU, Jinwei et al., 2006), developed the Space-Time Appearance Factorisation model
(STAF) that factors space and time-varying effects to monitor the process of corrosion of steel
structures by analysing the changes of surface appearance over timetal deveéa model
separated temporally varying effects from spatial variation, estimating a “temporal
characteristic curve” in appearance that depends only on the physical process as well as static

spatial textures than remain constant over time. Added to that, they developed the facility to
estimate rates and offsets that control different rates at which different spatial locations
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evolve, causing spatial patterns on the surface over time such that he speed of evolution can
be controlled by separately modifying space and time-varying effects.

2.4.Model Driven Methods
2.4.1. Physicsef-Failure Approach

Physics of Failure is an approach where accurate mathematical model (with an acceptable
degree of uncertainty) can be built from first principles representing the physicekpesc
within the system. Thus, knowledge of specific failure mechanisms and life cycle loading is
required to assess product reliability (PECHT, Michael G, 2008). The PoF methodology aims
to do prognostics by first calculating the cumulative damage accumulation due to various
failure mechanisms within a particular environment of a system and then analyses this
information to give predictions of remaining service life the system. PoF approaches integrate
sensor data with prediction models (based on future estimated loads) to predict the future

“health” of a system.

Various approaches are presented in literature for carrying on PoF-based pregriesiiiare
Modes, Mechanisms and Effect Analysis (FMMEA) is one methodology that is widely
adopted to carry of PoF-based prognostics (MATTHEW, S et al., 2008), (PECHT, Michael G,
2008). The FMMEA process is shown in Figure|2-4 (ZHANG, Huiguo et al., 2009).
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FMMEA is a systematic methodology to identify potential failure mechanisms and models for
all potential failure modes and to prioritise failure mechanisms (PECHT, Michael G,. 2008)
The failure modes and mechanisms to be monitored are then prioritized according to their
severity and likelihood of occurrence. Monitoring parameters and sensor locations can then be
determined. Using operational and environmental data, the amount of damage can is
calculated from PoF models, which is then used to estimate the remaining life. Further
detailed description of the FMMEA process can be found in (ZHANG, Huiguo et al., 2009).
Matthew et al, describes a PHM methodology that incorporates FMMEA and PoF models
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Figure 2-4: FMMEA Process used in PoF based PHM

through the following steps (MATTHEW, S et al., 2008):

1. Life cycle loading monitoring- the lifecycle of a system is the manufacturing,

operating and non-operating loads which individually or in various combinations

=
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accunulate damage that can lead to degradation of the system.

2. Data reduction and load feature extractiorstorage space and CPU load are
important factors to consider and it is essential to be able to condense load
histories without losing important damage characteristics. Prioritisation of failure

mechanisms leads to effective utilization of resources as usually only a few

operational and environmental parameters cause the majority of failures.
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3. Damage assessment and remaining life calculati®oF models can be used to
calculate damage cause by temperature and vibration loading which are common

load conditions that accelerate failure.

4. Uncertainty implementation and assessmehhile PoF models can be used to
calculate remaining life, it is still necessary to identify the uncertainties and assess
the impact of those uncertainties on the remaining life distributions in order to

make risk-informed decisions.

PoF models would generally use as inputs the following: stress level and severity, the
architecture or geometry, the material properties and life-cycle profile of a systetoulatea

the time to failure for a particular failure mechanism of the system. For example, Coffin
Manson’s model can be used to calculate damage caused by cyclic loading (e.g. temperature)
Additionally as life cycle loads are collected in real time, PoF models are genefadigteck

to be able to update predictions continuously. Damage can be calculated from various stresses
cause by environmental and/or operational loads. Then damage accumulation is performed for
a set period and the remaining life is calculated based on the accumulated damagd., (PECH
Michael G, 2008)

2.4.2. Physicsef-Failure Models for Corrosion-Related failures

Failures in a system are usually due to the processes occurring within and around the system
(e.g. mechanical, chemical, electrical, thermal, etc.) as well as the different typedsothiea
system is subjected to. For example in the case of Cutty Sark, the iron structures present hav
experiencedver the vessel’s lifetime various types of corrosion in different locations within

the ship. Corrosion models for certain materials have been developed that can predict failure
progression in laboratory with set environmental conditions and usage profiles. However, the
variation of test conditions such as the use of different metals and environmental conditions in
the various corrosion studies means no generic corrosion model to predict corrosion rate has

been developed to date.

For the scope of this research project, the corrosion rate of atmospheric corrosioerhas be
studied, as it is one of the main corrosion types the Cutty Sark is subjected to. Atmospheric
corrosion is an electrochemical process, with the necessary electrolyte provided by

condensation from the atmosphere (TULLMIN, Martin and Roberge, Pierre R., 1995).
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Atmospheric corrosion can occur both indoors and outdoors. The main factors that have the

most influence on the corrosiveness of the atmosphere at a given site are:
e time of wetness increased time of wetness generally increases corrosion rates.
¢ chloride concentration presence of chloride ion accelerates corrosion.

e amount of industrial pollutantsin presence of moisture, sulphur dioxide is oxidize to

form corrosion sulphuric acid.
e temperature- rates of corrosion usually increases with high temperature.

e relative humidity— as the relative humidity level increases, the thickness of the

moisture film increases.

e Dust- presence of dust on the surface can increase the surface moisture at a given

relative humidity.

Corrosion models are typically based on explicit mathematical models of corrosion rates.
Examples of this type of models include the Eyring-Peck model (HALL, P L and Strutt, J E,
2003) and Linear-Bilogarithmic law model (POURBAIX, M, 1982). The Eyring-Peck model

is an empirical model based on temperature and humidity of the environment. The Linear-
Bilogarithmic law is also an explicit model for the corrosion process controlled by time of
exposure and two coefficients, which depend on the exposure conditions. It is expressed as

follows in equation (1).

P=A"® (1)

Where P is the corrosion penetration at exposure titmA is corrosion rate during the first
year of measurement and B is a constant representing a measure of long-teasedecre

corrosion rate.

2.4.3. Model-driven approaches applied in the field

2.4.3.1. Using Life Cycle Consumption Methodology to assess remaining life of electronic
products

Vichare and Pecht investigated the effect of thermal loads on the reliability of electronic
products (VICHARE, N and Pecht, M, 2006). The aim is to continuously monitor the thermal
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loads, in-situ and use the data together with precursor reasoning algorithms and stress-and-
damage models to do prognostics. They applied the Life Cycle Consumption (LCM)
methodology to achieve this aim. At CALCE, Ramakrishman et al, (RAMAKRISHMAN, A
and Pecht, M, 2003) developed LCM where a history of environmental stresses is used in

conjunction with physics of failure models to compute damage accumulated and thereby

forecast life remaining. Figure Z2-5 (SANDBORN, P, 2005) shows the six mains steps

involved in the LCM Methodology.

Step 1: Conduct failure modes, mechanisms and effects analysis

v
Step 2: Conduct a virtual reliability assessment to assess the
failure mechanisms with earliest time-to-failure
N
Step 3: Monitor appropriate product parameters environmental
(e.g. shock, vibration, temperature, humidity) operational (e.g.
voltage, power, heat dissipation)
v
Step 4: Conduct data simplification to make sensor data suitable
for stress and damage models

V:
Step 5: Perform stress and damage accumulation analysis

v
Step 6: Estimate the remaining life of the product

v

s the
remaining
life
acceptable
?

Yes Continue
monitoring

\LNO

Schedule a maintenance action

Figure 2-5: CALCE Life Consumption Monitoring Methodology (SANDBORN, P, 2005)

Temperature and vibrations measurements were taken in-situ on the board in the application
environment and were used to develop stress and damage models to estimate consumed life.
The LCM methodology was then used to predict remaining life. Data reduction and load
parameter extraction algorithms were embedded into the sensor module to reduce onboard
storage space, power consumption and permit uninterrupted data collection over longer
durations. They monitored and statistically analysed the temperatures inside of a notebook
computer, including those experienced during usage, storage, and transportation, and
discussed the need to collect such data both to improve the thermal design of the product and

to monitor prognostics health. After the data was collected, it could be used to estimate the
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distributions of the load parameters. The usage history was used for damage accumulation and

remaining life prediction.
2.4.3.2. Engine Bearing Prognostics

Orsagh et al (ORSAGH, Rolf et al.,, 2004) have developed an engine bearing prognostics
approach that utilizes available sensor information on-board the aircraft such as rotor speed,
vibration, lube system information and aircraft maneuvers to calculate remaining useful life of
the engine bearings. Sensed data is linked to fatigue-based damage accumulation models
(based on a stochastic version of bearing life equations ) and projected engine operation
conditions to implement remaining useful life assessment. Model-based estimates can be used
when no diagnostic indicators are present and using monitored features at later stages when
failure indications are detectable, thus reducing the uncertainty in model-based predictions.
Prediction is carried out through a fusion of diagnostic features and physics-based modeling.
They perform assessment of remaining life through three functional steps:

e Sensed data signals indicative of bearing health (vibration, oil debris, temperature,

etc) are monitored to determine the current bearing conditions.

e Current bearing health engine speed and maneuver induced loading are used as
inputs for bearing health models.

e Future bearing health a rolling contact fatigue model utilizing information from
sensed data is used to calculate the cumulative damage sustained by the bearing since
it is first installed. The model output is then combined with extracted features and

future operation conditions to give prediction of remaining useful life.

To achieve a comprehensive diagnostic/prognostic capability throughout the life ofl critica
engine components, model-based information is used to predict the initiation of a fault. In
most cases, the predictions will prompt “just in time” maintenance actions to prevent the fault

from developing. However due to modeling uncertainties, incipient faults may occasionally
develop earlier than predicted. In these situations, sensor-based diagnostics complement the
model-based prediction by updating the model to reflect the fact that fault initiation has

occurred.
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2.4.3.3. Prognostic tool for single spur gear tooth and helical gear

Kacprzynski et al, develag a prognostic tool where predictions are made through the fusion

of stochastic physics-of-failure models, relevant system health monitoring data and various
inspection results (KACPRZYNSKI, G J et al.,, 2002). The inherent uncertainties and
variability in material capacity and localized environmental conditions as well as the
realization that complex physics-of-failure understanding will always possess some
uncertainty, all contribute to the stochastic nature of prognostic modeling. However, accuracy
can be improved by creating a prognostics architecture instilled with the abilitycorador
unexpected damage events, fuse with diagnostic results, and statistically calibrate predictions

based on inspection information and real-time system level features.

The approach involves using an integrated mathematical (probabilistic) framework that uses
material-level fatigue models, system-level feature models and raw health monitoring

measurements. Two prognostic models were developed:

e For a single spur gear tooth aim was to correlate a 2-D finite element fracture
mechanism models and associated crack initiation and propagation algorithms to tooth
stiffness and acoustic emission changes. This was achieved by updating/adapting
material property distributions or choice of algorithms during damage progressions

based on measured or inferred conditions.

e For a helical gear aim was to predict current and future material level damage as a
function of torque from system level vibration using a high fidelity model (built upon
contact element and 3-D fracture mechanics FE models of the gear).

2.4.4. Advantage of using PoF models for prognostic purposes

PoF based methodologies can provide information that can be used for advance warning of
failures, which helps, minimize unscheduled maintenance and decreasing inspection costs and
downtime. Data-driven approaches require data for training the algorithm. In legacy and new
systems, very often little data is available initially whereas PoF models can be used if the
material properties and structure geometries are available. In addition, many data-driven
approaches tend to only detect failure close to the failure point, thus making it difficult to

assess remaining life at the beginning.
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2.5.Fusion Methods

The fusion approach, also referred to as hybrid approach, is a mixture of the techniques
mentioned above. Fusion approaches are generally driven by the need to overcome the
lacking of PoF models and data-driven approaches in terms of their diagnostic and prognostic
capabilities. Data-driven techniques usually cannot distinguish different failure modes and
mechanisms in a system. Additionally there is heavy reliance on a reasonablydanigeg t
dataset that will explore the necessary loading and environmental conditions that will cause
faults and failures. PoF models are developed based on knowledge of specific material
properties, geometry and loading conditions and any deviation in those parameters in the
actual system will result in erroneous diagnosis and prognosis that is amplified over time.
Added to that, PoF models usually find it challenging to deal with complex failure

mechanisms.

By fusing the output of both methods, more robust and accurate diagnostics and prognostics
will result. Fusion approaches are also being investigated for their capability of fedang d
from different predictors where some will yield numeric values, while others will use
symbolic ones (BARAJAS, Leandro G and Srinivasa, Narayan, 2008). There are several
approaches to perform fusion prognostics. The following section provides an overview of

various approaches and their applications.

2.5.1. Bayesian Networks

Bayesian network is another popular method used for fusion prognostics. The following
subsections provide an overview of use of Bayesian networks for diagnostic and prognostics

purposes and briefly describe some example applications.
2.5.1.1. Overview of Bayesian Networks in diagnostics and prognostics

A Bayesian network is a probabilistic graphical model that represents a set of variables and
their probabilistic independencies. Bayesian networks are usually used to represent the
probabilistic relationships between causes and effects. Nodes represent the various variables
of the system (defined over all its possible states) and the connecting arrows indicate the

causality between these variables. Bayesian Networks are based on the Bayes’ Rule (equation

(2)):
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P(BIAPA)

PAIB) =0
@)

Where for eventé andB (providedP(B)+0), P(A) is the prior belief (i.e. initial uncertainty
in A), P(A|B) is the posterior belief (i.e. the uncertainty having accounted for evid®nce
P(BJ|A) is the likelihood and®(B) is the marginal likelihood.

Bayesian networks are used to represent domains containing some degree of uncertainty as a
result of inadequate knowledge of the state of the domain and/or randomness in the
mechanisms that control the behaviour of the domain. One unique feature of Bayesian
Networks is that results are presented in the form of probability distributions rather than
single values. Thus, uncertainty of processed results and impact of various decisions is
represented explicitly. Moreover, Bayesian Networks are particularly useful in situations
where a large number of interlinked factors need to be taken into consideration.

Przytula et al (PRZYTULA, Wojtek and Choi, Arthur, 2007), have carried out extensive
research in the field of diagnostics and prognostics using Bayesian networks with the
development and implementation of Bayesian Networks for diagnostics of complex
transportation and prognostic of electromechanical and electronic subsystems in aviation
systems. Initially the focus was on developing a systematic procedure for the efficient
creation of Bayesian networks for diagnostics (PRZYTULA, Wojtek and Thompson, Don,

2000). This process was divided into several phases:
e Problem decomposition decompose the initial system into simple subsystems
e Sub-problem definition
e Design and testing of a Bayesian network models for each subsystem.

e Integration into a complete Bayesian network.

The main principle in the development was starting with the simplest form of Bayesian
networks and increasing their complexity as required while balancing model accuracy and
knowledge acquisition cost. Further details on the method developed can be found in
(PRZYTULA, Wojtek and Thompson, Don, 2000).
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In a subsequent paper (PRZYTULA, Wojtek and Choi, Arthur, 2007), Przytula et al, describe

a general purpose probabilistic framework for reasoning in diagnostics and prognostics which
coherently integrates multiple sources of evidence, including system usage, environmental
conditions of operation as well as system health and health trends. The framework uses a
novel form for structure Bayesian networks based on layered, directed graphs. Only essential
aspects of system operation for diagnosis and prognosis are represented. Thus, there is a laye

of nodes representing the health of systems, a layer or diagnostic and prognostic ohservati

a layer of usage observations and one or more layers of subsystems as shown in Higure 2-6
(PRZYTULA, Wojtek and Choi, Arthur, 2007). To obtain reliable health prognosis, the

information contained in the average usage statistics is combined with the information

provided by one or more health observations, which characterize the health of the individual
component. Our solution to fusion of the usage and health information relies on a graphical
probabilistic framework. It is application independent, very rigorous mathematically and

accurate.

usage observations

components

sub systems

health
observations

Figure 2-6: A layered probabilistic graphical model for diagnosis and prognosis

Figure 2-7 depicts an example of the model for a simple system consisting of a single

component with one usage and one health observation. In this model, the reasoning for

diagnosis and prognosis is performed in two steps. First, the reasoning engine accepts the
present values for all usage and health observations as specified by the model, producing the
diagnosis for all modeled components. The future usage nodes, which indicate the time

interval we are interested in predicting health for, are simply set to the present usage values.
Next, for prognosis, the future usage values are set as required by a mission/tartcehels

are used as future health observations. The trends are computed externally by an appropriat

trending algorithm which, given the available history of health values, projects to a future
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usage value. The prognosis results take the form of the probability of completing the mission,
which is specified in terms of the future usage. However, they may be also easily expressed in

terms of remaining useful life of the component or system.

Figure 2-7: BN for prognosis consisting of a single component, usage and health olsgion

The Bayesian network model developed was then extended further into layered dynamic
network model, as the previous static model did not intrinsically account for historical values
of health observations, and employed health observation trends that were computing outside
of the model (PRZYTULA, Wojtek and Choi, Arthur, 2008). Thus, the temporal structure of
the extended model allows the incorporation of all available health history directly in the
model. The dynamic networks can accept all available component health histories at once,

which the reasoner can fuse together to produce the health diagnosis.

In reference (PRZYTULA, Wojtek et al., 2003), Przytula et al present the methods they
employed for Bayesian network evaluation which consist of use of Monte Carlo simulation
and efficient visualization of simulation results. Evaluation of Bayesian network models is
necessary as the quality of a model determines the quality of diagnostic recommendations
obtained using the model. Using evaluation techniques, the critical elements of the model that
are responsible for incorrect diagnosis can be identified. Monte Carlo simulation is used to
automatically generate diagnostic cases that uniformly cover all the parts of the BN model
The results are presented in the form of sample graphs and matrices that pinpoint which

components and observations are responsible for incorrect diagnosis.
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2.5.2. Fusion-based prognostics examples

Orsagh et al, (ORSAGH, Rolf et al., 2004) , present an engine bearing prognostieslappro
which consists of fusion of diagnostic features and physics-based modelling. Model-based
information on damage accumulation is used to predict the initiafieffault to provide “just

in time” maintenance actions to prevent the fault from developing. Additionally sensor-based
diagnostics update the model-based prediction where faults might have occurred earlier and
was not predicted using model-based techniques. The sensed data is linked with fatigue-based
accumulation models based on a stochastic version of the Yu-Harris bearing life equations

with projected engine conditions to assess remaining useful life.

In (GOEBEL, Kai and Bonissone, Piero, 2005), Goebel and Bonissone describe a feature
level prognostics fusion approach aggregating different information sources to give a
continuous output that is ideally amended by a confidence value. First preprocessing occurs
using appropriate principal component analysis, filtering, smoothing, normalisation and
transformation techniques. Then an adaptive network based fuzzy inference system (ANFIS)
IS used at the prognostic model that fuses different information sources and produces a
remaining life prediction. ANFIS is a representative hybrid system in which neural ketwor

are used to tune a fuzzy logic rule base. The rule set determines the topology of the net (model
structure), while dedicated nodes in the corresponding layers of the net (model parameters)
define the terms and the polynomial coefficients. Post-processing then follows where the
prediction is recursively confirmed through trend analysis. They applied this approach to
estimate the timés-breakage for web breaks in the wet-end part of paper machines in paper

mills.

Kumar et al, (KUMAR, Sachin et al., 2008), developed a hybrid prognostics methodology for
electronic products utilising both data-driven and PoF techniques. First failure mode,
mechanism, and effect analysis (FMMEA) is performed to identify the failure mechanism,
critical component and parameters to be monitored. Then continuous monitoring of the
identified parameters (providing information on thgtem’s performance, current health,

usage and environmental conditions) is carried out. The data stream is preprocessed using
data-driven techniques to extract features that determine system health. The extracted features
are used to characterize system health and define baseline performance, which is tten used
identify performance deviation of the system and detect anomalies. Trending performance
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deviation and anomalies gives an indication of incoming faults or failures. The component
causing system degradation is identified using parameter isolation techniques and is matched
with the PoF database, which contains information regarding components, their failure
mechanism and their damage models. The monitored system parameters obtained from the
data-driven analysis are then used in the PoF models to estimate remaining useful life of the
system.

A similar approach is taken by Cheng and Pecht, (CHENG, Shunfeng and Pecht, Michael,
2009). Here they additionally propose that if failure models for potential failure mechanisms

cannot be identified, the failure can be defined from the historical database where the failed
data in the database is classified based on the identified failure mechanisms. Furthermore if
the failure mechanisms cannot be identified (for example where a failure is due to complex
reactions between different failure mechanisms), the fusion method will use only the data-

driven method to predict remaining useful life based on monitored data.

Goebel et al (GOEBEL, Kai et al., 2006) (GOEBEL, Kai et al., 2007), describe an approach to

fuse two prediction algorithms for prognostics:

e using first principles to model fault propagation using knowledge of the physics of the

system

e using data from experiments at known conditions and component damage level to

estimate the fault propagation rate to build an empirical model

They use Dempster-Shafer regression as the fusion method and present results from a case
study using rig tests where a bearing was run under mission typical flight profiles. The
Dempster-Shafer regression provides a prediction of the output in form of a fuzzy belief
assignment. Apart from obtaining more accurate and robust results, the Dempster-Shafer

regression helps to quantify the uncertainty of the estimates.

Wang and Jiang, (YANNIAN, Wang and Zhuangde, Jiang, 2005), present a decision fusion
algorithm using the Dempster-Shafer theory for diagnostic and prognostic assessment of long
distance oil pipeline. It is used to identify and locate leakage and external damage by
integrating the real-time signals from sensors with the information about the historic
maintenance status records of the pipe, the geological condition and the pipe wall health
condition.
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Flores-Quintanilla et al use a combination of probabilistic modeling and machine learning
techniques to diagnose faults in electrical systems (FLORES-QUINTANILLA, J L et al.,
2005). The framework developed consists of two phases: fault detection using Dynamic
Bayesian Network that generates a subset of most likely faulty components in the first phase
and fault diagnosis using a Particle Filter algorithm to monitor suspicious components and
extract the fault components in the second phase. The electrical system concerned is the
production line in a factory, which consists of a set of interconnected electrical machines
made up of several components. The feasibility of the framework was tested in a simulation
environment using several interconnected electrical machines. The Dynamic Bayesian
Network chose the electric machines with the highest probability of failure and the particle-
filtering algorithm continuously monitored those machines to detect if a component’s
parameter values had changed. Additionally the Bayesian network was updated periodically

based on evidence to evaluate the failure probabilities of each machine.
2.5.2.1. Sensor Validation using Bayesian Networks

Mengshoel et al used Bayesian networks to perform sensor validation within aerospace
vehicles. Given a vector of sensor readings, the framework detects whether one or more
sensors have failed and are therefore producing bad data (MENGSHOEL, O. J. et al., 2008)
The Bayesian network models developed represent the health modes of sensors explicitly, and
contain random variables for capturing other aspects of the system (including the health status
of other system components). Once input is provided to the Bayesian Network models using
sensor readings and commands for the variables capturing other aspect of the system, a MAP
(maximum a posteriori hypothesis) query is run over the health of the sensor variables. As a
demonstration example, the failed mission of the Mars Polar Lander is discussed. While the
cause of the loss of the Mars Polar Lander is not known with certainty, it had enough
instrumentation onboard to enable robust state estimation. The radar altimeter as well as the
touchdown (contact sensors) provides readings for height above surface which was a critical
state variable for the Mars Polar Lander and both had provided conflicting readings with one

indicating touchdown and the other not indicating touchdown.

Mengshoel et al advocate that had a Bayesian Network model been used to fuse the two
readings, a better estimate of the height above surface could have been provided
(MENGSHOEL, O. J. et al., 2008) . Additionally the Bayesian network model could have
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been used to find conflicts and causes of conflicts in sensor readings, which can help in

deciding which sensor readings to trust.
2.5.2.2. Decision Support for Maintenance Management Using Bayesian Networks

Yan and Shi-Qi developed a decision support system for the Maintenance Management of
mechanical systems using Bayesian Netw@v\, Liu and Shi-qi, Li, 2007). The contents of
lubricant oil used in mechanical systems are usually monitored (using spectral analysis, Ferro
graph analysis, oil physics and chemical performance analysis, etc) to detdreniwear
condition of the system. The analysis of wear particle concentration and sizes can determin
the severity of wear while analysis of wear particle component, wear particle coloweand

debris can determine the wear site, wear type and reasons of wearing.

Using knowledge of relationships between the fault symptoms and oil monitoring data, a
Bayesian diagnosis network was constructed with the topological structure expressing the
qualitative knowledge and the probability distributions of the nodes expressing the

uncertainties. In addition, a forecasting formula for the condition prediction of the system was
introduced in the Bayesian network model. The decision support system thus would estimate

and forecast of the system and assist maintenance decision making.

2.6. Traditional Maintenance Strategies

2.6.1. Standard Maintenance Strategies

Various maintenance strategies have been developed and used over the years in different
fields. Although equipment needed to be maintained since the beginning of time, the earliest
effort on formalizing maintenance is attributed to a book on maintenance of railways
published in 1886 (DHILLON, B S, 2006). The term preventive maintenance was coined in
the 1950s and a handbook on maintenance of railways was published in 1957. Additionally,
various efforts were initiated between World War Il and in the 1950s, in the aviation and
military fields. Maintenance is the set of processes employed to restore a system or structure
to full working order or to the best state possible such that it can perform as intended
(STARR, a. and Ball, A., 2000). The following subsections briefly describe the various

maintenance approaches used in different fields.
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2.6.1.1. Corrective/Reactive Maintenance

Corrective maintenance is a legacy practice that involves repair carried owtystem only

once failure has occurred, thus often requiring urgent actions (KOTHAMASU, Ranganath et
al., 2006). Corrective maintenance may involve repairing a failed component, servicing and/or
rebuilding a component to its original state. This means disruption of operation of a system

can occur at any time causing unexpected downtime of the system.
2.6.1.2. Preventive Maintenance

Preventive maintenance is scheduled maintenance carried out to keep a system in a
satisfactory operational state by providing for systematic inspection, detection and correction
of incipient failures either before their development into major failures or before their
occurrence (DHILLON, B S, 2006). The U.S. Navy pioneered preventive maintenance as a
means to increase the reliability of their vessels. This proved to be a more cost effective
approach compared to reactive maintenance. Studies indicate that savings of as much as 12%
to 18% on average can be made (O&M Best Practices Guide, Release 2.0). The efas ben

of preventive maintenance are reduced downtime and improved safety as maintenance tasks
can be planned to balance workload. There are however several disadvantages to take into
account: initial costs might be expensive, unnecessary downtimes and wasted resources to

carry out unneeded maintenance and failures might still occur.
2.6.1.3. Reliability-Centred Maintenance

Reliability-Centered Maintenance (RCM) originated from the U.S aviation industry in the late
1960s and was applied by the U.S military services from the middle of 1970s. Because its
economic benefit and cost effectiveness were believed significant, since the beginning of
1990s, RCM has been applied to many fields, such as aviation industry, military industry,
energy industry, offshore oil production, and so on. (BLISCHKE, Wallace R and Murthy,
D.N. Prabhakar, 2003).

RCM is considered as bo#preventive and predictive maintenance technique. In Reliability-
Centered maintenance, the components of a system are assessed using performance and safet
criteria to determine when maintenance is required on the particular components. Fault Tree
Analysis (FTA) and Failure Modes and Effects Analysis (FMEA) are carried aldtéomine

which parts of a system are most critical to the system (KOTHAMASU, Ranganath et al.,
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2006). Once the critical processes and components of a system are determined, a maintenance
strategy is developed which concentrates on ensuring the critical parts are inspected and
maintained more frequently than other parts of the system. Also reliability-centered
maintenance aims to give feedback on how the original design of a system is performing, thus

helping in improving future products (DHILLON, B, 2006).
2.6.1.4. Condition Based Maintenance

Starr. A. and Ball. A. (STARR, a. and Ball, A., 2000), define condition based maintenance
(CBM) as maintenance carried out based on the degradation of a parameter indicative of
system health.. The aim of CBM is to shift the focus from maintaining a system to sustaining
the ability of that system to perform. The parameter monitored is a performance indicator,
which gives an early warning of deterioration when there is a change in the readings for that
parameter. Various techniques depending on the field of application have been developed to
carry out such measurements (e.g. vibration analysis, thermography, visual inspection)
(SMITH, R and Mobley, K, 2006). Once the possible presence of a fault is detect, inspection
of the system is carried out and maintenance is performed depending on the results of the

inspection. CBM can also be described as a predictive maintenance approach.

Predictive maintenance is carried out according to the actual condition of a system (SMITH,
R and Mobley, K, 2006). The main aims of a predictive maintenance strategy are to increase
the life of a system, reduce the amount of downtime, minimize cost for parts and labour as
well as find small problems before they turn into big ones. To achieve those usually more
investing in inspection equipment is required along with increased amount of staff training.
RCM, Structural Health Monitoring and PHM are all based on the predictive maintenance
principle, which is to monitor current condition of a system and perform maintenance only

when required.
2.6.1.5. Comparison of Traditional Maintenance Strategies

In references, (DHILLON, B S, 200& (DHILLON, B, 2006), Dhillon describes typical
corrective, preventive and RCM maintenance programs that can be performed and these are
summarised in the table x. Amari (AMARI, S, 2006) also provides a typical maintenance

programme that can be applied for condition-based maintenance which is summarized in

Table 2-2.
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Maintenance

Approach

Maintenance Steps

Corrective

Failure recognition

Localising the failure within the system to a specific piece

equipment

Diagnosis within equipment to identify specific failed part

component
Failure part replacement or repair

Checking out and returning the system back to service.

Preventive

Identify components of a system requiring maintenance

Identify what type of preventive maintenance to be perfor|

on these components

Determine the frequency of the maintenance tasks t

performed
Maintenance tasks are then scheduled and carried out

Preventive maintenance tasks and schedules are analyst
improved based on feedback received and information gatt

from previous maintenance tasks carried out.

RCM

Identify high priority components with respect to maintenan
Collect all necessary system failure data.
Perform fault tree analysis.

Apply decision logic to identify failures modes, which

critical.

Formulate maintenance requirements and impler

maintenance decisions.
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e |dentification of failure mechanisms, causes and detectior

Condition- _
prevention methods

Based
e |dentification of the deterioration model associated with

system.

e Determination of the costs and effect of various types

failures and maintenance actions

e Development of optimal CBM policy for inspection schedt

for condition monitoring and optimal maintenance tasks.

Table 2-2: Summary of Traditional Maintenance Approaches

Contemporary maintenance strategies focus on a predictive approach rather than time-based
approach. While the efforts in structural health monitoring concentrate more on the optimum
utilization of sensors for structure monitoring and fault detection, the PHM approach takes a
more holistic approach to maintenance with a wide variety of techniques used for sensing,
diagnosis, prognosis as well as logistics performance. Military, aircraft and electronics
industries have so far lead research initiatives in PHM, but other industries have started

investigating and implementing PHM practices as well.

Apart from endeavouring to use the latest technologies in sensing, diagnosis and prognosis,
PHM encourages solutions that implement a continuous and seamless flow of information
throughout the entire process such that maximum use of data obtained through sophisticated
sensors is achieved to deliver the most accurate predictive information to help in maintenance
decision making. The PHM framework developed for aged structures draw a lot of the

structure and techniques from the PHM approach to maintenance.

2.7.Applications for Aged Structures

The maintenance of aged structures is usually conducted through manual inspection of the
components according to a set maintenance schedule. This type of maintenance is inefficient
and unsafe as faults develop in between inspections are not detected until the next inspection
is scheduled. Additionally, very often components are removed for fault repair are still fully

functional wasting labour and resources in the process.

~ 50 ~



The use of sensors within aged structures is spreading slowly across different types of aged
structures. However, efficient usage of the data provided by these sensors in developing
maintenance plans is still poor. The maintenance of salvaged historic structures brings
additional challenges in that knowledge of the structures and materials used for building those
ships is scarce and very often, many of the standard type of sensors cannot be used. The nex
sub-section presents an overview of maintenance efforts for aged structures of various kinds.
The following sub-section outlines the restoration and maintenance strategies of three historic
ships (SS Great Britain, Vasa and Mary Rose) which have been salvaged and transformed into

museums.

2.7.1. SHM and PHM efforts for Historic Structures

Structural health monitoring systems are currently being developed and implemented to serve
diverse applications. Most projects involving monitoring the health condition of heritage
structures aim to do so using non-destructive and non-invasive sensors as much as possible.
There is also often the need for continuous monitoring for theed-assessment of a
structure’s health as well evolution of any detected anomaly or fault. Additionally, the

majority of systems for structural health monitoring often require an integrated approach.

Inaudi and Walder, (INAUDI, D and Walder, R, 2009) describe the various technologies and
sensors that a structural monitoring system should have. For example, a building would
require fibre optics sensors for strain monitoring, a corrosion monitoring system consisting of
concrete corrosion and humidity sensors used for concrete pylon, vibrating pressui@ cells
measuring the pile loads in the foundations and a laser distance meter to observe the global
deformations. The data from these systems are then fused such that correlations between the
measurements can be found. The following section provides an overview of technologies and
example applications of SHM and PHM in historic structures, as well as buildings and ships

in general.
2.7.1.1. Examples

Lubowiecka et al,(LUBOWIECKA, Izabela et al., 2009), developed a methodology
integrating laser scanning, ground penetrating radar (GPR) and finite element an&ibis (F
to evaluate the condition of historical bridges for which the geometry is complex and the

material properties are unknown and cannot be directly assessed. Using terrestrial laser
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scanners (TLS), the geometry of the structure is prepared and a 3D model of the bridge is
built. GPR techniques are used to estimate the homogeneity of the structure. The information
obtained is used to define a finite element-based structural model, which is then used to model

the structural behavior of the bridge.

Inaudi et al, (INAUDI, Daniele et al., 2001), investigated the use of fibre optic sensors for
long-term monitoring to help increase the knowledge of the real behavior of historic structures
and plan maintenance. Fibre optic sensors were chosen as they can edmotine surface

of concrete, mortars, bricks, timber, steel and other construction materials. They are also
durable, stable and insensitive to external influences (such as temperature variations,
corrosion and humidity), thus making them good candidates for long-term health assessment

of structures.

They demonstrated the use of fibre optic sensors in the monitoring of a cracked church vault
where relatively short sensors with a measurement base of 30-50cm were mounted at different
locations along a longitudinal crack that appeared in a small church in Gandria(Spain)
Measurements for the crack openings were recorded and their daily and seasonal variations
were analysed with respect to ambient temperatures and so far the findings show khat crac
opening variations correlate with ambient temperature variations and there is no occurrence of

long-term evolution of damage.

Tse et al, (TSE, C Y et al., 2010), developed an integrated SHM system to monitor the
structural stability of Alexander Grantham, a historic fireboat harboured in Hong Kong. The
aim is to assess the prevailing condition of the fireboat and predict the likelihood of any
structural failures before they develop into sigrant issues that would cause serious threat to
the integrity of the structure. The core activities of the integrated SHM pnofpa the
fireboat include: (1) Risk assessment and setting monitoring scopes, (2) ldentifying
representative monitoring parameters, (3) Designing integrated monitoring systems and the
sensor network and (4) Data acquisition and processing and interpretation of the data. The

current system setup divides into three sub-systems:

e Continuous monitoring system— vibrating wire strain gauges, anemometer,

accelerometer, tilt meter
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e Periodic monitoring system— reference points for tape-extensometer, settlement

markers

e Data acquisition system- devices for continuous logging of data from sensors.

The setup monitors the following parameters: load pattern of the fireboat, deformation of the
hull structure, tilting and acceleration, foundation settlement and wind speed and direction. So
far, only an observational approach has been used to determine the thresholds of the readings
that give an early warning regarding possible degradation. No diagnostic and prognostic
capabilities have been developed yet. Additionally the future works identified include
statistical models to differentiate undamaged features from damaged structures as well as use

of sensor systems that would provide measurement that is more sensitive.

Solis et al, (SOLIS, M et al., 2009) deployed an application for monitoring and detection of
structural damage techniqués “La Giralda” sculpture, which is placed on top of Seville
cathedral’s tower bell. The sculpture is supported with an internal bar structure, which is fitted
over the axis about which it rotates according to the wind direction, allowing it to function as

a weathervane. The sculpture was demounted and underwent extensive restoration process
between 1999 and 2005 and an instrumentation system consisting of different types of sensors

was installed as well.

Most of the sensors were installed in the support shaft, which is the most critical part for the
sculpture’s stability. The sensors installed are: 8 strain gauges, 6 accelerometers, 4
inclinometers, 1 anemometer and vane, 2 temperature and humidity probes and 2 corrosion
probes using samples of different materials in contact together. The data recorded from the
sensors was used to study the dynamic behavior of the sculpture. Additionally accelerations,
inclinations, forces, humidity, temperature, galvanic potentials, wind direction and wind

velocity data are used in damage detection.

Analysis of corrosion data from corrosion probes revealed that a correlation exists between
humidity and galvanic potential does exist where ambient humidity conditions may accelerate
corrosion process but no modeling of this correlation was carried out. Results olntained

first two years of system operation, showed that there was no increasing or decreasing trends

in damage detection parameters. This was expected, as two years is a short period compared
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to expected lifespan of such structures (previously major damage repairs have been carried

out every two hundred years).

The system put in place for monitoring and diagnosis of the sculpture is expected to become
more effective with time as more data is acquired. Currently only detection and location of
damage can be carried out. There is still a need to quantify the damage through numerical
simulation. Even though it is anticipated that the sculpture will not deteriorate over short
periods, the authors recommend inspection of the sculpture as well as the instrumentation
system every five years as the sensors have short lifespan especially under severe climatic

conditions.

Another example of using monitoring techniques is for the maintenance of the wooden
structures of The Royal Villa in Monza (built in 1777-1779) which has degraded significantly
and experienced cracks as a result (INAUDI, D and Walder, R, 2009). The monitoring was
carried out during the restoration as well due to the uncertainties related to the structural
behavior and the complex static system. Both conventional and optical fibre sensors with
optical fibre sensors being used mainly as extensometers installed between the walls and
shorter sensors for crack monitoring. The data was then interpreted and analysed using
statistical means. The monitoring data was used heavily in planning and structuring the

restoration works.

Bogdan et al, (BOGDAN, B A et al., 2005) (MUFTI, A A, 2003), implemented an SHM
system for Manitoba’s Golden Boy statue placed on top of the Manitoba Legislative Building.
Restoration was carried out on the statue as the steel supporting shaft had deteriorated
significantly due to corrosion. A stronger, stainless steel shaft replaced the worn shaft and
sensors including electrical strain gauges, accelerometers, fibre optic sensors and
thermocouples were installed. Additionally, a web camera and wind meter was installed on

the roof of the building.

Data from the sensors and video feed are available through internet to facilitatasesb-

SHM in real-time. Wind and acceleration data are used to estimate strain experieticed by
shaft and these are then correlated with the actual strain record by the strain sensors. This
empirical relationship is used to detect faults in the sensors or deterioration of the structure.

The data collected within the first year is used as the baseline and everything beyorsd the fir

~ 54 ~



year will be compared to the baseline. Further damage detection methods are being developed
as more data is collected over time with particular focus on dealing with measurement errors
and eliminating correlations within measurement data in order to improved monitoring and

diagnostics of the structure.

Salvino et al, (SALVINO, Liming W et al., 2009), present a potential SHM architecture for
future shipboard application involving use of low cost and dense sensor arrays wireless
communications in selected areas of the ship hull as well as conventional sensors measuring
global structural response of the ship. The architecture is multi-tiered where on the global
level, a real-time, onboard sensor network combined with dynamic based damage detection
algorithm can pinpoint possible problems and identify their approximate locations. Then
further evaluations are carried out using localised techniques as well as using sensor an
inspection information into fatigue based models to evaluate the details of the suspected
faults. Future works include embedding data interrogation and processing algorithms at
sensors level to enable near real time SHM.

2.7.2. Maintenance Strategies of Historic Ships

2.7.2.1. SS Great Britain

The SS Great Britain was the first ocean going liner with wrought iron hull as well as being
the biggest ship in the world in its time. In 1970, SS Great Britain was salvaged from the
Falkland Islands and placed in the Great Western Dockyard in Bristol (WATKINSON, David

and Lewis, Mark, 2010). In order to preserve the hull, the fabric of the ship and the dockyard
structures, a complex preservation project involving innovative use of desiccation was

undertaken.

The hull of SS Great Britain contained a range of iron corrosion products that include
BFeOOH (Akageneite), E®s+ (Magnetite) and other chloride infested iron (WATKINSON,
David and Lewis, Mark, 2010). Results of experiments showed that to ensure that these iron
products do not corrode iron in contact with them, the relative humidity should be 12% or less
(WATKINSON, David et al., 2010). However desiccating the hull of the SS Great Britain to
12% relative humidity was deemed too costly and technically challenging with potentially
high maintenance costs. Further experiments carried out on the influence pfiR€Cknd

BFeOOH on the rate of iron corrosion showed that corrosion is many times lower at 20%
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relative humidity as compared to 25% or 30% relative humidity (WATKINSON, David et al.,
2010).

Due to the condition of the iron and length of the hull, conservation methods such as
employing stripping or traditional surface treatments were not attempted for feathadrfur
damaging the already badly corroded hull. Additionally, treatments involving removing
and/or inhibiting the action of chlorides was not carried out as these were unpredictable and
had technical challenge on such a large scale effort (WATKINSON, David and Lewis, Mark,
2010). The main approach to conserve the iron hull was to control the humidity around the
ship, which is a major factor in corrosion processes. Thus, a preventive maintenance strategy
is employed where desiccatias the adopted method for preserving the ss Great Britain it

was assessed to be the least interceptive and least unpredictable method available.
2.7.2.2. Vasa

The Vasa is a battle galleon that sank within one nautical mile of the start of her maiden
voyage in 1628 (MAYOL, Dottie E., 1996). Various woods were used with 90% of it being
northern oak and various other types of wood making up the rest. The Vasa was salvaged in
1961 and it is claimed that 95% of the ship is still original (MAYOL, Dottie E., 1996). The
recovered waterlogged timber hull of the Vasa is the largest of its kind (more than 700 cubic
metres of wood weighing around 1500 tons when wet) and it has been underwater for over
300 years. Over such a long time, bacteria had attacked the wood and rust had spread
throughout the hull from all the iron objects that had corroded (Preservation and Research -
The Vasa Museum, 2010). If the waterlogged wood were allowed to dry out after salvage, the
wood would split and collapse. Conservation of waterlogged wood is not easy since new

chemical processes are initiated when wood is exposed to oxygen in the air.

The current efforts in maintaining the ship’s structure are aimed at controlling the
environmental condition around and within the ship (Preservation and Research - The Vasa
Museum, 2010). The temperature and humidity are maintained at even levels. High humidity
helps bacterial colonies and mold to develop while the conservation agent used to preserve the
ships become sticky and attracts dust. If the humidity is too low, there wood might crack and
shrink. Currently the relative humidity around the ship is maintained around 51-59% and the

temperature is maintained around 18°C-20°C. The light levels are kept below 100 lux and
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daylight is not allowed to fall on the ship as organic materials can be broken down by high

and intense light levels.

To keep the wood wet, it was treated with polyethylene glycol (PEG) which penetrated
degraded cells of waterlogged wood replacing the water, which hinders shrinkage when the
wood dries (MAYOL, Dottie E., 1996). Added to that, research is currently being carried out
on extraction of iron content from the wood as iron speeds up the deterioration of both wood
cellulose and the conservation agent, PEG (MAYOL, Dottie E., 1996). A special cradle was
constructed to support and help distribute the Vasa’s weight better. It also facilitates
conservation treatments that require partial dismantling (The construction and salvage of the
Vasa). An advanced laser positioning system is also used to monitor the tiniest movements in
the hull of the Vasa. This system is useful in revealing subsiding if the mechanical stfength o

the wood gradually decreases.

Further complications in the conservation of the Vasa have developed recently. In 2000, an
increasing number of white and yellowish salts started to precipitate inside the ship and on the
artifacts in the magazine (The construction and salvage of the Vasa). This is been caused by
significant build-upof sulphuric acid within the wood. Additionally, the “new” iron bolts

(coated with epoxy or zinc) that were inserted into empty holes after the salvage in the 1960s
have severely corroded and the iron compounds formed further accelerates the degrhdation
wood cellulose. Thus until current research confirm the failure mechanisms affecting the
Vasa, a preventive maintenance strategy is adopted whereby the environmental conditions

within and around the ship are controlled.
2.7.2.3. Mary Rose

The Mary Rose is a ichentury warship, which was built in Portsmouth and launched in
1511. She sank during an engagement with the French invasion fleet in 1545 and lay buried in
the seabed off the south coast of England until she was salvaged in 1982 (ESRF, 2005). The
Mary Rose is currently undergoing a conservation spray treatment, which startedslaggear

to wash away sulphuric acid that forms. Large amounts of iron are present in the wood from
completed corrosion iron bolts, nails and other objects. Accumulated sulphur compounds
within the ship oxidises when in contact with iron which corrodes in presence of oxygen to

form sulphuric acid. As uncontrolled atmospheric surroundings can accelerate this process, a
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stable climate (constant relative humidity and temperature) around the ship will be created
once the spray treatment and drying is completed (ESRF, 2005).

Additionally, researchers are currently using synchrotron x-rays to analyse woptesao
determine the quantities and location of sulphur and iron and their chemical state. This is be
used to keep a record of the state of deterioration and improve methods of conservation in the
future. Currently, research is still undergoing with aims of understanding the failure
mechanisms and developing methods to stop or slow down the deterioration of the ship’s

material and again a preventive maintenance strategy is adopted where environmental
conditions are controlled to provide a stable climate for the ship (constant relative humidity

and temperature).

2.8.Chapter Summary

The majority of published research involving PHM systems refers either to a single
component or to a single aspect of a system. Very few comprehensive research efforts are
currently taking a holistic approach when developing a PHM system. As such, diagnostics
prognostics and sensor network remain an area of active research. Many techniques developed
so far have demonstrated their effectiveness in laboratory environments but their performance
in real-world applications remains uncertain as only a few have been deployed on actual

structures.

A complete PHM system would encompass the layout of sensors, the capturing and
processing of data from those sensors, the diagnostic and prognostic algorithms used to
provide current health status as well as estimate future health status and finally a maintenance
decision-making tool, which would act on the processed diagnostic and prognostic

information provided.

The number and type of sensors as well as the location of those sensors should be determined
with the aim of providing maximum useful data without overloading the system with
unnecessary data. The data captured requires pre-processing to remove possible noise and
extract performance features that are not readily recognizable in raw data, befng e

to diagnosis and prognosis phases. The diagnostic stages involve detection and reporting of
anomalies in the system. This should be achieved with as low false alarm rate as possible to

build trust in the end-user.
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The prognostic stage in a PHM system is still the most difficult challenge. In order to

determine the health status of a system, previous data representing healthy and
unhealthy/degraded systems should be ideally be available for comparison. This is often hard
to obtain or inexistent for legacy systems or aged structures which have been built at a time

when such requirements were not deemed necessary.

In addition to identifying faulty behaviour from normal behavior, the PHM system expects to
predict when the system will fail which requires clear understanding of how the system faults
develop. Such information is hard to acquire for many systems, as the operation of those
systems would stop long before they fail thus preventing collection of data on faulty

behaviour.

Remaining lifetime estimate depends on future usage, thus future loads and environments
need to be determined in one way or another before remaining life estimation is calculated.
Furthermore, uncertainty arising from experiment errors as well as modeling inaccuracies,
need to be handled appropriately when performing prognostics and diagnostics. Finally,
prognostics and health management of aged structures have their particular limitations to take
into consideration such as, lack of structural design, construction and material information,
inability to conduct experiments on the structures to learn about their behavior and many
more. Currently most aged structure maintenance projects have focused on the
instrumentation and diagnostic techniques required to detect any damage with a certain degree

of success. However, very little research has been undertaken regarding the prognostic aspect.

This chapter has covered a variety of PHM techniques that are currently beimghedein

high tech applications. The concept of canary devices was introduced as accelerated sensor
devices used to provide warning of impending failure. PoF-based and data-driven prognostic
approaches were reviewed with emphasis on anomaly detection algorithms and corrosion-
related failure algorithms. Another approach to doing prognostics is fusion prognostics where
remaining useful life distribution using data-driven methods and PoF-based method are
predicted individually and then fused using a probabilistic method to obtain a new remaining
useful life prediction distribution. Examples of fusion prognostics technigues have been
reviewed, in particular Bayesian networks. The last section provided an overview of
diagnostic and prognostic endeavours for historic structures. The next chapter will detail the
particular PHM techniques used to build the PHM framework for Cutty Sark iron structures.
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3.Corrosion Degradation Mechanisms

3.1.Introduction

Several degradation mechanisms affect aged iron structures. The main cause of deterioration
in aged iron structures is corrosion. The formation of corrosion usually plays a major role in
the long-term maintenance of metallic structures. Corrosion consists of complex processes
that can occur in different forms. The following subsections provide a brief overview of the
causes of age-related structural degradation, degradation mechanisms affecting aged
structures, the electrochemistry of corrosion, factors influencing corrosion rate, thherdiffe

forms of corrosion, corrosion models and finally the consequences of corrosion.

3.2.Age-Related Structural Degradation

Aging of ship structures is defined as the progressive deterioration of structuresal afre
normal operational use and environmental influences. The structural deterioration comes in
the following forms (WANG, G and Boon, B, 2009) (PAIK, J K and Brenman, F, 2006):

e Coating damage - This can take the form of coating cracking, blistering, rust and

flaking.

e Corrosion— Corrosion occurs due to the chemical reaction between metal and the
environment. Further detailed description of corrosion processes is provided in the

next section.

e Cracking— Cracks originate from defects in structures and accidental overload that

leads to initiation of cracks.

e Mechanical Wear and Tearthis can be in the form of sliding wear and friction, low
and high-stress abrasion etc. Such mechanical damage can result in denting, cracking
and coating damage. Local dents often initiate crack, which under repeated loading

continue to increase in size.

e Interaction of different degradation mechanisms - Corrosion and crack propagation
can take place simultaneously. In corroded structures, crack propagation can be

accelerated as the stress in the structure increases with material loss due to corrosion.
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3.2.1. Degradation Mechanisms of Aged Structures

The main degradation mechanisms identified for aged iron structures are corrosion and
fatigue cracking. Fatigue is due to the fluctuating nature of load and corrosion is primarily due
to the environmental effects (DISSANAYAKE, P B and Karunananda, P A, 20B8)igue

cracks can initiate in areas of stress concentration under repeated loading. Initial defects
formed during construction of a structure can remain undetected for a long time and cracks
may initiate from such defects, and propagate. Fatigue damage at a crack initiation site is
influenced by many factors: (i) material properties, (ii) high local stresses, (iii) size of
components, (iv) nature of stress variation and (v) environmental and operational factors
(PAIK, J K and Brenman, F, 2006). Corrosion is the degradation mechanism that affects aged
iron structures the most. The following sections detail the corrosion processes and models,

which have been developed so far for remaining life prediction of iron structures.

3.3.Electrochemistry of Corrosion

Understanding how and why corrosion affects structures requires knowledge of
electrochemistry of corrosion. This is beyond the scope of this thesis, but an overview of
corrosion formation is presented. Corrosion is the deterioration of a material due to chemical
interaction of the material with its environment. Corrosion reactions are electrochemical
reactions. The corrosion process consists of an anodic and a cathodic reaction as described in
(ROBERGE, P R, 2000). At the anode, iron loses electrons and goes into the electrolyte
solutions as ferrous ions. At the cathode, the electrons released react with some reducible

component of the electrolyte as shown in Figurg 3-1. The anodic reaction takes the form of

equation (3) and the cathodic reaction takes the form of equation (4).

Fe? H* — H,

T T

W —

Figure 3-1: Anodic and Cathodic Reactions
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Fe - Fe?* + 2e (3)
2H* 4+ 2e - H, 4)

The rates of anodic and cathodic reactions are equivalent according to Faradays’ Laws and the

rate is determined by the total electron flow from anode to cathode (AHMAD, Z, 2006).

3.3.1. Corrosion Rates

The corrosion rate (or rate of material loss) is expressed in equatias (6¢ thickness loss
of material per unit time. The equation takes the form

cpr= W 5)

PA

Where, CPR is the corrosion penetration rate, K is a constant (depending on system of units

used), W is weight loss? is density, 4 is the exposed area ands the exposure time.
Corrosion rate can also be defined as weight loss per unit time per unit area repregented

equation (6).

M

W —_
nF (6)

Where, w is the weight loss per unit time per unit aréas the current density}/ is the
molecular weight of reaction species,is the number of electrons transferred ands

Faraday’s constant.

3.3.2. Factors Affecting Corrosion Rate

Factors causing corrosion and affecting corrosion rate are numerous with some factors being
more important in determining corrosion rates for particular types of corrosion. Some of the

main factors are illustrated below:

e Addition of acids - Usually corrosion of a metal occurs in the presence of an

electrolyte where positively and negatively charged ions move thus creating an electric
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current. For some solutispaddition of acids or bases that can dissociate into ions can
increase the currentarrying capability of the solution.

Variation in concentration of solutions - Small variations affect the corrosion rate of

metals.

Oxide layer -The presence of an oxide layer will slow down corrosion rate as the oxide
layer prevents the metal and the solution to be in contact. The uniformity and tenacity

of the oxide layer matters as well.

Pressure - Pressure can influence the solubility of oxygen, carbon dioxide, chloride
and hydroxides in the solution such that more or less positively and negatively

charged ions are available for flow of electric current.

Temperature - Corrosion rate increases with increase in temperature. As a rule,

reaction rate will double when the temperature rise doubles.
Relative humidity - Corrosion rate usually increases with increase in relative humidity.

pH level - Ph. level of solution can influence the corrosion rate of metals. For
example, for pH values below four, ferrous oxide dissolves as it is formed rather than
forming a layer on the metal and thus iron is in direct contact with the solution and

thus corrosion rates are higher.

Surface of material - The surface of a metal can affect corrosion rdakatimon-
uniform surfaces promotes initiation of local corrosion and the corrosion rate at these

particular points is usually faster than the general corrosion rate.

Stimulation of anodic or cathodic reaction - lons such are chlorides will prevent the
formation of protective oxide films on the metal surface thus increasing corrosion.
Sulphur dioxide present in the atmosphere can dissolve in the thin film of moisture
present on metal surfaces and the acidic electrolyte formed can stimulate both anodic

and cathodic reactions.

Flow rate of water - An increase in flow of water will increase the amount of oxygen
available to the surface of the metal. Also increasing flow rate means any protective
films will be removed faster, thus putting the metal in direct contact with any

corrosive environment.

Oxygen content - The higher the oxygen content the greater the corrosion rate.
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e Chloride content - Corrosion rate can increase rapidly with present of chloride ions.

e Pollution level - Pollutant gases such as sulphur dioxides reacts with water to form

sulphuric acid that is highly corrosive to iron.

e Footfall - More footfall could lead to increase in relative humidity.

3.4.Types of Corrosion

There are various forms of corrosion that can occur in metal structures as dksoribe
(AHMAD, Z, 2006) (BARDAL, E, 2003) (ROBERGE, P R, 2000) (SCHWEITZER, Philip A,
2007) (TRETHEWEY, K. and Chamberlain, J., 1995). The main forms of corrosion of
concern for Cutty Sark structures are described below.

3.4.1. Uniform/General

Uniform corrosion is the most common form of corrosion with corrosion attack evenly
distributed over the surface leading to relative uniform thickness reduction (BARDAL, E,
2003). As the electrochemical reaction occurs with equivalent intensity over the entire
exposed surface, the rate of corrosion can be equated to the electron current flow between the
anode and the cathode. While being the most common form of corrosion, it is not the most
dangerous form of corrosion as the rate of uniform corrosion is more easily measurable than

other more complex forms of corrosion.

3.4.2. Atmospheric

In atmospheric corrosion, a complex electrochemical process taking place in corrosion cells
consisting of base metal, metallic corrosion products, surface electrolyte and the atmosphere
(SCHWEITZER, Philip A, 2007). It depends on the following factors: relative humidity,
temperature, sulphur dioxide content, chloride content, amount of rainfall as well as
geographical location. Depending on the specific contaminants present and the material in
consideration, all types of corrosion can occur. Atmospheric corrosion is considered a
discontinuous process, as an electrolyte (usually water from rain, fog, dew or high humidity)
is not always present. Thus, atmospheric corrosion only takes place during time of wetness
(SCHWEITZER, Philip A, 2007). The corrosion rate is determined by the time of wetting,
the frequency and duration of dry periods, relative humidity, temperature and temperature

variation.
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3.4.3. Galvanic

Galvanic corrosion occurs when two metals with different electrochemical potentials are in
metalto-metal contact in an electrolyte (AHMAD, Z, 2006). Due to the difference in
potentials, current will flow from the anode to the cathode such that the less noble metal (the
anode) will corrode faster than the more noble metal(the cathode). The galvanic series is used
to determine which metal will corrode faster than the other, that is, which metal will behave

as the anode and which metal as the cathode. Galvanic corrosion is present on the ship as part

of the metal structures is made of both iron and muntz components.

3.4.4. Crevice

Crevice corrosion is defined in (TRETHEWEY, K. and Chamberlain, J., 1995) as corrosion
attack which occurs because part of a metal surface is in a shielded or restricted environment,
compared to the rest of the metal which is exposed to a large volume of electrolyte. This is
likely to occur on the ship when the protection coating on the iron structures cracks and

crevices form.

3.4.5. Pitting

Pitting corrosion is a form of localised corrosion in which small pits are formed. These pits
usually penetrate from the top of a horizontal surface downward in a nearly veiricaion,

thus preventing pitting being detected often until failure occurs (BARDAL, E, 2003). The
extent and intensity of pitting corrosion is difficult to measure because the number and size of
pits (diameter and depth) vary from region to region and within each region. Serious damage
can be caused with even small loss of materials. The surface of a metal can affect corrosion
rate in that non-uniform surfaces promotes initiation of local corrosion and the corrosion rate
at these particular points is usually faster than the general corrosion rate. Thus, damage in
small areas is more pronounced and has more serious effects on the overall strength of the

material at these particular places.

3.4.6. Microbiologically Influenced (MIC)

MIC is corrosion promoted by microorganisms that can be found in both metals and non-
metals. Microorganisms are living organism found almost everywhere in the environment and

they can be divided into four main types, namely, fungi, algae, diatoms and bacteria
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(TRETHEWEY, K. and Chamberlain, J., 1995). Microorganisms can affect corrosion
behaviour in many ways as described in (ROTHWELL GP, 2006):

e By production slimes and deposits which give rise to crevice corrosion

e By creating corrosion conditions through their metabolic products or by destroying

materials added to the system to provide corrosion inhibition

e By directly influencing the corrosion reactions

Given the right condition such as the appropriate temperature, ph level, water and food, the
microorganisms will develop and grow in numbers. In general, microorganisms release
chemicals in the environment of the metal concerned, thus changing the environment

surroundings and creating optimum conditions for corrosion of the metal.

3.4.7. Corrosion of metal by Wood

Wood can release corrosive substances such as acetic acids, which are volatile leading to
corrosion of metal near the wood. Different types of wood have different acetic acid content
as illustrated in (NPL, 2006). The rate of formation of acetic acid depends on the temperature
and moisture content of the wood while the rate of emission of the acetic acid depends of the
shape of the wood structure concerned. The chlorine content of wood can also affect corrosion
rate of metal. Wood structures near or within a marine environment will absorb a higher

guantity of chloride that will accelerate of corrosion of metal parts in contact with the wood.

3.5. Deterioration Models for Corrosion

The thermodynamics and kinetics of corrosion control corrosion reactions. Thermodynamics
gives an indication of the tendency of electrode reactions to occurs whereas corrosion kinetics
addresses the rates of such reactions (AHMAD, Z, 2006).

3.5.1. Thermodynamics of Corrosion

Thermodynamics laws provide information on feasibility of a particular reaction, i.e. whether
a metal will oxidize into its ions if the ions are of lower energy state than the pure metal. For
the corrosion reaction to occur, the metal must surmount the energy barrier, which is also
called the free energy of activation, which is represented by equation (7)DBARE,

2003):
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AG®° =—RTInK )

Where,4G” is the free energy of activation at standard state parameters (i.e. 298K and 1 atm.
Pressure),R is the universal gas constarf, is the absolute temperature awflis the

equilibrium constant.

Energy changes during corrosion reactions can be measured as electrical potentials and flow
of current such that electrical measurements can be used to measure rate of corrosion reaction.
Work done is expressed in terms of potential difference and charge transported (Faraday’s

Law). Several methods are used to study the rate of a reaction involving the ddtemaha

the amount of reactants remaining in products after a given time (AHMAD, Z, 2006):

e The Pourbaix diagram shows a qualitative picture of what can happen at a given pH
and potential, that is, whether the metal will corrode, form a passivating layer or be
stable to corrosion (BARDAL, E, 2003).

e The Nernst equation relates the actual potential of an electrode, E, to the standard
potential of an electrode,,s a function of the concentrations of ions taking part in

the corrosion reaction.

e The Butler-Volmer equation expresses the fundamental relationship between the
current flowing and the applied voltage (JENKINS, T., 2007).

3.5.2. Mathematical Models for Corrosion Related Deterioration

Age related deterioration in aged structures is time-variant in nature. Several mathematical
models for predicting time-variant corrosion related deterioration due to aging have been
researched and developed (PAIK, J K and Brenman, F, 2006). Most of those motiaie-ar
variant empirical models developed through statistical analysis of corrosion measurement data
for specific materials, environmental conditions and operational loading. However, corrosion
is a complex process that is influenced by many factors and using statistical analysis of

corroded structures alone is not enough to identify the key influencing factors.

To obtain prediction of corrosion, models based on corrosion mechanisms are required. Most
corrosion models developed so far apply for uniform corrosion. These models are sometimes

extended for pitting corrosion where pit depth and width are assumed random variables
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following lognormal distributions (SADIQ, R et al., 2004). The most common and generic
time-variant corrosion model is the Linear-Bilogarithmic law model (POURBAIX, M, 1982)

It is an explicit model for the corrosion process, and is based on the decreasesibcoate

over time. Several extended models of Linear-Bilogarithmic law model exist for particular

metals and environmental conditions

3.5.3. Extended models of Linear-Bilogarithmic Model

The following subsections describe extended versions of the Linear-Bilogarithmic model

taking into account various factors that affect corrosion rate.

3.5.3.1. Effect of time wetness, sulphur dioxide concentration and chloride concentration on
corrosion

The growing oxide film in dry atmospheres usually protects the underlying metal from further
corrosion following a logarithmic/power law. When exposed to rain, the metal may corrode
but the rate falls when it dries. Thus, the factommonly termed “time of wetness” is
required as well as average temperature, average relative humidity and so on. In
(GONZALEZ, J E and al, et, 2003), a modified version of the Linear-Bilogarithmic law was

used for corrosion depth such as equation (8).

d(t) =2 4 10(b(502)+c(Cl_)+d(T0W)) (8)

Where a, b, ¢ and d are constants,JS3 concentration of sulphur oxide in mg/(day),

(CI) as the concentration of chlorides in mg? @ay), and70W as time of wetness (h/year).
Such an equation is however of limited value due to the difficulties in determining the local
conditions precisely.

3.5.3.2. Two phase corrosion model

This model consists of two phase (in the first phase rapid exponential corrosion growth and in
the second a slow linear growth) as depicted in equatioqeAIQ, Rehan et al., 2004).

d(t) =at+b(1—e™ ) 9)

Wherea = constant (typical value: 0.009mm/yb)= corrosion depth scaling constant (typical

value: 6.27mm) and = corrosion rate inhibition factor (typical value: 0.14yr
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3.5.3.3. Corrosion Model for Carbon Steel and Copper Samples

Corrosion accelerates in presence of chloride ion such that the rate of deposition of chloride
ion affects the rate of corrosion. The chloride deposition rate in turn depends on the cleaning
effect of rain. Experiments have been carried out on plain carbon steel and copper samples at
two atmospheric test stations in open environment: Havana in Cuba and Medellin in
Colombia, which experience different amount and frequency of rain. Further details of the
experiment carried out over the period of one year can be found in (CORVO|.[-2608).

The model proposed as a result of these experiments is one that extends the Linear-
Bilogarithmic law for atmospheric equation. It incorporates the cleaning effect of rain in the

determination of the acceleration rate of chloride ions and is represented in equation (10).
K = at?[Cl]¢(W /D) (10)

Where K = mass lossg, b, cand d = constants/CL/ = chloride deposition ratdj}/= rainfall
(mm); D = rainy days;t= time of exposure. The cleaning effect of rain is represented by the

ratio W/D (amount of rain/ frequency of rain).

3.6.Consequences of Corrosion

In general, failure due to corrosion is a result of the electrochemical action of the corrosion on
the material causing a loss of the material (in this case, metals) by dissolution or oxidation.
Metals will usually react with elements from the environment to change from a high-energy
state to a low energy state. Corrosion typically occurs at the surface of the material. In
addition, localized attacks can lead to corrosion cracking as wet corrosion attacks metals
selectively instead of uniformly. This can lead to failure much more rapidly as onef gart
component loses material much faster than another adjacent part leading to cracks
propagating steadily under a stress much less than the stress required in standard conditions.
Corrosion also increases the rate of growth of fatigue cracks in most metals and alloys. Hence,
fatigue strength of a material can be reduced substantially and thus failure eutl atc
relatively light loads and/or within shorter periods. Therefore, several properties of a structure

are affected due to corrosion.
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Some of these changes in properties can be monitored to determine corrosion rate for the
structure and/or at particular locations for that structure. Some of the main consequences of

corrosion on structures are illustrated below:

e Reduction of metal thickness - Decrease in metal thickness will lead to decrease in
mechanical strength, which may then lead to structural failure. This is particular
dangerous in localized corrosion where only a small amount of metal loss can lead to

structural failure of a component.

e Loss of surface properties of materials - Properties such as electrical conductivity,
surface reflectivity or heat transfer can be affected by change in compositiba of

surface.

e Appearance - Appearance of a structure will change as its metallic surfageteco

Thus, the changing aesthetics of the structure will affect its appeal.

e Safety - The margin of safety for a system will change as corrosion damages the

structure of the system.

3.7.Summary

While several degradation mechanisms affect aged structures, the main cause of deterioration
in aged iron structures is corrosion. Thus for the PHM methodology developed, the diagnostic
and prognostic tools will take into consideration mainly failures due to corrosion degradation
mechanisms which affect the “health” of aged iron structures. For Cutty Sark, the main forms

of corrosion affecting its structure are uniform, galvanic and pitting corrosion. The next
chapter will detail the particular diagnostic and prognostic tools developed as part of the PHM

methodology for aged iron structures using the Cutty Sark as the example application.
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4. Developing a PHM Methodology for Aged
Structures

4.1.0verview

For the PHM framework developed, one diagnostic tool and two prognostic tools have been
developed. The diagnostic tool uses a data-driven method to perform precursor monitoring
and anomaly detection. The first prognostic tool is developed using a model-driven method,
which consists of a Physics-of-Failure model for corrosion related deterioration. The second
prognostic tool, using a fusion approach, takes the information processed from the diagnostic
tool and the first prognostic tool and provides updated remaining life predictions. The
diagnostic tool and model-driven based prognostic tool are deterministic approaches towards
detecting and predicting failure. The fusion based prognostic tool uses a probabilistic
approach that incorporates the results from the two former tools as dep@;ure 4-1.

Sensors Deterministic Probabilistic

Canary Devices \:\ Data-Driven | I
|

I
|
| Diagnostic Tool |
: l 1 \ Fusion-based
Parrot Devices ﬁl I
[
|
l

Model-Driven
Proanostic Tool |

: Prognostic Tool
Other Sensors /I/

- o o o o o
— e o o o - -

Figure 4-1: Use of Deterministic and Probabilistic Approaches within PHM

The PHM methodology developed combines the use of the diagnostic and prognostic tools as

shown in Figure 42. The PHM methodology includes the use of canary and parrot devices

(similar to canary devices but mimic actual rate of deterioration in a structure ireftead
developing an accelerated rate of deterioration as in canary devices) asswaihen
environmental sensors placed around the ship for data gathering. Thus, monitoring of

performance, environmental and operational parameters is carried out where appropriate.

The diagnostic tool implements precursor monitoring and anomaly detection on the
performance parameters to be carried out at regular intervals. Ideally, thaseefgas should
be monitored throughout the lifetime of the iron structures to understand the status of their
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health. Feature extraction is carried out on the monitored parameters of the bealthye

to create a training dataset representing healthy structures. Using Mahalanobis Distance
(MD) as the anomaly detection algorithm, the performance parameters of the structure under
consideration are then compared with the healthy training dataset for anomaly detection.
Simultaneously, the remaining life of the structure is predicted through the model-driven
prognostic tool usingn appropriate PoF model (provided the failure definition is given).
Information from the model-driven prognostic tool and the data-driven diagnostic tool is fed

into a Bayesian Network model, which then processes the probability distribution of predicted

e cE
Materials & Historical
Properties Database
v

—’[Sensor Network —1iModel-Driven Method

remaining life of the structure.

Canaries

Failure Definition }

—{Data-Driven Method} — ReETS::zigol;,ife

= |

[CS Iron Structures] ‘Sensor Network H Bayesian Networks} Maintenznce
Decisions

Figure 4-2 PHM Framework for Cutty Sark Iron Structures

Using the model-driven method alone to predict future health of a structure is not sufficient as
the PoF models may fail to capture real life conditions which might not been accounted for
but are still experienced by the structure duritgglifetime. PoF models based on failure

mechanisms due to corrosion usually contain a high degree of uncertainty due to the lack of

understanding of the complex processes involved in the corrosion of iron structures.

The data-driven diagnostic tool delivers reliable results of anomaly detection when good
training data is available but while data-driven algorithms such as Mahalanobis distance
perform well in detecting anomalies, such techniques do not provide any prediction

capabilities. Hence, a fusion approach using Bayesian Networks has been adopted with the

~ 72 ~



aim of developing a prognostic tool that can accommodate the initial lack of information and
knowledge regarding the corrosion processes on the Cutty Sark’s iron structures and handling

data uncertainty. The following four sections describe (a) the use of canary and parrot
devices, (b) the data-driven diagnostic tool, (c) the model-driven prognostic tool and (d) the

fusion-based prognostic tool.

4.2.Use of Canary and Parrot Devices

42.1. Overview

The methodology of using canary devices to give warnings to impending failures is adopted
for the PHM framework of Cutty Sark iron structures, the main purpose of which is to provide
an awareness of the onset of degradation mechanisms before any major failurérai the
structures occurs. Canary devices will therefore give advance warning of impendings failure

in the iron structures. These devices are used as it is difficult to use non-destructive inspection
techniques (e.g. ultrasound, acoustic emission, etc) as corrosion-prone areas are often
inaccessible or in hidden locations and care needs to be taken in handling the actual fabric

the ship for measurement purposes.

Canary and parrot devices will be used to gain valuable information on the behavior of similar
iron structures in various different environmental conditions experienced within the ship.
Along with canary devices, gnot devices representing miniature systems of the iron
structures with the same mechanisms of failure and within the same environmental conditions
are also used. The main reason for using parrot devices as well as canary devices is that it is
not possible to carry out direct measurements and monitoring on the actual iron structures due

to risk of damaging structures of great historical value within Cutty Sark.

4.2.2. Purpose of Canary and Parrot devices

The main objective of the use of canary and parrot devices is to provide an indication of the
failure of the structures in the short and long term. To that end, strong correlations between
the canary devices, parrot devices and iron structures need to be developed. The acceleration
factors between the canary and the parrot devices will be identified in the beginning and these
will be updated, as new data on corrosion damage from the devices becomes available. The
parrot devices will in turn be calibrated to the actual failure levels of the iron structures. Thus,

a sound understanding of the corrosion damage occurring within the canary and parrot devices
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and the iron structures is necessary to enable accurate corrosion predictions. An example form

of acceleration factor (AF) between a canary and a parrot device is shown in equation (11).

(Material_losScanary)time=t

AF(time:t) = (11)

(Material_lossparrot)time=t

Figure 4-3 illustrates the initial concept of how canary and parrot devices can beoused t

perform predictions. A canary device and a parrot device are both monitored for percentage of
material loss. Given the acceleration factor between the canary and the parrot is known, when
the canary device fails at time t, it can be calculated when parrot device will fawlies

iron structure of ship will fail). One point to be noted is that the predictions and acceleration
factors will be updated when new data for canary and parrot device is acquired, thus

increasing the accuracy of the predictions as shown by the probability distributions on the
graph below.

Probability Distribution at Time = 0 |
|
Probability Distribution at Time >0 | lll 30% Chance of
I\ _material loss
Critical Limit for Ship Loss (3%) | exceeding 3%
g-—-——-—-—]——-—-n--—---: e L
'E \tanarv Distribution (T=0) | e
T . —— 7 |
b < .
E Material " / ’ I
Lossin ¥ | * I Jl.r
Canary . 4 | I,’ Greater
,' .7 I | Confidence
. .« : Gained over Time
« = "* Material Lossin Parrot
.-.".':I‘" - Representing Ship Material 1 -
50 Years YEARS
Figure 4-3: Material Loss Prediction Using Canary and Parrot devices
4.2.3. Design of Canary and Parrot Devices

The canary devices will be designed to include the same mechanisms (at an accelerated
speed) that can lead to failure in the actual iron structures. Here failure is mainly due to
corrosion of iron structures, but the different parts of the iron structures are subjected to

different types of corrosion and the environmental conditions for the iron structures differ
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within the ship. The degradation of the canary devices will be assessed using accelerated
testing and the degradation levels will be calibrated and correlated to the actual failure levels

of the iron structures.

Measurement for environmental factors for the canary devices will also be carried out with
the aim to understand the effect of changes in environmental conditions on the different
degradation mechanisms of the iron structures. Canary devices are designed to fail faster than
the actual system, while parrot devices are designed to represent the actual Cutty Sark
wrought iron components. In general, the dimensions of the parrot devices are slightly bigger
compared to their respective canary devices to ensure a smalleo-&mame ratio and

hence less corrosion penetration. Currently, the design of the canary and parrot devices has
not yet been finalised. However, the design characteristics of the devices as wtika

factors related to the use of canary and parrot devices within a PHM framework for Cutty
Sark have been set out. The different types of canary and parrot devices progosad ar

monitoring:
e corrosion of iron structures
¢ different environmental conditions present within the ship.

e degradation mechanisms due to bacterial attack of iron, abrasion and other degradation

of protective coatings

The main factors taken into account for the design of the Canary and Parrot devices are a

follows:
e Location within the ship

o Locations with harshest environments which would create best environment

for corrosion

o Locations that are not easily accessible for visual inspections and other regular

monitoring of corrosion damage.

o Different locations within the ship will experience different varying

environmental conditions and therefore should be analysed separately.
e Types of corrosion to be monitored

o Uniform Corrosion
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o Atmospheric Corrosion
o Crevice Corrosion
o Pitting Corrosion
e Types of structures on which canary/parrot devices will be based on

o Structures which are hidden within other structures thus hard/impossible to

reach for any visual inspections or monitoring

o Frequency of measurements of environmental and performance factors

The main differences between Canary and Parrot devices are as follows:

e Canary devices will be smaller structures and will thus be more reactive than bigger

parrot devices

e Parrot should not be new teak or iron and should have undergone a certain amount of

corrosion enough to mimihe ship’s original fabric.

e Parrots devices will be painted with no moisture allowed whereas canary devices will

be painted but will allow moisture in through gaps and flaws

e Canary devices will be immersed in chlorine solution while parrot devices will not

undergo such treatment.

Table 4-1 shows a summary of the material and treatment of materials initially envisaged as

well as a list of possible corrosion damage parameters and corrosion causes.

Materials/Treatment of materials Measurements

e Corrosion damage paramete
1 Dry iron filings and salt in a paint syste _
(performance metrics)
capsule

e Weight change

2 Pre-corroded and cleaned mild steel sam e Electrical Resistance

coated with the paint system o
e Dilation

3. A mild steel bolted joint assembly wi e Dimension changes

variants:
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Clean interfaces coated with the pa e Appearance changes

system e Surface hardness/roughness
Dry salt contaminated interfacs : S

e Linear Polarisatior
coated with the paint system Resistance
Wet salt contaminated surfaces cod :

e Corrosion cause

with the paint system

4 Timber to detect:

5 0Oak and iron sample together and [

fungal attack

bacterial attack

soaked.

(environmental factors)
¢ Relative Humidity
e Temperature
e Cracking of paint

e Chloride concentration

Table 4-1: Canary and Parrot Design Characteristics

4.2.3.1. Preliminary designs of Canary and Parrot Devices

Figure 4-4

| an

g Figure 4

-5 show two different pairs of Canary and Parrot devices to be used in

experimental trials on Cutty Sark. The canary device is an iron wire secured with plastic bolt
and the parrot device is two iron sections bolted together using plastid bolts (Figure 4-4). In

Figure 4-5

, the iron wire in the canary device is sandwiched between two wood sections and

the iron section in the parrot device is bolted to a wood section using plastic bolts. These pairs

have been designed with a view of representing the different types of corsitime

different types of iron structures present on Cutty Sark. These Canary and Parrcampaies c

placed in locations experiencing different environmental conditions within the ship.

Measurements will be carried out on a monthly basis for the first set of the Canary and Parrot

pairs, every six months for the second set of the Canary and Parrot pairs and afeardoe y

the third set of the Canary and Parrot pairs. Several more Canary and Pasrbapaibeen

designed for trials on Cutty Sark at a later stage and are shown in appendi® seftion 9.1.
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Parrot: Bolted Iron + Iron Canary: Iron Wire

Plastic Bolts ?

Figure 4-4: Parrot and Canary Device Pairs (a)

Parrot: Iron + Wood Canary: Iron Wire surrounded
by two pieces of wood
Plastic Bolts =

Figure 4-5: Canary and Parrot Device Pairs (a)

4.3.Model Driven Prognostic Tool: Remaining Life Prediction
using PoF Model

4.3.1. Failure processes affecting iron structures

The degradation of the iron structures of the ship is mainly due to corrosion. Therefore, the
Physics-of-Failure model used for the prognossicmostly based on corrosion models.

Corrosion leads to loss of strength and can ultimately cause structural failure.

The four different types of corrosion occur under different conditions and depend on the
following deviations as stated in (BARDAL, E, 2003):

e The design (macro-geometry of the metal surfaces)
e The combination of metal and environment
e The state of the surface (e.g. cleanliness and roughness)

e Other deterioration mechanisms.
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4.3.2. Model-Driven Method: Physics of Failure Models for Corroded Iro

Physics of Failure approach (PoF) utilises knowledge of the life-cycle load profile and
material properties of a structure and architecture to identify potential future failure
mechanisms. The PoF methodology aims to do prognostics by first calculating the cumulative
damage accumulation due to various failure mechanisms within a particular environment of a
system and then analyses this information to give predictions of remaining service life of the
system. The Physics of Failure model used for Cutty Sark iron structures is based gn mainl

corrosion models.

The following factors can be considered as the input parameters for corrosion based PoF

models of Cutty Sark structures:
e Environmental Loads
¢ Relative Humidity
e Temperature
e Chloride lon Concentration
e External Support Structure
e Operational Loads
e Footfall
e Material Properties
o (Geometry

e Architecture

Ideally, PoF models for Cutty Sark would incorporate most of the environmental and
operational loads mentioned. However there are few such models which have been
investigated and developed to date for wrought iron structures (STRAUB, Daniel, 2004)
(MELCHERS, R. E., 1999), (MELCHERS, R. E. and Jeffrey, R. J., 2008). Hence, thee gener
“Linear Bi-logarithmic Law” for atmospheric corrosion (POURBAIX, M, 1982) is used as a

starting point for the PoF model for Cutty Sark iron structures.
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4.3.2.1. PoF model: Linear Bilogarithmic Law

The Linear Bilogarithmic Law represents corrosion rate as a function of time bagskd on
understanding that the build-up of corrosion products tends to reduce the corrosion over time.

The law is expressed as shoinrequation (12).
P = At? (12)

Where P is corrosion penetratiory,is exposure timed is corrosion rate during the first year
of measurement anblis a constant representing a measure of long-term decrease in corrosion

rate.

A generic approach to implementing the Linear Bi-logarithmic law as a PoF model would

involve the following steps:

e Obtain initial values of corrosion penetration from experimental trials (under normal

environmental and operational loads) over thgda.
e Determine A & B, using linear regression 6n(P) = In(A)+ Bin(t)

e Define failure in the test structure as corrosion penetration being more than x% of
initial depth of structureD.

e Calculate remaining life using= e(n(0.03*D)-In4)/B

e From 29 year onwards, the model can be updated as new measurements become

available.

According to Pourbaix, this law is valid for extrapolation of up to 20-30 years (POURBAIX,
M, 1982). However, for such long periods, environmental conditions are likely to change

making the corrosion penetration prediction unreliable with time.

4.4.Data Driven Diagnostic Tool: Anomaly Detection using
Mahalanobis Distance Analysis

4.4.1. Overview

Prediction of remaining life using PoF methodology is usually accompanied with

uncertainties due to inaccuracy of the model itself, inaccuracy in measurement processes and
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varying environmental and operational loads, which might not have been taken into account
in the model. During normal opeion, all “health” parameters follow a similar pattern,
however in presence of a fault that might lead to a failure, these parameters would usually
increase in proportion to the magnitude of the fault. Heinéejmportant to monitor “health”
parameters of the real structure under operation and precursor monitoring becomes an
essential tool in determining the current “health” of a system and providing an indication of

any change on predicted remaining life.

4.4.2. Precursor Monitoring

As described in chapter 3he term precursor defines a “health” parameter, which is a
measurable variable of which significant changes can be associated with a forthcoming
failure. For example, an increased corrosion penetration rate and material loss would suggest
impending structural failure due to decreased strength of the component. Failures can then be
predicted by using a causal relationship between a measured variable that can aedorrel

with subsequent failure.

For the scope of this project, the following precursor variables have been identified: weight
change, dimension change and electrical resistance. Feature extraction was caometheut
precursor variableghe average value, maximum value and minimum value were computed
for a certain amount of readings of the precursor variables at a time. Featasi@xtwas
needed in order to capture changes that are not visible using the real data only. Then an
anomaly detection algorithm is developed to correlate the change in the precursor variable
with the impending failure. The anomaly detection algorithm developed for the PHM

framework developed uses Mahalanobis Distance (MD).

4.4.3. Theory of Mahalanobis Distance

Mahalanobis Distance (MD) is a distance measure based on correlation between two or more
variables in multi-dimensional space from which patterns can be identified and analysed. It is
used to distinguish the pattern of a certain group from other groups (TAGUCHI, Genichi et
al., 2000). Using Mahalanobis Distance, multidimensional data obtained from sensors for
various performance factors can be reduced to univariate data to represent anomaly fr

system. Here the Mahalanobis distance technique is used to measure the degree of health of
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an iron structure by processing all multidimensional measurement data available (i.e.

dimension change, weight change, and electrical resistance).

A Mahalanobis space is created which is centred on the typical performance variable values
representing a healthy structure. Any deviation in the performance variables is then
determined by the distance from the centre point. Threshold values are determined by
extensive testing of the system that generates “healthy” performance data. Mahalanobis

distance values greater than these threshold values then indicate possible failure in the

structure. The Mahalanobis Distance takes the form of equation (13):
D*=(x-m)TCc1(x—m) (13)

WhereD? is Mahalanobis distance, vector of data from sensors for observed parameters,
vector of mean values of independent variables from training set*andverse covariance

matrix of independent variables from training set.

The health of an iron structure is defined by several performance parameters. faacstga

in each vector is standardized by subtracting the mean of the parameter and dividing it by the
standard deviation. These mean and standard deviation are calculated from the data collected
for normal or healthy structure. The MD values are calculated for the healthy group. These
MD values define the Mahalanobis space, which is used as a reference set for the MD
measurement scale. Then, the MD values for the test structure are calculated after the
parameters are standardized using the mean and standard deviation for normal-group. The
resulting MD values from test system are compared with the MD values of the healthy system

to determine test structure's health.

4.4.4. Mahalanobis Distance Analysis of Precursors for Cutty Sark Iron
Structures

The methodology used to carry out MD analysis of precursors for iron structures is depicted

in|Figure 4-¢. The following steps are performed to find the MD value to determine the

current health of an iron structure/device:

1. Generate baseline for healthy behavior - experiments are conducted on healthy
structures within the range of environmental and operational conditions the

structure is assumed to experience.
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. Perform feature extraction on performance parameters to select features providing

meaningful data.

. The data from selected features is normalised with the mean and standard deviation

of the data. This is done by reducing the data by its original mean and dividing the

data by its original standard deviation respectively.

. Once normalised values are obtained, two healthy datasets are created: Mataset
and Dataset B. The Matlab mahal function is then used to generate MD values with
Dataset A used as the reference sample and Dataset B used as the health

observations for which MD values are generated.

. A MD threshold value is determined based on the MD values obtained for Dataset

B.
. Perform MD analysis on test structures

. Test structures are subjected to similar tests as for the healthy structures, data from
the same performance parameters is collected, and the same features are extracted

as in step 1.

. Each observation in time of the test data is then normalised using the mean and

standard deviation of the healthy data.

. Once normalised values are obtained, the test Dataset C is created from those
values. The Matlab mahal function is then used again to generate MD values for

Dataset C with Dataset A used as the reference sample again.

10.The MD values of the test dataset are compared with the threshold MD value. MD

Values higher than the threshold MD value would indicate an anomaly in the

system.
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Figure 4-6. Mahalanobis Distance Analysis Methodology
4.5.Fusion Approach: Bayesian Network Models

45.1. Introduction

A Bayesian network is a probabilistic graphical model that represents a set of variables and
their probabilistic independencies and it is based on an approach of probability theory by
Thomas Bayes (BROMLEY, J et al., 2004). A certain degree of uncertainty in tetiore

of remaining life from PoF models for corrosion prevails due to the lack of understanding of
the complex processes involved in corrosion of iron structures. Calibration of the canary and
parrot device pa#is also a challenge while precursor monitoring and anomaly detection
require good training data to deliver reliable results of anomaly detection. Bayesianknetwor
is used here as a fusion approach within the PHM framework in order to obtain more accurate

prediction of remaining life for the iron structures.

Within this framework, prediction of remaining life using PoF models and anomaly detection

through precursor monitoring is carried out as described in the previous sections. The
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information output from these models is then used as input data to the Bayesian network
models developed. Bayesian Network models help to coherently integrate causes leading to a
failure as well as the evidence of the effects of that failure and handles uncertainty in

prediction of remaining life witim a rigorous mathematical approach.
4.5.1.1. Baye’s Rule and Bayesian Networks

A Bayesian network model consists of three elements:

1. A set of nodes - representing the system variables where each node has a finite set

of mutually exclusive states.

2. A set of links/arcs- representing the cause and effect relationships between the

nodes

3. A set of conditional probability tables - expressing the probability of a node being

in a particular state given the states of other connecting nodes.

Bayesian networks operate Ipyopagating beliefs using Bayes’ Rule from equation (15)

through the network once some evidence about that state of certain nodes can be asserted.
When evidence of a node is confirmed, this belief is propagated upwards in the network by
calculating posterior probabilities of the evidence of all other nodes connected to the
confirmed node. Thus, the current belief in the evidence of all the nodes in a network can be
computed, given knowledge of the evidence of a few of the nodes and the relationships

between them.

P(BIAPA)

P(AIB) =
(B) (15)

Where P(A) is the prior belief (i.e. initial uncertainty i), P(A/B) is the posterior belief (i.e.
the uncertainty having accounted for evideBye P(B/A) is the likelihood andP(B) is the
marginal likelihood. Assume A is a variable with n statgsa..., a,, then P(A) denotes a

probability distribution over these states as shown in equation (16).
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P(A) = (xll X2, ---’xn); Xi = 0 (]6)

Wherex; is the probability ofA being in states;, This can be written aB (4 = a;) = x; or P
(a;) = x;, eg P(Age = new) = 0.2.

The Bayesian network treatment of certainties in causal networks makes use of conditional
probabilities. If variabldB hasm statesbs, by, . . ., bn, thenP(a / b) = x. The probabilityP(A4/

B) implies ann x m table including the probabilitieB(a; / b; ).| Table 4-2 shows an example

of P(ai/ bj), wherel <i/<2and <j< 3. The columns sum to one.

b1 b2 bs

a 0.1 0.6 0.2

az 0.9 0.4 0.8

Table 4-2 Conditional Probability Table for Variable A

4.5.1.2. Advantages/Reasons for choosing Bayesian Networks

Bayesian statistics has many benefits for decision-making problems as usually decision-
making are hard due to lack of knowledge and uncertainty about relevant parameters for a
model. Bayesian Statistics allows for the quantification of uncertainties using subjective
probability. Predictions can be made based on initial available data (objective and subjective)
and are updated as new data is acquired. Bayesian methods use all relevant available
information and not just knowledge from data only. Bayesian techniques are used to obtain
estimations by combining subjective data and observed data right from the start even with
only a small set of observed data available. Additionally, Bayesian networks can incorporate

variables of any kind (i.e. physical, economic, social or any other type).

For the case of Cutty Sark, historical data is difficult to obtain and accurate models of
corrosion of the iron structures for the current environmental conditions of Cutty Sark is not
available. Thus, information from other sources needs to be incorporated to be able to form a

data set from which predictions can be made. This information can come from experts in the
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field or visual inspections of the structures. Using Bayesian networks, simple causal graphical
structures can be built to represent the system under investigation and this can be extended

and modified later with relative ease as more knowledge is gathered.

4.5.2. Bayesian Network Model Development Process

The development process followed for Bayesian network models for the PHM framework is

shown in Figure 447 and can be broken into five general steps:

1. Developing the structure of the modekhe model variables, nodes and arcs are

specified

2. Parameterising the model (qualitative and quantitativie states for the nodes
are assigned and the conditional probability table of the nodes are defined and

parameterized using a combination of methods

3. Evaluation of the model and testing scenaridhis involves assessing the model
to check if the model is representing the right information and producing the

expected results

4. Reasoning on the model this entails propagation of beliefs and updating the

probability distribution of remaining nodes

5. Updating the model this can comprise either updating the model structure or
updating the CPTs or both when more learning data and knowledge becomes
available
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2.
Parameteris
-ation

5. Updating
the model

4. Reasoning 3. Evaluation
on the model of the model

Figure 4-7: Development process used to build a Bayesian network model

4.5.3. Bayesian Network Model for a small structure

This section demonstrates the development of a Bayesian network development for a small
structure following the development process described in the previous section. Let us consider
building a small Bayesian network model to predict the pseh corrosion in an iron

structure. Many factors can be taken into account such as the environmental conditions, the

age of the structure, etc. These are represented in a Bayesian Network model connected b

directed links based on the cause/effect relationships of the nodes. In Figure 4-8, the variables

humidity and age have an impact on the variable corrosion, meaning the presence of

corrosion can be determined by the states of humidity and age. The states of each variable can
take different types of discrete values. Here the variable humidity is represented by intervals

(i.,e. 0%-30%, 30%-100%). The variable age has states that take ordered values new,

intermediate, and old and the states of the variable corrosion are represented &g order

valuesyesand no.

Figure 4-8 Small BN model for corrosion damage
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In|Figure 4-8, the variable Corrosion has two parents: variables Humidity and Age. The latter

two variables do not have any parents. The joint probability distributions for the variables are
defined as P(Corrosion Age, Humidity P(Humidity), and P(Age). These probabilities can

be either determined by an expert or extracted from a data set. Since the vanabieisyH

and Age have no parents, their prior probabilities can be simply specified as follows:

e PHumidity=“0-30") = 0.7 and P(Humidity= “30-100”) = 0.3

e P(Age = new) = 0.2, P(Age = intermediate) = 0.6, and P(Age = old) = 0.2.

The variable Corrosion has two states and two parents, one with two states and one with three
states. The conditional probability distribution of variable Corrosion can be shown as on

Table 4-3. Thegresandno label in the first column are the states of variable Corrosion.

... | 0%-30% 30% - 100%
Humidity
Age new | intermediate Old new | intermediate old
yes 0.1 0.4 0.4 0.3 0.5 0.9
No 0.9 0.6 0.6 0.7 0.5 0.1

Table 4-3: CPT for Corrosion node

Bayesian networks can be conditioned on any subset of their variables, supporting any

direction of reasoning. Thus, any variable may be query variables or evidence variables.

Figure 4-9 shows the Bayesian network at initial stage with no evidence input on any node.

Whenever new information is acquired, new beliefs can be calculated. Suppose that humidity
is within the 30% to 100% range and the age of the structure is old, then P (Hemigiity

100”) = 1.0 and P(Age= old) = 1.0. They are shown |in Figure 410 as percentages (100.00
and 00.00) with red colors. This kind of probabilities is refeteds evidence. When new

evidence is applied to a Bayesian network, the beliefs on the other variables may change. This

is also called belief updating. This is shown in Figure @#-10|and Figurg 4-11 where the

probability distribution on the Corrosion node changes depending on the evidence input on

Humidity and Age nodes.
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Hurnicity [+] Lge [+
58,33 0-30 20,00 Mew
41.67 30 - 100 60,00 Intermediate
20,00 old
Carrosion [3]
57,67 Mo

| 42,33 Yes

Figure 4-9: Bayesian Network with no evidence input

Hurmidity i Age [
0.00 0-30 ’ 0.00 Mew

oo 20 - 100 0.00 Intermediate
Cld

Corrosion [3<]
’ O0.00 Yes

10.00 Mo

Figure 4-10: Bayesian network with evidence input on Humidity and Age nodes

[ Age [

Hurnidity
0.00 0-30 OO Mew
I 30 - 100 0,00 Intermediate
0.00 oid
Corrasion
30,00 Yes
F0.00 Mo

Figure 4-11: Bayesian network with different evidence input on Age node
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The evidence that humidity is 30-100 and age is old, increases the belief on corrosion to 90%

in|Figure 4-10 while the evidence that humidity is 30-100 but age is npw in Fidlte 4-

decreases the belief on corrosion to 30 %.

4.5.4. Bayesian Network Model for Fusion-based Prognostics tool

4.5.4.1. Development of Bayesian Network Model

Although a lot of research has been carried out on deterioration of iron structuresutte re

and knowledge from these research projects is not directly applicable to the case of Cutty Sark
(YUANTAI, 2008) (MANDENO, W L, 2008) (STRAUB, Daniel, 2004). These research
projects are usually carried out using specific materials as example and the knowledge gained
iIs mostly only applicable for particular structures and scenarios. Due to the complexity of
corrosion processes, the corrosion rates for different materials differ. The environmental
conditions can affect the corrosion rates significantly even for structures made of the same
material. Also for various reasons, observation data is often not easily acquired and usually
input data from other structures cannot be reused due to the particularities of each structure.
Thus for the development of the Bayesian network model for the PHM framework, subjective
inputs from industry experts are usually required as well as observation data to be able to run

models and simulations for the deterioration of an iron structure for example.

The Bayesian network model developed is organised in a layered structure with the top layer
representing the prediction of remaining life of the system under consideration, the middle
layer representing the diagnosis and prognosis observations of the structure and the bottom
layer representing usage and health observations with the nodes in the different layers
connected by causal links. This approach is similar to that described in (PRZYTULA, K W
and Choi, A, 2007)Here, Bayesian network’s ability to link different types of information
whether it is coming from empirical or physical models into a single probabilistghgal

model is used to develop this Bayesian network model.

The initial structure (i.e. the whole Cutty Sark ship) is decomposed into sub-structures and a

Bayesian Network model is developed for each substructure. The submodels then integrate to

make a complete modgl. Figure 4+12 shows the initial Bayesian network model, where factors

influencing the remaining life prediction and the performance factors indicating current

“health” are represented in different layers and arcs are used to represent the relationships.
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This initial model while aiming to be as comprehensive as possible with regards to
representation of causes and effects of corrosion on iron structures was deemed unfeasible to

model due to lack of knowledge and data required to model all the particular nodes.

@ i P_Pollution

Y

] 4
Canary_PredictedRUL Farrot_PredictedRLUIL ShipStructure_PredictedRUL

@ NG CREE I~ D P_Weight_Change S_Weight_Change 5_Appearance_Change

C_Surface_Hardness
C_Sample_Thickness

o
v
!

P_Surface_Hardness

F_Sample_Thickness

Figure 4-12. Conceptual Bayesian Network for Cutty Sark

Figure 4-13 shows a modified version of the Bayesian network model for Cutty Sark iron

structures. Remaining life predictions from PoF models for canary (C_PoF_RUL) and parrot
(P_PoF_RUL) devices provide input for the top layer nodes representing the causes of failure.
The bottom layer nodes represent the anomaly detection results for canary (C_MDValues) an
parrot (P_MDValues) devices using Mahalanobis Distance analysis, thus representing the
effects of failure as well as usage and health observations (Visual_Inspection). The nodes in
the middle layer represent the diagnosis and prognosis for the canary (Canary_PredictedRUL
and parrot (Parrot_ PredictedRUL) device as well as that of the ship iron structure
(ShipStructure_PredictedRYLTwo additional nodes representing time are included into the
model to account for the point in time at which the madeaiun (C_Time_Period for the
canary and P_Time_Period for the parrot devices). Evidence on these two nodes will always
be provided when reasoning using the network as such information should always be
available. The nodes across the layers are linked together such that evidence recored for

of the nodes will result in a belief updating of all the nodes connected to it. The links between
nodes ‘C_PoF_RUL, ’Canary PredictedRUL’ and 'C_MDValues’ mean that the prediction

of remaining life of the canary device using PoF models will affect the failure prediction of
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the canary device which in turn affects the MD value obtained from the MD analysis of
failure precursors of the canary devickhe node ‘Canary_PredictedRULlinks to node
‘Parrot_PredictedRULthat in turn links to node ‘ShipStructure_PredictedRULThis is to
represent the correlation between failure rates in canary device, parrot devitiee astdp
structure under consideration. This approach allows for predictions of health of components
for which damage can be observed directly as well as predictions of health thatroadée

indirectly using information about usage loads and environmental conditions.

Model-Driven

Prognostic >

C_Time_Period

Parrot PoF_RUL ) |

Fusion-based
Prognostic—>,

“ShipStuctura_PradictadRUL

Visual_Inspection

Figure 4-13: BN Network

The information required to build the Bayesian network model can be broken into two parts:
(1) the structure, which is defined using knowledge of the system and the diagnostic and
prognostic observations that can be made and (2) the parameters, which are defined from the
data being collected from laboratory experiment, and field use. Data gathering for building
Bayesian Networks is very flexible and essentially two main techniques are used to build a
Bayesian network model:

e Expert Knowledge - manually build graphical structure of the network, identify, and

populate the conditional probability talilesed on expert’s knowledge of system.

e Learning Analysis - Graphical structure of the network and the conditional probability

table are both obtained from experimental data.
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For our case, a mixture of both approaches is used. The structure of the Bayesian network was
devised after acquiring knowledge from engineers, corrosion experts, preservation experts as
well as information obtained from literature. Then the initial set of probability of values is
based on existing measurements from sensors, historical information for relevant parameters
of appropriate corrosion models and subjective information from the domain experts. The
next section details the populating of the conditional probability tables of the nodes in the

Bayesian network model described above.
4.5.4.2. Parameterisation: States definition and Populating CPTs

The parameterisation of a Bayesian network model can be broken into two stages: (1)
defining the states of each node and (2) populating the Conditional Probability Tables (CPTSs)
for the node. States of a node can be categorical, continuous or discrete. The states of each
node must be mutually exclusive and exhaustive, that means the variable must take on exactly
one of these values at a time. The states of all the nodes for the Bayesian Network model built
for the PHM framework are defined to be either categorical or discrete. The stagextio

node are presented in the table below.

Nodes States

Canary_PoF_RUL Intervals ([-==, 0], [0, 1], ..., [5, *=]) representing the
year lifetime of a canary device.

Canary_PredictedRUL Intervals ([<=, 0], [0, 1], ..., [5, ==]) replicating that of
node Canary PoF_RUL.

Parrot_PoF_RUL Intervals ([<=, 0], [0, 1] ..., [20, ==]) representing the 2
year lifetime of a parrot device

Parrot_PredictedRUL Intervals ([=~, 0], [0, 1] ..., [20, =°]) replicating that of

node Parrot PoF_RUL.
ShipStructure_PredictedRU Intervals ([<, 0], [0, 1], ..., [20, e=]) replicating that of
node Parrot_PredictedRUL

Canary_MDValues Intervals ([=~, O], [0, 1], ..., [15, =]) representing thi
typical MD values expected during operation.

Parrot_ MDValues Intervals ([<<, 0], [0, 1], ..., [15, *°]) representing thi
typical MD values expected during operation.

C_Time_Period Discrete values [1, 5] representing the period the ca
device is expected to be in operation.

P_Time_Period Discrete values [1, 20] representing the period the pi
device is expected to be in operation.

Visual_Inspection Order values [1, 5] representing the severity of dam

detected on structures during visual inspection.
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Once the states of the nodes are defined, the relationship between the nodes is developed. This
relationship is defined using conditional probability tables (CPTs). PN Quantifies the
probability of a node/variable being in a particular state, given the states of its parent nodes
The probabilities are derived from (1) direct elicitation of scenarios from expert, (2) data
obtained from PoF model and anomaly detection and (2) equations used to describe
relationships between the nodes. The CPTs foren68_ PoF_RUL and ‘P_PoF_RUL
represent the unconditional probability distribution of predicted remaining life from the PoF
models taking into account the factors influencing the remaining life prediction for the canary
and parrot devices. Nodes without parents have an unconditional distribution defined for their
CPTs. For nodes with parents (child nodes), the probability distribution of their states will
depend on the state in which the parent nodes are. For example, the CPT for node
‘Ship_Visual_Inspecticndepends on the state méde ‘ShipStructure PredictedRULThe
Bayesian network model was built with as few nodes as possible and minimal interaction
amongst the nodes in order to reduce the amount of conditional probabilities to be specified.

It should be noted that so far, the preliminary parameters and CPTs have been derived from
published literature, current understanding of the system and input from the PoF model and
MD analysis. Further development of the model would involve an iterative refitemen
process, which would include expert elicitation as well as any information available from
experimental or field results. As the CPTs of the Bayesian Network models for the
demonstrator example and the experimental trial differ slightly, the populating of the CPTs is
described in detail in Chapter 5 for the demonstrator example and in Chapter 6 for the

experiment trial.
4.5.4.3. Running BN models

There are several software packages for developing Bayesian network models, eachrwith the

own strengths and weaknesse

e Commercial- Hugin Expert A/S (HUGIN, 2011), Netica (NORSYS SOFTWARE
CORP.), AgenaRisk (AGENA, 201), Analytica (LUMINA, 2011) and Bayesia
(BAYESIA)

e Non-commercial- GeNle & SMILE (DECISION SYSTEMS LABORATORY, 2007)
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Bayesian network software packages include a graphical user interface for building the
Bayesian network model and a runtime module that handles the probabilistic calculation and
evidence propagation. First, the model structure is constructed by creating the nodes using the
graphical user interface. These nodes are then linked to other nodes under the constraint that
no directed loops are created in the network. The CPTs are then generated through educated
guesses from experts or inferred from data. Most of the software packages support different
types of nodes (i.e. chance nodes, utility nodes, etc) and these nodes can be adsigrad dif
types of states (i.e. labelled, internal, Boolean, continuous, etc). Additionally some offer the
facility to create complex equations using numerous statistical distributions and mathematical
operations. Furthermore, parameter and structural learning features are also avanedlle a

as sensitivity analysis capabilities.

Hugin software package was selected for the development of the Bayesian network models
for the PHM framework, as it possesses the most comprehensive set of features regarding the
development, testing and running of Bayesian network models as well as a powerful and
intuitive user interface. A large range of built-in statistical distributions and expressions are
available for building CPTs. Hugin software also allows mixing of discrete and continuous
nodes to model quantitative and qualitative variables. Hugin software uses the Junction Tree
algorithm to perform probabilistic inference. This algorithm first transforms the Bayesian
network into a tree where each node in the tree corresponds to a subset of variables in the
Bayesian networks. The algorithm then exploits several mathematical properties of this tree to

perform propagation (i.e. probabilistic inference).

For the Bayesian network model, the reasoning for diagnosis and prognosis is performed in
three main step steps. First, the reasoning engine reads the model information, which includes
the structure of the network as well as the CPTs for all the nodes of the network. It then loads

the values for all nodes for which observations are available as shgwn in Figu|re 4-14. In a

normal scenario, evidence for all the blue and green nodes (i.e. top and bottom layers of
nodes) should be available and entered into the network. At present, for the static version of
the Bayesian network, two nodes are introduced representing the point in time (for cahary a
parrot device) at which the network is being run. In the third step, the reasoning engine then
performs evidence propagation and produces the update probability distributions for the
predicted remaining life of the canary and parrot device as well the ship structure (nodes
Canary_PredictedRUL, Parrot_PredictedRUL and ShipStructure_PredictedRUL).
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Figure 4-14: Reasoning on Evidence
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4.5.4.4. Evaluation of Bayesian network model

The evaluation of the Bayesian network model is undertaken to determine whether the model
is doing the right job (validation) and whether the model is doing the job right (verification).
The two types of evaluations applied were qualitative and quantitative. Qualitative evaluation
was used to compare different versions of structures of Bayesian networks that were
acordingly refined until a satisfactory version was obtained. To validate the model, an
appraisal is carried out to determine whether the key variables and their relationships are
represented correctly. The appraisal in terms of the structure of the Bayesian network model
has thus far been carried out with the help of experts. Quantitative validation of a Bayesia

network model involves the following:
e Testing the reasoning accuracy based on the model
e Evaluating the model’s performance robustness

e Evaluating tlke model’s tolerance to noises

Sensitivity analysis is often used to investigate the performance robustness and tolerance to
noises by studying the effect of small changes of numeric parameters on a Bayesian network’s
performance. It uses calculation of variance reduction for continuous variables and entropy
reduction for discrete variables. It helps in verifying correct initial model structude an
parameterization. A number of test case scenarios (in the demonstrator example) were defined
which represent ad-life cases encountered during the lifetime of an iron structure. Each test
case constitutes a set of findings used as inputs to the networks. For evaluation, the goal was
to get the Bayesian network model to tell us what we expect to see, that is, to present expert
judgment and any initial empirical data on how the system works and behaves. The results

from guantitative evaluation of these test case scenarios are presented in the next chapter.

4.6. Summary

A PHM framework based on the use of bespoke sensors, diagnostic and prognostic tools has
been presented. The application of this PHM framework is the prediction of remaining life of
wrought iron structures of the Cutty Sark, which experiences various complex corrosion
processes over time. The concept of use of Canary and Parrot devices is explaineitl where
has been devised in order to obtain sensor data on current state of the ship structures and the

surrounding environment without using any direct intrusive measurement techniques.
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For the model-driven prognostic tool, a Physics-of-Failure model for prediction of corrosion
rate of wrought iron over time is developed. This is a temporal model based on the Linear
Bilogarithmic law for corrosion. In the data-driven diagnostic tool, precursor monitoring is
carried out to detect anomalies using Mahalanobis distance analysis of failure precursors of
canary and parrot devices. This also includes feature extraction on performance parameters to

create a training data set representing healthy structures.

Finally, Bayesian networks are used as a fusion approach to perform probability distributions
for remaining life predictions. The main aim of integrating the diagnostic tool and the
prognostic tools is to harness the strength of each methodology while minimising the impacts
of their shortcomings. The Physics-of-Failure model in the model-driven diagnostic tool used
for this framework currently does not capture real life conditions in the prediction of
remaining life of an iron structure. Within the diagnostic tool, using Mahalanobis distance
analysis for precursor monitoring and anomaly detection provides good diagnostic capabilities
when good training data is available butdaot offer prognostic capabilities. The useaof
Bayesian network model as a fusion approach is considered key in bringing this PHM
framework together as it can handle different types of input to produce probability
distributions of remaining life of the iron structures for the Cutty Sark. The next chapter
describes the data gathering carried out to develop and test the diagnostic and prognostic tools

discussed.
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5.Demonstration Example

An example application has been set up to demonstrate the methods discussed in the previous
chapter. The following section describes the setup for the demonstration example, which will
be used to test the diagnostic and prognostic tools developed followed by a description of the

different scenarios investigated. In section 5.3, the tools developed and tested are:

1. the model-driven prognostic tool using a PoF model to predict the remaining life of

the devices used in the demonstrator example

2. the data-driven diagnostic tool using precursor monitoring and anomaly detection

and

3. the fusion-based prognostic tool using Bayesian Network models are used to

update the predicted remaining life.

The results of the tests are discussed. The final section in this chapter provides a summary of
the demonstration example setup, the significance of the results and possible improvements of

the current PHM methodologies used.

For this example application, the expected lifetime of a parrot device is 20 yedamaaata

canary device is 5 years under normal environmental conditions. The expected lifetimes of the

devices are described in further detail in sedtion 5.2. The 20 years lifetime for tbe par

device was defined to reflect the fact that the Linear-Bilogarithmic law will hold for 20 years

or so according to Pourbaix (POURBAIX, M, 1982). There are five scenarios investigated:

e Scenario 1 (Normal “Healthy” conditions): the environmental conditions (relative
humidity and temperature) are set such that the canary and parrot device has a life
expectancy of 5 years and 20 years respectively.

e Scenario 2 (Mixed conditions): normal environmental conditions for the first 15 years
of lifetime of the parrot device and the first 3.75 years of the lifetime of the canary
device. The devices experience harsher environmental conditions for the remaining

lifetime.

e Scenario 3 (Mixed conditions): normal environmental conditions for the first 5 years

of lifetime of the parrot device and for the first 1.25 years of the lifetime of the canary
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device. The devices experience harsher environmental conditions for the remaining

lifetime.

e Scenario 4 (Harsh conditions): harsh environmental conditions throughout the lifetime
of the canary and parrot devices.

e Scenario 5 (Alternate conditions): alternate normal (for four months) and harsh
environmental conditions (for two months) throughout the lifetime of the canary and

parrot devices

5.1. Demonstration Setup

To be able to demonstrate the methodologies developed in the diagnostic and prognostic
tools, a data set of corrosion rate measurements over time is required so that the gredictiv

power of the models can be tested against this data set of corrosion rates. At present time,
such a complete set of real data from experimental measurements (i.e. Cutty Sark) is not
available. Therefore, the following approach to generate demonstration data sets of corrosion
rates (i.e. data to substitute real corrosion measurements and corrosion history over time)

required for the prognostic examples is undertaken. This dataset, shown on the left side of

Figure 5-1, has been generated to have certain characteristics as would tiyeicadserved

in the corrosion of iron structures, and therefore to mimic real corrosion data attributes and

trends.

Prognostics Framework for

Corrosion Test Data for Demonstrator Maintenance and Remaining Life

Temperature  Relative Humidity Time Physics of Failure Precursor
\ j / Models Monitoring
Dataset \ /
Bayesian Network

1 Mcldel

Corrosion Rate m—) Predicted Corrosion Rate
Remaining Life m——) Predicted Remaining Life

Figure 5-1: Using generated "Real" Corrosion Data to test HM Framework
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Initial first year corrosion rates of stepl (Table |5-1 jand Tabl¢ 5-2), as detailed in the report

‘Atmospheric corrosion rates of railway bridge structures’ (GASCOIGNE, A and Bottomley,

D, 1995), have been used as a guidance on typical values for corrosion rates of metals and
their variation as a result of changes in the environmental conditions. For example, the
seasonal variations in weather conditions throughout the year result in slightly higher
corrosion rates during the height of summer and winter. Corrosion rates increase as the
temperature and/or relative humidity increase. The corrosion rate for wrought iron was
adjusted by multiplying the corrosion rate of steel by a factor of 0.7 as recommentted b
same report. Baseline initial first year corrosion rate qfr3fear is assumed at temperature
20°C and relative humidity 60%. This value is in the range reported in the literature
(GASCOIGNE, A and Bottomley, D, 1995).

Test Corrosion rate
Commenced | (um/year)
February 28.5

May 29.5

August 34.3
November 335

Table 5-1: Corrosion rates of steel after 1 year test (GASCOIGNE, A and Bottomley, [1995)

UK data é\cl)?rrsgiin Rate I(\:lli;i/r;;;?)/ Maximum
(um/year)

Rural 36 6— 64

Urban 71 71

Light Industrial | 47 30-53

Industrial 77 36-173

Industrial/Marine| 51 36- 66

Marine 34 15-79

Table 5-2 Average corrosion rate of steel (GASCOIGNE, A and Bottomley, D, 1995
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On this basis, the generated dataset of corrosion rate values to act as a representakion of rea
measured data at different temperature and relative humidity levels is constructed to have the

following attributes:

e Environmental Conditions: temperature range is 0°C to 30°C and relative humidity
range 30%-9%;

e Corrosion rate values are greater at higher temperature and/or higher relative

humidity;

e Corrosion rates are more sensitive to relative humidity changes than the temperature

changes;

e Magnitude of values of the corrosion rates that are generated are in the range of the

measured data reported in the literature.

The dataset of corrosion rates, with the attributes above, for temperature and relative humidity

pairs for the first year is detailed|in Table 5-3. The corrosion rates listed are in unit pum per

year. This data, although not based on real corrosion values obtained through measurements,
is realistic and has the trends of real corrosion rate changes as a function of temp@chtur
1 to Tabl¢ 5-6) with datasets for the

relative humidity. Three similar tables (§ee Table|5

corrosion rates at times corresponding to the fifth, tenth and the twentieth year are also

derived. The data in Tables 5-4 to 5-6 was derived on the basis of the|data in Tjable 5-3 such

that the relation between the corrosion rates between the first, fifth, tenth and twentieth year

follows a power law relation and captures the effect of time on the corrosion rate.

Equation (18) represents a typical power law equation based on a sample of the data from
Tables 5-3 to 5-6, where y is the corrosion rate and t is the time at which the corrosion rate is
generatedThe power law rule is applied to ensure the generated corrosion rates data follows

a known corrosion phenomena that the corrosion rates are usually much higher in the first few
years, and then gradually decrease and stabilise after 5-10 years once a proyectieda

rust) has formed (POURBAIX, M, 1982).

y = 34.3t70353 (18)
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Temp. (°C)/ 5 |10 [15 |20 [25 |30
RH(%)
7 10 13 14 17 23

N
R 7

10 13 17 18 24 32
50 10 15 17 20 23 28 39
15 25 27 28 35 37 49

70 25 32 35 36 46 48 62
32 39 42 44 58 60 82

[ 40 45 50 57 66 70 90

Table 5-3: Estimated corrosion rates for temperature and relative humidity pairs afterlst year

Temp. (°C)/ 10 [15 [20 [25 [30
RH(%)

_20 50 65 7.0 85 115
3.5 5.0 65 85 9.0 120 16.0
50 50 7.5 85 10.0 11.5 14.0 195
75 125 135 14.0 175 185 245
70 125 16.0 17.5 18.0 23.0 24.0 31.0
16.0 19.5 21.0 22.0 30.0 29.0 41.0
S 20.0 225 25.0 285 33.0 35.0 45.0

Table 5-4: Estimated corrosion rates for temperature and relative humidity pairs aftei5th year

Temp. (°C)/ 10 |15 |20 |25 |30
RH(%)

_16 28 40 52 56 6.8
28 40 52 68 72 96 12.8
50 40 6.0 6.8 80 92 112 156
6.0 10.0 10.8 11.2 14.0 14.8 196
70 10.0 12.8 14.0 14.4 184 19.2 248
12.8 15.6 16.8 17.6 24.0 23.2 3238
O 16.0 18.0 20.0 22.8 26.4 28.0 36.0

Table 5-5: Estimated corrosion rates for temperature and relative humidity pairs aftelOth year

Temp. (°C)/ 5 |10 [15 [20 [25 |30

Sl
_144 252 360 468 504 6.12 828
252 360 468 6.12 648 8.64 1150
3.60 540 6.12 7.20 828 10.10 14.00
540 9.00 9.72 10.10 12.60 13.30 17.60
9.00 11.50 12.60 12.90 16.60 17.30 22.30
11.50 14.00 15.10 15.80 21.60 20.90 29.50

14.40 16.20 18.00 20.50 23.80 25.20 32.40
Table 5-6: Estimated corrosion rates for temperature and relative humidity pairs a&ér 20th year

~ 104 ~

50



Tables 5-3 to 5-6 contain discrete test values for corrosion ragefiagction of the time,
temperature and relative humidity. Based on the principles above used to derive this data, it
can be seen as a realistic and possible set of corrosion data that could be obtained in a
scenario of real measurements. A corrosion rate generator is now required in order tie genera
corrosion rate data with respect to any particular set of time, temperature and relative
humidity values that will be defined in the study case of validating the developed diagnostic

and prognostics methodology. The data generator is developed as a model that interpolates

continuously in three-dimensional space (time-temperature-humidity) the gata in Tatde 5-3

Table 5-6. The corrosion rates that can be generated with this model would then be used for

various scenarios of environmental conditions and over time as datasets that are used to
represent "real" data against which the diagnostic and prognostic tools are tested. The

corrosion rate generator is based on a multi-quadratic model taking the form of equation (19).

fOO =321 aiVIX - X? +1 (19)

where X is a three-dimensional vector representing the three parameters; time (in years),
temperature (in °C) and relative humidity (in %) for evaluati#) returns the value of the

corrosion rate that is generated (in unit um per ye@r)is a three-dimensional vector

representing a triplet of time, temperature and humidity with the known values from Tgble 5-3
to| Table 5-6, (=1,..., m). The triplet data points in the Tables 5-3 to 5-6 are 80, and therefore

in the above model m=80.

The coefficientsga; in the multi-quadratic function are computed by requiring the function in

equation 5-2 to fit exactly the given set of data (ffom Tablet6|-‘BabIe 5-6) for the data

points (=1,..,80). This requirement results in solving a linear system of m (m=80 in this
case) equations with the coefficients in the multi-quadratic maqeé71,.,m) as unknowns.
Using the multi-quadratic model ensures that the data generated is in line with the trends for

the corrosion rates observed in real life when time, temperature and relative humidity change.

It is an interpolation function for the datg in Table|{J able 5-¢. That is the model predicts

the exact value for the corrosion rate at the triplet (time, temperature, relative humidity) points

used in the tables. The coefficients of the model are reported in Table 5-7. For example, this

model will generate at arbitrary conditions for time = 17 years, Temperature = 18°C and RH =
65%, a value of the corrosion rate of 13.67 um per year. Such value is to be viewed as a

experimentally measured value under this condition.
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- - I | & I | &

1 | 045753 01| 0.24037 41 | -0.08505 61| 0.19556
o | -0.31168 52| 0.46009 42 | -0.32661 62 | -0.06578
3 | -0.10663 23| 0.79331 43 -0.35930 25 0.03957
4 | -1.40685 o4 | 1.96285 44| 021628 64| 0.20639
5 0.06605 o5 | 0.26066 45 | -0.28671 65 -0.02451
6 -0.43313 26 0.62047 46 -0.39429 66 -0.08846
2 | -0.17816 57| 0.96064 47| -0.49274 67 | -0.00099
8 -1.82370 28 2.17804 48 -0.56476 68 -0.09419
9 0.15597 29 0.65134 49 -0.21290 69 0.11856
10 -1.10261 30 1.20598 50 -0.53286 70 -0.15412
19 -0.98147 31 1.66168 51 -0.66712 71 -0.08174
12| -2.19659 30| 2.84622 52 | -0.58649 72 | -0.02259
iz -0.78706 ) 1.15913 53 -0.53619 73 -0.13025
14 -1.24245 34 1.63121 54 -0.74405 74 -0.19153
15 -1.29924 35 2.30209 55 -0.92549 75 -0.14376
16 -2.75690 36 3.72977 56 -0.76187 76 -0.04643
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17| -1.03482 37| 1.91464 57 | -0.22864 77| 0.25241
18| -1.48422 3g| 2.35611 5g | -0.54534 7g | 0.05574
19| -2.73816 39| 3.56277 59 | -0.79182 79 | -0.09579
20 | -5:51639 40| °43862 60 | -0.53770 go | -0.00801

Table 5-7: Coefficients values of the multi-quadratic model (the corrosion rate genera)

Values for the monthly temperature and relative humidity range in London, UK, from the

BBC weaher web site [ (WEATHER, BBC, 2006), see Table

generate artificial histories for both the temperature and relative humidity over a pe20d of

years. The values for a temperature/ relative humidity scenario are obtained by randomly

5-8], is used in this study to

generating values in the min-max range for the respective month.

Average Average Average Average

Minimum Maximum Minimum  Maximum

Temperature Temperature Relative Relative

°C) Humidity  Humidity
(%) (%)
January 2 6 77 86
February 2 7 72 85
March 3 10 64 81
April 6 13 56 71
May 8 17 57 70
June 12 20 58 70
July 14 22 59 71
August 13 21 62 76
September 12 19 65 80
October 8 14 70 85
November 5 10 78 85
December 4 7 81 87

Table 5-8 Dataset of min and max monthly temperature and relative humidity (WEATHER,BBC, 2006)

The approach detailed above for the simulation of corrosion data for this demonstration
example was deemed necessary as to the author’s knowledge there is not such dataset set for

corrosion available for analysis. Additionally simulation of corrosion data allowed for the
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testing of scenarios, which are usually experienced in the real world. Furthermore, data with
well-defined characteristics can be used to test particular aspects of PHM methodologies
developed. The simulated corrosion data was also vital in developing the training dataset for

the data-driven diagnostic tool.

5.2. Scenarios Investigated for Demonstration Example

The diagnostic and prognostic tools are tested for a parrot device assumed to be made of
wrought iron material with the following dimensions: length L = 2 cm, width W=1 cm, depth

D= 1.2 cm. The canary device, also assumed to be made of wrought iron material has smaller
dimensions than the respective parrot device providing larget@nedtme ratio (length L =

2 cm, width W= 1 cm, depth D= 0.6 cm). Therefore, the rate of relative material loss in the

canary device is higher compared to the respective parrot device.

The expected lifetime of a parrot device is 20 years and that of a canary device is 5 year
under normal conditions. The 20 years lifetime was chosen to reflect the fact that the Linear-
Bilogarithmic law will hold for 20 years or so according to Pourbaix (POURBAIX, M, 1982)
Using the corrosion generator described in the previous section, the corrosion rates under
normal environmental conditions were generated and the cumulative corrosion for time, t =5
years and t = 20 years were calculated. The average cumulative corrosidn ydtes was
174mm, which is approximately 3% of the original depth of the canary device. The average
cumulative corrosion after 20 years was 353mm, which is approximately 3% of the original
depth of the parrot device. Therefore, for this demonstration, a failure in a canaryatr parr
device is defined as the corrosion penetration being more than 3% of the initial depth of the

device. The diagnostic and prognostic tools are tested under the following five scenarios.

5.2.1. Scenario 1 (Normal “healthy” conditions)

Normal relative humidity and temperature for which the parrot device has life expectancy of
20 years while the canary device has a life expectancy of 5 years. The relative yhanddit

temperature in scenario 1 for normal healthy conditions are in the range defailed in Table 5-8 .

Such conditions will generate the normal corrosion rate expected throughout the lifetime of
the canary/parrot devices (i.e. these are the conditions a ‘“healthy” canary/parrot would

experience throughout their lifetime).
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Figure 5-2 shows an example of randomly generated profile of the temperature and relative

humidity values (derived from the BBC weather data shown in Tabreu§eij to represent

scenario 1 over a 20-year period. The fluctuation in the temperature and relative humidity

values arise from the season changes throughout one year. Once this scenario is assumed, the
corrosion rate history over the 20 years can also generated using the multi-quadratic model
described above for corrosion rate generation. An example of such generated corrosion rate

measurements is shown|in Figure [5-3. As already discussed, this data is used as corrosion

measurements over time, and it is generated using equation (5-2) to test the diagnostic and

prognostic tools discussed in the previous chapter.

30 - 100 -
——Scenario 1 - -~ Scenario 1l
25 -
__90 4
s S ) '
[@) et I ' . ] Vo
< = ' &y i
= g | twbiadaiitivfoetal
] Pl L R R R e
2 = e T T L e T e I B
= as S R T PP L LB
5 == L R S e R R B R i e R
g o SR 0" $: 28 ! st pvety
o L 70 gttty iy cEA A g LR LN eyl g By
€ 10 - = e B e T P o T R TRl e
i ] D L O T P SR TR S B Y
] vy ii eyt
Yy d (I
& 60 B { ! '
5t
0 T T T T | 50 T T T T ]
0 50 100 150 200 250 0 50 100 150 200 250
Time (months) Time (months)

Figure 5-2: Typical Temperature and RH for Scenario 1
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Figure 5-3 Corrosion Rates for Scenarios 1
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5.2.2. Scenario 2 (Mixed conditions)

The parrot device experiences normal conditions during the first 15 years of its life and
harsher conditions (i.e. higher temperature and relative humidity compared with the normal
case) afterwards for the remaining of its life. Similarly, the canary dexperiences normal
conditions during the first 3.75 years of its life and harsher conditions afterwards for the
remaining of its life. This scenario has been devised with the aim of demonstrating that the
PHM framework can detect anomalies that can occur in healthy canary/parrot devgces thu
requiring inspection and maintenance. Here the amount of time after which the canary and

parrot device experience higher corrosion rates has been chosen arbitrarily for demonstration.

Figure 5-4 shows the temperature and relative humidity values (derived from the BBC

weather data shown [in Table b-8) used to represent scenario 2 over a 20-year péhied for

parrot device. For the first 15 years, the temperature and relative humidity rangesilare sim

to that of scenario 1. For the remaining life, the temperature and relative humidity ranges are
slightly higher than that of scenario 1 to represent harsh environmental conditions where the
temperature is increased by 3°C and the relative humidity is increased by 5% as shown in

Table 5-9. An example of such generated corrosion rates measurements for scenario 2 is

shown in Figure 56.

Average Average Average Average

Minimum Maximum Minimum  Maximum

Temperature Temperature Relative Relative

°C) Humidity  Humidity
(%) (%)
January 5 9 82 91
February 5 10 77 90
March 6 13 69 86
April 9 16 61 76
May 11 20 62 75
June 15 23 63 75
July 17 25 64 76
August 16 24 65 81
September 15 22 70 85
October 11 17 75 90
November 8 13 83 90
December 7 10 86 92

Table 5-9 Dataset of min and max monthly temperature and relative humidity for harsher coditions
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Figure 5-5: Corrosion Rates for Scenarios 2

5.2.3. Scenario 3 (Mixed conditions)

The parrot device experiences normal conditions during the first quarter of its life and harsher
conditions (i.e. higher temperature and relative humidity compared with the normal case)
afterwards for the remaining of its life. The canary device also experiences nomddians

during the first quarter of its life and harsher conditions afterwards for the remainitgy of

life. This is a variation on scenario 2 again to demonstrate that the PHM framework can detect

anomalies that can occur later in initially healthy canary/parrot devices thus requiring
inspection and maintenance.
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Figure 5-6 shows the temperature and relative humidity values used to represent scenario 3

over a 20-year period for the parrot device. For the first 5 years, the temperatuetasind r

humidity ranges are similar to that of scenario 1 (as shoyn in Table 5-8). For the remaining

life, the temperature and relative humidity ranges used arg from Table 5-9 to repersant

environmental conditions. An example of such generated corrosion rate measurements for

scenario 3 is shown|in Figure %-7.
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Figure 5-7: Corrosion Rates for Scenarios 3

5.2.4. Scenario 4 (Harsh conditions)

The parrot device experiences harsh environmental conditions from the beginning throughout
its life (i.e. higher temperature and relative humidity compared with the normal case). The
canary device experiences similar harsh conditions throughout its life. This scenario is used to
demonstrate that the PHM framework can detect anomalies in canary/parrot devices right

from the beginning should such a situation arise. It should be noted that in real life, one would
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expect that once such anomalies are detected, the system would be inspected and any

imminent failure dealt with in an appropriate manner while here this scenario just continues

showing with the same high corrosion rates.

Figure 5-8

shows the slightly higher temperature and relative humidity values used from

Table 5-9 represent scenario 4 over a 20-year period for the parrot devicesaitiee

temperature and relative humidity ranges are used for the canary devicearple of such

generated corrosion rate measurements for scenario 4 is sHown in Figure 5-9.
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Figure 5-9: Corrosion Rates for Scenarios 4

5.2.5. Scenario 5 (Alternate conditions)

The parrot device alternately experiences normal and harsh environmental conditions from the

beginning throughout its life. The canary device also alternately experiences normal and harsh

conditions throughout its life. This scenario is used to demonstrate that the PHM framework

~
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can detect anomalies in canary/parrot devices caused by varying conditions over time, which
mirrors the situation where corrosion occurs during periods where the structure might be
exposed to harsher conditions for only a short periods followed by similar periods of normal

conditions.

Table 5-10 shows the temperature and relative humidity ranges used for the harsh

environmental conditions where the temperature is increased by 5°C and the relative humidity
is increased by 8%lere the temperature and relative humidity ranges are set at normal (i.e.

same as scenario 1) for four months and then incraastb@ harsh conditions as shown in

Table 5-10 for two months then set back to normal conditions for another four months and so

on. This cycle is repeated throughout the lifetime of both devices. An example of such

generated corrosion mineasurements for scenario 5 is shown in Figure(5-11.

Month Average Average Average Average
Minimum Maximum Minimum Maximum
Temperature Temperature Relative Relative
((®) ((®) Humidity Humidity

(%) (%)

January 7 11 85 94

February 7 12 80 93

March 8 15 72 89

April 11 18 64 79

May 13 22 65 78

June 17 25 66 78

July 19 27 67 79

August 18 26 68 84

September 17 24 73 88

October 13 19 78 93

November 10 15 86 93

December 9 12 89 95

Table 5-10: Dataset of min and max monthly temperature and relative humidity for harsh akernate
conditions
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Analysis of PHM Methodologies

Predicting remaining life using PoF Approach (Model Driven)

demonstration, the Linear Bilogarithmic Law for atmospheric corrosion is used as the

PoF model to predict the remaining life of a canary and parrot device pair (for scenayios 1-

Figure

5-12 shows the steps carried out to predict remaining life of the canary and parrot

devices:

Step (1)- Calculate Penetration Depth & time t: Using the available corrosion rate
data up to time t foa particular scenario (as discussed in section 5.2), the cumulative

penetration, P over the time, t is calculated using equation (19).

P:P1+P2+"’+Pt (19)

Step (2)- Determine A and B from the linear bi-logarithm equation. This is achieved

using linear regression where three sets of data obtained from step (1) are used to fit
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the equation. For example, in this case we have usedaf at time points

representing 10%, 15% and 30% of the history up to the current point in time. Aand B

are derived from the regression line taking the form of equation (20

In(P) = In(A) + Bin(t)

(20)

e Step (3)- Calculate remaining lifet.,;,: Using equation (21) with the failure criterfa

= 3% of original depth, the remaining life is calculated.

In(P¢)—In(A)
brut = € B

(21

The predicted remaining life of the devices is updated each year by repeating the above steps.

Corrosion Data
Generated for (1) Calculate P
Scenarios

¥

(2) Determine A and B

using linear regression
on In{P) = In{A)+BIn(t)

¥

(3) Calculate predicted
remaining life t,;, using
t= e{(In(0.03*D)-InA)/B)

Figure 5-12 Predicting Remaining Life using PoF model based on Linear Bi-logarithmic Law

5.3.1.1. Results and Discussion

Figure 5-13 shows the lifetime prediction of the PoF model for a canary device over time (for

scenarios 1-5) and compares this with the expected remaining life under normal

environmental conditions for that canary device (approximately 5 years in this case as

described earlier in sectid

n !

b.2). The remaining life prediction

s in Figure

5-13 show the

instance for which the last 10% of the lifetime of the current life of the canary device is used

to recalculate and update the constants A and B. For a parrot device, data from the last 15% of

the lifetime is used to recalculate and update the constants A and B in the lifetime model. As

canary devices have shorter lives than parrot devices, the lifetime model uses less historical

data to calculate constants A and B in order to capture recent changes that mighheffect
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structure more significantly. Currently, the ratio of lifetime to be used to get the most accurat
predictions is still under investigation. The amount of historical data required will be defined

from data of experiment trials once these are available.

In [Figure 5-18, for scenario 1, the predicted remaining life is close to the approximated

expected lifetime of 5 years thus reflecting the normal environmental conditions set for
generating the corrosion rates for this scenario. In scenario 2, the predicted remaining life is
similar to Scenario 1 in the beginning but later, a shorter remaining life is predicted. This is in
agreement with what is expected as for the first 3.75 years ofattaey’s life, normal

environmental conditions was experienced and harsher environmental conditions was
experienced for the remaining life. As for Scenario 3, the predicted remaining life is much
lower as harsher environmental conditions were experienced after first 1.25 years of its

lifetime.

In scenario 4, the predicted remaining life is much lower from the beginning as harsh
environmental conditions were applied to the canary device right from the beginning. In
scenario 5, the environmental conditions were altered continuously from ntorharsh.

This resultsin shorter remaining life than expected for the canary device as shown in the
graph. It should be noted that scenarios 2-5 have been devised for testing purposes only as in
real life if the expected remaining life was much lower than the expected remaining life,
inspection of the structure under consideration would be carried out and repairs would be

made if required.

4 — @ Scenario 1
—
‘ 2 Scenario 2
o
‘33 ] Scenario 3
|
= = Scenario 4
[
= —fi— Scenario 5
£ 2
©
£
@
[-4
1
-~
-~
‘ﬂ\\ -
e
0 -+ : .
0 1 2 3 4 5

Time (years)

Figure 5-13. PoF-based Prediction of Remaining Life for Canary Device
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Figure 5-14 shows the lifetime prediction of the PoF model over time (for scenarios 1-5) and

compares this prediction with the expected remaining life under normal environmental

conditions for the parrot device (approximately 20 years in this case as descrimdrea

section 5.2). Predictions of remaining life for scenario 1 is considerably lower thactezkpe

due to the higher rates of corrosion occurring in the first few years, thus predicting a shorter
remaining life. Later on, as the corrosion rate stabilises, the predicted remaining life is very

close to that expected as shown in the graph for scenario 1.

In scenario 2, the predicted remaining life is similar to Scenario 1 in the beginning but later, a
shorter remaining life is predicted thus reflecting the change to harsher environmental
conditions after the first 15 years of life. As for scenario 3, the trend for the predicted
remaining life changes after the first 5 years of the lifetime, thus reflecting theechang
harsher environmental conditions (as simulated in the corrosion datasets) causing earlier

failure in the parrot device and shortening the remaining life to 16 years.

In scenario 4, the predicted remaining life is much lower from the beginning reflecting the
harsh environmental conditions applied to the parrot device right from the beginning. In
scenario 5, the environmental conditions are altered continuously from normal to hars
resulting in shortening the remaining life to 18 years. Here again, it should be noted that
scenarios 2-5 have been devised for testing purposes only and a structure would be inspected

and repaired if needed should the predicted remaining life be shorter than expected.
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Figure 5-14: PoF-based Prediction of Remaining Life for Parrot Device
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5.3.2. Data Driven Diagnostic Tool: Using Mahalanobis distance analysis for
anomaly detection

In this example, MD analysis is carried out to assess the corrosion of the devices assuming
environmental conditions under scenarios 2-5. Scenario 1 is used as the training data as
normal environmental conditions are assumed to represent a healthy device (5 years for
canaries and 20 years for parrots). The following subsections will detail the setup for

performing the MD analysis as well as an analysis of the results obtained.
5.3.2.1. Feature Extraction

Three precursor variables are monitored that represent corrosion rate in theacahparrot

device: weight change rate, dimension change rate and electrical resistance deampaa
features from the three precursor variables were additionally processed such that average,
maximum and minimum values over a certain period were computed (for the demonstration,
these computations were carried out for every four readings taken over a four month period).
The use of basic feature extraction techniques here aims to capture changes that cannot be
observed usingaw data only. For example, for weight change rate, apart from the original
(raw) data of the weight change rate (weight change per month), three sets of @ata we
generated using feature extraction that was performed for every four readingsgbt we
change rate: (i) average weight change rate, (i) maximum weight changendat@ia
minimum weight change rate. The average feature was computed to even out small
fluctuations in corrosion rate such that when anomaly detection is performed using MD
analysis, the results would not be biased due to small fluctuations. Computation of the
maximum value over a certain period was carried out such that if corrosion did occur at a
higher rate than usual during that time, this information would be captured and used
afterwards. The computation of minimum value over a certain period is also carried with

view to possibly detect any further unforeseen patterns.
5.3.2.2. Setup for Anomaly Detection

For this demonstration, three precursors are monitored for both canary and parrot devices: (i)

dimension change rate, (ii) weight change rate and (iii) electrical resistance chéage r

Figure 5-1% shows the steps carried out to perform MD analysis for the canary astd parr

devices:
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e Step 1 - Generate corrosion penetration (dimension change), weight change and

electrical change

Corrosion penetration (dimension change) over the lifetime of the device is simulated using A
and B values obtained from Step 2 in the PoF model for scenarig 1hePcorrosion
penetration for each time step is calculated using equation (20). Then the weight change and
electrical resistance change is derived using equations (22) apde&ictively. Several
datasets consisting of dimension change rate, weight change rate and electrical resistance
change ratavith slight arbitrarily defined variations (2%-5% randomness) are generated to
build the healthy data.

APgxE*p

AWL- s %

(22)

where,4W;is the weight change rate at timed/7;is the corrosion penetration at timje~' is

the exposed areq is the metal density ank] a constant for unit conversion

ARt = prL

where,4R;is the corrosion penetration at timyeP;is the corrosion penetration at timep is

the electrical resistivity/, length of the device anat, the width of the device.

e Step 2 - Feature Extractiomhis is carried out on the data generated from Step 1 such
that the average, maximum and minimum (over a period time, t=t to time, t=t+4) is

calculated.

e Step 3— Normalisation of dataThe data for each performance parameters (real,
average, maximum and minimum) is then normalised using the mean and standard
deviation to remove scaling effects as dimension change, weight change and electrical
resistance all have different units. This now constitutes the Mahalanobis space (i.e. the

training dataset).

e Step 4- Compute healthy MD values Using the Mahal function from Matlab,
Mahalanobis distance analysis is carried out to obtain the MD values for healthy data.

If new healthy data is available, this step is repeated to obtain new MD values.
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e Step 5- Determine MD threshold valu&he MD threshold values are determined
using the average and standard deviation of the MD values for healthy data obtained
from Step 4 as well as expert knowledge. Currently the MD threshold is set as average
of MD values plus one standard deviation of the MD values.

e Step 6- Generate Test data: Test data is generated in the same manner as in step 1 but

for scenarios (2-5).

e Step 7 - Feature Extraction: Feature extraction is carried out to obtain average,

maximum and minimum is performed on test data in a similar manner as in Step 2.

e Step 8- Normalisation of data: This is carried out using the mean and standard

deviation of health data from step 3.

e Step 9— Compute MD ValuesUsing the Mahal)(function from Matlab, the MD

values is obtained for test data.

e Step 10 - Compare MD value for test data with MD threshold value

The MD values will also be used in the Bayesian Network models developed as shown in the

next section.
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(1) Generate Healthy
Data (Scenario 1)

(6) Generate Test Data
{Scenarios 2-5)

(2) Feature Extraction on
Healthy Data (average,
maximum and minimum)

Y
(7) Feature Extraction on
Test Data (average,
maximum and minimum)

A

¥

(3) Normalise the data
using the mean and SD

(8) Mormalise with the
mean and SD of healthy
data

Y

¥

(4) Use Mahal function to
obtain MD values for
Healthy data

(9) Use Mahal function to
obtain MD values for
Test data

(5) Determine MD
threshold values

(10) Is Test MD Value
less than MD Threshold?

Mo

L

Anomaly Detected in
Structure

Figure 5-15; Using MD analysis to detect anomalies in scenarios 2-5

5.3.2.3. Results and Discussions

Yas{est Structure HealthD

The Mahalanobis distance values obtained are plotted against each data point. Here a data

point represents a period of one month as measurements are taken on a mont

5-16

rate, electrical resistance change rate and weight change rate for the dmneey(without

hly bas

s. Figure

shows the MD value history for scenarit<3) for the real data, i.e. dimension change

any feature extraction performed). An MD threshold value of i5.5sed to distinguish

between anomalies in the device being detected or not, which represents the average of MD

values (for the cases of normal healthy conditions) plus one standard deviation of the MD

values. Expert knowledge can also be used to define the MD threshold value. The MD

threshold can be further tuned if required to obtain desired sensitivity. The MD value history

for scenario 2 reflects the harsher environmental conditions inflicted after the first 3.75 years

of the lifetime of the canary device. For scenario 3, the effect of the harshesreneital
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conditions inflicted after the first 1.25 years of the lifetime is visible through the higher MD

value history obtained.

Figure 5-17 shows the MD value history for scenafig€l, and 5) for the original data for the

canary device. As expected, the MD values for scenario 4 are above the MD threshold
throughout almost the whole lifetime of the canary device due to harsh environmental
conditions experienced by the canary device throughout its lifetime. As for scenario 5, the
MD values go above and below the MD threshold value periodically as expected following

the harsh and normal environmental conditions inflicted on the canary device alternately.

35 Real Data
Scenario 1 (Training)
30 - ====Scenario 2
~Scenario 3
25: -
b
= 20
S i
A
815 - 0
b h | i
§ ,"
\
10 | d U |
) N/
2 J o\ [\ /
54 g \\ 1 \ ;' : jovt!
\_’\v" =
0 - T T
0 10 30 . 40 50 60
Datapoints

Figure 5-16: MD Analysis of Real Data for Scenarios 2 & 3 for Canary

s Real Data

Scenario 1
(Training)

Scenario 4

= === Scenario 5

MD Values

: \ -3 : T
0 10 20 30 40 50 60
Datapoints

Figure 5-17: MD Analysis of Real Data for Scenarios 4 & 5 for Canary

Figure 5-12*3 and Figure 5-19 show the MD value history for scenarios 1-5 for tregye\d

real data (i.e. the average of dimension change rate over a 4-months periocridge af
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electrical resistance change rate over a 4-months period and the average othargbktrate

over a 4-months period) for the canary device. Here a data point repregemisdaof four

months as the average is calculated for four measurements are taken on a monthly basis.
Again, here, the MD threshold value of 5.7 is used representing the average ofliB va

plus one standard deviation of the MD values. The results observed for scenarios 2-4 are
similar to that of the MD analysis of the original data. However, the MD values for&cBna

do not alternate above and below the MD threshold value as much as observed for the original

data.
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Figure 5-18 MD Analysis of Average Data for Scenarios 2 & 3 for Canary
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Figure 5-19: MD Analysis of Average Data for Scenarios 4 & 5 for Canary

In a similar manner, MD analysis is carried out on the parrot device. As the dawat

experiences higher corrosion rates in the first few years, two different MD threshold values

for the lifetime life of the parrot device are considered. Once the corrosion rate stabilises after
the first few years, the long-term threshold MD value is used to compare the long-term

performance of the parrot device. In this case, MD value of 4.7 is used dorabriaverage

and minimum data and an MD value of 4.9 is used for maximum data.
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Figure 5-2Q angd Figure 5-

1 show the MD value history for real data for scenaBpsuid-

scenarios (1, 4, 5) respectivg

ly. Figure 5-22|and Figurel 5-23 show the MD value fastory

the average of real data for the parrot device for scenarios (1-3) and sceharigs5)

respectively. Similar trends as the ones from the MD analysis of the canary dewice

observed when analysis of the MD values for the last 80% of the lifetime for scenarios 2-5 is

considered.
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Figure 5-20: MD Analysis of Real Data for Scenarios 2 & 3 for Parrot
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Figure 5-21: MD Analysis of Real Data for Scenarios 4 & 5 for Parrot
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Figure 5-22: MD Analysis of Average Data for Scenarios 2 & 3 for Parrot
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Figure 5-23. MD Analysis of

Average Data for Scenarios 4 & 5 for Parrot

In appendix section 9.2.1 , the MD value histories for the MD analysis of maximum and

minimum data over a three months
observed results reflect similar tren

performance parameters.

5.3.3. Results and discussion

period for the canary and parrot devices is shown. The

ds as for MD analysis of the average data forethe thr

of fusion based prognostics tool

5.3.3.1. Developing the Bayesian Network model

The flowchart diagram iE Figure 5-

P4 shows the steps taken to build and use the Bayesian

network model for prognostic purposes using the demonstemmple detailed in the

previous sections. Steps 1-3 involve building the model:

e Step 1 - the variables and relationships between the variables are represented using

nodes and arcs to build the structure of the Bayesian network model.
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e Step 2 - the states of each node are defined.

e Step 3 - involves defining the conditional probability table for each node.

e Step 4 - evidence propagation is performed every time monitoring data is available

(i.e. data from PoF model, MD Analysis and other measurements) to obtained an

updated probability distribution for predicted remaining life.

e Step 5- Recommend inspection of structure if predicted remaining life is below

acceptable level.

Steps 1-3 are repestif the model needs updating with new training data.

Healthy data:
(i)PoF model
(ii) MD Analysis
(iii)measurements

Test data:
(i)PoF model
(i) MD Analysis
(iii)measurements

Figure 5-24: Flowchart Diagram of use Bayesian

(1) Build the BN Model
Structure

v

(2) Determine the states

v

h 4

(3) Populate CPTs

v

\ 4

(4) Perform Evidence
Propagation for
Remaining Life Prediction

s structure
Healthy?

No
v

(5) Recommend
Inspection/
Maintenance

Network Model

The Bayesian network model used is shown in Figure|5-25. It is similar to the Bayesian

network model shown |n Figure 4-13 except for the lack of Viual_Inspectiohnode. At

the time of development of ihexample, information was not available regarding visual

inspection and its relation to corrosion related damage of iron structures and thus for th

example, this variable is not represented in the model.
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Canary_PoF_RUL  Parrot_PoF_RUL

C_Time_Period P_Time_Period

Canany_PredictedRUL _Parmot_PrediciedRUL (shipStnusturs_PredictzaRUL

Canary_MDValues Parrot_MOValues

Figure 5-25: Bayesian Network Model for Demonstrator example

Table 5-11 illustrates what data is required to input in the model for probability inference of

predicted remaining life of canary, parrot and ship structure. The values for the tindegaria
Tci and T,; are set according to the current lifetime value of the canary and parrot devices
respectively. iy and my; are the MD values for canary and parrot devicgsahd L,, are the

predicted remaining life using the PoF model.

Canary Parrot
Time | MD PoF-based Time | MD PoF-based
Values Predicted Values Predicted
RUL RUL
Tc,l mc,l I—c,l Tp,l mp,l I—p,l
Tc,2 mc,2 Lc,2 Tp,2 mp,2 I-p,2
Tc,3 Me3 I—c,3 Tp,3 mp,3 I-p,3

Table 5-11: Input data required for inference using BN model

5.3.3.2. Populating the Conditional Probability Tables (CPTSs)

This section provides detailed description of the populating of the CPTs for each node in the
BN mode structure. The CPT describes the probability of a node being within a state given a
combination of values of its parents’ states. If a node has no parents, it is described by a
marginal probability distribution. The values for the CPTs in this model are hypothetical and
are intended for illustrative purposes only. The conditional probability tables for each node

are devised as follows:
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e Canary PoF_RUL- the states for this variable are continuous and have been

discretised into seven finite states represented by intergals@; 0— 1, ..., 5 -x) to

reflect the 5 year lifetime of a canary device. This node has one parent node,

C_Time_Period. Thus, the probabilities of the states of this node are conditional on

the states of its parent nodes. For each state of node C_Time_Period, the probability

distribution for node Canary_PoF_RUL follows a normal distribution with mean and

variance fromn

used in sectidn 5.3

Zanary_Paf RIL |

Table 32| representing the predicted remaining life from PoF model

.1 and is input in Hugin as sho

vn in Figureg 5-26.

C_Time_Per...

1

5

Expression  lomal (2,59, 0.11) Nurma\ (21,0.0) NormaI(I.BJ 0.24) Nurmal(l.lj 0.1 ’Vurmal (0,31, 0.05)
C_Time:_Per... 1 H 4 5
f-0 2,878089E-15 1,560099E-11 0,000119 0.000252 0.082818
0-1 817317787 0.000252 0.05116 0.375663 0916167
1-2 0037626 0375663 0.607219 0621872 0.001015
2-3 0854181 0.621872 0334393 0002213 204798014
3-4 0108182 0.002213 0.007149 9537233710 1.235126-33
4-5 1.06262E-5 9,372337E-10 3.04892E-6 2, 35148E-20 1, 769359E-61
5-inf 1,845649E-13 2,351 843620 13.24545E-11 301 2580E-35 5.620485E-08
Figure 5-26: CPT for Canary_PoF_RUL Node in Hugin
e Parrot PoF_RUL- the states for this variable are also continuous and have been

discretized into 22 finite states represented by interveds-©, 0— 1, ..., 20 - ) to

represent the 20 year lifetime of a canary device. Similar to node Canary BloF R

the CPT for this node is populated using mean values and variance (from Ta*le 5-12

of predicted remaining life from PoF model used in seg¢tion b.3.1.

C_Time_Period- the states of this variable are discrete taking the values 1 to 5. This
represents the number of years these devices are expected to be in operation. For
demonstration purpose, the evidence is propagated in the network every year, hence

the range of values for the states of this node being 1 to 5. The CPT is populated in

Hugin as shown 1n Figure 5-p7.

Edit  Functions  Yiew
__Tirme_Petiod |
1 0.2
2 0.2
3 0.2
4 0.2
5 0.2

Figure 5-27: CPT for C_Time_Period Node in Hugin
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P_Time_Period- similar to C_Time_Period node, the states of this variable are

discrete but take the values 1 to 20.

Canary_MDValues- The states here are continuous and have been discretised into 17
finite states represented by intervals (-0, 0— 1, ..., 15 -) to represent the typical

MD values expected during operation. This node has two parent nodes:
C_Time_Period and Canary PredictedRUL. The probabilities of the states of this

node are conditional on how the state of its parent nodes combine and follows a

normal distribution based on MD threshold valfies (Table|5-13) from MD analysis of

precursors in section 5.3.2. The CPT is populated using the Expression Builder feature

in Hugin shown in Figure 5-28.

Canary_MDValues |

C_Time:_Per... 1 2
Canary_Pre.., Hnf-0 0-1 =05 5 -inf 4nf -0 0-1 4-5 5 - inf
Expression 0 il (8,268 * (1 +.. |... ... ormal {6,268 * {1 - Normal (6,268 * (1 41 il (303 % (1 4+ 2. | | Mormal (3,03 % (1 - ZNormal (3,13 % (1 - 20
q |
C_Time_Per. .. 1 2 3
Canary Pre..| nf-0 0-1 1-2 2=8 Heg Gi=5 S-inf | qnf-1 01 Jooofonsfonson| -RF-0 0-1 oo S-inf | -inf-0 0-1
Hnf -0 0 7.2944E-5 |4.01913,,, |0.004326 |0,039539 0,190439 7.19464,.00 1 Y O O P Y 1 1.81541...|, o 0,298265 |0 1.20426.,
0-1 1 5.8193E-7 |0.000172 |0.009363 |0.031402 0,133442 468983, (1 1 A Y P PP A 2.40302... |, o [0L607469 |1 6,3934E.,
1-2 0 4.3062E-6 0.000741 |0,023306 (0.089184 0161175 2.8%436..0 (et S P P O PO Y 112589, 00925 0 £.19751.,
2-3 0 267829, |0.002673 |0.046775 (0.130108 016369 0.00015 0 (P10 ) P Y O PO Y 0.001975 || fordon [0,000766 10 1.03264..
3-4 0 0.00014 |0.008111 0.08583 |0.159600 0,139787 0.000635 0 0.000257 |10 fovafonsfonsfine|D 0148462 |00 |fu )i |2064129,,, 10 0.00328
4-5 0 0.000615 |0.020653 |0,126992 |0,184621 0,100376 00024 0 (U0 O P Y 1 0641414 |00 |fo oo [3036735,,, 10 0,241903
5-6 0 0.002273 |0.044386 |0.15799 [0.142776 0.060604 0007397 10 0318015 |ovforsforfone]one[D 0.204244 |...|...[...|...|1.5114E... 0 0.664511
6-7 0 0.007061 |0.080052 |0,165273 (0.104122 0.030766 0.019167 0 0474503 [ ovforsfofona]on[D 0.003% || 2,33200.,0 0.059920
7-8 0 0.018437 |0.1213%6 |0,145377 |0.063546 0013132 0.041735 0 (U Y Y O Y 1 3.27644... |, oo [1.22082,., |0 0,000379
3-9 0 0,040477 |0.154781 0,107%24 |0,032913 0.004713 0076481 0 (U= B P P P 1 104123, |, o0 (215136, |0 3, 4056E-¢
9-10 0 0.074717 |0.165862 |0.066885 (0.01427 0.001422 0117791 |0 0.000125 |..fo | fove]ona[D 1.17665... . . |1.26865... 0 5.65249..
10-11 0 0.115969 |0.149621 |0,034986 (0.005201 0.000361 0.152339 0 PR O P P O PO P 4.59442... |, . (280061, 0 1.04179.,
11-12 0 0151346 |0.113421 |0.015373 |0.0015%4 7.68939,,, 0,166099 0 1193630 oo fowforsfons[1e[O 6,10461... |, .o [1.63852,., |0 B.13446.,
12-13 0 0,166082 |0,072284 |0.005683 |0.000411 137316, 0,152081 0 L FE 0 O P 2.73337...|, L0 (357185, |0 6,78081.,
13- 14 0 0.153247 |0.038746 |0.001786 [8.88023... 2.07619.. 0.117085 |0 VR I R Y O OO P Y 4.10971... |, .. [2.5821E... 0 9.43189.,
14-15 0 01189 |0.017459 |0.000461 (1.61832... 262883, .. 0.075793 |0 P11 ) P P O PO Y 206230, |, . |0,18706,., 0 2. 1776E.,
15 - inf 0 0.150704 |0.009441 |0,0001E3 (2.83234.., 306765, . 0.07057 |0 B 12990000 oo fov fona o [D 447380 oo fooo oo 4909710, 0 5.31460.,
Figure 5-28 CPT for Canary_MDValues in Hugin
e Parrot_MDValues — the states are assigned the same as for the node

Canary_MDValues and the CPT is populated using the same procedure as for that
14.

node using the values from Table 5

Canary_PredictedRUL the states are similar to that of node Canary PoF.RUL
However, this node has two parent nodes: C_Time_Period and Canary PoF__ RUL.
Currently the probability distribution of predicted remaining life from node
Canary PoF_RUL is assumed to also represent the probability distribution of
predicted remaining life from node Canary Predicted RUL. Thus, the probability
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distribution follows a normal distribution with the mean value being the current value

of node Canary_PoF_RUL that is input in Hugin as shoyvn in Figure 5-29.

Canary PreditedillL |

Expression Norma\ (Canary_PoF RUL,0.2)

Canary Po.., Af-0 0-1 1-2 2-3 3-4 4-5 5-inf |
-0 0.987326 I0,176386 0.00198 353006E-7 B, 20433E-13 B.89155E-21 224337829

0-1 0.01287 0.647228 0.17442 0.00196 13,5300%-7 £, 20433E-13 1 6917319

1-2 38721E6 0,17442 0.647228 0.17442 0.001966 3,53005E-7 9147812

2-3 9.85172E-12 10,0196 0.17442 0.647228 0.17442 0001966 36745866

3-4 1.67205E-19 13,5300%E-7 0.00198 0.17442 0.647228 017442 0.012308

4-5 2UNEN 62043313 3.33005E-7 0.001%6 017442 0.647228 0483228

5-inf 2422E4 8.39159E-21 B 20433E-13 353006E-7 0.001966 0.17633 0.50446

Figure 5-29: CPT for Canary_PredictedRUL in Hugin
e Parrot_PredictedRUL the states are similar to that of node Parrot PoF_RUL and

Lun

the CPT are similar to that of node Canary_PoF_RUL. However, this node has three

parents’ nodes instead of two nodes: P_Time Period, Parrot PoF_RUL and

Canary_PredictedRUL. The probability distribution for this node is assigned in same

manner as for node Canary_PredictedRUL and is then adjusted to account for effect of

node Canary_PredictedRUL. Here the correlation factor between predicted remaining

lives of canary and parrot devices is assumed 0.2. Thus mean for the normal

distribution is adjusted using the expression builder in Hugin as sh

Tununs o

pwn in Figu

e 5-30.

Parrot_PredictedRUL |

Expression '\Iorma\ (Parrot_PoF_RUL + Canary_PredickedrUL * 0.2, 0.2)

Canary_Pre. ., Hnf -0 0-
Parrot_PoF... | -inf -0 0-1 DS S A 19-20 || 20-inf || -inf-0 0-1 DN S e
-inf - 0 0,99% 0289 |0.007 ] ] 0977 0133 0001
0-1 0,004 0615|0283 ] ] 0025 0636 |0.152
1-2 4,342E-7 0,095 0,615 ] ] 1,2526-5 0,227 [0.636
2-3 4.171E... [4.99E-4 |0,0%95 . |B.765E,.. 0 6.202E... 0,004 |0.227
53-4 2,958E.., 3.64E-8 [4.99E-4 || |47, 2099, |2 444E . [1.21E-6  |0.004
4-5 1.493E.., 2.460E.., [3.64E-8 ||, 0 |2.362E, 4. 143K, 7. 226E . [4092E. L |L2IEE
S-6 5.261E... |1.337E... [2.469E... ... . |2.169E,., |5.535E.,., |1.551E.., [1.207E... |[4.092E. .. ... ...
6-7 1.282E.., [S.408E... |1,.337E... |... . |1,355E... 5.008E.., |2,369E.., [2.823E... |L.207E. .. ... ..,
-8 Z.145E... |1.575E... |3.406E .. |... - [3.771E... [3.072E.. |2, 54E-69 4.986E... [2.823E. . ...,
&-9 2.454E.., [3.243E.. . |1.575E .. |... .o |168E-., |L279E... [1.8%E .. |6.367E... [4.966E. .. |...|..,
9-10 1.914E.., [4.656E.., [3.243E... |... . |3.354E... 3.616E.., (9.758E.., [5.83E-F1 |6.367E. . [0
10-11 1,016E.., 4.624E.., [4.856E... . 2o 4615E, . B963E,., (3.457E.., 3, 76E-69 |5.83E-71 ||,
11-12 3.66E-,., [3.158E.., |[4.624E... |... .. |4.406E.,., 9.15E-69 |8, 392E .. |1.692E... [3.76E-89 |...|...
12-13 8.947E... 1477E.., (3.158E.. 0|2, 847E,., 8.234E.. |1,392E.., [5.272E... [1.692E,
13-14 1.482E... [4.717E... |1 477E.. . |1.402E.., |5.099E.., |1.575E... [1.132E... [5.272E,
14-15 1,662E.., |1.0Z8E. ., [4.717E., 48628, 2, 19E-27 |1,213E.., [1.669E... 1. 132E,
15- 16 1.262E... |1.517E... [1.026E.. -6 |1.286E... |6.609E. . |5.348E... [1.683E... [1.660E,
16-17 o 1.523E... [1.517E.. 2.842E-6 |1.434E... |0 1.159E.., |1.683E,
17-18 o 1.037E... [1.523E.. 0,007 |2354E5(0 5.439E...|1.159E,
15-19 o ] 1,037E.. 0283 0033 |0 ] 5.439E
19-20 o ] ] 0615 0623 |0 ] 0
20 - inf o 0 0 -4 0095 0344 0 o 0
Figure 5-30: CPT for Parrot_PredictedRUL in Hugin
e ShipStructure_PredictedRULthe states replicate that of node Parrot_PredictedRUL

This node has only one parent node: Parrot_PredictedRUL. At the moment, no
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experiment has been carried out to obtain a correlation factor between parrot devices
and the ship structure, and thus for this demonstration the correlation factor is assumed
to be one. Thus, the probability distribution of predicted remaining life from node
Parrot_PredictedRUL is assumed to also represent the probability distribution of
predicted remaining life for node ShipStructure_PredictedRUL. The probability
distribution follows a normal distribution with the mean value being the current value
of noce Canary_PoF_RUL and is inputted in Hugin as sho@ 5-31.

ShipStructure_PredictedRUL | Parrot_PredictedRULI
Expression Nurmal (Parrat_PredictedRUIL, 0.2)

Partot_Pre.. | -inf-0 0-1 1-2 2-3 3-4 = 5-6 6-7 7-8 §-9 9-10 10-11 | 11-12 || 12-13 || 13-14 | 14-15 | 1
-inf -0 0,557 0.176 0,002 3537 |6.204E-13 |B.692E-21 |9.607E-31 |7.522E-43 4.174E-57 |1.619E-73 |4.351E-92 |3.048E-,., [1.02E-135 8.634E-... |5.212E-,., |2.092E-... 3.7
1 0.013 0.647 0.174 0,002 3.53E-7  |6.204E-13 |3.892E-21 |9.607E-31 [7.522E-43 4.174E-57 |1.61%E-73 |4.351E-92 |3.048E-,.. |1.02E-135 8.834E-... |5.212E-.., 2.[
2z 3.872E-6 |0.174 0.647 0.174 0,002 3.53E-7  |6.204E-13 |3.892E-21 |9.607E-31 [7.522E-43 4.174E-57 |1.619E-73 |4.351E-92 8,048E-,,, |1,02E-135 [3.834E-.., 5.2
3 9.852E-12 0,002 0.174 0.647 0,174 0,002 3.53E-F  |6.204E-13 [3.892E-21 |9.607E-31 [7.522E-43 4.174E-57 |1.619E-73 4.351E-92 |3.046E-,., |1.02E-135 8.
4 1.872E-19 3.53E-7 0,002 0.174 0,647 0,174 0,002 3.53E-7  6.204E-13 [3.8%2E-21 |9.607E-31 |7.522E-43 4.174E-57 |1.615E-73 |4.351E-92 3.048E-,.. |10
-5 2,545E-29 |6,204E-13 3.53E-7 0,002 0,174 0,647 0,174 0,002 3.53E-7  |6.204E-13 3.892E-21 (9.607E-31 |7.522E-43 4,174E-57 |1.619E-73 |4.351E-92 8.0
fi
7
[
9
1

2.423E-41 B.892E-21 .204E-13 3.53E-7 (0,002 0,174 0,647 0,174 0,002 3.93E-7  |A.204E-13 B.892E-21 |9.607E-31 7 52ZE-43 |4,174E-57 |1.619E-73 4.2
1,588E-55 9.607E-31 |8.892E-21 6, 204E-13 |3.53E-7 (0,002 0,174 0.647 0.174 0,002 3.53E-7  |6.204E-13 3.892E-21 9.607E-31 |7 522E-43 |4, 174E-57 |L¢
7242672 |7.522E-43 9.607E-31 [3.892E-21 [6.204E-13 |3.53E-7 |0.002 0,174 0.647 0.174 0.002 3.53E-7  |6.204E-13 B,892E-21 9.607E-31 7522643 4.1
2.246E-90 |4,174E-57 |7.522E-43 |9.607E-31 (6.892E-21 [b.204E-13 |3.53E-7 |0.002 0.174 0.647 0.174 0,002 3.593E-7  |6.204E-13 B.692E-21 |9.607E-31 7.5
-10 4.753E-.. |LA19E-73 4.174E-57 [7.522E-43 |9.607E-31 (B.892E-21 |6.204E-13 |3.53E-7 (0,002 0.174 0.647 0.174 0,002 353E-7  |6,204E-13 B.892E-21 9.¢
10-11 6.843E-... [4.351E-92 |1.619E-73 |4.174E-57 |7.522E-43 (9.607E-31 |3.892E-21 |6.204E-13 [3.53E-7 0,002 0.174 0.647 0.174 0,002 3.53E-7  6.204E-13 B.€
11-12 6.693E-... 3.046E-.., 4.351E-92 |1.619E-73 |4.174E-57 [7.522E-43 |9.607E-31 |8.692E-21 |6.204E-13 [3.53E-7  |0.002 0.174 0.647 0.174 0,002 3537 B
12-13 4.442E-,.. |1,02E-135 3,04BE-.,, |4.351E-92 |1.619E-73 |4.174E-57 |7.522E-43 |9.607E-31 [8.892E-21 |6.204E-13 (3.53E-7 |0.002 0.174 0.647 0.174 0,002 3.
13-14 1,998E-,,, [8.834E-... 1.02E-135 8.048E-... |4.351E-92 |1.619E-73 |4,174E-57 |7.522E-43 |9.607E-31 [3.892E-21 6.204E-13 (3.53E-7 0,002 0.174 0.647 0.174 0.r
14-15 6.086E-... 3.212E-,., B.634E-.., |1.02E-135 (G.043E-., [4.351E-92 |1.61%E-73 |4, 174E-57 |7.522E-43 [9.607E-31 §.892E-21 |6.204E-13 [3.53E-7 0,002 0.174 0.647 0.1
15- 16 1,255-,,, |2.092E-... 3.212E-,,, B.834E-.. |1.02E-135 (8.048E-.., [4.351E-92 |1.619E-73 4.174E-57 |7.522E-43 [9.607E-31 |3.892E-21 |6.204E-13 3.53E-7  |0.002 0.174 0.¢

D@ o[ &[G =] o

16-17 0 5.7E-249 2.092E-,., 5.212E-,.. |8.83E-,., [1.02E-135 (3.048E-.., |4.351E-92 |1.619E-73 |4,174E-57 [7.522E-43 9.607E-31 [3.8%2E-21 6,204E-13 3.53E-7 0,002 0.1
17-18 0 1.053E-,,, 5.7E-249 2.092E-., |5.212F- ., |8.834E-,., [1.02E-135 |§.043E-.., |4.351E-92 |1.619E-73 |4.174E-57 [7.522E-43 |9.607E-31 8.892E-21 6,204E-13 3.53E7 0.0
18-19 0 0 1.053E-,,, 5.7E-249 |2.092E-., |5.212F-., |8.834E-,., [1.02E-135 3.048E-.., |4.351E-92 |1.619E-73 |4.174E-57 [7.522E-43 9.607E-31 |3.892E-21 6.204E-13 3.5
19-20 0 0 0 1.053E-., (5.7E-249 |2.092E-.., |5.212E- .., |8.834E-,., |1.02E-135 3.048E-.., 4.351E-92 |1.619E-73 |4.174E-57 |7.522E-43 9.607E-31 [3.892E-21 6.2
20 - inf 0 0 0 0 1.053E-., |5.7E-249 (2,09ZE-.., 3.212E-.., |8.834E-... |1.02E-135 |3.048E-.., [4.351E-92 |1.61%E-73 |4.174E-57 7. 522643 9.607E-31 8.

Figure 5-31: CPT for ShipStructure_PredictedRUL in Hugin

Time | Parrot Canary

(years) | Mean(yrs) | Variance | Mean(yrs) | Variance
6.08 0.03 2.59 0.01
7.74 0.05 2.19 0.01
10.20 1.86 1.80 0.06
11.34 0.74 1.10 0.01
12.27 0.61 0.31 0.01
13.91 1.20
13.05 0.10
13.38 0.34
12.94 0.04
11.36 0.17
9.84 0.04
9.18 0.05
8.52 0.09
7.29 0.01
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15 6.44 0.01
16 4.99 0.07
17 3.84 0.03
18 2.79 0.01
19 1.73 0.01
20 0.64 0.01

Table 5-12: PoF model-based input data

Time | Mean Standard | MD Variance
(yeas) | MD Deviation | Threshold

1 12.72 0.81 13.53 0.97
2 7.77 1.00 8.77 1.51
3 5.10 0.57 5.67 0.48
4 3.68 0.203 3.88 0.06
5 3.27 0.13 3.40 0.02
6 3.19 0.31 3.50 0.15
7 2.83 0.09 2.92 0.01
8 2.78 0.20 2.97 0.06
9 2.41 0.76 3.16 0.86
10 2.20 0.26 2.45 0.10
11 2.15 0.17 2.31 0.04
12 1.97 0.33 2.29 0.16
13 2.51 0.21 2.72 0.07
14 2.62 0.43 3.05 0.28
15 2.96 0.38 3.34 0.22
16 2.39 0.07 2.46 0.01
17 3.89 0.79 4.67 0.92
18 3.90 0.68 4.59 0.70
19 4,58 0.31 4.89 0.14
20 5.52 0.49 6.01 0.37

Table 5-13: Input data for Parrot Device from MD Analysis Results

Time | Mean Standard | MD Variance
(yrs) | MD Deviation | Threshold

1 6.26 1.95 8.21 5.69

2 3.13 0.61 3.74 0.56

3 2.29 0.44 2.73 0.29

4 2.67 0.40 3.08 0.24

5 3.78 0.33 411 0.17

Table 5-14: Input data for Canary Device from MD Analysis Results
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The CPTs for the current model have been constructed with the best information available,
which currently is drawn from a mix of expert opinion and relevant sets of data found in
literature. As more data or knowledge becomes available, the CPTs will be adjusted to reflect

improved learning data sets.
5.3.3.3. Testing the BN models

Once all the CPTs are specified, the BN model can be compiled and ‘run’. Scenarios have

been devised and are examined. The predictions of the remaining life using the PoF models
and the MD values from Mahalanobis Distance analysis are used as evidence input for nodes
(Canary_PoF_RUL, Parrot PoF_RUL, Canary MDValues and Parrot_ MDValues). The
state for the nodes, C_Time_Period and P_Time_Period, representing time for canary device
and parrot device are selected. The reasoning engine (using Hugin) for this Bayesiak networ
model then performs propagation of probabilities and the scenario can be examined by its
effects on the remaining nodes (i.e. hypothesis nodes, Canary PredictedRUL
Parrot_PredictedRUL and ShipStructure PredictedRUL) which display updated probability

distributions. The scenarios tested for the Bayesian Network model developed are a&s follow

e Scenario 1 (Normal “healthy” conditions) - Normal relative humidity and temperature
for which the parrot device has life expectancy of 20 years while the canary device has
a life expectancy of 5 years. At the end of the first five years, a new cdewige
with a life expectancy of 5 years is used, while the parrot device remains unchanged.
This is repeated at the end of the next 5 years for two more times. Thus in total four

canary devices are used (one for each 5-year period).

e Scenario 2 (Harsh conditions) - The parrot device experiences harsh environmental
conditions from the beginning throughout its life (i.e. higher temperature and relative
humidity compared with the normal case). The canary device experiences similar
harsh conditions throughout its life. This scenario is used to demonstrate that the PHM
framework can detect anomalies in canary/parrot devices right from the beginning
should such a situation arise. Here Bayesian network analysis is carried out up to
failure in canary device occurs. This reflects the real world situation where if the
canary device were found to be deteriorating at a rate much faster than expected, then
the parrot device would also be deteriorating at a faster rate. In such a case, further

detailed inspection of the actual iron ship structure would be required.
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e Scenario 3 (Mixed conditions): The parrot device experiences normal conditions
during the first 10 years of its life and harsher conditions (i.e. higher temperature an
relative humidity compared with the normal case) afterwards for the remaining of its
life. Here for the first 10 years, the first three canary devices used (one forsevery
year period) experience normal conditions and the last canary device used experience
harsh conditions. This scenario aims to demonstrate that the PHM framework can
detect anomalies that can occur later in the iron structures, which is reflected in
canary/parrot devices. Here the amount of time after which the canary aot pa
device experience higher corrosion rates has been chosen arbitrarily for the dirpose

demonstration.
5.3.3.4. Analysis of Results

The graphs iE Figure 5-82 provides a visual interpretation of the results of Scenario 1 for node

ShipStructure_PredictedRUL from the Bayesian Network model built as detailed in section

5.3.3.1. The graph showke probability distribution of remaining life of a “healthy” ship

structure (experiencing normal environmental conditions throughout its life) over time. At
year 1, higher probabilities are observed for a predicted remaining life of 6-8. ydae
predicted remaining life is low due to high corrosion rates in the beginning but once the
corrosion rates slows down over the next few years, the predicted remaining life increases.
Thus, the probability distributions shift to the right for the next 8 years. For example at year
5, the probability distribution predicts a remaining life in the range of 11-12 years which
reflects closely to what is expected for a prediction made after 5 years lifetime (i.e. 5 years
plus predicted 12 years would be an overall possible lifetime of 17 years). After year 9, the
probability distribution shift to the left as we enter the second part of the lifetime of the

structure and thus predicted remaining life decreases accordingly.
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Figure 5-32: Probability Distribution of Predicted Remaining Life for Ship Structure (Scenario 1)

The graph ip Figure 5-3

83 provides a visual interpretation of the results of Scenario 1 for nodes

Parrot_PredictedRUL. The probability distributions of predicted remaining life follow the

same trend as that of the graph for the ship structure. This is because the CPT of the ship

structure is based on that of the CPT for the parrot device (as sh

Probability

own in Figyre 5-33).

15-
Predicted Remaining Life (years) 17-18

Figure 5-33. Probability Distribution of Predicted Remaining Life for Parrot Device (Scenario 1)

The graph in Figure 5-3

34 provides a visual interpretation of the results of Scenario 1 for node

Canary_PredictedRUL. The graph shows the probability distribution of remaining life of the
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four “healthy” canary devices over the 20-year period. At year 1, higher probabilities are
observed for a predicted remaining life of 2-3 years. The predicted remaining life is less than
the expected 4 years due to high corrosion rates in the beginning but once the cortesion ra
slows down, the predicted remaining life increases. This cycle is repeated four times for each

new canary device used after the 5-year period.

Probability

Times (years)

5-inf

Predicted Remaining Life {(years)

Figure 5-34: Probability Distribution of Predicted Remaining Life for Canary Device (Scenario 1)

The probability distribution graphs |in TablelStprovide a numerical interpretation of the

results of Scenario 1 for nodes Canary PredictedRUL, Parrot_PredictedRUL and
ShipStructure_PredictedRUL. Throughout scenario 1, only one parrot device is used for the

20-year period and four canary devices are used for the 20-year period (one foryeach 5

period). Hence, in Table 5-IL5 at Time 1 and 5 years, the probability distribution for the first

canary is shown. At Time 10 years, the probability distribution for the second canary is
shown. At time 15 years, the probability distribution for the third canary is shown and at time
20 years, the probability distribution for the fourth canary is shown. At times 1, 5, 10, 15 and
20 years, the probability distribution for the one parrot and corresponding ship structure is

shown.

At year 1, higher probabilities are observed for a predicted remaining life of 6-8fpedhe

Parrot and Ship Structure while for the Canary, higher probabilities are assigned for a
predicted remaining life of 2-3 years. This is expected due to higher corrosion rates in the
beginning as explained previously. The probability distributions shift as expected with time
reflecting healthy structures for scenario 1. For example, at year 15, the ptgbabil
distributions predict a remaining life in the range of 6-8 years for both the parrot and ship

structure, while a remaining life in the range of 0-1 years is predicted for the canary device.
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Time | Canary Parrot Ship Structure
(yrs)
1 1
1 Canary_PredictedrLIL Parrot_PredictedRLIL ShipStructure_Predicte...
0,00 -inf-0 0.00 -inf-0 B.07E-26 -inf-0
QB66E-3 0-1 6.81E-78 0-1 S.63E-18 0-1
9956 1-2 S44E-52 1-2 4.41E-12 1-2
7688 2-3 218E-31 2-3 7137 2-3
1301 3-4 2.1E-16 3-4 3893 3-4
004 4-5 Q04E5 4-5 044 4-3
4,69E-6 5 - inf 197 5-6 963 3-6
4749 6 -7 3950 6-7
4822 7-8 3990 7-8
232 8-9 1001 8-9
1.46E-3 9-10 0,50 9-10
6,1E-9 10-11 4,82E-3 10-11
1.23E-16 11-12 3696 11-12
'Il |I C 200 97 17 1=
1 1
5 Canary_PredictedrLIL Parrot_PredictedRLIL ShipStructure_Predicte...
0,00 -inf-0 4,31E-20 7 -8 4.55E-8 7 -8
8343 0-1 6.8E-12 8-9 1.72E-4 8-9
1656 1-2 F7.98E-6 9-10 0.04 9-10
001 2-3 008 10-11 240 10-11
7BZE9 3-4 1268 11-12 1993 11- 12
1.85E-18 4-5 66,91 12-13 483,99 12 - 13
B8.82E-29 5 -inf 1990 13- 14 2485 13- 14
0.42 14-15 387 14-15
1.01E-4 15- 16 0.11 15- 16
2.19E-10 16 - 17 B8.48E-4 16 - 17
3.27E-18 17 - 18 3.46E-7 17 - 18
2.85E-28 13- 19 3.63E-11 18- 19
1.35E-40 19 - 20 1.4E-16 19- 20
'II_ |I 12022 200 . inf
1 L
10 Canary_PredictedrLIL Parrot_PredictedRLL ShipStructure_Predicte...
0,00 -inf-0 257E-12 7 -8 14464 7 -8
8333 0-1 5.01E6 8-9 004 8-9
o6 1-2 0.07 9-10 229 9-10
001 2-3 12,10 10-11 1948 10- 11
7B4E9 3-4 6o.45 11-12 483,81 11- 12
1.82E-18 4-5 21,13 12-13 25,33 12- 13
8.52E-29 5 -inf 024 13- 14 397 13- 14
373E5S 14-15 0,08 14 - 13
4,27E-11 15- 16 4.88E-4 15 - 16
2.66E-19 16 - 17 1.58E-7 16 - 17
748E-30 17 - 18 1.34E-11 17 - 18
8. 78E-43 18- 19 3.B2E-17 18- 19
4.32E-58 19- 20 20923 19- 20
'II_ |I S A 21 20 . inf
| 14
15 Canary_PredictedrLIL Parrot_PredictedRLL ShipStructure_Predicte...

0.00
80.92
19.06

0.02

1.22E-8
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20 Canary_PredictedrLIL Parrot_PredictedRLIL ShipStructure_Predicte. ..

0,00 -inf-0 0.00 -inf-0 11.75 -inf-0
8150 0-1 66,23 0-1 4863 0-1
1848 1-2 3303 1-2 3307 1-2
00z 2-3 072 2-3 6,350 2-3
1.07E8 3-4 296E4 3-4 019 3-4
273E-18 4-5 1.35E9 4-5 1.49E-3 4-5
1.24E-28 5 -inf S.26E-17 -6 B.37E-7 5-06
14926 6 -7 1.08E-10 6-7
289638 7-8 6,6E-16 7 -8
3.BBE-52 B8-9 B.08BE-22 B8-9

3.7E-68 9-10 4.46E-29 9 - 10

2501E-86 10-11 4. 78E-37 10-11

1.1E-106 11-12 1.83E-45 11- 12

T 1A7C 88 173 49

Table 5-15: Demonstrator Timeline for Scenario 1

The probability distribution graphs [in Tablelbrprovides a numerical interpretation of the

results of Scenario 2 for nodes Canary PredictedRUL, Parrot_PredictedRUL and
ShipStructure_PredictedRUL. At year 1, the probability distributions predict a remaining life
in the range of 4-5 years for both the Parrot and Ship Structure while for the Canary; the
predicted remaining life is in the range of 1-2 years. The range predicted is lower than that of
scenario 1 as both canary and parrot devices as well as the ship structure experstiece har
conditions from the beginning and throughout their lifetime. At year 5, the probability
distributions predict a remaining life in the range of 5-7 years for both the parrot and ship
structure instead of the expect range of 12-13 years as se@le 5-15 fér year

predictions. This again confirms expected predictions for remaining life for scenario 2.

2.07E-36 11 - |,12

i

Time | Canary Parrot Ship Structure
(yrs)
1 1
1 Canary_PredictedRLL Parrot_PredictedRLIL ShipStructure_Predicte. ..
0.00 -inf-0 0.00 -inf-0 742E-12 -inf-0
1040 0-1 1.59E-19 0-1 1.41E-7 0-1
8452 1-2 1.78E-11 1-2 S.BRE4 1-2
.03 2-3 204E5 2-3 017 2-3
00z 3-4 029 3-4 1070 3-4
336E5 4-5 2983 4-5 45,34 4-5
1.38E-4 S -inf 3752 5-6 3512 5-6
220 6-7 814 6-7
nos 7-8 nsz 7-8
321E6 8-9 00z 8-9
7.BE-13 9-10 1.64E-4 9-10
1.01E-21 10-11 3.06E-8 10-11
9.83E-33 11-12 1.196-12 11-12
T R = i L e K R B
1 L
3 Canary_PredictedRLL Parrot_PredictedRLIL ShipStructure_Predicte. ..
0.00 -inf- 0 0.00 -inf- 0 1.34E-11 -nf- 0
100,00 0- 1 1.08E-20 0- 1 2.93E-7 0-1
1.19E5 1-2 9.79E-12 1-2 1.26E-3 1-2
1.16E-10 2 - 3 3.69E-5 2-3 022 2-3
6,04E-18 3 -4 063 3-4 10,24 2-4
9.85E-28 4 -5 56,48 4 -5 44,04 4-5
8.35E-38 5 -inf 42,24 5-6 3731 5-6
0.65 6-7 7.90 6-7
3.83E-4 7-8 0.20 7-8
S5.58E-9 8- 9 1.36E-3 8- 9
7.74E-16 9 - 10 9.83E-7 9- 10
S5.97E-25 10 - 11 1.46E-10 10 - 11
2.21E-15 11- 12

2 27A0 94 1T 10
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1 1
Canary_PredictedRLL Parrot_PredictedRLIL ShipStructure_Predicte...

36,92 -inf-0 0,00 -inf-0 7.05E-20 -inf-0
53.06 0-1 5.53E35 0-1 4,16E-14 0-1
0993 1-2 1.07E-23 1-2 25469 1-2
008 2-3 1.3E-14 2-3 14565 2-3
6.84E-5 3-4 1.06E-7 3-4 96363 3-4
7.26E9 4-5 6.6E-3 4-5 087 4-5
1.04E-14 5-1in 430 5-6 1282 5-6
5712 6-7 4415 6-7
377 7-8 3409 7-8
1.78 8-9 708 B8-9

4,38E-32 9- 10 0,39 9-10

2.28E-7 10-11 4,28E-3 10- 11

1.5E-13 11 -12 92866 11-12

'Il |I e I e e T 1=

Table 5-16; Demonstrator Timeline for Scenario 2

The probability distribution graphs n Tablel3}provide a numerical interpretation of the

results of Scenario 3. Throughout scenario 3, only one parrot device is used and three canary
. In Tablg

probability distribution for the first canary is shown. At Time 10 years, the probability

devices are used (one for each 5-year period 5-17 at Time 1 and 5 years, the

distribution for the second canary is shown. At time 13 years, the probability distribution for
the third canary is shown. At times 1, 5, 10 and 13 years, the probability distribution for the

one parrot and corresponding ship structure is shown.

As per the scenario, the third canary device starts to experience harsher conditions from the
beginning of its lifetime (from year 11 for the overall period of the scenario). The parrot
device also starts to experience harsh conditions after year 10. At year 13, the predicted
remaining life for the canary device experiencing harsh conditions is in the range of &1 yea
thus predicted to fail 2 years before expected for a health canary. The probability distsbuti
predict a remaining life in the range of 4-6 years (instead of an expected 8-1Goyears
healthy device) for the parrot device and the ship structure reflecting the effect of the
probability distribution of the canary device. In a scenario 1, the probability distributions at
year 15 would predict remaining life in the range of 6-8 years as shc@e 5-15. In this
case, the correlation factor assigned between the canary and parrot deviceffeatinest© a

certain extent in allowing events in the canary device to propagate to probability distributions
of the parrot device. The results for scenarios 3 indicate that the CPTs for the nodes
Canary_PredictedRUL and Parrot_PredictedRUL need to be adjusted in terms oficorrela

factor between the two devices in order to increase sensitivity.
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Time | Canary Parrot Ship Structure
(yrs)
| 14
1 Canary_PredictedRLIL Parrot_PredictedrL ShipStructure_PredictedrL
0,00 -nf-0 0.00 -inf-0 8.99E-19 -inf-0
001 0-1 2063E-55 0-1 1.72E-12 0-1
1145 1-2 }_ 74aE-34 1-2 | 6,.95E-7 1-2
738 2-3 1.19E-17 2- 3 3.89E-3 2-3
l\ 11.12 2-4 142E6 2-4 049 3-4
003 4-5 1956 4-5 1460 4-5
3.13E-6 5 -inf 76,18 -6 23,21 5-6
2042 6-7 26,76 6-7
144 7-8 462 7-8
3494 5-9 029 8-9
2.24E-10 9- 10 291E-3 9-10
4,19E-18 10- 11 1.2E-6 10-11
1.27E-28 11 - 12 1.25E-10 11- 12
T A12C 18 17 49D
1 1
5 Canary_PredictedRLIL Parrot_PredictedrL ShipStructure_PredictedrL
0.00 -inf-0 0.00 -inf-0 1,1E-13 -inf-0
8042 0-1 206E-22 0-1 3B6ZE9 0-1
1956 1-2 :‘_ 9,13E-14 1-2 | 1.82E5 1-2
0oz z2-3 2977 2-3 8.37E-3 2-3
l\ 1.38E-8 3-4 B.06E-3 3-4 071 3-4
396E-18 4 -3 348 4-3 1090 4-5
2.07E-28 5 -inf 4906 -6 40,30 5 -6
45,50 6-7 3|/ 6-7
195 7-8 930 7-8
1.65E-3 8-9 043 8-9
1.65E-8 2- 10 4,14E-3 9- 10
1.5E-15 10- 11 3.94E-6 10- 11
1.07E-24 11 - 12 6,16E-10 11- 12
T S oAD 15 17 D
10 Canary_PredictedRLIL Parrot_PredictedrlUL ShipStructure_PredictedrRL
0.00 -nf-0 0,00 -inf-0 2.82E-27 -inf-0
80,19 0-1 4.56E-50 0-1 288E-20 0-1
1979 1-2 }_ 4,20E-36 1-2 | 1.76E-14 1-2
\ 0oz z2-3 1.86E-24 2-3 122E9 2-3
1.41E-8 2-4 392E-15 2 -4 719E-6 3 -4
4.0E-18 4-3 441E-8 4-5 5.35E-3 4-5
2.08E-28 5 -inf 322E-35-06 052 3-6
243 6-7 10,00 &6-7
4780 7-8 3973 7-8
4797 8-9 3970 8-9
1.80 9-10 9,63 29-10
1.15E-2 10- 11 041 10-11
79469 11-12 3.76E-3 11- 12
T o B el - L B B
I Ly
13 Canary_PredictedRLIL Parrot_PredictedrL ShipStructure_PredictedrL
0.00 -inf-0 0.00 -inf- 0 3.82E-9 -nf- 0
100,00 0 - 1 7.05E-14 0-1 1.96E-5 0-1
392E5 1-2 }— 28267 1-2 — 9.27E-3 1-2
1,75E-9 2- 3 9.25E-3 2-3 0.79 2-3
\ 2.13E-16 3-4 288 2-4 11,73 3-4
1.19E-25 4 -5 52,36 4-5 41,97 4-5
2.01E-35 5 - inf 42,40 5-6 36,82 5-6
134 6-7 8.37 6-7
6.4E-4 7 -8 0,32 7-8
2.71E9 8-9 2.76E-3 8-9
8.31E-17 9- 10 1.73E-6 9- 10
1.85E-26 10- 11 2.32E-10 10- 11
2.86E-38 11-12 1.35E-15 11- 12
T 1710721 17 49

Table 5-17: Demonstrator Timeline for Scenario 3

From these preliminary results, the main observation is that the predictions of remaining life
reflect the expected results for most scenarios. However, the accuracy of the prediction for the

remaining life and the confidence in the predictions is not at the level expected for this PHM
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framework. As more knowledge through more experiments and/or expert contribution is

available, the CPTs should be revised to include improved and more comprehensive data set.

5.4.Summary

In this chapter, the diagnostic and prognostic tools described in the chapter 4 are evaluated
and tested using a demonstration example. This example consisted of a canary and parrot
device pair, with the canary device having smaller dimensions than the parrot device. A set of
scenarios for canary/parrot pair was devised using simulated corrosion data for evaluation and
testing of the tools. The predicted remaining life of the canary and parrot devices was

calculated using the PoF model and compared for a set of scenarios. Similarly, anomaly
detection was carried out on the devices using Mahalanobis distance analysis for all the
scenarios. The results obtained for these two tools were close to that expected for the

particular scenarios.

A Bayesian network model was used as a fusion prognostic tool to provide updated remaining
life prediction for the canary and parrot devices. Additionally in this model, an iron structure
was represented and was assigned similar prior probability distribution for predicted
remaining life as that of the parrot device and the posterior probability distribution for the
predicted remaining lifas calculated. Here again the preliminary results are promising,
however as developing Bayesian network model is an iterative process, it is expected that at
the next iteration, the nodes the states of the nodes and the associated CPTs will be updated

such that better precision can be achieved during prediction of remaining life.

One key element for improving the accuracy and confidence in diagnosis and prognosis is the
correlation of damage detection and quantification of the canary/parrot sensor devices and the
actual aged structure monitored. While simulation (e.g. simulation of corrosion data as used in
the demonstration example in this chapter) is an effective way to enrich the data set, it is
imperative to carry out evaluation and testing in the field in order to validate the tools such
that reliable diagnosis and prognosis can be obtained. Data obtained from field use can then
be used to update the models. Each variant of canary and parrot device pairs designed to
monitor different failure mechanism needs to be calibrated with the actual structure to be
monitored under varying environmental conditions. The next chapter describes how the
diagnostic and prognostic tool were used during an experiment trial carried out on iron wire

devices used as canary/parrot devices and discusses the results obtained.
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6. Experimental Trials
6.1. Experimental Setup

An experiment was set up to investigate and test the diagnostic and prognostic tools
developed. The following chapter describes the aims and the setup of the experiment. Then
analysis of the data collected is carried out and the results are discussed. The aims of this

experiment were threefold:
e Understand corrosion behavior of iron structures

o To investigate the ranges of temperature and relative humidity that affects iron

structures

o To determine how much corrosion takes place under set temperature and

relative humidity conditions
e Test suitability of canary and parrot sensor devices

o To test whether the sensor devices designed are corroding at the expected rate

within the set time under set environmental conditions.
o To assess suitability of current corrosion parameters monitored
e Test HM Framework
o Ted the data-driven diagnostic tool
o Test the model-driven prognostic tool

o Test the fusion based prognostic tool

6.1.1. Experimental Description

Prior to deploying a test-bed for experimental trials, the sensor devices to be used were

investigated. There are many aspects of the design of the sensor devices to consider:

e The thickness of the sensor devices needed to be small enough to experience corrosion

within a certain time limit.

e Protective paint or coating could be applied to the sensor devices to mimic the iron

structures in the Cutty Sark.

e The actual shapes of the sensor devices and the interconnection

~ 143 ~



For the experimental setup, as a starting point, three iron wires of different diameter
dimensions (0.125mm, 0.25mm and 0.5mm) and of 1m in length were used as shown in

Figure 6-1.

0.125mm iron 0.25mm iron 0.5mm iron
wire device wire device wire device

Figure 6-1: 3 sensor devices of diameter dimensions (0.125mm, 0.25mm ar&irn)

Three desiccators were used to house the three iron wires of different diameter dimensions.
While all 3 desiccators were placed in the same room under normal room temperature, each
desiccator had different relative humidity environments. Desiccator 1 had a dry environment.
Desiccator 2 had water in the lower tray thus raising the relative humidity compared to
Desiccator 1. Desiccator 3 had salt saturated water in the lower tray, thus experiencing the

highest relative humidity and harshest environment of the three desidcators. F@;ure 6-2 shows
the setup for the three desiccators.
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Desiccator 1

Desiccator 2

Figure 6-2: Experimental Setup of the 3 Desiccators

One data logger was placed in each desiccator measuring temperature and humidity at a rate

of one sample every 15 minutes. The experiments were conducted for a total of 85 days from

May to August 201(

. Figure 6

-3 a1nd Figure

6-4 show the graphs for temperature and relative

humidity for all the three desiccators for the month of May. The temperature readings for a

the desiccator are within the same range as expected as the three desiccators where placed in

the same room experiencing the same temperature throughout the experiment.

The relative humidity readings for desiccator 1 (dry) were in the range of 30%-40%, which is

much lower than desiccators 2 and 3 as expected. The relative humidity readings for

desiccator 3 (salty) were in the range of 80%-90% as expected. The relative humidity readings

dropped to the 30%-40% range for 3 days for desiccator 3 at the end of the month of May, as
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the experiment in desiccator 3 had been stopped and the iron wires were removed from that
desiccator were subjected to further salt treatment. The data logger in the desiccator continued
to record the relative humidity and temperature during that time thus registering the drop in

relative humidity readings.

The iron wires connected to a PXI module and a data-logging script developed in Labview
was used to record the electrical resistance of the wires every hour. The PXI module used to
connect the iron wires to record the electrical resistance readings had onlgaigkttors
available. As there was three sets of three iron wire devices for which the electri¢ahoesis
readings needed to be taken, the electrical resistance of the thickest wire (0.5mm) in
desiccator 3 (dry environment) was only recorded at certain times. The electrical resistance
readings of the other eight iron wire devices were recorded every hour. Once thiensalt
devices failed the 0.5mm iron wire in desiccator 3, (dry environmental was then connected
permanently to the PXI module and the electrical resistance readings were recorded every

hour as well from then on.

30
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28 —Salt
o
1=
m26 .
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>
=
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-
E24 .
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04/05/10 11/05/10 18/05/10 25/05/10 01/06/10
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Figure 6-3: Temperature Readings for Desiccators 1, 2 & 3
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Figure 6-4: Relative Humidity Readings for Desiccators 1, 2 & 3

After running the experiment for 13 days, the electrical resistance readings for the eight iron
wires being monitored remained stable indicating that the iron wires were not corroding. The
wires in Desiccator 3 (salt water environment) were disconnected and soaked for 1 day in
saturated salt water and left to dry for another day before being installed back in @edcca

for further monitoring. The wires in Desiccator 1 and 2 were not treated furtiter a
monitoring continued for them as well. The experiment was then run until all the wires in
Desiccator 3 (salt-water environment) were corroded. The experiment was run for &othe

days for the iron wires in desiccators 1 and 2. The drop in relative humidity as shown in

Figure 6-4 between 26 May 2010 and 29 May 2010 is due to the desiccator being open at the

time to remove the corroded 0.125mm and 0.25mm iron wires. The graphs for temperature
and relative humidity for all the three desiccators throughout the whole experiment is found in

appendix sectign 9.3.1.

6.2. Analysis of Experimental Data

Figure 6-% tq Figure 617 show the electrical resistance readings taken for thewvitese

(diameters 0.125mm, 0.25mm, 0.5mm) in desiccators 1, 2 and 3 during the whole
experimental trial. Missing data points are due to the PXI system being restarted at times as
the PXI module was disconnected from the PXI system when other unrelated experiments

were loaded and run on the PXI system. In addition, there was no reading taken for 3 days
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from 17 May 2010 and 20 May 2010 while the wires in Desiccator 3 were given additional

treatment with the aim of accelerating the corrosion process.
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Figure 6-5: Electrical Resistance Readings for 0.125mm iron wires
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Figure 6-6: Electrical Resistance Readings for 0.25mm iron wires
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Figure 6-7: Electrical Resistance Readings for 0.5mm iron wires

As the electrical resistance readings for the same diameter, iron wire was plotted against each
other, a trend in the readings was observed for 0.125mm and 0.25mm wires. While the
0.125mm wires were placed in different desiccators, they still experience the same trend in
change in electrical resistance at the same time, thus implying that the different environments
in the desiccators did not have the expected effect on the corrosion of the iron wires. The
0.5mm iron wires did not follow the same trend as observed for the other two types of iron

wires.

After further investigation, it was determined that the room temperature was the cause of the
noise to the measurement of the electrical resistance readings of the iron wires. Due to the
thermal coefficient of the iron wires, the resistivity of the iron wires would change due to

changes in temperature as well as corrosion that might pccur. Figlljre 6-8 to Figuire 6-10 show

an overlay of readings of the temperature inside Desiccator 3 and the electrical resitanc
the iron wires. It can be observed that the electrical resistance of 0.125mm iron wire device
follows the same trend as the tempera1ure (Figurg 6-8). The same occurs for the 0.25mm iron

wire device[(Figure 649). The electrical resistance of the 0.5mm iron wire device however

does not follow the same trend as the temperature (Figurg 6-10) as the thermal coefficient was

not high enough to affect the electrical resistance of the thickest iron wire device. The graphs
of overlay of readings of the temperature inside desiccators 1 and 2 can be founddixappe

section 9.3.P.

~ 149 ~



10.5 - -30 |
- 25
o _”IH‘—\—‘_W_/—U\«_J—\J\—W—\—L,_,/—"\_I
z= L 202 |
E101 v
- + Salt0.125 é
o —SaltTemp. [15®
= (7]
S99 - al
7 o o ° Suf, - 10 g
‘a - i S e, I S
2 . #\Qf M@» § e Sy, LV
: -5
9.5 ‘ ; ; 0
08/05/2010 10/05/2010 12/05/2010 14/05/2010
Time )

Figure 6-8: Overlay of Temperature and Resistance (0.125mm) -Salt Envirorent
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Figure 6-9: Overlay of Temperature and Resistance (0.25mm) -Salt Environment
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Figure 6-10: Overlay of Temperature and Resistance (0.5mm) -Salt Environment

6.2.1. Noise reduction of electrical resistance data

Figure 6-11 shows the steps carried out to remove the noise caused by the influence of

temperature on the resistivity of the iron wires and to filter any additional noise:
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1. As the actual resistivity for the iron wires used is unknown, resistmgy of
9.71x10”"-8 ohm.m at temperature of 20°C (Resistivity and Temperature Coefficient,
2011) was used at the start to calcufgtat temperature]; and time,z using equation
(24).

Pt = pref[l + a(Tt - Tref)] 24)

where, p; is the resistivity at temperaturé: at time ¢, prris the resistivity at reference
temperatureZr.; a is the temperature coefficient of resistivity for the iron wife,is the
temperature at time (during experiment) and.r is the reference temperature thatis

specified at for the iron wire

2. Every time a new electrical resistance reading is taken, the resispiyity is

calculated again using equation (ZBis is performed, as the actual resistivity for the

iron wires is unknown.

Per1 = Pell + a(Tepq — Tp)] (25)

where, pr+7 IS the resistivity at temperatur®.z, p¢ is the resistivity at reference temperature
T: a. is temperature coefficient of resistivity for the iron wi,; is temperature at time+1

(during experiment) and; is temperature for which: was calculated in step 1.

3. At each electrical resistance reading taken, ugingbtained in step 2Rfdj is

calculated using equation (26), representing the expected electrical resistance at

temperaturefz

RiY == (26)

Where, p; is the resistivity at temperatuBat time¢, /is the length of iron wire and is the

cross sectional area of iron wire
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4. Finally, the difference in electrical resistanady;, can be calculated using equation
(27). AR, is due to the corrosion of the iron wires without noise due to temperature

effect on resistivity.
AR, = R? — R 27)

Where, R? is the original electrical resistance reading at timand Rfdj is the adjusted

electrical resistance at time

5. Using moving average (over a window size of 20), filtering of noise of random nature

is carried out oAR;

6. The resultingAR can then be used either in PoF models and/or for anomaly detection.

(1) Calculate p; based
on temperature
reading (Tref) and Pref

A

Tt,
@) (E)ar:c_:_JIaat: dpt based |, Temperature
t Pe1 attime t
A
(3) Calculate adjusted
resistance, R using
new py
A
(4) Calculate increase Original
in resistance, AR; (the | Resis?tance
difference between | ; o
Reading, R*

Rot and Rtadj )

A

(5) Noise Filtering on
AR; using Moving
Average

(6) Proceed to PoF
and Anomaly
Detection Analysis

Figure 6-11: Flowchart of noise reduction of electrical resistance readings

The graphs for the 0.125mim (Figure 6-12) and 0.25mm (Figurg 6-13) iron wires show th
most marked difference between the original difference and adjusted difference afadlectr
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resistance. The graph for the 0.5 mm iron Wi[es (Figure

6-14) shows almost no difference

between the original and adjusted difference. This is believed to be because thetteenpera

coefficient of the resistivity is not high enough to affect the electrical resistaice 6f5mm

iron wire and thus the original electrical resistance difference is used for the 0.5mm iron wire

for the rest of the analysis. The graphs for resistance differences before and after the

adjustment of temperature effect for iron wires in dry and water environments can be found in

appendix sectign 9.3.3.
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Figure 6-12 Resistance Difference before and after adjustment for temperature effect (0.32im wire in
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Figure 6-14: Electrical Resistance Difference before and after adjustment for temperature effect (Grn
wire in salt environment)

The filtering of random noise on the electrical resistance difference was carried out using

moving average and median. For both filters, a filtering weight of 20 was used. The results of

both filtering techniques were assessed by applying standard deviation on the electrical

resistance difference before and after filtering for readings taken in the first 7Tofitys

experimental trial

Table 6}1 shows the standard deviations for (i) original resistance

difference, (ii) moving average filtered resistance difference and (iii) median filtered

resistance difference. The standard deviations decrease when either filter is applied with the

moving average filter giving slightly smaller standard deviations overall compared to the

median filter. Therefore, the electrical resistance difference data that had undergone noise

filtering using moving average filter was used from ther|

eon. Figure

6

15 to Figur

slol/

graphs for comparison of filters and the original data for 0.125mm, 0.25mm and 0.5mm iron

wires in Desiccator 3 (salt environment).

Original Mov. Avg. Median

Dry 0.125  0.0336
Dry0.25  0.0134
Dry 0.5 0.0188

Water 0.125 0.0582
Water 0.25 0.0134

Water 0.5 0.0089
Salt0.125 0.5243
Salt 0.25 0.0608
Salt 0.5 0.0223

0.0299 0.0338
0.0069 0.0088
0.0255 0.0259
0.0535 0.0559
0.0093 0.0103
0.0050 0.0048
0.4123 0.4113
0.0445 0.0453
0.0187 0.0190

Table 6-1: Standard Deviation of Electrical Resistance Deviation
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Figure 6-17: Comparison of using Moving Average and Median as smoothing technique for 0.5minon
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6.2.2. Using PoF model to predict remaining life: Results and Disonssi

Figure 6-1%5 shows the steps carried out to predict remaining life of the iron wires using the
using the model-driven approach that uses a PoF model:

1. At each electrical resistance reading taken, ugiredg 0.097 ohnmum (Resistivity and
Temperature Coefficient, 2011), the corresponding diameter is calculated using
equation (28) and difference in diamet&r.

D, = \/pref*4*l*1000000 (28)

T*R¢

Where, prer is the reference resistivity (Resistivity and Temperature Coefficient, 2Q1i%) ,

the length of iron wire an&; is the measured resistance of the iron wire
2. PlotAD against time

3. Use trend-line fitting oveAD readings over a period of 10 days to obtain logarithmic
model. Here due to the short period of time over which the experiment was run, only a

short period is used in the trend-line fitting.

4. Estimated the corrosion penetration ovér yiear, A, based on logarithmic model
obtained (2%

P = At? (29)

Where P is corrosion penetratiort,is exposure timed is corrosion rate during the first year
of measurement anblis a constant representing a measure of long-term decrease in corrosion
rate. A and B are obtained through trend-line fitting, t is assigned to 365 days in order to

obtain corrosion penetration ovet year.

5. Calculate predicted remaining life of iron wires using equation (30). The model-driven
approach defined in Chapter 4 has been modified here to accommodate for the lack of
corrosion data required for over a year in order to use the Linear Bilogarithmic law for
prediction of corrosion penetration over time. An arbitrary value of 0.5 is assigned to

B while A is obtained from following the procedure detailed in steps 1-4.
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In(P)-In (A)

t=e¢ B (30)

Where,Pis the loss in diameter (due to corrosion) which will lead to failure of iron wire,
the corrosion penetration for thé' year and? is the degree of decrease of corrosion over
time (here assigned arbitrarily).

6. The predicted remaining life, t can then be used in the fusion based prognostic tool as

input information for the Bayesian Network model.

(1) Calculate AD; from
AR¢

Y

(2) Plot AD; against time

Y

(3) Use trendline fitting
to obtain logarithmic
model

A
(4) Determine
penetration over a year,
A

4

(5) Calculate remaining Assign Arbitrary
life t.y using P=At® Value for B

v

(6) Use t, in Bayesian
Network model

Figure 6-18: Flowchart - Predicting remaining life using PoF

Table 6-2 shows the predicted remaining life of the iron wires using the model-driven

approach described above in years (T) and in days (t). A is the estimated corrosion rate over
the first year. For all three different environments, the thickest wire (0.5mm) has the longest
predicted remaining life as expected. For the water and salt environments, the thinnest wire
(0.125mm) has the shortest predicted remaining life, while for the dry environment the 0.25m
has the shortest predicted remaining life. Here it is believed that due to errors in measurement
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procedures, the predicted remaining life for the iron wires in the dry environment is not as

accurate as expected.

It should be noted that when using the Linear-Bilogarithmic law as a PoF model, it is
recommended to use data recorded over the first year before making any prediction. As the
experiment was run for just under 3 months, the measurement readings were extrapolated first
before being used in the PoF model. This could have a significant effect on the values of the
predicted remaining life of the iron wires. However, the PoF model developed here is
believed to be a good starting prediction model for remaining life of iron wires (with respect

to failure being caused by corrosion).

Dry 0.125 10.59 5.58 2036
Dry 025 22.90 4,77 1740
Dry 0.5 15.78 40.15 14656
Water 0.125 13.84 3.26 1191
Water 0.25 24.58 4.14 1511
Water 0.5 9.44 112.13 40929
Salt 0.125 14.21 3.09 1130
Salt 0.25 20.61 5.88 2147
Salt 0.5 27.07 13.65 4981

Table 6-2: Prediction of Remaining life of iron wires

6.2.3. Data-Driven Approach: Using Mahalanobis Distance Analysis for
Anomaly Detection

Figure 6-19 shows the steps carried out to perform anomaly detection on the iron wires in the

three different environments using Mahalanobis Distance analysis.
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Use A and B (1) Calculate
obtained from corrosion penetration,
PoF stage AD; using P=At®

A4

Y

(2) Calculate Dyand R

v

v (7) Normalise ARt and

t (from experiment)
using mean and

standard deviation

(3) Create several
datasets with
variations of ARt

from (4)
(4) Calculate mean & (8) Perform MD
standard deviation for Analysis to obtain MD
ARt and t values

Use MD Values in
Bayesian Network
model

(5) Standardise ARt
and t and form
Mahalanobis Space

(6) Perform MD
Analysis to obtain MD —
threshold values

Figure 6-19: Flowchart - Anomaly Detection using MD analysis

The process involves 8 steps, which are detailed below:

1. First, expected corrosion penetration over time needs to be simulated. Using A and B
values obtained from step 4 in PoF model used in previous section, penetxBtion,

for each time step (every day) is calculated using equation (31).
AD, = A = tB (31)

Where, 4D; is the difference in diameter (i.e. corrosion penetration) at tmé is the

corrosion penetration over th& gear andB, the decrease of corrosion over time.

2. Calculate D: which is the difference between original diamet8p, and corrosion

penetration, 4D; and the resultingR:; which is the resistance at time for

corresponding diametef);, using andR¢ using equation 32.
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R, = P 32
t T[*(Dt/z)z ( )

Where, D;is the diameter of iron wire at time / is the length of iron wireand p is the

resistivity of the iron wire.

3. AR;, the difference between original resistance, @t the beginning when no
corrosion has yet occurred) and the current resistdfide,calculated for every time
step. Several datasets consisting\Bf with slight arbitrarily defined variations (2%-

5% randomness) are generated to build the training dataset.
4. The mean and standard deviatioméf; and t in the training dataset is calculated.

5. AR; and t are then standardised and used to construct the Mahalanobis space. Once
constructed the mahalanobis space will be used each time mahalanobis distance
analysis is carried and is only updated if new training dataset becomes available.

6. Using the Mahal function in Matlab, Mahalanobis Distance analysis is carried out to
determine the MD threshold values from the training dataset. Thus, the MD threshold
values will be used each time until the mahalanobis space is updated and new MD
threshold values are determined.

7. The AR; (obtained from step 6 in section 3.2.1) from experiment readings and t are

standardized using mean and standard deviation from step 4.

8. Using the Mahal function in Matlab and the mahalanobis space developed in step 5,
Mahalanobis Distance analysis is carried out to determine the MD valuagfaihe

MD values can then be used in the Bayesian Network models developed.

Two training datasets have been developed for this experiment: one for the iron wires in the
Salt environment and one for the iron wires for both Water and Dry environments. The

training datasets were developed for t=90 days as this was the duration of the experiment.
6.2.3.1. Results Analysis

The Mahalanobis distance values corresponding to each data point (every hour) are plotted as

a function of time for each devige. Figure §-20 shows the MD value history for salt-0.125

device (red graph) and the MD value history for a similar healthy device (blpk)giehres
different MD thresholds are applied to distinguish between anomaly in the device being
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detected or not. The first 25% of the lifetime has MD threshold value of 3.5, the next 50% of
the lifetime has MD threshold value of 2 and the last 25% of the lifetime has MD threshold

value of 3.7 as shown by the horizontal broken lirfe in Figure[6-20. The reason for choosing

three different threshold values arises due to the pattern observed for MD values ftna hea

device (blue graph |n Figure 6-20).

During MD analysis for device salt-0.125, the MD values are much higher than the MD
threshold value of 2.0 (red graph in Figure 6-20) just before total failure of the deeiee. H

while the Mahalanobis distance algorithm does detect anomalies present in the device, it does

so too close to failure time. This can be explained by the possibility that the extra salt

treatment administered to the device cause severe pitting corrosion, which lead to failure

quickly.
8 - = Training Dataset
. + Experimental Data (Salt)
6 |
5 >
3.8 MD Value: 3.7
= T. B
[ R
= |
)
N
0+ - " ; : ; . - - T .
0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200
Datapoints

Figure 6-20: Comparing of MD values (0.125mm iron wire - salt) and threshold MD values

Figure 6-21 shows the MD value history for salt-0.25 device (red graph) and the MD value
history for a similar healthy device (blue graph). Again, three different MD threshads ar
applied: (i) MD threshold value of 3.8, (ii) MD threshold value of 2 and (iii) MD threshold
value of 3.5 as shown by the horizontal broken line in Figure[6-21. Here, the observation is
similar to that for device salt-0.125 where the MD values are much higher than the MD

threshold value just before total failure of the device. Similarly, it seems that extra salt

treatment administered to the device cause severe pitting corrosion, which leads to failure
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quickly.

= Training Dataset

8 =
« Experimental Data (Salt)
7 i
6 4
5
o
B4
© | MD Value: 3.5
> s ™S DD -
03 -
= MD Value: 2

1000 1200 1400 1600 1800 2000 2200
Datapoints

Figure 6-21: Comparing of MD values (0.25mm iron wire - salt) and threshold MD values

Figure 6-22 shows the MD value history for salt-0.5 device (red graph) and the MD value
history for a similar healthy device (blue graph). Again, three different MD thresh@ds a
applied: (i) MD threshold value of 3.7, (ii)) MD threshold value of 2 and (iii) MD threshold

value of 3.7 as shown by the horizontal broken Iir‘e in Figure|6-22. Here, the observation is
similar to that for device salt-0.125 where the MD values are much higher than the MD

threshold value just before total failure of the device. Similarly, it seems that extra salt

treatment administered to the device cause severe pitting corrosion, which leads to failure

quickly.
g , = Training Dataset
+ Experimental Data (Salt) :
7 i
6 e 3
:“\*, i
5" MDVa ue?w :MD Value: 3.7
o ¢ _ _ _ _ _ —— e e e —
E AT £
S
o
=
0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200
Datapoints

Figure 6-22 Comparing of MD values (0.5mm iron wire - salt) and threshold MD values

~162 ~



Comparing the healthy (blue) graphs against the test (red) graphs for the 3 salt devices, it is
clear to see that a pattern forms after data point 360 (which approximately represdrii} day

the time after which the devices were subjected to harsher salt treatments for the salt
experiment. Thus, we observe that Mahalanobis distance analysis is ins&fahtifying
anomalies or faulty behavior. However, the patterns generated need more analysistim order
identify anomalies earlier on (as soon as they start to develop rather than just before failure).
It should be noted that the training dataset used for Mahalanobis Distance has been developed
for uniform corrosion, while it appears that the failure on the salt devices were due to pitting

corrosion.

In a similar manner, MD analysis is carried out on the devices for the dry and water

environments. Figure B3|to|Figure 6-2% show the MD value histories for devices, dry-0.125,

dry-0.25 and dry-0.5, respectively. The MD threshold values for each device are displayed
along with the graph of MD values for healthy devices (blue graphs). Here as expected, the
MD values remain below the corresponding MD threshold values, as the three devices in the
dry experiment do not experience much corrosion. The graphs for MD value histories for the

devices of the water experiment are found in the appendix.

8 = Training Dataset

+ Experimental Data (Dry)

MD Value: 3.7

5 L MD Value: 3.7

MD Value

—

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200
Datapoints)

Figure 6-23: Comparing of MD values (0125mm iron wire - dry) and threshold MD values
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Figure 6-24: Comparing of MD values (0.25mm iron wire - dry) and threshold MD values

8 s Training Dataset

7 4 + Experimental Data (Dry)

MD Value: 3.7

MD Value: 3.7
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MD Value: 2.0
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Figure 6-25: Comparing of MD values (0.5mm iron wire - dry) and threshold MD values

Thus comparing the healthy (blue) graphs against the test (red graphs) for the 3 dry devices,
shows that MD analysis performs well as the MD values are at or below the MD threshold
values which reflects what is expected for all 3 dry devices. Data from more experiments with
better control on the environmental conditions and more experiments for monitoring different
forms of corrosion would provide a comprehensive training dataset, which can then be used
for MD analysis. The graphs showing the results of MD analysis for the 3 iron wiresen wa
environment can be found in appendix segtion 9.3.4. The MD values for the iron wires in the

water environment follow a similar trend to that of the iron wires in the dry environment.
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6.2.4. Building the BN models for the Experimental trials

The Bayesian network model developed is again organised in a layered structure with the top

layer representing the prediction of remaining life of the system under consideration, the

middle layer representing the diagnosis and prognosis observations of the structure and the

bottom layer representing usage and health observations with the nodes in the different layers

connected by causal links. A Bayesian network model is built for each experiment

environment: sal

Model-Driven
Prognostic

Fusion-based

Prognostic——————

Data-driven
diagnostic

@aﬂct‘eﬂut

Time_Period

Dry125_MDValugs

| (Figure 6-

b6), d

'y (Figure 6

-27) and w

ater (Figure

6-28).

= = mm mm mm e e e o = = = e e = e

Figure 6-26: Network for Salt Environment Lab Experiments

Dry500_PoF_RUL

Diy250_PoF_RUL

_ Dry250_PredictedRUL

Dry250_MDValues

Salt! 26_PoF_RUL

_ Dry500_PredictedRUL

Dry500_MDValues

@r‘smmm

Time_Period

Water1

Salt250_PoF_RUL

Salt250_MDValues

25_MDvalues

Water250_PoF_RUL -

Water250_PradictadRUL

Water250_MDValues

Salts00_PoF_RUL

Salts00_MDWalues

WaterS00_PoF_RUL

Water500_PredictedRUL

Water500_MDValues

Figure 6-27: Network for Dry Environment Lab
Experiments

Figure 6-28 Network for Water Environment
Lab Experiments
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In|Figure 6-26, remaining life predictions from PoF models for the 3 test devices (0.125mm,

25mm and 0.5mm) provide input for the top layer nodes: Saltl25 PoF RUL,
Salt250 PoF_RUL and Salt500_PoF_ RUL. The bottom layer nodes (Saltl25 MDValues,
Salt250_MDValues and Salt500_MDValygspresent the anomaly detection results for the
three devices during the experiment. The nodes in the middle layer represent the diagnosis
and prognosis for the three devices: Saltl25 PredictedRUL, Salt250 PredictedRUL and
Salt500_PredictedRUL. One additional node representing the time is included to account for
the point in time at which the modslrun (usually each time new input data for bottom layer
nodes is availableBimilar to the Bayesian network model for the demonstrator example, the
nodes across the layers are linked together such that evidence recorded for one of the nodes

will result in a belief updating of all the nodes connected to it.

The links between nodes ‘Sdtl25 PoF RUL and’Saltl25 PredictedRULmean that the
probability distribution of the predietl remaining life of the 0.125mm device using PoF
models will affect the probability distribution of the updated predicted remaining life of the
0.125mm  device. The links between nodesSaltl25 PredictedRUL and
’Saltl25 MDValues mean that the probability distribution of the updated predicted
remaining life of the 0.125mm device in turn affects the probability distribution of MD values
which is initially calculated from the MD analysis of failure precursors of that device. The
node ‘Salt125 PredictedRUL’ links to node ‘Salt250 PredictedRUL’ that in turn links to
node ‘Salt500 PredictedRUL’. This is to represent the correlation between failure rates in all

three devices under experimentation.

The next step was to build the Conditional Probability Tables (CPTs) associated with each
node in the model. The initial set of probabilities values is based on measurements from the

devices for the first 10 days. The details for populating the CPTs are provided below:

1. Saltl25 PoF RUL- the states for this variable are continuous and have been
discretized into intervals 42 - 500, 500t000, ... , 3000 - o) to represent the
estimated lifetime of this device under healthy conditions. As this node is a root node,
the probabilities of its states are defined by normal distribution based on mean values

of PoF predicted remaining life for a healthy device from segtion |6.2.2 as shown in

Table 6-3. The CPTs is populated as shown in Figurg 6-29 .
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Salt125_PoF_RUL |
Expression  ormal (2328, 145544)

-inf - 0 5.231E-10
0 - 500 3. 268E-7
500 - 1000 2.49E-4
1000 - 1500 |0.015
1500 - 2000 0,15
2000 - 2500 (0,479
2500 - 3000 |0.287
3000 - inf 0.039

Figure 6-29: CPT for Salt125_PoF_RUL Node in Hugin

2. Salt250_PoF_RUL- the states for this variable are also continuous and have been

discretised into intervals < - 500, 500000, ... , 4500 - <o) to represent the
estimated lifetime of this device under healthy conditions. Similar to node
Saltl25 PoF_RUL, the CPT for this node follows a normal distribution populated
using mean values of PoF predicted remaining life for a healthy device as shown in
Table 6-3.

Salt500_PoF RUL- the states for this variable are continuous and have been
discretised into intervals € - 1000, 100@000, ... , 8000 - o<). Similar to nodes
Saltl25 PoF RUL and Salt250 PoF_RUL, the CPT for this node follows a normal

distribution using mean values of PoF predicted remaining life for a healthy device as

shown inp Table 643.

Saltl25 MDValues- The states here are continuous and have been discretised into
intervals (e= - 0, 0— 1, ..., 10 - o°) to represent the typical MD values expected

during the experiment. This node has two parent nodes: Time_ Period and
Saltl25 PredictedRUL. The probabilities of the states of this node are conditional on
how the state of its parent nodes combine and follows a normal distribution based on

MD threshold values. The CPT is populated using the Expression Builder feature in

Hugin shown in Figure 6-30.

5alt125_MDVales |

Time_Period 1sk Part Middle Part

5alt125_Pr... -inf -0 0-500 500 - 1000 1000 - 1500 1500 - 2000 2000 - 2300 2300 - 3000 3000 - inf Anf -0 0-500 500 - 1000 1000 - 1500

Expression Hormal (3,47 * {1+ 4Plormal (3.47* (1-+ 3Mormal (3,97 * (1 + 2Wormal (347 * (1 + thiormal (3,47, 0.54) Pormal (3.47 * (1 - 1 Pomal (347 (1- 30 Hormal (1,95* {1 + thiormal (1,98 * {1+ 3pomal (1,98 % (1 + 2]
4 | 0|

5alt125_Pr.. Anf -0 0-500 500 - 1000 1000 - 1500 1500 - 2000 2000 - 2500 2500 - 3000 3000 - inf

Time_Period | 1st Part |Middle ... | SrdPart | 1st Part |Midde ... | 3rd Part | tst Part |Middee ...| ardPart | 1st Part | Middle ... | 3rd Part | 1stPart Middle .| 3rd Part | st Part | Middle ... SrdPart | 1stPart | Midde ... | 3rd Part | istPart | Midde .. | 3rd Part

Finf -0 0 0 0 1.792E... |4.656E-8 1.342€.., |7.066E... 1.4%E-6 |1.358E... 7.048E... (3.104E-5 [5.663E-9 |1.780E-0 |4.23E-4 977767 LI67E-6 0.004  [F.OSIES (0009 0091 (0029 0419 D282 [I7L
0-1 1 1 1 3.151E... [3.281E-5 Z.246E... 2.549E... [4.425E-4 3.73E-9 [5.254E-0 [0.004  |1404E-6 2.7BBE-6 D023  9.401E-5 3.88E-4 0089 0003 0.143 0414 D162 D453 05 0.359
1-2 0 0 0 B.U3ZE.. (0.004 |1.3E-B |1.495E-B 0024  2.012E-6 |6455E-6 0.091 12594 T.312E-4 D238 0003 0022 0418 [0.03F 0482 0408 0369 0367 |0.227  0.335
2-3 0 0 0 412268 0.09%  Z869E-6 |L.449E-5 D241 LET7E-4 0001 0420 0004 004 05 0043|0238 0405 0093 0317 0083 031 [0oe 0021 0,019
[3-4 0 0 0 315265 (0424 ZZ20E4 D002 0439 0005 (0049 0400 0.0S L B 1k 0.2t 0503 0081 0364 0042 0003 D06 0002 |5.643E-4 0.016
4-5 0 0 0 0004 (039 0006 007 02l 0058 0.3+ 0078 0227 0495 D02 0385 |0.217 0003 0.9 0000 [2464E5 0013 [1.008E-5 |1.144E-6 |7.952E-4
5-6 0 0 0 00% (0077 0066 D3BE 0019 024|047 0003 0391 0472 G502E4 0274 (0018 [2.326E5 0083 M443E6 [3.202E-8 B.1SGE-4 9.346E-9 6.217E.., 14395
6-7 0 0 0 0432|0005 0261 D43 5A43E4 0392 (0032 21955 0297 001z 100IE-6 0073 Z67E-4 [Z97E-8 0009 [3.238E-9 7MBE.. 1.O0SES |143E-12 5.7V (9.714E-E
7-8 0 0 0 0395 (207165 0391  0.099  9.384E-7 .24 0007 [2.754E-8 0064 |1.452E4 5.253E.. 0007  [7.7B4E7 6.45E... [3.631E-4 |3.896E.. 2662F. . b 492E-8 3.552E.., [6.626E... |Z.326E..
3-9 0 0 0 0072  |2.593E-8 0.225  0.004  4.828E.. 0056 [7U21E-5 S80BE.. 0.006  (3.113E-F #.67E-14 2.786E-4 3.534E... [2.362E. ., |9,348E-6 [7.602E... |1.696E... |1.443E... |1 42E-22 |2.256E.., |1.99E-13
9-10 0 0 0 0005 |5.38E-12 0.48  |3.386E-5 4.ZI6E.. 0.005  |L.206E-7 |2.131E... |2.097E-4 |1.113E... B.945E.., 3.787E-6 |2.626E.., |1.457E. ., [2.853E-6 |2.364E... |1.708E... |1,145E... 9.076E.., [9.536E.., |6.045E..,
10-irf 0 0 0 1.963E-5 1907, 0004  |4.53E-8 |6.158E.. 1.6E-4 |[3.396E... [L2B1E.. [2.68E-6 |6.507E..|1.714E... 1.BBE-S (3.162E... |1.475E... [5.468E.., |L.195E. .. [2.301E. .. |3.225E... 9.237E... 6.624E.., .502E..,
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Figure 6-30: CPT for Salt125 MDValues in Hugin

5. Salt250_MDValues — the states are assigned the same as for the node

Saltl25 MDValues and the CPT is populated using the same procedure as for that
6-5.

node with marginal probabilities derived from Table

. Saltt00_MDValues — the states are assigned the same as for the node
Saltl25 MDValues and Salt250 MDValues and the CPT is populated using the same

procedure as for that node with marginal probabilities derived|from Taljle 6-6.

. Saltl25_ PredictedRUL- the states for these nodes are similar to that of node
Saltl25 PoF_RUL. However, this node one parent node, Saltl25 PoF Ridl.

probability distribution of predicted remaining life from node Salt125 PoF RUL is
assumed to also represent the probability distribution of predicted remaining life from
node Salt125 PredictedRUL. Thus, the probability distribution follows a normal
with  the being the
Saltl25 PoF RULTable 5-14nput data for Canary Device from MD Analysi

distribution mean value current value of node

S

Result$ and is inputted in Hugin as shovxin in Figure(6-31.

53175 PreditedilL |
Romal (53175 FoF L, 14500

Expression

5ehl25 Pa..

it - 0

0.501

-f- 1)

0.27

0-300

0,033

300- 1000

0.001

1000- 1300

708566

1300 - 2000

101585

2000 - 2500

i0- 500

0.405

0.46

023

0.0%2

0.001

10756

1500 - 1000

0.09

0.237

046

0.237

0,032

0.001

7l

1000 - 1500

0.004

0,032

0.237

0.4

0.237

0032

0l

1300 - 2000

4036E-5

0,000

0,032

0.237

0.4

0.237

0l

12000 - 2500

7.403E-8

7075

0.001

0.0%2

0.237

046

12500 - 3000

2,501

1.015E8

1078E-6

0.001

0.032

0.237

3000 - inf

1.624E-15

LATE12

1013

T088E-6

0,001

0,033

Figure 6-31: CPT for Salt125 PredictedRUL in Hugin

Salt250 PredictedRUL- the states for this node are similar to that of node

Salt250 PoF_RUL and the CPT is similar to that of node Salt125 PredictedRUL.

However,

this node has three parent nodes

instead of two: Time_ Period,

Salt250 PoF_RUL and Salt125 PredictedRUL. The probability distribution for this
node is assigned in same manner as for node Salt125 PredictedRUL and is then

adjusted to account for effect of node Saltl25 PredictedRUL. After preliminary

analysis, the correlation factor between predicted remaining lives of canary and parrot
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devices is set at 0.2. Thus, mean for the normal distribution is adjusted using the

expression builder in Hugin as shown Tab‘e in Figure |6-32.

30 PreditedhlL |

Expression Normal (5ak350_PoF RUL+3ak175 PreditedfLL * 0.2, 230000)

s . f-0 0-50 | 510- 1000 |
S50 P | -0 0500 500 Lo 1000 1500 . 2000 o 2500 000 0 o 000 500 -0 0500 1o 000 o500 -0 0-500 L 000, D
af-0 1S (D3 0 D0 ST (LHIES RTET 1 26D LS B BEE 046 D [luhe oL G IEL D3 D oo B15EE,. ...
050 L DDA D05 00U 7RE4 LOLEES 2367712500 2 A5EE.. | K. 03 14 oo LEEE. ORI 03T 030 oo L TEE, SEE,
S0-100 LG DB DB D29 005 LOU 6 7TRE 1 GUGES IGTET 25O L TEAE L6l 15 ol LEE L2 D9 o L. LA6TE.
00150 007 DO (LA D D29 0O 00U GTREA[LOMES[ZET RAIES NS 007 LI SIS 009 LIS o G L3I6ED
-0 00 00U L0 028 DL 0239 0O%S DOU [GTEE TOIGES LADES D00 DOIT ol oo ol L3MES TIZET DO 020 o B SEG 277
M- TEEESERIEADN 004 029 DL 028 DO DI G7TGEA TABES LIES BITEA ) ot BITES EZIGES IR DR oo o O 2.36EES
B-30 LIEEIGUESRREA D0 00¥ 028 DL DZR DR DO 000 (LAOES ROUEES ) lufter o DB DIOE ASREG B2ITES b o (L5 BT
M0-F00 TOEEY PGET|LOLES GAGE4 00U LOM DZB DL 020 005 007 [LBES BUHEET |t DO DOZZ BTUERBHET bt b D 0014
T00-4000 LA LSS DIGOET LGLES GIE4 MOIL DO DZB S 0239 041 BANEL ALt D2 02 T BIED b LB 004
AU00- G500 L9 [2.64IE. [LSIED 36667 L. GHIES G6IE4 00U D07 0230 DB0 D33 MABESAUEEw | DD D3 [LBBEEL OREE. b L0 0277
A500-1F RO, 226 LBE. L EEED DT [LOORES GOBSEA DU 0B D3 0SB BMHELEZMEw ot DB DS [LIELS BEITE b 1428 D615

H I

Figure 6-32 CPT for Salt250_PredictedRUL in Hugin

9. Salt500_PredictedRUL- the states for this node are similar to that of node

Salt500_PoF_RUL and the CPT is populated using the same
node Salt250 PredictedRUL.

procedure as for that

10. Time_Period- the states of this variable are categorical (“1% part”, “Middle part”, “3™

Part”). They have been devised as such to represent the three different MD threshold

values were assigned for any healthy device as described in 4

experiment, the evidence is propagated in the network every day
period that particular day fall, the relevant stated is selected.

,ectiﬂn 6.2.3. For this

and depending on the

Salt125 Salt250 Salt500

Mean(days)| Variance | Mean(days) | Variance | Mean(days) | Variance

2328 1445544 | 3222 278818 | 5959 953843

Table 6-3: PoF model-based input data

Time (days) | Mean Standard | MD Variance
MD Value | Deviation | Threshold

1% Part 2.73 0.96 0.54 3.47

Middle Part | 1.24 0.74 0.55 1.98

Last Part 2.73 0.97 0.95 3.71

Table 6-4: Input data from MD Analysis Results for 0.125mm salt device
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Time (days) | Mean Standard | MD Variance
MD Value | Deviation | Threshold

1% Part 2.73 1.03 1.07 3.76
Middle Part | 1.23 0.74 0.55 1.98
Last Part 2.44 1.06 1.12 3.50

Table 6-5: Input data from MD Analysis Results for 0.25mm salt device

Time (days) | Mean Standard | MD Variance
MD Value | Deviation | Threshold

1% Part 2.72 0.97 0.93 3.69
Middle Part | 1.24 0.74 0.55 1.98
Last Part 2.74 0.97 0.94 3.70

Table 6-6: Input data from MD Analysis Results for 0.5mm salt device

6.2.4.1. Running the Bayesian Network Model

With all the CPTs ecified, the BN model is compiled and ‘run’. The predictions of the
remaining life using the PoF models and the MD values from Mahalanobis Distance analysis
are used as evidence input for nodes (Saltl25 PoF_RUL, Salt250 PoF RUL,
Salt500_PoF_RUL, Salt125 MDValues, Salt250_MDValues and Salt500_MDValues). The
state for the node Time_Period, representing time for the experiment is selected as
appropriate. The reasoning engine (using Hugin) for this Bayesian network model then
performs propagation of probabilities and the updated probability distributions for the 3
hypothesis nodes (Salt125_PredictedRUL, Salt250_PredictedRUL and
Salt500_PredictedRUL) are obtained. The same procedure is repeated for the Bayesian

network models for Dry and Water experiment using input data|from Table [9-1 to TaPIe 9-4

in appendix sectign 9.3.5.

6.2.4.2. Analysis of results

Table 6-7 provides a timeline of the main events occurring for the salt experiment. The last

column ‘Prediction Time’ indicates the time at which evidence is propagated within the

Bayesian network model to obtain updated probability distributions for predicted remaining

life for all three salt devices. The BN model ran every day but the results in Taple $-8 onl

show updated predictions from approximately last 10 percent of the lifetime. A visual

representation of the daily updated probability distribution graphs for the three iron wire
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devices for all three experiments (salt, water and dry environments) can be found in appendix

section 9.3.p.

Time (days) | Event | Description Prediction Time (days)
1 A Start of the experiment fg 1

all three environments
13 B Salt Environmeni 11

Experiment stopped an
devices undergo treatment

15 C Experiment for Sal| 16
environment is restarted

27 D Salt-0.125 device fails 24

30 E Salt-0.25 device fails 27

79 F Salt-0.5 device fails 77

85 G Experiment is stopped fc

remaining two environment

Table 6-7: Experiment Timeline

The probability distribution graphs jn Table 6-8 provide a numerical interpretation of the
results of the salt experiment nodes Salt125 PredictedRUL, Salt250 PredictedRUL and
Salt500_PredictedRULThe state intervals are represented on the right hand side column

within the nodes and the probability associated with each state interval is represented on the
left hand side column as a percentage. At day 1, the probability distributions predict a
remaining life in the range of 1500-2000 days for the Salt125 PredictedRUL node, 1000-
2000 days for the Salt250 PredictedRUL node and 4000-6000 days for the
Salt500_PredictedRUL node. The predicted remaining lives are shorter than the expected at
this stage due to higher corrosion rates in the beginning. At day 11, just before the iron wire
devices were subjected to further salt treatment, the probability distributions predict a
remaining life in the range of range of 2500-3000 days for the Salt125_PredictedRUL node,
3000-3500 days for the Salt250 PredictedRUL node and 4000-5000 days for the
Salt500_PredictedRUL node, which reflects healthy wires devices.

At day 16, one day after the additional salt treatment was administered to the three iron
devices, the probability distributions predicted the same remaining lives as for at day 11. At
day 24, three days before the Saltl25 device fails, the probability distribution for the

Saltl125 PredictedRUL node shifts to the intervals (60800). At day 27, three days before

the Salt250 device fails, the probability distribution for the Salt250_ PredictedRUL node
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remains similar to that as at day 11. At day 77, two days before the Salt500 device fails, the
probability distribution for the Salt500_PredictedRUL remains similar to that as at day 11.

Time | Saltl25 Salt250 Salt500
(days)
1 1 1
1 Salt125 PredictedRLL Salt?50_PredictedrLL Salt500_PredictedRLIL
0.00 -inf- 0 0,00 Hnf-0 0,00 -inf- 0
5.3E-4 0-500 1.19 0 - 500 1,49E-5 0 - 1000
0.19 500 - 1000 12.97 500 - 1000 5,47E-3 1000 - 2000
9,42 1000 - 1500 40,25 1000 - 1500 0.45 2000 - 2000
56.96 1500 - 2000 35.76 1500 - 2000 8.68 3000 - 4000
32.43 2000 - 2500 9,14 2000 - 2500 39,57 4000 - 5000
1.00 2500 - 3000 0,68 2500 - 2000 43,38 5000 - 6000
1,4E-3 3000 - inf 5,92E-3 3000 - 3500 7.79 6000 - 7000
1.18E-5 3500 - 4000 0,13 7000 - 8000
5.45E-9 4000 - 4500 1,76E-5 8000 - inf
1.51E-11 4500 - inf
11 Salt125 PredictedRLL Salt250_PredictedRUL Salt500_PredictedRUL
56,30 -inf- 0 0.00 4nf-0 0.00 -inf- 0
2.14E-4 0-500 2.27E5 0-500 0.12 0 - 1000
0,09 500 - 1000 2.05E-2 500 - 1000 1.54 1000 - 2000
1.62 1000 - 1500 0.08 1000 - 1500 10,09 2000 - 3000
£.48 1500 - 2000 1.41 1500 - 2000 35.56 3000 - 4000
9,74 2000 - 2500 10.70 2000 - 2500 40.57 4000 - 5000
25,20 2500 - 3000 31.31 2500 - 3000 11.89 5000 - 5000
0.49 3000 - inf 40.20 2000 - 3500 0,22 6000 - 7000
14.75 3500 - 4000 3.49E-4 7000 - 8000
1.43 4000 - 4500 1.31E-9 8000 - inf
0.07 4500 - inf
16 Salt125_PredictedrlUL Salt?50 PredictedRLL Salt500_PredictedRUL
0.00 Hinf -0 0.00 4nf-0 0,00 Hnf- 0
0.023 0-500 4,74E-5 0-500 0.34 0 - 1000
1,29 500 - 1000 4,54E-3 500 - 1000 3.73 1000 - 2000
11.02 1000 - 1500 0,15 1000 - 1500 15.79 2000 - 3000
20,27 1500 - 2000 1.94 1500 - 2000 35.58 2000 - 4000
22,01 2000 - 2500 10.47 2000 - 2500 34.58 4000 - 5000
18.37 2500 - 3000 27,70 2500 - 3000 9,81 5000 - 6000
0.12 3000 - inf 39,82 3000 - 3500 0,18 6000 - 7000
17.80 3500 - 4000 2.91E-4 7000 - 8000
2,02 4000 - 4500 1,12E-9 8000 - inf
0.09 4500 - inf |
1 I T
24 Salt1Zs Predictedril Salt=50_PredictedrUL S4lt500_PredictedrUl
0.00 -inf- 0 0,00 -nf- 0 0.00 -inf-0
2,34 0-500 5.02E-2 0 - 500 0.21 0- 1000
32,93 500 - 1000 0.22 500 - 1000 4,09 1000 - 2000
49,22 1000 - 1500 3.46 1000 - 1500 23,78 2000 - 2000
13.28 1500 - 2000 19.43 1500 - 2000 42,97 3000 - 4000
0.62 2000 - 2500 20.68 2000 - 2500 24,47 4000 - 5000
7.6E-4 2500 - 3000 20,68 2500 - 3000 4,41 5000 - 6000
5.61E-7 3000 - inf £.99 3000 - 3500 0.07 6000 - 7000
0.52 3500 - 4000 1.96E-4 7000 - 8000
0.01 4000 - 4500 8.17E-9 8000 - inf
2,21E-4 4500 - inf
27 Salt250_PredictedrlL Salt500_PredictedrUL
0,00 -inf- 0 0,00 Hnf-0
3.65E-3 0 - 500 2,52E-2 0 - 1000
. 0.17 500 - 1000 0,17 1000 - 2000
2,90 1000 - 1500 2,38 2000 - 3000
17.58 1500 - 2000 21,39 3000 - 4000
38,89 2000 - 2500 43,15 4000 - 5000
31.64 2500 - 2000 28.03 5000 - 6000
8.13 3000 - 3500 2.78 6000 - 7000
0.66 3500 - 4000 0,10 7000 - 8000
0.02 4000 - 4500 1.31E-4 8000 - inf
3.35E-4 4500 - inf
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1
77 SaltS00_PredictedrL
0.00 -inf - 0
3.81E-3 O - 1000
— 0.35 1000 - 2000
7.28 2000 - 3000
36.51 3000 - 4000
43,22 4000 - 5000
12.32 5000 - 5000
0.22 6000 - 7000
3.37E-4 7000 - 8000
1.22E-9 BOOO - inf

Table 6-8: Updated Probability Distributions for Predicted Remaining Life for all three sdt devices.

The results for the analysis of the salt devices reveal that while the Bayesian network model
can detect and predict that the Salt125 device will fail shortly, it fails to identify in time that
the two devices Salt250 and Salt500 were about to fail. This could be accounted based on two
factors. First, the discretisation of the nodes need to make use of smaller intervals thus
representing the actual condition and behavior of the devices more accurately and the CPTs
for those nodes need to be update accordingly. Secondly, it is suspected that the harsh salt
treatment applied the second time on the devices triggered pitting corrosion, which is a failure
mechanism that this Bayesian network model does not account for. Additionally, the accuracy
of the prediction for the remaining life of the salt devices is not satisfactory and should be
improved. However using the fusion based prognostic tool for remaining life prediction
provides better results compared to using the model-driven prognostic tool as the fusion based
prognostic tool incorporates data from the diagnostic tool when available to update the

remaining life prediction.

6.3. Summary

This chapter describes the trial experiment carried out to test the diagnostic and prognostic
tools developed. The experiment consisted of three sets of three different iron wire devices
placed in three desiccators with varying relative humidity conditions (labelled: salt, water and
dry). The three iron wire devices are initial versions of canary and parrot sengmsdeith

the thinner wire device representing a canary device and the thicker one repgeaqrdirot

device. The experiment was run until the three wire devices in the salt environment all failed.
There was some measurement data loss due to the trial experiment being interrupted several
times for various reasons. Additionally, the changes in room temperature proved to be high
enough to affect the electrical resistance readings of the two thinnest iron wires. Thus, the
noise due to temperature changes had to be removed from the electrical resistance readings

before being used in&diagnostic and prognostic tools.
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The predicted remaining life of the iron wire devices was calculated using the PoF model
developed in chapter 4 based on the electrical resistance readings taken for the first ten days.
Similarly, readings for the first ten days were used as training data for Mahalano@elist
analysis, which is used within the data-driven diagnostic tool. Diagnostics using Mahalanobis
distance analysis was then performed on a daily basis. Finally, the fusion based frognost
tool implemented using Bayesian network model was used to provide probability distributions

of predicted remaining life for the iron wire devices.

The results obtained using the model-driven prognostic tool using a PoF model, the data-
driven diagnostic tool using Mahalanobis distance analysis and the fusion based prognostic
tool are promising. The PoF model itself requires one year’s worth of electrical resistance data

before prediction can be made but was here adapted for the length of time the expeniment ra
and therefore could not be validated in a formal manner. The Mahalanobis distance analysis
of the three iron wire devices in the salt environment detected deviations from normal/healthy
behavior at the earliest time possible, although not all the graphs show this due to missing
measurement data. The Bayesian network model needs optimization regarding the states and
CPTs of the node as it is not sensitive enough to reflect the true effect of even small changes
in predicted remaining life from PoF model and diagnostic information from Mahalanobis
distance analysis.

The test results were very informative and revealed that the diagnostic and prognostic tools
have low robustness when dealing with noisy and/or missing data. This trial experiment only
investigated one possible design of canary/parrot devices. More designs of the devices need to
be trialed in order to test and validate first whether the devices can monitor performance
parameters that indicate particular failure mechanisms and second, whether thetidiagdos

prognostic tools developed can provide results with accuracy.
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7.Conclusion and Future Work

This thesis has focused on developing diagnostic and prognostic tools in order to predict
remaining life of aged structures based on damage caused by corrosion and investigating the

use of low-cost sensor devices to monitor aged iron structures. A summary of the research

work is presented in sectipn ¥.1. The contributions to the field of diagnostics and prognostics

in aged structures are discussed in sedtior] 7.2. Recommendations for diagnostic and

prognostic tools for Cutty Sark iron structures are made in sqctign 7.3. Finally, the way

forward and possible directions for future research are outlined in the last section.

7.1.Summary of Research

The first part of this thesis described the deterioration problem that affects aged structures,
especially corrosion damage in aged iron structures. The Cutty Sark is used as an example
application for the diagnostic and prognostic tools developed for monitoring of aged
structures. Background information is provided regarding monitoring of aged marine
structures as well as the corrosion mechanisms that take place in such structures. A literature
review of diagnostic and prognostics techniques follows describing the different types of

models available and in development for monitoring of engineering structures and systems.

While there are many models and algorithms developed for diagnostic and prognostic
purposes, currently diagnostic tools have enjoyed more success than prognostic tools in
application in the real world. Multiple challenges remain in the application of diagnostic and
prognostics to complex structures. These range from lack of appropriate sensors, little
understanding of physical behavior of the structure, lack of historical data to the
interdisciplinary effort required to integrate diverse systems together to develop robust tools.
Added to this, problems often particular to monitoring of aged iron structures are that budgets
are often limited regarding implementation of monitoring system. In addition, iron structures
that have experience corrosion for over a century, usually have corrosion distributed unevenly
across structure and can vary from one structure to another to due varying enmtednme

conditions being subjected to.

The second part of thesis introduced the concept of novel sensors (canary and parrot devices)

and presented the diagnostic and prognostic tools developed for monitoring corrosion damage
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and predicting remaining life in aged iron structures. A Physics-of-Failure (PoF) model is
developed based on the linear bi-logarithmic law for corrosion to predict remaining life of an
iron structure as a model-driven prognostic tool. Currently the only influencing factor is time
with this model representing the general rule that corrosion decreases with time due to
protective layer buildup on the iron structure. The data-driven diagnostic tool developed uses
Mahalanobis distance as the anomaly detection algorithm taking performance parameters as
input. A fusion based prognostic tools is also developed using Bayesian networks where
probability distributions of predictions of remaining life are processed by integrating
predictions of remaining life (using PoF) with information of any anomaly detected in the
structure(using MD analysis

The tools developed were tested using a demonstration example based on simulation data
(Chapter 5) and data obtained from a trial experiment (Chapter 6). While the PoF model
performed reasonable well for both tests, a comprehensive PoF model for corrosion-based
damage would involve other environmental variables. The same challenge applies for the MD
analysis techniqgue employed in the diagnostic tool. The more simulation and experimental
data for different failure mechanisms and varying conditions, available for use in the training

data set, the better the MD analysis will perform.

Using Bayesian networks as the fusion approach for the prognostic tool provides many
advantages. While the accuracy of predictions is low due to lack of correlation information,
experimental data and more expert knowledge, once more input is available, it can be added
to the Bayesian network models developed so far with relative ease. Currently due to initial
lack of information and knowledge regarding corrosion processes in iron structures, the
Bayesian network model provides a good starting point to predict remaining life of a structure
as one can choose to input as little or as much information available to them at one point into
the Bayesian network model to obtain predictions of remaining life. Additionally, when more
Physics-of-Failure models are built for other failure mechanisms, these data processed from
these models can be incorporated relatively easily into the Bayesian network models thus
further increasing the accuracy of the predictions of remaining life. The same applies for data
processed from data-driven diagnostic tools that could implement other algorithms to detect

anomalies.
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7.2.Research Contributions and Impact

This thesis makes several contributions in the field of diagnostics and prognostics for aged

structures and these are summarized as follows:

Sensor monitoring system - A bespoke sensor monitoring system comprising of
canary and parrot devices has been devised in order to acquire environmental and
performance data for the iron structures around the ship. The use of canary and parrot
devices provides a practical low-cost solution regarding the requirement that only non-
destructive measuring techniques can be used for aged structures of great historical
value. Currently temperature and relative humidity (environmental conditions) and
electrical resistance (performance) are being measured using the sensor monitoring
system and has demonstrated promising results. Additionally the information acquired
from the sensor monitoring system will increase understanding of how corrosion
forms and progresses enabling engineers and maintenance personnel to control and

predict corrosion on structures better.

Diagnostic Tools to detect damage in aged iron structures - A diagnostic tool is
implemented to detect corrosion-related damage in aged iron structures using a
distance measure technique called Mahalanobis distance. For the demonstration
example and the trial experiment, electrical resistance was used as the performance
parameter for corrosion related-damage. As more performance parameters are
identified and monitored, the same distance measure technique can be used to detect
anomalies and it has the added advantage of removing and correlation between

performance parameters that might influence the damage detection.

Model-driven prognostic tool to predict the remaining life of iron structurés -
prognostic algorithm is developed using PoF approach based on the linear bi-
logarithmic law for corrosion. After initial measurements of corrosion rate are
acquired, the prognostic algorithm is used to predict remaining life of the structure
This prognostic algorithm is adaptedarnwo slightly different versions for use on the
demonstration example and the trial experiment. The prognostic algorithm can be run
on a regular basis based on the frequency of corrosion rate measurements and the

amount of history data to be incorporated.

Fusion-based prognostic tool - A novel fusion approach using Bayesian networks is
employed to develop to a prognostic tool that performs prediction of remaining life
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with integrated uncertainty analysis. It incorporates the results from the diagnostic tool
and the PoF-based prognostic tool and provides probability distributions of predicted
remaining life. This is a first and an original application of the fusion technique for

diagnostic and prognostic purposes for aged structures.

e Demonstrate PHM Framework - A notional example consisting of a canary aotl parr
device pair under the effect of various scenarios was presented. Using the diagnostic
and prognostic tools developed, the prediction of remaining life was calculated and
compared with expected values for each scenario. Additionally, the diagnostic and
predictive capabilities of the tools developed were also put to test using experimental

data.

e Publications—- The tools developed and preliminary results from the research work

have been disseminated in three international conferences and two journal papers.

7.3.Recommendations for Diagnostic and Prognostic tools for
Cutty Sark iron structures

Based on the research work carried out so far on diagnostic and prognostic tools for aged iron
structures, the following set of recommendations are proposed for the development of such

tools for Cutty Sark ship:

¢ Instrumentation for Measurement - Once the parameters to be measured are known is
it important to use instrumentation of the required accuracy for carrying out

measurement on sensors and the appropriate data acquisition system.

e Sensor devices - Practical issues such as ease of installation, use and maintenance are
as important as the accuracy and reliability of the measurements for low-cost sensor
devices. In that respect, any new or adapted designs of the sensor devices should take
into account the measurement equipment that will be integrated as well as the actual
gathering and transfer of the data. Additionally, the relation between a canary sensor
device, parrot sensor device and actual structure should be clear. Since the sensor
devices are measuring corrosion processes (which is normally a slow and long-term
deterioration mechanism), the sensor devices themselves need to have long remaining

life and be able to maintain long-term reliability of the measurements.

e Consider all possible sources of noise - For example in the experiment carried out (as

detailed in chapter 6), even slight changes in room temperature affected the electrical
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resistance of iron wires and the measurement data had to be de-noised before being

used for diagnostic and prognostic analysis.

Operational and Environmental Conditions - As much as possible all the operation and
environmental settings shoub@ investigated such that the structure’s behaviour can

be understood from all perspectives.

Training data - It is imperative to collect data from the actual structure and incorporate
this data in the development of any diagnostic and prognostic tool, this is because
simulated data cannot fully represent the conditions and behaviour of the actual
structure and thus tools developed using solely simulation data will often provide poor

results

7.4.Areas for Future Research

The diagnostic and prognostic tools developed for aged structures need further development

in order to be able to deploy it as an application for real-world projects. Therseaeral

potential extensions to the work presented in this thesis and future research could expand

along following areas:

Further development of the sensor devices - While the sensor devices developed have
been useful in terms of proof of concept for the sensor monitoring system, there is still
much to be accomplished before they are operational. Currently the sensor devices
developed are used for electrical resistance measurement only. Temperature and
relative humidity sensors could be integrated into the canary/parrot sensor devices.
More designs of the sensors need to be made to represent the different structures to be
monitored. These sensors require testing under varying environmental and loading
conditions in order to obtain robust correlations. Once sufficiently large set of data is
obtained for the canary/parrot sensor devices as well as the actual structures being

monitored if possible, the correlation factors can be determined more accurately.

Extension of the PoF Models - The current PoF model used for remaining life
prediction only uses time as the factor influencing the corrosion rate. With additional
experiment trials studying the effect of other factors as sulphur concentration and
chloride concentration, the PoF model could be extended to include them.
Furthermore, PoF models for failure mechanisms other than corrosion should be

investigated.
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e Investigation of anomaly detection algorithms - The Mahalanobis distance analysis
has been trained to detect one main form of failure, that is, is uniform corrosion. Once
other failure mechanisms are identified, the Mahalanobis distance analysis can also be
trained to those failures. Apart from Mahalanobis Distance, other distance measures
such as Euclidean Distance can be explored for use in simpler cases where no

correlation of data expected.

e Further Development of Bayesian Network models - Various improvements can be
made on the Bayesian network models designed. Currently, discrete nodes are used to
represent continuous variables, as they are more convenient to manipulate in Hugin
tool. These nodes could be converted to continuoustortestter capture the original
distributions and increase the precision of the variable values. The structure of the
Bayesian network models can be extended to include other variables representing
other types of measurements such as structural distortion, stress, etc.

The Bayesian network models developed so far are static Bayesian network models. That is,
they do not intrinsically account for historical values of health observations and rely primaril

on the PoF model to perform initial predictions. The models can be extended into temporal

Bayesian network models where the models are structured temporally as well as organised
into layers. In such a model, the transition function would be time-dependent.

The derivation of the CPTs of the Bayesian network models needs optimising through input
from more experts as well as data gathered from further lab experiments. While in the
beginning, it is acceptable to rely more on input from experts to derive CPTs, it is expected
that once more data in acquired through experimental trials and from the sensor monitoring
system, the CPTs should be revised accordingly. Thus, input bias that often results from

elicitation of probabilities from experts is reduced.

e Simulation of failure data - Since the goal of maintenance is to prevent failure
allowing a structure to fail to obtain failure data can be expensive and in some cases
impossible even (e.g. safety critical systems). As a result, it is hard to obtain failure
data from real systems, which can be used to develop diagnostic and prognostic tools.
Thus in order to obtain failure data, simulation needs to be carried out based on
analytical models. The demonstrator example used in chapter 5 used simulation data

based on corrosion rates obtained from literature. The simulation data can be further
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enhanced by adding the influence of more factors on corrosion. Data can also be
simulated for many more realistic scenarios (e.g. varying periods of time to which the
structures is subjected to environmental conditions and other load conditions as well

as varying the strengths of the environmental and load conditions).

Validation of Models - The proposed diagnostic and prognostic tools have been
validated using a demonstrator example and the preliminary experiment carried out. It
IS however necessary to test and validate the tools further using a real application.
Once the sensor devices have been finalised, the tools developed need to be tested for
accuracy and robustness through trial runs with the sensor devices placed within the

actual structures being monitoring based on a formal validation and testing plan.
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9. Appendix

9.1. Additional PHM Framework Information

9.1.1. Additional Parrot Device Designs

Parrot: Bolted Iron +Iron, Parrot: Bolted Iron + Wood,
entirely painted Iron entirely painted

Plastic Bolts

Paint

Resin

Figure 9-1: Parrot Device Designs (a)

Parrot: Bolted Iron + Parrot: Bolted Iron +
Iron, non-painted Wood, Iron non-painted

Resin

Plastic Bolts

Figure 9-2: Parrot Device Designs (b)
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9.1.2. Additional Canary Device Designs

Canary: Bolted Iron + Iron,
cl. solution soaked blotting
paper, painted 3 sides

Canary: Bolted Iron + Wood,
no paint, no chloride solution

Plastic
Bolts

Paint

Blotting
Paper

Figure 9-3: Canary Device Designs (a)

Canary: Bolted Iron + Iron, Canary: Bolted Iron + Wood,
chloride solution soaked no paint, chloride solution
blotting paper, not painted soaked blotting paper
Blotting |
Paper
Plastic
Bolts

Figure 9-4: Canary Device Designs (b)

Canary: Bolted iron +iron,
painted 3 sides, soaked in
chloride solution and dried

Canary: Laminate structure of
iron bolted together soaked or
unsoaked in chloride solution

Plastic Bolts

Paint

No Paint

Figure 9-5. Canary Device Designs (c)
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9.2. Demonstrator Example

9.2.1. MD Analysis of Canary and Parrot Devices
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Figure 9-6: MD Analysis of Max Data for
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Figure 9-8: MD Analysis of Min Data for Scenarios
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Figure 9-7: MD Analysis of Min Data for Scenarios
2 & 3 for Canary
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Figure 9-10: MD Analysis of Max Data for
Scenarios 2 & 3 for Parrot

Figure 9-9: MD Analysis of Max Data for
Scenarios 4 & 5 for Canary
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9-12: MD Analysis of Max Data for
Scenarios 4 & 5 for Parrot
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Figure 9-13: MD Analysis of Max Data for
Scenarios 4 & 5 for Parrot

9.3. Additional Experimental Trials Information

9.3.1. Temperature and Relative Humidity
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Figure 9-14: Temperature readings for experiment
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Figure 9-15: Relative Humidity readings for experiment.

9.3.2. Overlay Graphs of Temperature and Electrical Resistance for Dry and
Water Environments
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Figure 9-16: Overlay of Temperature and Resistance (0.125mm) -Water Environment
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Figure 9-17: Overlay of Temperature and Resistance (0.25mm) -Water Environment
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Figure 9-18 of Temperature and Resistance (0.5mm) -Water Environment
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Figure 9-19: of Temperature and Resistance (0.125mmpry Environment
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Figure 9-20: of Temperature and Resistance (0.25mm) -Dry Environment
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Figure 9-21: of Temperature and Resistance (0.5mm) -Dry Environment

9.3.3. Difference in electrical resistance before and after adjustment of
temperature effect
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Figure 9-22. Resistance Difference before and after adjustment for temperature effect (0.125maire in
water environment)
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Figure 9-23: Resistance Difference before and after adjustment for temperature effect (0.25mmwire in
water environment)
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Figure 9-24: Resistance Difference before and after adjustment for temperature effect (0.5mwire in
water environment)
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Figure 9-25. Resistance Difference before and after adjustment for temperature effect (0.125maire in
dry environment)
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Figure 9-26: Resistance Difference before and after adjustment for temperature effect (0.25mire in
dry environment)
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Figure 9-27: Resistance Difference before and after adjustment for temperature effect (0.5mwire in dry
environment)

9.3.4. MD values for Analysis of Water Environment
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Figure 9-28 MD Values for experiment on Water - 0.125mm
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Figure 9-29: MD Values for experiment on Water -0.25mm
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Figure 9-30: MD Values for experiment on Water -0.5mm

Bayesian Network Preparation Tables for CPTs

Dry/Water125 Dry/Water250 Dry/Water500
Mean(days) Variance | Mean(days) Variance | Mean(days) Variance
1222 40131 1539 63588 42148 47722788
Table 9-1: PoF model-based input data
Time (days) | Dry/Water125
Mean Standard | MD Variance
MD Value | Deviation | Threshold
1% Part 2.73 0.97 0.93 3.69
Middle Part | 1.24 0.74 0.55 1.98
Last Part 2.73 0.97 0.94 3.70

Table 9-2: Input data from MD Analysis Results
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Time (days) | Dry/Water250
Mean Standard | MD Variance
MD Value | Deviation | Threshold
1% Part 2.72 0.05 0.00 2.77
Middle Part | 1.24 0.74 0.55 1.98
Last Part 2.45 0.00 0.00 2.45
Table 9-3: Input data from MD Analysis Results
Time (days) | Dry/Water500
Mean Standard | MD Variance
MD Value | Deviation | Threshold
1st Part 2.73 0.97 0.94 3.70
Middle Part | 1.23 0.74 0.54 1.96
Last Part 2.73 0.97 0.94 3.70

Table 9-4 Input data from MD Analysis Results
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9.3.6. Visual Representation of Bayesian Network Analysis Results

Figure 9-31: Probability Distributions of Predicted Remaining Life for Dry-0.125 device
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Figure 9-32: Probability Distributions of Predicted Remaining Life for Dry- 0.25 device
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Figure 9-33: Probability Distributions of Predicted Remaining Life for Dry- 0.5 device
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Figure 9-34: Probability Distributions of Predicted Remaining Life for Water-0.12%5 device
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Figure 9-35: Probability Distributions of Predicted Remaining Life for Water-0.25 device
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Figure 9-36: Probability Distributions of Predicted Remaining Life for Water-0.5 device
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Figure 9-37: Probability Distributions of Predicted Remaining Life for Salt-0.125 device
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Figure 9-38: Probability Distributions of Predicted Remaining Life for Salt-0.25 device
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Figure 9-39: Probability Distributions of Predicted Remaining Life for Salt-0.5 device
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