3,326 research outputs found

    Statistiline lähenemine mälulekete tuvastamiseks Java rakendustes

    Get PDF
    Kaasaegsed hallatud käitusaja keskkonnad (ingl. managed runtime environment) ja programmeerimiskeeled lihtsustavad rakenduste loomist ning haldamist. Kõige levinumaks näiteks säärase keele ja keskkonna kohta on Java. Üheks tähtsaks hallatud käitusaja keskkonna ülesandeks on automaatne mäluhaldus. Vaatamata sisseehitatud prügikoristajale, mälulekke probleem Javas on endiselt relevantne ning tähendab tarbetut mälu hoidmist. Probleem on eriti kriitiline rakendustes mis peaksid ööpäevaringselt tõrgeteta toimima, kuna mäluleke on üks väheseid programmeerimisvigu mis võib hävitada kogu Java rakenduse. Parimaks indikaatoriks otsustamaks kas objekt on kasutuses või mitte on objekti viimane kasutusaeg. Selle meetrika põhiliseks puudujäägiks on selle hind jõudluse mõttes. Käesolev väitekiri uurib mälulekete problemaatikat Javas ning pakub välja uudse mälulekkeid tuvastava ning diagnoosiva algoritmi. Väitekirjas kirjeldatakse alternatiivset lähenemisviisi objektide kasutuse hindamiseks. Põhihüpoteesiks on idee et lekkivaid objekte saab statistiliste meetoditega eristada mittelekkivatest kui vaadelda objektide populatsiooni eluiga erinevate gruppide lõikes. Pakutud lähenemine on oluliselt odavama hinnaga jõudluse mõttes, kuna objekti kohta on vaja salvestada infot ainult selle loomise hetkel. Väitekirja uurimistöö tulemusi on rakendatud mälulekete tuvastamise tööriista Plumbr arendamisel, mida hetkel edukalt kasutatakse ka erinevates toodangkeskkondades. Pärast sissejuhatavaid peatükke, väitekirjas vaadeldakse siiani pakutud lahendusi ning on pakutud välja ka nende meetodite klassifikatsioon. Järgnevalt on kirjeldatud statistiline baasmeetod mälulekete tuvastamiseks. Lisaks on analüüsitud ka kirjeldatud baasmeetodi puudujääke. Järgnevalt on kirjeldatud kuidas said defineeritud lisamõõdikud mis aitasid masinõppe abil baasmeetodit täpsemaks teha. Testandmeid masinõppe tarbeks on kogutud Plumbri abil päris rakendustest ning toodangkeskkondadest. Lisaks, kirjeldatakse väitekirjas juhtumianalüüse ning võrdlust ühe olemasoleva mälulekete tuvastamise lahendusega.Modern managed runtime environments and programming languages greatly simplify creation and maintenance of applications. One of the best examples of such managed runtime environments and a language is the Java Virtual Machine and the Java programming language. Despite the built in garbage collector, the memory leak problem is still relevant in Java and means wasting memory by preventing unused objects from being removed. The problem of memory leaks is especially critical for applications, which are expected to work uninterrupted around the clock, as running out of memory is one of a few reasons which may cause the termination of the whole Java application. The best indicator of whether an object is used or not is the time of the last access. However, the main disadvantage of this metric is the incurred performance overhead. Current thesis researches the memory leak problem and proposes a novel approach for memory leak detection and diagnosis. The thesis proposes an alternative approach for estimation of the 'unusedness' of objects. The main hypothesis is that leaked objects may be identified by applying statistical methods to analyze lifetimes of objects, by observing the ages of the population of objects grouped by their allocation points. Proposed solution is much more efficient performance-wise as for each object it is sufficient to record any information at the time of creation of the object. The research conducted for the thesis is utilized in a memory leak detection tool Plumbr. After the introduction and overview of the state of the art, current thesis reviews existing solutions and proposes the classification for memory leak detection approaches. Next, the statistical approach for memory leak detection is described along with the description of the main metric used to distinguish leaking objects from non-leaking ones. Follows the analysis of this single metric. Based on this analysis additional metrics are designed and machine learning algorithms are applied on the statistical data acquired from real production environments from the Plumbr tool. Case studies of real applications and one previous solution for the memory leak detection are performed in order to evaluate performance overhead of the tool

    A model-based approach for automatic recovery from memory leaks in enterprise applications

    Get PDF
    Large-scale distributed computing systems such as data centers are hosted on heterogeneous and networked servers that execute in a dynamic and uncertain operating environment, caused by factors such as time-varying user workload and various failures. Therefore, achieving stringent quality-of-service goals is a challenging task, requiring a comprehensive approach to performance control, fault diagnosis, and failure recovery. This work presents a model-based approach for fault management, which integrates limited lookahead control (LLC), diagnosis, and fault-tolerance concepts that: (1) enables systems to adapt to environment variations, (2) maintains the availability and reliability of the system, (3) facilitates system recovery from failures. We focused on memory leak errors in this thesis. A characterization function is designed to detect memory leaks. Then, a LLC is applied to enable the computing system to adapt efficiently to variations in the workload, and to enable the system recover from memory leaks and maintain functionality

    Artificial intelligence in the cyber domain: Offense and defense

    Get PDF
    Artificial intelligence techniques have grown rapidly in recent years, and their applications in practice can be seen in many fields, ranging from facial recognition to image analysis. In the cybersecurity domain, AI-based techniques can provide better cyber defense tools and help adversaries improve methods of attack. However, malicious actors are aware of the new prospects too and will probably attempt to use them for nefarious purposes. This survey paper aims at providing an overview of how artificial intelligence can be used in the context of cybersecurity in both offense and defense.Web of Science123art. no. 41

    Autonomic Rejuvenation of Cloud Applications as a Countermeasure to Software Anomalies

    Get PDF
    Failures in computer systems can be often tracked down to software anomalies of various kinds. In many scenarios, it could be difficult, unfeasible, or unprofitable to carry out extensive debugging activity to spot the causes of anomalies and remove them. In other cases, taking corrective actions may led to undesirable service downtime. In this article we propose an alternative approach to cope with the problem of software anomalies in cloud-based applications, and we present the design of a distributed autonomic framework that implements our approach. It exploits the elastic capabilities of cloud infrastructures, and relies on machine learning models, proactive rejuvenation techniques and a new load balancing approach. By putting together all these elements, we show that it is possible to improve both availability and performance of applications deployed over heterogeneous cloud regions and subject to frequent failures. Overall, our study demonstrates the viability of our approach, thus opening the way towards it adoption, and encouraging further studies and practical experiences to evaluate and improve it

    Design and management of image processing pipelines within CPS: Acquired experience towards the end of the FitOptiVis ECSEL Project

    Get PDF
    Cyber-Physical Systems (CPSs) are dynamic and reactive systems interacting with processes, environment and, sometimes, humans. They are often distributed with sensors and actuators, characterized for being smart, adaptive, predictive and react in real-time. Indeed, image- and video-processing pipelines are a prime source for environmental information for systems allowing them to take better decisions according to what they see. Therefore, in FitOptiVis, we are developing novel methods and tools to integrate complex image- and video-processing pipelines. FitOptiVis aims to deliver a reference architecture for describing and optimizing quality and resource management for imaging and video pipelines in CPSs both at design- and run-time. The architecture is concretized in low-power, high-performance, smart components, and in methods and tools for combined design-time and run-time multi-objective optimization and adaptation within system and environment constraints
    corecore