637 research outputs found

    Data-driven Soft Sensors in the Process Industry

    Get PDF
    In the last two decades Soft Sensors established themselves as a valuable alternative to the traditional means for the acquisition of critical process variables, process monitoring and other tasks which are related to process control. This paper discusses characteristics of the process industry data which are critical for the development of data-driven Soft Sensors. These characteristics are common to a large number of process industry fields, like the chemical industry, bioprocess industry, steel industry, etc. The focus of this work is put on the data-driven Soft Sensors because of their growing popularity, already demonstrated usefulness and huge, though yet not completely realised, potential. A comprehensive selection of case studies covering the three most important Soft Sensor application fields, a general introduction to the most popular Soft Sensor modelling techniques as well as a discussion of some open issues in the Soft Sensor development and maintenance and their possible solutions are the main contributions of this work

    Groundwater level prediction using a multiple objective genetic algorithm-grey relational analysis based weighted ensemble of anfis models

    Get PDF
    Predicting groundwater levels is critical for ensuring sustainable use of an aquifer’s limited groundwater reserves and developing a useful groundwater abstraction management strategy. The purpose of this study was to assess the predictive accuracy and estimation capability of various models based on the Adaptive Neuro Fuzzy Inference System (ANFIS). These models included Differential Evolution-ANFIS (DE-ANFIS), Particle Swarm Optimization-ANFIS (PSO-ANFIS), and traditional Hybrid Algorithm tuned ANFIS (HA-ANFIS) for the one-and multi-week forward forecast of groundwater levels at three observation wells. Model-independent partial autocorrelation functions followed by frequentist lasso regression-based feature selection approaches were used to recognize appropriate input variables for the prediction models. The performances of the ANFIS models were evaluated using various statistical performance evaluation indexes. The results revealed that the optimized ANFIS models performed equally well in predicting one-week-ahead groundwater levels at the observation wells when a set of various performance evaluation indexes were used. For improving prediction accuracy, a weighted-average ensemble of ANFIS models was proposed, in which weights for the individual ANFIS models were calculated using a Multiple Objective Genetic Algorithm (MOGA). The MOGA accounts for a set of benefits (higher values indicate better model performance) and cost (smaller values indicate better model performance) performance indexes calculated on the test dataset. Grey relational analysis was used to select the best solution from a set of feasible solutions produced by a MOGA. A MOGA-based individual model ranking revealed the superiority of DE-ANFIS (weight = 0.827), HA-ANFIS (weight = 0.524), and HAANFIS (weight = 0.697) at observation wells GT8194046, GT8194048, and GT8194049, respectively. Shannon’s entropy-based decision theory was utilized to rank the ensemble and individual ANFIS models using a set of performance indexes. The ranking result indicated that the ensemble model outperformed all individual models at all observation wells (ranking value = 0.987, 0.985, and 0.995 at observation wells GT8194046, GT8194048, and GT8194049, respectively). The worst performers were PSO-ANFIS (ranking value = 0.845), PSO-ANFIS (ranking value = 0.819), and DE-ANFIS (ranking value = 0.900) at observation wells GT8194046, GT8194048, and GT8194049, respectively. The generalization capability of the proposed ensemble modelling approach was evaluated for forecasting 2-, 4-, 6-, and 8-weeks ahead groundwater levels using data from GT8194046. The evaluation results confirmed the useability of the ensemble modelling for forecasting groundwater levels at higher forecasting horizons. The study demonstrated that the ensemble approach may be successfully used to predict multi-week-ahead groundwater levels, utilizing previous lagged groundwater levels as inputs

    How to Provide Accurate and Robust Traffic Forecasts Practically?

    Get PDF

    Study on identification of nonlinear systems using Quasi-ARX models

    Get PDF
    制度:新 ; 報告番号:甲3660号 ; 学位の種類:博士(工学) ; 授与年月日:2012/9/15 ; 早大学位記番号:新6026Waseda Universit

    An Improved Model Ensembled of Different Hyper-parameter Tuned Machine Learning Algorithms for Fetal Health Prediction

    Full text link
    Fetal health is a critical concern during pregnancy as it can impact the well-being of both the mother and the baby. Regular monitoring and timely interventions are necessary to ensure the best possible outcomes. While there are various methods to monitor fetal health in the mother's womb, the use of artificial intelligence (AI) can improve the accuracy, efficiency, and speed of diagnosis. In this study, we propose a robust ensemble model called ensemble of tuned Support Vector Machine and ExtraTrees (ETSE) for predicting fetal health. Initially, we employed various data preprocessing techniques such as outlier rejection, missing value imputation, data standardization, and data sampling. Then, seven machine learning (ML) classifiers including Support Vector Machine (SVM), XGBoost (XGB), Light Gradient Boosting Machine (LGBM), Decision Tree (DT), Random Forest (RF), ExtraTrees (ET), and K-Neighbors were implemented. These models were evaluated and then optimized by hyperparameter tuning using the grid search technique. Finally, we analyzed the performance of our proposed ETSE model. The performance analysis of each model revealed that our proposed ETSE model outperformed the other models with 100% precision, 100% recall, 100% F1-score, and 99.66% accuracy. This indicates that the ETSE model can effectively predict fetal health, which can aid in timely interventions and improve outcomes for both the mother and the baby.Comment: 23 pages, 6 Tables, 5 Figure
    corecore