14 research outputs found

    Short Term Electricity Price Forecasting With Multistage Optimization Technique Of LSSVM-GA

    Get PDF
    Price prediction has now become an important task in the operation of electrical power system.In short term forecast,electricity price can be predicted for an hour-ahead or day-ahead.An hour-ahead prediction offers the market members with the pre-dispatch prices for the next hour.It is useful for an effective bidding strategy where the quantity of bids can be revised or changed prior to the dispatch hour.However,only a few studies have been conducted in the field of hour-ahead forecasting.This is due to most of the power markets apply two-settlement market structure (day-ahead and real time) or standard market design rather than singlesettlement system (real time).Therefore,a multistage optimization for hybrid Least Square Support Vector Machine (LSSVM) and Genetic Algorithm (GA) model is developed in this study to provide an accurate price forecast with optimized parameters and input features.So far,no literature has been found on multistage feature and parameter selections using the methods of LSSVM-GA for hour-ahead price prediction.All the models are examined on the Ontario power market;which is reported as among the most volatile market worldwide.A huge number of features are selected by three stages of optimization to avoid from missing any important features.The developed LSSVM-GA shows higher forecast accuracy with lower complexity than the existing models

    Short Term Electricity Price Forecasting with Multistage Optimization Technique of LSSVM-GA

    Get PDF
    Price prediction has now become an important task in the operation of electrical power system. In short term forecast, electricity price can be predicted for an hour-ahead or day-ahead. An hour-ahead prediction offers the market members with the pre-dispatch prices for the next hour. It is useful for an effective bidding strategy where the quantity of bids can be revised or changed prior to the dispatch hour. However, only a few studies have been conducted in the field of hour-ahead forecasting. This is due to most of the power markets apply two-settlement market structure (day-ahead and real time) or standard market design rather than singlesettlement system (real time). Therefore, a multistage optimization for hybrid Least Square Support Vector Machine (LSSVM) and Genetic Algorithm (GA) model is developed in this study to provide an accurate price forecast with optimized parameters and input features. So far, no literature has been found on multistage feature and parameter selections using the methods of LSSVM-GA for hour-ahead price prediction. All the models are examined on the Ontario power market; which is reported as among the most volatile market worldwide. A huge number of features are selected by three stages of optimization to avoid from missing any important features. The developed LSSVM-GA shows higher forecast accuracy with lower complexity than the existing models

    A new framework for electricity price forecasting via multi-head self-attention and CNN-based techniques in the competitive electricity market

    Get PDF
    Due to recent technical improvements, the smart grid has become a feasible platform for electricity market participants to successfully regulate their bidding process based on demand-side management (DSM) perspectives. At this level, practical design, implementation, and assessment of numerous demand response mechanisms and robust short-term price forecasting development in day-ahead transactions are all critical. The accuracy and effectiveness of the day-ahead price forecasting process are crucial concerns in a deregulated market. In this market, the reason for low accuracy is the limitation of electricity generation compared to the electricity demand variations. Hence, this study proposes a suitable technique for forecasting electricity prices using a multi-head self-attention and Convolutional Neural networks (CNN) based approach. Further, this study develops a feature selection technique using mutual information (MI) and neural networks (NN) to choose suitable input variable subsets significantly affecting electricity price predictions simultaneously. The combination of MI and NN reduces the number of input features used in the model, thereby decreasing the computational complexity of the NN. The actual data sets from the Ontario electricity market in 2020 are acquired to verify the simulation results. Finally, the simulation results proved the efficiency of the proposed method by demonstrating increased accuracy by attaining the lowest average value for MAPE and RMSE with a value of 1.75% and 0.0085, respectively, and compared to results obtained by recent computational intelligence approaches. By attaining accurate electricity price results, the significance of this study can be summed up as aiding the electricity industry's operators in administering effective energy management, efficient resource allocation, and informed decision-making.© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).fi=vertaisarvioitu|en=peerReviewed

    Artificial Neural Networks for Spot Electricity Price Forecasting: A Review

    Get PDF
    In this study we review literature related to short-term forecasting of spot electricity prices using Artificial Neural Networks in deregulated competitive power markets. With accurate price forecasts, power market participants can maximize their profits and meet their power commitments using a proper combination of power purchase agreements, bilateral trade and buying/selling electricity through power exchanges in a judicious, efficient and effective manner. Artificial Neural Network models may truly be an answer to short-term electricity spot price forecasting viz-a-viz time-series econometric models. Keywords: Artificial Neural Networks, Spot Electricity, Short term, Forecasting, Power Exchange, Review JEL Classifications: C01; C22; C5

    On the Influence of Renewable Energy Sources in Electricity Price Forecasting in the Iberian Market

    Full text link
    [EN] The mainstream of EU policies is heading towards the conversion of the nowadays electricity consumer into the future electricity prosumer (producer and consumer) in markets in which the production of electricity will be more local, renewable and economically efficient. One key component of a local short-term and medium-term planning tool to enable actors to efficiently interact in the electric pool markets is the ability to predict and decide on forecast prices. Given the progressively more important role of renewable production in local markets, we analyze the influence of renewable energy production on the electricity price in the Iberian market through historical records. The dependencies discovered in this analysis will serve to identify the forecasts to use as explanatory variables for an electricity price forecasting model based on recurrent neural networks. The results will show the wide impact of using forecasted renewable energy production in the price forecasting.This work is supported by the Spanish MINECO project TIN2017-88476-C2-1-R. D. Aineto is partially supported by the FPU16/03184.Aineto, D.; Iranzo-Sánchez, J.; Lemus Zúñiga, LG.; Onaindia De La Rivaherrera, E.; Urchueguía Schölzel, JF. (2019). On the Influence of Renewable Energy Sources in Electricity Price Forecasting in the Iberian Market. Energies. 12(11):1-20. https://doi.org/10.3390/en121120821201211Conference of the Parties, Framework Convention on Climate Change, U.N. Adoption of the Paris Agreementhttps://unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdfEuropean Commission 2018—Vision for a Long-Term EU Strategy for Reducting Greenhouse Gas Emissionshttps://ec.europa.eu/clima/policies/strategies/2050_en#tab-0-1Common Vision for the Renewable Heating and Cooling Sector in Europe: 2020–2030–2050 of the Renewable Heating and Cooling Technology and Innovation Platformhttp://www.rhc-platform.org/publications/Operador del Mercado Ibérico de Energía—Polo Español—Resultados de mercadohttp://www.omie.es/aplicaciones/datosftp/datosftp.jsp?path=García-Martos, C., Caro, E., & Jesús Sánchez, M. (2015). Electricity price forecasting accounting for renewable energies: optimal combined forecasts. Journal of the Operational Research Society, 66(5), 871-884. doi:10.1057/jors.2013.177Grossi, L., & Nan, F. (2019). Robust forecasting of electricity prices: Simulations, models and the impact of renewable sources. Technological Forecasting and Social Change, 141, 305-318. doi:10.1016/j.techfore.2019.01.006Madani, K., & Lund, J. R. (2009). Estimated impacts of climate warming on California’s high-elevation hydropower. Climatic Change, 102(3-4), 521-538. doi:10.1007/s10584-009-9750-8Moemken, J., Reyers, M., Feldmann, H., & Pinto, J. G. (2018). Future Changes of Wind Speed and Wind Energy Potentials in EURO-CORDEX Ensemble Simulations. Journal of Geophysical Research: Atmospheres, 123(12), 6373-6389. doi:10.1029/2018jd028473Jerez, S., Tobin, I., Vautard, R., Montávez, J. P., López-Romero, J. M., Thais, F., … Wild, M. (2015). The impact of climate change on photovoltaic power generation in Europe. Nature Communications, 6(1). doi:10.1038/ncomms10014Martiradonna, L. (2016). Robust against climate change. Nature Materials, 15(2), 127-127. doi:10.1038/nmat4559Mideksa, T. K., & Kallbekken, S. (2010). The impact of climate change on the electricity market: A review. Energy Policy, 38(7), 3579-3585. doi:10.1016/j.enpol.2010.02.035Golombek, R., Kittelsen, S. A. C., & Haddeland, I. (2011). Climate change: impacts on electricity markets in Western Europe. Climatic Change, 113(2), 357-370. doi:10.1007/s10584-011-0348-6Giulietti, M., Grossi, L., Trujillo Baute, E., & Waterson, M. (2018). Analyzing the Potential Economic Value of Energy Storage. The Energy Journal, 39(01). doi:10.5547/01956574.39.si1.mgiuBorenstein, S. (2012). The Private and Public Economics of Renewable Electricity Generation. Journal of Economic Perspectives, 26(1), 67-92. doi:10.1257/jep.26.1.67Aggarwal, S. K., Saini, L. M., & Kumar, A. (2009). Electricity price forecasting in deregulated markets: A review and evaluation. International Journal of Electrical Power & Energy Systems, 31(1), 13-22. doi:10.1016/j.ijepes.2008.09.003Notton, G., Nivet, M.-L., Voyant, C., Paoli, C., Darras, C., Motte, F., & Fouilloy, A. (2018). Intermittent and stochastic character of renewable energy sources: Consequences, cost of intermittence and benefit of forecasting. Renewable and Sustainable Energy Reviews, 87, 96-105. doi:10.1016/j.rser.2018.02.007Woo, C. K., Horowitz, I., Moore, J., & Pacheco, A. (2011). The impact of wind generation on the electricity spot-market price level and variance: The Texas experience. Energy Policy, 39(7), 3939-3944. doi:10.1016/j.enpol.2011.03.084Brancucci Martinez-Anido, C., Brinkman, G., & Hodge, B.-M. (2016). The impact of wind power on electricity prices. Renewable Energy, 94, 474-487. doi:10.1016/j.renene.2016.03.053Paraschiv, F., Erni, D., & Pietsch, R. (2014). The impact of renewable energies on EEX day-ahead electricity prices. Energy Policy, 73, 196-210. doi:10.1016/j.enpol.2014.05.004Milstein, I., & Tishler, A. (2015). Can price volatility enhance market power? The case of renewable technologies in competitive electricity markets. Resource and Energy Economics, 41, 70-90. doi:10.1016/j.reseneeco.2015.04.001Mulder, M., & Scholtens, B. (2013). The impact of renewable energy on electricity prices in the Netherlands. Renewable Energy, 57, 94-100. doi:10.1016/j.renene.2013.01.025Weron, R. (2014). Electricity price forecasting: A review of the state-of-the-art with a look into the future. International Journal of Forecasting, 30(4), 1030-1081. doi:10.1016/j.ijforecast.2014.08.008Contreras, J., Espinola, R., Nogales, F. J., & Conejo, A. J. (2003). ARIMA models to predict next-day electricity prices. IEEE Transactions on Power Systems, 18(3), 1014-1020. doi:10.1109/tpwrs.2002.804943Crespo Cuaresma, J., Hlouskova, J., Kossmeier, S., & Obersteiner, M. (2004). Forecasting electricity spot-prices using linear univariate time-series models. Applied Energy, 77(1), 87-106. doi:10.1016/s0306-2619(03)00096-5Conejo, A. J., Contreras, J., Espínola, R., & Plazas, M. A. (2005). Forecasting electricity prices for a day-ahead pool-based electric energy market. International Journal of Forecasting, 21(3), 435-462. doi:10.1016/j.ijforecast.2004.12.005Misiorek, A., Trueck, S., & Weron, R. (2006). Point and Interval Forecasting of Spot Electricity Prices: Linear vs. Non-Linear Time Series Models. Studies in Nonlinear Dynamics & Econometrics, 10(3). doi:10.2202/1558-3708.1362Garcia, R. C., Contreras, J., vanAkkeren, M., & Garcia, J. B. C. (2005). A GARCH Forecasting Model to Predict Day-Ahead Electricity Prices. IEEE Transactions on Power Systems, 20(2), 867-874. doi:10.1109/tpwrs.2005.846044Catalão, J. P. S., Mariano, S. J. P. S., Mendes, V. M. F., & Ferreira, L. A. F. M. (2007). Short-term electricity prices forecasting in a competitive market: A neural network approach. Electric Power Systems Research, 77(10), 1297-1304. doi:10.1016/j.epsr.2006.09.022Monteiro, C., Fernandez-Jimenez, L., & Ramirez-Rosado, I. (2015). Explanatory Information Analysis for Day-Ahead Price Forecasting in the Iberian Electricity Market. Energies, 8(9), 10464-10486. doi:10.3390/en80910464González, C., Mira‐McWilliams, J., & Juárez, I. (2015). Important variable assessment and electricity price forecasting based on regression tree models: classification and regression trees, Bagging and Random Forests. IET Generation, Transmission & Distribution, 9(11), 1120-1128. doi:10.1049/iet-gtd.2014.0655Anbazhagan, S., & Kumarappan, N. (2013). Day-Ahead Deregulated Electricity Market Price Forecasting Using Recurrent Neural Network. IEEE Systems Journal, 7(4), 866-872. doi:10.1109/jsyst.2012.2225733Sharma, V., & Srinivasan, D. (2013). A hybrid intelligent model based on recurrent neural networks and excitable dynamics for price prediction in deregulated electricity market. Engineering Applications of Artificial Intelligence, 26(5-6), 1562-1574. doi:10.1016/j.engappai.2012.12.012Kuo, P.-H., & Huang, C.-J. (2018). An Electricity Price Forecasting Model by Hybrid Structured Deep Neural Networks. Sustainability, 10(4), 1280. doi:10.3390/su10041280Pórtoles, J., González, C., & Moguerza, J. (2018). Electricity Price Forecasting with Dynamic Trees: A Benchmark Against the Random Forest Approach. Energies, 11(6), 1588. doi:10.3390/en11061588EUPHEMIA Public Description - PCR Market Coupling Algorithmhttp://m.omie.es/files/16_11_28_Euphemia%20Public%20Description.pdf?m=yesReal Decreto 1578/2008, de 26 de Septiembre, de Retribución de la Actividad de Producción de Energía Eléctrica Mediante Tecnología Solar Fotovoltaica para Instalaciones Posteriores a la Fecha Límite de Mantenimiento de la Retribución del Real Decreto 661/2007, de 25 de mayo, para Dicha Tecnologíahttps://www.boe.es/boe/dias/2008/09/27/pdfs/A39117-39125.pdfReal Decreto 244/2019, de 5 de abril, por el que se Regulan las Condiciones Administrativas, Técnicas y Económicas del Autoconsumo de Energía Eléctricahttps://www.boe.es/boe/dias/2019/04/06/pdfs/BOE-A-2019-5089.pd

    Processing hidden Markov models using recurrent neural networks for biological applications

    Get PDF
    Philosophiae Doctor - PhDIn this thesis, we present a novel hybrid architecture by combining the most popular sequence recognition models such as Recurrent Neural Networks (RNNs) and Hidden Markov Models (HMMs). Though sequence recognition problems could be potentially modelled through well trained HMMs, they could not provide a reasonable solution to the complicated recognition problems. In contrast, the ability of RNNs to recognize the complex sequence recognition problems is known to be exceptionally good. It should be noted that in the past, methods for applying HMMs into RNNs have been developed by other researchers. However, to the best of our knowledge, no algorithm for processing HMMs through learning has been given. Taking advantage of the structural similarities of the architectural dynamics of the RNNs and HMMs, in this work we analyze the combination of these two systems into the hybrid architecture. To this end, the main objective of this study is to improve the sequence recognition/classi_cation performance by applying a hybrid neural/symbolic approach. In particular, trained HMMs are used as the initial symbolic domain theory and directly encoded into appropriate RNN architecture, meaning that the prior knowledge is processed through the training of RNNs. Proposed algorithm is then implemented on sample test beds and other real time biological applications

    Annual Report

    Get PDF
    corecore