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Summary 

Electricity Price Time Series Forecasting in Deregulated Markets Using Recurrent Neural 

Network Based Approaches   

In the past decade, electricity price time series system originating from recently deregulated 

electricity markets has been the focus of study for many researchers and power system 

engineers. These are complex dynamical systems which have tipping points at which sudden 

shifts to a spiking dynamical regime occurs. Although there are several techniques available 

for short term forecasting of electricity prices, very little has been done for accurate 

prediction of spikes along with otherwise volatile region of time series. High volatility and 

intermittent spikes are hallmarks of chaos taking place in electricity price time series. 

Modeling these systems require a dynamic approach with accurate approximation 

capabilities, such as recurrent neural networks. Recently recurrent neural networks have 

gained immense interest due to their unconventional ability to solve complex problems. 

However training them in complex dynamic environments such as electricity price time 

series is a challenging task due to various issues, which mainly include problem of local 

optima. However this problem can be rectified through intelligent learning of RNN 

incorporating heuristic knowledge of the system. Recently electricity price time series has 

been extensively investigated using nonlinear systems theory. Utilization of the extracted 

system invariant information to assist in solving issue of local optima can open a new 

dimension in recurrent neural network (RNN) learning and modeling. This thesis focuses on 

extraction of invariant dynamics of electricity price time series and incorporates them for 

developing RNN based pure as well as hybrid models for modeling electricity price time 

series and accurate prediction of price in spiking and nonspiking regime.  
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In this thesis, three RNN based approaches have been developed. First a novel 

recurrent neural network learning algorithm based on fixed point dynamics of time series 

system has been developed. This approach has been shown to bring the trained RNN model 

closer to exact nonlinear system. In the second approach, it has been proposed to hybridize 

the Recurrent Neural Network and a multi-scale excitable dynamic model to closely 

resemble the dynamic properties and spiking characteristics of time series system for 

obtaining an accurate forecasting model. This approach exploits the universal dynamic 

nonlinear approximation properties of RNN and spiking characteristics of self coupled 

FitzHugh Nagumo model. Fitz-HughNagumo (FHN) has been shown to exhibit dynamics close 

to electricity price due to presence of multiple scale dynamics. RNN trained using 

Evolutionary Strategies (ES) has been used for obtaining the parameter values of a coupled 

equation system (FHN). In third approach, the dynamic mechanism behind spike adding in 

time series has been extensively studied. Slow-fast dynamics and the corresponding 

complex homoclinic/heteroclinic scenarios, which are the underlying mechanism behind 

irregular spiking in time series have been exploited for modelling of multi-scale neural 

networks which are trained using singular perturbation theory and gradient descent 

algorithm. The developed models have been tested on various markets worldwide for 

different seasons. After extensive comparison with benchmarks, it has been demonstrated 

that the results are improved considerably. 

To give an overview, the main contributions of this thesis are- 

• Extraction of invariant measures of electricity price time series and confirm the 

presence of multiple scale dynamics in time series. 
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• Development of novel learning algorithm for RNN training incorporating invariant 

measures of time series. 

• Development of a multi-scale neural network models and their learning algorithm 

employing singular perturbation theorem and use them for forecasting of price in 

deregulated electricity markets. The proposed approach improved prediction 

accuracy in spiking region.  
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Chapter 1 

Introduction 

This thesis focuses on developing a better understanding of spike mechanism in electricity 

price time series in deregulated markets and develop novel recurrent neural network (RNN) 

based models and their learning algorithms to improve the prediction on deterministic time 

series system. This approach can also be seen as attaining heuristic information about the 

system in order to achieve global optimal solution in recurrent neural networks learning for 

modeling the complex time series system.  The objectives of thesis can be stated as- 

• To study deregulated markets, price formation mechanism and factors affecting 

volatility of price.  

• Analyze electricity price time series from nonlinear theory perspective and 

understand the underlying dynamics of chaotic and spiking behavior in time series. 

• To employ the obtained information as heuristics to develop recurrent neural 

network based models and their learning algorithms for accurate prediction of 

electricity prices. 

The recent deregulation of electricity markets is one of the major issues in power 

system studies. This current trend, which is increasing further in worldwide markets, has led 

to competition and created opportunities for various market participants to trade electricity. 

Electricity price is determined using a bidding based system, where the final price is the 

outcome of a complex process which depends on various intrinsic and extrinsic factors. 

Moreover non-storable nature of electricity as a commodity causes state of disequilibrium in 

demand and supply. Trading in electricity markets is a more challenging task compared to 

traditional financial trading, as the former exhibits higher volatility. Electricity price differs 
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from other financial commodities as it lacks storage and all generated electricity must be 

consumed, which creates new scope of volatility. In this scenario, it is interesting to examine 

the dynamic nature of resultant electricity price time series and the scope of predictability in 

this system. Moreover, price forecasting is an important requirement for deriving power 

bidding strategies for profit maximization. Accurate estimation of future base load price is 

extremely helpful for the producers and consumers for deriving their respective bidding 

strategy and risk management. The price time series exhibits intermittent spikes at varying 

locations with varying intensity. It is essential to have a good approximation throughout the 

series, however particular attention should be paid to these risky spiky regions, failing which 

can result in loss of millions of worth of utilities.  

1.1 Literature Review on Electricity Price Modeling 

Until now several approaches have been proposed for time series modeling. These 

applied methodologies can be broadly divided into five broad classes. First there are 

production-cost balance based approaches which simulate the generation operations and 

aim to balance demand at minimum cost. However these approaches ignore strategies in 

bidding based scenarios hence not applicable for deregulated competitive markets. There 

are equilibrium based approaches which consider strategic bidding based scenarios. They 

provide excellent insight into prices above marginal cost and their influence on decision of 

market players. However, there is risk involved as the strategy and risk behavior of market 

players has to be decided upfront. The cournot nash equilibrium [1] framework of 

equilibrium approaches which provide price higher than real prices, has limited applicability 

in everyday market. Fundamental methods describe the price dynamics using impact of 

importance of economic and physical factors on electricity price. In these methods the 

association between load, weather situations and other fundamental drivers are postulated 
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and the input units are predicted using parametric or nonparametric approaches [2]. 

However due to fundamental nature of data collected over long time ranges, these models 

are suited for medium and long term rather than short term range predictions. On the other 

hand there is class of quantitative models which characterize and employ statistical 

properties of electricity price while the ultimate objective is evaluation of derivatives and 

management of risk. These models obtain the main characteristics of electricity price time 

series at short horizons instead of actual modeling and prediction. Although these models 

are simple and analytically tractable, their former feature is a limitation. Another class of 

models constitutes statistical approaches which aim to obtain optimal model in term of 

forecasting indices. Either these models employ econometric models in context of power 

market or statistical models developed for load forecasting. Most widely used statistical 

models include multivariate regression, smoothing models and time series based techniques. 

These models can incorporate fundamental factors such as load demand and fuel prices to 

enhance their performance. Statistical models include parametric approaches like ARIMA 

and their higher order variants [3-6], or hybrid models combining statistical modeling with 

the basic concept of supply-demand balance [7]. Electricity demand is heavily influenced by 

economic and business activities and by the weather. Demand is usually characterized as 

highly inelastic because it is a necessary commodity [8]. When there are low levels of 

demand, generators supply electricity using base-load units with low marginal costs, but, 

during summer and winter seasons, during certain days of the week and even within the day, 

higher quantities are needed and generators with higher marginal costs enter into the 

system. Such seasonal factors have been studied in Ref. [9-10] 

Since increases in demand push up prices, there are increasing incentives of even 

expensive generators to enter the supply side, so that some degree of mean-reversion is 
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expected in prices. Most studies employ mean-reverting models [11-14], although some 

allow for non-mean-reverting behavior [15]. Some show that there are interesting 

interactions on the degree of mean-reversion in the price process with other features such 

as time-varying conditional volatility and price spikes [14]. Ref.[14], specifically, incorporates 

multiple jumps, regime-switching and stochastic volatility into a number of mean-reversion 

models and show how sensitive real-option-based models of physical assets in generation 

and transmission can be.  

Volatility in electricity prices varies over time with weather-related and other demand 

and supply forces and it is likely mean-reverting itself for similar reasons as outlined above. 

Ref. [16] proposes a mean-reverting proportional volatility model and find empirical support 

with intraday prices over constant volatility, geometric Brownian motion models. Ref. [17] 

proposed ARCH models for heating oil, natural gas, crude oil and electricity prices but show 

the limitations of the functional model for electricity, which show results close to integrated 

(non-mean-reverting, or “explosive”) processes for volatility. Authors in ref. [9, 13] use 

generalized ARCH (GARCH) models for electricity prices and ensure stationarity in volatility 

when price spikes are captured by separate jump-diffusion processes. Ref. [14] also 

emphasizes the importance of modeling jump processes in electricity prices, especially as 

they relate to monthly seasonal factors.  

These models perform quite well during nonspiking regions where the seasonality 

trends prevail. Finally there are nonparametric artificial intelligence based techniques such 

as ANN, data mining expert models, SVM, fuzzy logic etc [18-20]. AI based models tend to be 

flexible and can handle complexity and non-linearity. This makes them promising for short-

term predictions. In fact a number of authors have reported their excellent performance in 

price forecasting [18-19]. These models have the advantage of tractability which is 
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important for modeling electricity markets but lack performance accuracy in few cases. 

Most of the developed models compare their performances with ANN and statistical 

approaches. However, some of the works indicate that there might be serious problems 

with the efficiency of ANNs and AI-based methods in general. The key limitation comes from 

the difficulty in successful training of models. 

Very few of proposed approaches have explicitly addressed the problem of modeling 

spikes. Some authors have used data mining approach to model spikes uncertainty, their 

level and the associated confidence interval, while wavelet-neural cascade technique for 

normal level prices. Bayesian expert model with support vector machines (SVM) for spike 

forecasting has also been adopted. One of the most researched strand of models for spike 

modeling are stochastic regime switching models which carefully identify different dynamics 

as different operating regimes of the dynamic model and employ probabilistic transition 

among them. A very complete and recent example in this attempt is given in ref. [21] where 

authors have applied the regime switching model as the describing dynamic model. These 

models incorporate various system characteristics and governing factors which lead to more 

robust and realistic spot price modeling, as well as bringing insights about the spot price 

dynamics under various supply and demand scenarios. While not a forecasting tool, the 

dynamics of these models behave as expected and match the statistical properties of the 

time series with accuracy.  

1.2 Theoretical Overview and Motivation 

Spike formation is a well studied phenomenon in many works where it has been proven 

to be a deterministic event. It has been proven that the location of spikes in dynamic 

systems can be determined from the dynamics on the invariant manifold [22]. Moreover, 
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the intensity and amplitude of spike is related to the hyperbolicity of the manifold in the 

neighborhood of spike location and thus is a deterministic quantity if a well trained 

nonlinear model is employed [22]. Neural networks have been proven to be universal 

approximators of nonlinear dynamic systems [23]. In this work neural networks based 

models and their variants have been employed for electricity price time series modeling. A 

brief review of neural networks and associated modeling issues is given in chapter 2 where 

steps by step approach towards acquaintance with neural networks and their 

implementation.    

The spiking behaviour in electricity prices is intermittent at varying locations with 

varying intensity. From dynamical systems point of view, it represents a very complex 

system with possibly multiple behaviours in same system with possible varying stability 

along trajectory in phase space. While processing and forecasting time series of such system, 

there are many issues one of which involves ability to capture the exact nonlinear features 

of dynamic system represented by time series. This becomes absolutely necessary when the 

system exhibits critical transitions. Most of the real world physical system have critical 

thresholds, also known as tipping points, at which the system abruptly shifts its state from 

one to another. This phenomenon is readily seen in medicine, weather, finance etc. In earth, 

abrupt shifts in ocean currents may cause climate changes [24-25]. Spontaneous changes 

known as epileptic seizures can occur in brain EEG signals [26]. Although it is of utmost 

importance to predict these changes, the prediction becomes notably hard because the 

system shows unnoticeable change before tipping point is reached. Intermittent spiking is 

one such phenomenon. The objective is to understand the basic mechanism underlying the 

states exhibited by the system and using the same to model it. The study of deregulated 

markets and the underlying price formation and spiking mechanism is a crucial issue which 
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deserves a separate study. In chapter 3 we analyze the structure of deregulated electricity 

markets worldwide, price formation mechanism and the factors responsible behind volatile 

nature of electricity price time series. Firstly the mechanism behind electricity price in 

deregulated market is discussed. The deformation of structure of market, due to 

deregulation, is studied and various factors behind complexity of electricity price behaviour 

are identified. The studies reveal that the structure of various deregulated markets at 

different geographical locations is different and there are different sources responsible for 

complexity in time series. However they share one similar spiking attribute. They exhibit 

spike occurring at irregular time intervals and exhibit chaotic oscillations in the nonspiking 

region. This motivates the study of the chaotic features of the phase space embodying the 

time series.  

Different Chaotic systems have strange attractors characterized by properties of the 

attractor independent of particular trajectory which are called invariants of the system. The 

study of dynamic characteristics of this kind of time series include study of invariant sets of 

time series and, for this particular work, extraction of dynamic attributes which are the key 

to understanding and modelling of neural networks based on time series. The invariant set 

of a dynamical system is a general entity in nonlinear dynamics. It is imperative to analyze 

time series using nonlinear systems theory and observe the invariants measures constituting 

time series. Embedding dimension is the basic invariant measure which is crucial for 

reconstruction of phase space of time series. Also, it is imperative to measure Lyapunov 

exponent of time series to measure the degree of chaos in the system. However due to 

presence of possible intermittent variations (spiking) in dynamics, Lyapunov exponent is not 

a reliable index, which is why Finite Size Lyapunov Exponent (FSLE) and Scale Dependent 

Lyapunov Exponent (SDLE) are observed to analyze the transient dynamics of time series 
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along with global behaviour. Observing FSLE allows detecting the possible presence of 

hyperchaos in the system and loss of local hyperbolicity. SDLE analysis allows establishing 

the fact that electricity price is not a noisy time series. On the other hand it exhibits complex 

irregular behavior due to the presence of dynamics on multiple scales. Fixed point is also 

one of the most important invariant of time series. Most of the real world time series 

consist of saddle fixed points in phase space giving rise to complicated homoclinic or 

heteroclinic scenarios. Eigenvalues of these saddles determine the behaviour of the system. 

From dynamical system perspective, spiking transition can be approached from variation in 

stability in phase space, synchronization in coupled systems, multiple scale behaviour, etc. 

For the purpose of approximating this complex system, a dynamic variant of neural network, 

i.e. Recurrent Neural Network (RNN) is used in this work. RNN are universal dynamic system 

approximators, which allow a wide variety of dynamic behaviour [27]. As mentioned earlier, 

in this work a dynamical system approach based on nonlinear neural network is adopted to 

model spiking and normal dynamics of time series. The calculated invariant features of time 

series have been exploited for their modelling. The fixed point dynamics and FSLE are used 

for RNN weight initialization and learning. In order to achieve closer approximation of 

nonlinear dynamics of time series, we trained a pure state feedback recurrent neural 

network using the calculated invariant measures. It is shown that incorporation of invariant 

measures in the learning process results in better learning of time series.   However the key 

observation in this work is the presence of dynamics on multiple scales. In the later part of 

this work, the multiple scale dynamics approach is adopted in Chapter 6. The spiking 

behaviour is described as critical transition in a multiple scale system where the system 

dynamics bifurcate due to variation in “parameter”. One of the dynamical systems 

exhibiting multiple scale dynamics is used to study spiking, the well known Fitz-Hugh 
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Nagumo (FHN). A dynamic system with slow and fast scales, namely Fitz-Hugh Nagumo 

(FHN), is used and hybridized with recurrent neural networks. The property of the multiple 

scale equation system allows the mechanism of spiking in such regimes. In turn, the 

parameters and coupling variables of this excitable system are determined using an RNN 

based model. As a result the learned hybrid model would achieve a desired level of 

modelling accuracy. The developed hybrid model was tested in various markets worldwide 

over different seasons to test its forecasting ability, adaptability and robustness. Most 

volatile electricity markets, California, Australia, PJM, Spain and Ontario market in Canada 

were modelled using the proposed approach. Extensive comparative studies suggest that 

our approach yields favourite results in hour-ahead and day-ahead market.  

For more accurate modeling of time series and the associated slow fast dynamics, a 

multiple scale neural network (MSNN) is developed in chapter 7. Slow-fast systems deal with 

slow manifold and fast manifold where the key dynamics of time series occur on fast 

invariant manifold while the dynamics occurring on slow manifold is responsible for 

intermittent critical transitions. The developed model is trained using singular perturbation 

theory for slow-fast systems combined with gradient descent algorithm. The homoclinic 

scenarios involved behind spike adding mechanism are identified and employed for 

modeling of proposed model.     

 

1.3 Structure of Thesis  

This thesis is organized as follows. In the next chapter, a brief overview of neural 

networks and the associated modelling issues is presented. In chapter 3, the effect of 

deregulation on electricity markets and the mechanism behind price generation are 

discussed. Various factors affecting behaviour of price have been discussed and basic 
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statistical properties have been studied. In chapter 4 the nonlinear dynamic characteristics 

of time series have been extracted and analyzed. The invariant attributes of the underlying 

nonlinear system are extracted which are later exploited for dynamic information based 

modelling of RNN. These include Lyapunov exponent, finite time Lyapunov exponent, 

multiple scale behaviour, embedding dimension and fixed point dynamics. Moreover the 

deterministic multiscale nature of time series is established and it is proved that electricity 

price is not a stochastic variable. In chapter 5, the dynamic attributes of time series 

extracted in chapter 3 are incorporated in modelling recurrent neural networks. In chapter 6 

and 7, the multiple scale dynamics of time series have been exploited. Chapter 6 briefly 

describes behaviour of FHN in slow and fast time scales and uses RNN to modulate FHN for 

accurate prediction in time series. In chapter 7, multiscale (slow fast) dynamics of time 

series are extensively studied and the applications of multiple scale recurrent neural 

networks are proposed. The implementation results of these developed models have been 

given in chapter 8 along with discussions. In chapter 9, conclusion and future work have 

been given followed by references. 
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Chapter 2 

Neural Networks 

 

In this chapter a brief introduction of neural network has been given. Various issues have 

been discussed which require major attention while modeling neural networks and 

developing their learning algorithms. Later in the chapter, introductory implementation 

examples are given in order to provide a simple neural network modeling overview. 

In past many years, the advancement of powerful computing systems allowed 

advancement in research in field of neural networks. A neural network is a representation of 

model of biological networks in brain and is a conceptual circuit capable of performing 

computational task. Brain analyzes all patterns of signals sent, and from that it interprets 

the type of information received. The basic model is founded based on biological neural 

network in brain. In neuroscience, a neural network describes a population of physically 

interconnected neurons or a group of disparate neurons whose inputs or signaling targets 

define a recognizable circuit. Communication between neurons often involves an 

electrochemical process. The interface through which they interact with surrounding 

neurons usually consists of several dendrites, which are connected via synapses to other 

neurons, and one axon (output connection). If the sum of the input signals surpasses a 

certain threshold, the neuron sends an action potential [23].  
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Fig 2.1 Schematic of a Biological Neuron 

An artificial neural network (ANN), or commonly just neural network (NN) is an 

interconnected group of artificial neurons that uses a mathematical or computational model 

for information processing. An artificial neural network involves a network of simple 

processing elements (artificial neurons) which can exhibit complex global behavior, 

determined by the connections between the processing elements and element parameters. 

Neural Networks are nonlinear structures. The utility of artificial neural network models lies 

in the fact that they can be used to infer an input output functional relationship from 

observations and also to use it. This is particularly useful in applications where the 

complexity of the data or task makes the design of such a function by hand impractical. An 

artificial neural network is a system based on operation of biological neural networks and 

thus is an emulation of biological neural networks. It is an adaptive system, by which it 

means that the parameters change during operation [23]. 
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Fig 2.2 Multi Layer Perceptron 

 An artificial neural network is developed to perform two main functions, pattern 

recognition and function approximation. The problem of electricity price forecasting falls 

under domain of function approximation. The problem of classification involves task of 

pattern recognition to assign an input pattern to one of many possible classes. This involves 

extensive application of algorithmic implementations such as associative memory. The task 

of function approximation is to approximate an unknown function subject to noise, given its 

attributes. Various streams of engineering require function approximation. In most cases, 

such as time series of dynamical system, the approximated function is required to be 

capable of task of prediction of future values in the time sequence data. In other words time 

series prediction is function approximation with the consideration of time factor. The 

system is dynamic which implies that the same set of inputs can produce different results 

depending on the current state. In the next few sub sections various issues related to neural 

network implementation are discussed.  

2.1 Learning in Neural Networks 
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Learning is a process by which the weight parameters and other free parameters of a neural 

network are adapted through a process of simulation by the environment in which the 

network is embedded [23]. Learning and generalization is perhaps the most important topic 

in neural network research [28], [29], [30]. Learning is the ability to approximate the 

underlying behavior adaptively from the training data while generalization is the ability to 

predict well beyond the training data. A number of practical network design issues related 

to learning and generalization include network size, sample size, model selection, and 

feature selection have been studied extensively in the past [31-44]. The type of learning is 

determined by the manner in which the parameters are changed. A prescribed set of well 

defined rules for the solution of a learning problem is called a learning algorithm. The types 

of learning algorithms can be categorized according to the manner in which the parameter 

updating takes place. These can be broadly stated as-  

1.  Error Correction Learning – Here the training algorithms make use of difference between 

the desired output and the output signal produced by the neural network. The error term 

actuates the update mechanism, the purpose of which is to apply a sequence of corrective 

adjustments to the synaptic weight of the neuron of the network.  

2. Memory-Based Learning – In memory based learning, all of the past experiences are 

explicitly stored in a large memory of correctly classified input-output examples: {(xi, di)}, 

where di denotes the desired response corresponding to an input vector xi. The key 

ingredients of memory based learning rules are-  

a) Criterion used for defining the local neighborhood of the test pattern vector.  

b) Learning rule applied to the training examples in the local neighborhood of  

    the test pattern vector.  
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One of the classic examples of memory-based learning rule is the Nearest Neighbour 

learning rule.  

3. Hebbian Learning rule – Hebbian learning rule is one of the most famous and oldest of all 

learning rules. From the Neurobiological point of view, we can briefly explain this learning 

rule as- If two neurons on either side of connection are activated simultaneously (i.e. 

synchronously), then the strength of that synapse is selectively increased. While if two 

neurons on either side of a connection are activated asynchronously, then that connection is 

selectively weakened or eliminated. 

4. Competitive Learning – In competitive learning, the output neurons of a neural network 

compete among themselves to get active (fired). While in hebbian learning, several output 

neurons may be activated at the same time, here only single output neuron is active at one 

time. This feature makes them suitable to discover statistically salient features that may be 

used to classify a set of input patterns.  

One other important way of classifying the learning procedures is to classify them as 

teacher Forced learning algorithms and algorithms without teacher forced learning. In 

teacher forced learning or Supervised Learning, teacher may be thought of as having 

knowledge of the environment, with that knowledge being represented by a set of input-

output examples. The network parameters are adjusted under the combined influence of 

the training vector and error signal. This adjustment is carried out in a step-by-step fashion 

with the aim of eventually making the neural network to emulate the teacher. However in 

the paradigm known as learning without a teacher, as the name implies, there is no teacher 

to oversee the learning process. Two subdivisions can be identified under this paradigm –  

a)  Reinforcement Learning – In Reinforcement learning, which is closely related  
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    to dynamic programming, the learning of an input-output mapping is performed  

    through continued interaction with the environment in order to minimize a     

    scalar performance index.  

b) Unsupervised Learning – In unsupervised or self-organized learning there is no    

                external teacher or critic to oversee the learning process. Provision is made for  

                a task-independent measure of the quality of representation that the network is   

                required to learn, and the free parameters are optimized with respect to that  

                measure. 

2.2 Stability of Neural Learning Algorithms 

Engineering applications of neural networks rely crucially on qualitative properties of 

stability and dynamic behaviors of the networks. The existence and convergence of a unique 

equilibrium point are of importance for a neural network. The network should have a unique 

global attractive equilibrium point, where uniqueness of the equilibrium point is required to 

avoid the risk of spurious response or the common problem of local minima and hence 

ensure global optimization. In the past few years, stability property of neural networks with 

delays or without delays has been also extensively studied by many researchers, and a large 

number of stability criteria have been derived. Some of criteria have been derived for the 

global asymptotic stability in [45-52], for global exponential stability in [53-57] and for 

absolute stability in [58]. Among the above three kinds of stability properties, global 

exponential stability have the best character. For example, in designing a neural networks, 

one concerns not only on the stability of the system but also on the convergence rate, that 
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is to say, one usually desires a fast response in the neural network, so it is important to 

determine the exponential stability. Ref [59] discusses the network with a unique 

equilibrium point which is globally exponentially stable.  

2.3 Issues in NN learning and applications 

In this work, we have mainly focused on supervised error correction learning. In this 

category, the most famous and widely used algorithm is the gradient based back 

propagation (BP) rule of learning. The advantage of back propagation based learning lies in 

the simplicity in learning and implementation. But the algorithms developed have to deal 

with various issues, for the improvement of which, various modifications have been 

introduced. Some of the issues are discussed and some recent developments towards 

handling of those issues are given below –  

a) Over Fitting: Sufficient amount of data is required for the effective training 

of Neural Network structures. Also the architecture of the network should 

be chosen intelligently so that the modeling of nonlinear function is 

appropriate. If the network has less number of approximating units, the 

network is not able to capture the features of the function and thus function 

is under fitted. If the network size is chosen larger, the network overfits the 

training data approximating the noise also. In recent years, many ANN-

based forecasters are proposed for learning the highly nonlinear load  

pattern, yet their effectiveness are limited by the reduction of training data, 

which causes these ANN models to be susceptible to “over-fitting”. “Over-

fitting” is a common ANN problem that describes the situation that the 

model memorizes the training data but fails to generalize well to new data. 
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Ref. [60] discusses the problem of “over-fitting” and some common 

generalization learning techniques in the ANN literature, as well as 

introducing a new Genetic Algorithm-based regularization method.  

b) Local Optima: Neural network learning is a multi-modal nonlinear 

optimization with many local minima. One of the main limitations of BP 

based algorithm in most cases is the inability of algorithm to escape local 

optimal solution in case of complex environment where the error space is 

multimodal [61]. Researchers have worked over this problem over years. To 

overcome the deficiencies of local-search methods, global minimization 

methods have been developed which can be classified into probabilistic and 

deterministic. These include covering methods which detect the regions not 

containing global minima and exclude them from consideration during 

learning [62], generalized gradient descent methods which flatten the 

search regions containing local optima [63], clustering methods which 

prevent redetermination of already known local optima, random search 

methods such as evolutionary algorithms [64-65] and stochastic models 

which use random variables to model unknown values of objective function 

[66]. The deterministic methods do not work well when the search space is 

too large for the deterministic methods to cover the search space 

adequately. On the other hand, propbabilistic global minimization methods 

use probability for decision making. The simplest of them use restart the 

search process to bring out the search from local optima. All probabilistic 

methods are weak in either local or global search. All these mentioned 

approaches at best find good local minima of multimodal function. In 
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exceptions with restrictive assumptions such as Lipschitz condition, accuracy 

of algorithm performance is guaranteed. Usually in the best performing 

scenarios, global optimization is achieved using hybrid models which use 

heuristic optimization method [67] (which is technically one of the ideas 

behind approach adopted in this thesis). In [67], low-discrepancy sequence 

of points and a simplex local search is combined for achieving global optimal 

solution. One of the recent examples is [68] in which the algorithm used for 

training of weight vectors in a simple single hidden layer Neural Network is 

different from BP. This algorithm resolves this issue by following steps based 

on Lyapunov stability theory. The error function defined in this algorithm is 

UNIMODAL. The basic steps followed are: Define error energy lyapunov 

function V(k) (Positive Definite) of tracking error between output of neural 

network and desired responses. Then choose the adaptive weight updating 

rule such that V(k)-V(k-1) < 0. This ensures minimization of error energy. In 

one of the recent examples [69], Neural Network training is done using 

Chaotic PSO (Particle Swarm Optimization) based algorithm. The reason 

behind adding chaotic perturbations to PSO is to improve the exploration 

capabilities. This trained network is used for the control of nonlinear 

systems which are difficult to model mathematically because of strong 

nonlinearities or lack of information. The unique feature of chaotic process 

is that it can traverse every state by its own dynamics and each state is 

traversed only once. So the chances of trapping in local optima are minimal. 

The chaotic system used is a tent-map system.  
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c) Non Stationary Environment: This is one of the key issues which are faced in 

the case of complex problems where the nature of the environment is time 

varying. Thus the underlying dynamics of the time series are nonstationary 

and varying. Some of the texts have tried to deal with this problem. For ex. 

In [70], the problem of temporal pattern recognition is handled in a time 

varying environment. The problem in handling with temporal pattern 

recognition is the appropriate representation of time-varying patterns. As 

temporal patterns evolve, the earlier trained data based on older patterns is 

not able to classify them appropriately.  

d) Unavailability of Information on Network Structure: Neural Network training 

and its application is associated with several other limitations which had 

been investigated in the past. One of the disadvantages is that the exact 

architecture, which includes number of layers, number of neurons in each 

layer and activation function to be used, of the network which will give the 

best results is unknown in most of the applications. In most of the cases, the 

architecture of the network is randomly tested and the best architecture is 

chosen after several experimentations. This process is time consuming. 

Some of the literatures have tried to solve this problem. For example in a 

recent effort [71], simultaneous training of network architecture and 

weights is done with tabu search and Simulated Annealing used separately 

as training algorithms. For this training procedure, cost is a function of both 

training error and network size. In another recent example [72], the number 

of neurons in the hidden layer of a 3 layer neural network is calculated for a 

classification problem. This paper tells the importance of number of units in 
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the hidden layer of an MLP. It further uses Singular Value Decomposition 

(SVD) for determining the optimal number of neurons in the hidden layer. 

The basic idea uses classification as basis. The optimal number of 

hyperplanes needed for complete classification in higher dimension space is 

related to linear independency of patterns in that space. Thus the number 

of hidden neurons will be equal to the rank of the correlation matrix. But 

the actual data is noisy. So using this method will produce more number of 

neurons than required which will cause overfitting. This problem is resolved 

by observing the eigenvalues obtained by SVD. Various threshold level 

based criteria (applied on the smallest eigenvalues) are proposed in this 

paper to remove noise factor. One other limitation is seen while training of 

Neural Networks for problems with high dimensions. 

e) High Dimensional Data: In the problem environment where the dimension 

of the data used is very high, the input layer size is larger which results in 

requirement of larger number of neurons in subsequent layers of the 

networks. The training becomes a complicated task. One of the solutions to 

this problem is feature selection whereby a data space in high dimension is 

transformed into a feature space. The transformation is designed in such a 

way that the data set may be represented by a reduced number of effective 

features and yet retaining the most of the intrinsic information or the data 

undergoes dimensionality reduction. Principal Component Analysis (PCA) is 

one of the techniques which maximize this dimensionality reduction in the 

most effective manner. A lot of research has been done on this technique 

and its variations and improvements. One of the examples is [73] where 



39 
 

Minor Component Analysis is introduced and used. Minor Component 

Analysis (MCA) is the converse of PCA. It uses the eigenvector associated 

with the smallest eigenvalue of the input covariance matrix. The 

information of covariance matrix is not needed in advance. This algorithm 

sees the associated Neural Network as a stochastic Discrete-time system for 

which the stability theories described by ODEs do not work. This reference 

proves the stability of this deterministic discrete time system using 

conditional expectation of weight vector. The goal of MCA is to converge 

the weight vector to the smallest eigenvector of the covariance matrix using 

MCA learning law. The convergence analysis is proved in the text. One of the 

other modification of PCA is Nonlinear PCA described in [74]. The NLCPCA 

uses the architecture of the PCA network, but with complex variables 

(including complex weight and bias parameters). The application of NLCPCA 

on test problems confirms its ability to extract nonlinear features missed by 

the CPCA. For similar number of model parameters, the NLCPCA captures 

more variance of a data set than the alternative real approach (i.e. replacing 

each complex variable by two real variables and applying NLPCA). The 

NLCPCA is also used to perform nonlinear Hilbert PCA (NLHPCA) on complex 

real data. 

In this work, we have used gradient descent based algorithms while new configurations 

and training algorithms have been proposed. These novel developments primarily deal with 

issues of local optima and nonstationarity in order to obtain better results in complex 

environments. 
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In the next section we present a few examples of NN implementations where gradient 

descent based learning is employed.   

2.4 Implementation Example 

An artificial neural network is developed to perform two main functions, pattern recognition 

and function approximation. In this thesis, two examples were used to test these properties 

of ANN. A simple load forecasting problem is adopted to test function approximation 

application and traffic incident detection for classification applicability of ANN. These two 

implementations work as learning platform for ANN.   

2.4.1 Function Approximation  

Function approximation is identification of the underlying mathematical model of the 

system by using its input signals and output signals as parameters. Thus in a way it’s a black 

box model trying to mimic the linear or nonlinear behavior of system. Artificial Neural 

Networks are used for the task of function approximation on the basis of universal 

approximation theorem that the Neural Networks with atleast 3 layers and sufficient 

number of neurons in the hidden layer with appropriate nonlinear activation function 

(sigmoidal, Gaussian, tanh etc) is capable of assuming any nonlinear function. A classical 

example of function approximation is time series forecasting. In this problem the objective is 

to predict the future values in the time series using the past values as the input to the neural 

network. It is believed that the relationship between the past values and the future value in 

the time series follow a mathematical pattern which is derived by Neural Networks. In a 

typical example, to get familiar with this application of ANN, load forecasting was done 

using a 3 layer Network. The data used was from the California electricity market. Multilayer 
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Perceptron based neural network was used to approximate a time series. This time series 

was the hourly load variation for a zone. The 3 layer neural network (one hidden layer) was 

used with “n” neurons in the input layer and a single output neuron. The input layer 

contained load data for n consecutive hours. The output was the corresponding predicted 

load for the hour “n+1”. The network was trained using back propagation algorithm gradient 

descent algorithm. The data used for the training was the data for 4 months. The trained 

network was tested on next 2 month data. The neural network was observed to have a very 

good prediction capability because of its function approximation property. The MAPE 

obtained on the test data was 1.37%. The performance curve is shown in fig.2.3 in which the 

predicted and actual curves on the test data are shown on the same plot.  

 

Fig 2.3 Predicted and Actual data for the Load Forecasting Problem in California Market 

Then this network was tested on the next 2 months data which had similar variation nature 

but very high values of load. The MAPE obtained on this data was 2.4% without any 
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adaptation. This shows that the trained neural network has a good capability of 

approximation even on a completely different data with similar nature.  

Pattern Classification is one of the most important applications of Neural Networks. 

This application was studied through another implementation of Neural Networks for 

freeway traffic incident which is mentioned in next section.   

2.4.2 Pattern Classification (TRAFFIC INCIDENT DETECTION ONFREEWAYS) 

Pattern Classification includes pattern and sequence recognition, novelty detection and 

sequential decision making. Based on the above mentioned universal approximation 

theorem, it can be stated that any nonlinear classification boundary in arbitrary dimension 

space can be formed so as to classify patterns. Since the focus of this research is neural 

networks, this particular work was done to understand the classification capabilities of 

neural networks. Classification of traffic information collected from freeways is one of the 

examples of two class pattern classification. The objective in this classification problem is to 

classify the signal from the traffic flow (such as traffic volumes, vehicle speed and traffic 

congestion) as input parameters and divides the source of the signal as coming from 

incident condition or a non incident condition. Reduced multivariate model based neural 

network was tested for this classification task.  

Automated Incident detection (AID) is an important part of the modern traffic 

management system due to severe traffic congestion caused by incidents [75]. Freeways 

incidents are non-recurring events such as accidents, stalled vehicles, spilled loads, 

temporary construction and maintenance activities that disrupt the normal flow of traffic 

which persists for some amount of time. 
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Four parameters are used as the performance measure of an AID algorithm which are 

Detection Rate (DR), False Alarm Rate (FAR), Misclassification Rate (MCR) and Mean Time To 

Detect (MTTD) [76-79]. The desirable features of an ideal AID are 100% DR with a 0% FAR 

with minimal MTTD.  The detection rate and false alarm rate of a practical AID system needs 

to be improved for it to become a primary source of incident detection. 

Since the temporal and special disruptions exist for some time in the case of incident, 

this persistency has to be used for the classification task. This makes the input dimension 

large and thus classification task difficult.  

A newly developed Reduced Multivariate (RM) based neural network has been 

employed for learning this classification task. RM model based neural network solves most 

of the intricacies associated with freeway incident detection. The localization properties of 

RM make it an excellent classifier. It carries out dimension reduction which makes it 

tractable even when the training size is large. Presence of a single column weight vector, 

which represents the coefficients of the polynomial model, makes the estimation task even 

easier. Use of appropriate Least Square estimator solves the estimation vector optimally and 

with fast computational speed. This property makes it particularly suitable for freeway 

incident detection task. Simple mathematical form makes the structure of polynomial 

models very easily implementable. Also there is only one weight vector between 2nd layer 

and 3rd layer to be estimated which allows for implementation of linear least square 

estimators. In work a RSVD and Gradient Descent based estimator are experimented 

separately. The weights correspond to the coefficients of nonlinear input components in the 

polynomial expression. Input patterns are formed using the training data. This input terms 

and its nonlinear products are directly presented to layer 2 with unity weights which are not 
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changed during the estimation process. The second layer consists of power, summation and 

product terms of the first layer terms so as to form the higher order polynomial terms. The 

linear combination of these terms with weight parameters is then calculated in layer 3 

which gives the final output. As this is a two-category classification problem, the network is 

trained to give “1” as output for class 1 (incident) and “0” (non incident) for class 2.  

 The parameters involved in the input pattern are-   

Speed - average speed from all lanes in the past 30 seconds (mph). 

Occupancy – Average Occupancy of all lanes in the past 30 seconds (%).  

Volume - average lane volume counted in the past 30 seconds (vphpl, vehicle per hour per 

lane). 

The RM model showed good DR vs FAR characteristics as well which is a good 

characteristic of an AID. Fig. 2.4 shows the DR vs FAR curves of the RM model when 

implemented with Gradient Descent and RSVD based LSE as the classification threshold is 

varied. Both the curves follow similar characteristics with somewhat better performance in 

case of gradient descent based estimator. Ideally this curve should be a right angle as it 

should be passing through 100% DR and 0 % FAR.   

TABLE 2.1 
PERFORMANCE OF  RM MODEL WITH GRADIENT DESCENT AS ORDER OF POLYNOMIAL IS VARIED 

Order (r) DR(%) FAR(%) 

3 89.7 1.7 

4 90.4 1.2 

5 91.8 0.86 

6 92.5 0.46 
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7 93.7 0.27 

8 94.0 0.18 

 

TABLE 2.2 
COMPARISON OF PERFORMANCE MEASURE OF VARIOUS ALGORITHMS 

Algorithm DR(%) FAR(%) MCR(%) 

BP 87 0.10 5.34 

Classical PSO 91.3 0.16 6.38 

CPNN 91.3 0.37 4.78 

CONFS 90.91 0.25 4.4 

RM (with gradient 
descent), r=9 

94.2 0.14 1.7 

 

From the results, it can be seen that using a simple multivariate polynomial model based on 

a three-layer Neural Network structure is capable of solving the freeway incident detection 

problem quite successfully. The motivation for the use of reduced multivariate polynomial 

model comes from the fact that it has been particularly useful in solving pattern 

classification problems in the past with large number patterns available. Freeway incident 

detection is one such class of problem, although the number of features in this problem is 

comparatively large due to persistency of average lane speed, average occupancy and 

average volume during incident conditions. Also since this Neural Network based polynomial 

model takes form of linear equations, the training of the estimation parameters is simple 

and fast. Thus it also allows for use of other least square estimator techniques like recursive 

SVD based least square estimator. 
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Fig. 2.4 Variation of DR and FAR as classification threshold is changed. 

 

2.5 Summary 

In this chapter a brief overview of neural network was provided in order to gain a basic 

understanding of NN based modeling. Various issues associated were discussed and simple 

implementation examples were provided. From the load forecasting problem discussed 

here, local optima is identified as the major obstacle in NN learning. The most discussed and 

helpful solution to this issue is to obtain heuristic information about the system and employ 

the obtained information to assist learning process in achieving global optimal solution. This 

same approach is adopted in this thesis. 

The function approximation problem discussed in this thesis is electricity price 

forecasting in deregulated markets, which is why in next chapters, these markets are 

extensively studied in order to understand the factors affecting volatility of time series while 

in chapter 4, the dynamic characteristics of time series are studied.  
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CHAPTER 3 

Deregulated Electricity Markets and Volatility 

Markets for electric power in many countries around the world are rapidly deregulating the 

processes for power generation and distribution. Regulators had previously controlled the 

market by supply costs based fixing of prices. Currently markets represent a competitive 

interaction of supply and demand. Until restructuring of the electric industry, wholesale 

electricity markets were primarily based on bilateral contracts and cost-based power pools. 

Distribution utilities used to enter in cost-based, long-term contracts to meet baseload 

demand. As demand is varied on a short-term basis from their forecasts, distribution utilities 

would also enter into cost-based short-term transactions in order to match actual demand 

with supply. Power pools were developed to settle these short-term transactions on a 

variable cost basis. Restructuring of the electric industry has allowed several markets to 

transform cost-based bilateral contract markets or power pools into deregulated poolco 

markets [80-81]. Poolcos are similar to power pools as they operate in the short term, but 

differ from them in that the price of power is determined by market forces, not costs or 

regulation. In areas where poolcos are established, most power is eventually purchased 

through poolcos rather than on contract. 

In a poolco market, generation owners send bids to the system administrator for units 

owned by them. These bids represent the prices at which owners are willing to sell power 

from specific units for a specified time period, usually the next 24 hours. The system 

administrator dispatches units in order of lowest to highest bid as needed to meet demand 

for all participants on a continuous basis. The bid price of the last unit dispatched during any 
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given hour is set as the market clearing price for that hour. All units dispatched during that 

hour have the same market clearing price regardless of their bidding price. 

In a perfect poolco, generation owners bid their production costs [82]. Market power 

refers to the ability of one or more generation owner(s) to manipulate the market to their 

advantage for a sustained period of time, causing prices and profits to increase.  

In a poolco, objective of generating firms is to increase the market clearing price since it 

is paid to all units dispatched in each time interval. There are two principal mechanisms by 

which players exercise market power in a poolco. The first mechanism, strategic bidding, 

involves players’ bidding prices above the production costs of their generating units with the 

objective of increasing the market clearing price. The profit from “bidding up” the market 

clearing price can outweigh the risk of being forced on an undesirable price by a competitor. 

In fact, the strategy of “bidding up” the market clearing price is always more profitable than 

bidding marginal costs in deregulated markets. 

In strategic bidding, the bids submitted by generating firms apply to the next 24-hour 

period. Since the demand for electricity fluctuates over any 24-hour period, players 

anticipate these changes in demand in their construction of a strategic bidding schedule for 

this period. Generating players can devise strategic bidding schedules in order to increase 

market clearing prices so that it exceeds the short-run marginal costs of generation in 

almost every hour of the day and still remain safe from being undercut by competitors. 

Strategic bidding also proves to be a factor in future bilateral contract markets. As owners 

“bid up” the price of electricity in poolcos and spot markets, they enter into future bilateral 

contracts if the expected profitability of those contracts is as high as what they can expect in 

the spot market. Strategic bidding in poolcos and spot markets has a direct impact on 
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bilateral contract prices. If owners in a poolco market are found to have market power, then 

those owners would almost certainly also have market power in a bilateral contract market. 

The second mechanism for exercising market power involves players’ withholding some 

of their capacity in the bidding process in order to create more expensive units higher up 

the system-wide supply curve to fix the market clearing price that would be the case 

otherwise. 

 

3.1 Alternate Deregulation Models 

Wholesale bids and offers in electricity are typically cleared and settled by the market 

operator or a special-purpose independent entity charged exclusively with that function. 

These operators do not clear trades but often require knowledge of the trade in order to 

maintain generation and load balance. The commodities within an electric market generally 

consist of two types: Power and Energy. Power is the metered net electrical transfer rate at 

any given moment and is measured in Megawatts (MW). Energy is electricity that flows 

through a metered point for a given period and is measured in Megawatt Hours (MWh). For 

most major operators, there are markets for transmission congestion and electricity 

derivatives, such as electricity futures and options, which are actively traded. These markets 

developed as a result of the restructuring of electric power systems around the world. There 

exist different ways in which the deregulation of market can be implemented. In a 

Centralized Dispatch Model, Retailers (either utilities or competitive suppliers) buy all of 

their needs from pool, resell to end users. All generators bid into pool on an hourly basis 

Pool dispatches generation from lowest cost bid to highest cost bid. Highest cost bid that 

gets dispatched becomes market clearing or “spot” price. All generators that are dispatched 

are paid the spot price. This type of deregulation is carried out in markets such as PJM. In 

http://en.wikipedia.org/wiki/Power_%28physics%29�
http://en.wikipedia.org/wiki/Energy_%28physics%29�
http://en.wikipedia.org/wiki/Megawatt�
http://en.wikipedia.org/wiki/Kilowatt_hour�
http://en.wikipedia.org/wiki/Derivative_%28finance%29�
http://en.wikipedia.org/wiki/Futures_contract�
http://en.wikipedia.org/wiki/Option_%28finance%29�
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Customer Choice Model Customers may contract directly with generators or competitive 

suppliers (power marketers) for their own needs. Network operator runs transmission 

system, does planning and scheduling, balances supply and demand through bid-in 

balancing market, and is responsible for reliability. In Vertically-Integrated, Incremental 

Wholesale Competition Model, Utility affiliates may also bid if permitted by state regulators 

[83]. Over time, more and more generation is acquired through purchase power agreements, 

rate base diminishes. Transmission and distribution planning and operations continue to be 

performed by integrated utility. Integrated utility also distributes power and makes retail 

sales at rates set by state regulators. A wholesale electricity market exists when competing 

generators offer their electricity output to retailers. The retailers then re-price the electricity 

and take it to market. 

 

3.2 Factors Affecting Volatility 

 Factors that influence aggregate demand among local-market distributors by pool 

include weather, season, and regional concentration and location of retail customers; 

aggregate supply is influenced by the location of generators, their market concentration, the 

transmission structure and the bidding and auction process. As a result, deregulated prices 

in these markets are characterized by volatility that varies over time and occasionally 

reaches extremely high levels, commonly known as “price spikes.” Understanding the 

volatility process is critically important to distributors, generators and market regulators as 

it influences the pricing of derivative contracts traded on electric power prices that allow 

them to better manage their financial risks, and also to analyze who attempt to model the 

underlying mathematics and physics behind this phenomenon.  

http://en.wikipedia.org/wiki/Electricity_generation�
http://en.wikipedia.org/wiki/Electricity_retailing�
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        How identifying different factors influencing the volatility process is complex and still 

represents an important research challenge in spite of dozens of studies that have been 

devoted to this question in the economics, statistics, mathematics, and engineering 

literatures. Common features in the electricity price volatility processes spread not only 

across markets but also across different major wholesale electricity trading hubs or pools 

within these markets. These markets are worthy of study, not only because they represent 

among the largest competitive markets for electric power in the world, but also because 

they offer interesting institutional features among the different trading hubs within the 

transmission networks. This is useful because what differentiates electricity is its non-

storability as a commodity, which exaggerates the impact of supply and demand shocks, and 

the complex physical constraints, which govern the flow of power within transmission 

networks [12]. Factors unique to specific hubs, such as weather, the size and concentration 

of local generators, distributors, and the retail market, leads to locational price differences, 

but transmission systems within networks of these geographically-diverse pools should also 

lead to commonness across hubs.  

    We observe that chaos and time-dependent jumps are very important statistical 

features of price volatility across all hubs in each of the three markets we study. However, 

the magnitude and persistence of the volatility process and the magnitude and intensity of 

the jumps are varied. The next section will describe briefly the institutional features of the 

US, Australian and Europian markets.  

 

3.3 Models of Spot Prices  

Futures, forward and options contracts exist in a number of electricity markets and spot 

price dynamics are important for pricing these contracts. This is a meaningful alternative 
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specification, since a number of mathematical models of electricity prices propose one-

factor diffusion models with constant volatility. Another mathematical approach dispenses 

with time-series dynamics and sets up the pricing as an linear-programming algorithm [84]. 

Examples of equilibrium models of pricing and hedging in forward markets include [85-88]. 

Ref [88] show that the forward prices for day-ahead prices in the Pennsylvania-New Jersey-

Maryland (PJM) hub in the U.S. is related to price uncertainty, which they model as a GARCH 

process, as well as demand uncertainty and price shocks, which they model from load 

dynamics. Kellerhals [85] employs a stochastic-volatility model, which he operationalizes 

with a Kalman-filtering algorithm.  

One of the key components in liberalized power sectors is the short-term electricity 

market, where hourly energy prices are set [4]. The market can be settled by two main 

settlement mechanisms, namely, the pay-as offer (also referred to as pay-as-bid) 

mechanism, where each selected supplier is paid at its offer price, and the pay-at-MCP 

mechanism, where all selected suppliers are paid at a uniform market clearing price (MCP), 

usually the price of the most expensive selected offer. However, in practice, the pay-at-MCP 

settlement mechanism is widely accepted and used for payments [5] and [6]. Companies 

that trade in electricity markets make extensive use of price forecast techniques either to 

bid or hedge against volatility. A producer that is able to predict pool prices can adjust its 

price/production schedule depending on hourly pool prices and its own production costs. 

Similarly, once a good next day price forecast is available, a large consumer can derive a plan 

to maximize its own utility using the electricity purchased from the pool. Besides, a good 

knowledge of future pool prices is very useful in valuating bilateral contracts more 

accurately [7]. It has been shown that MCP is most important to determine settlement costs 

and has significant impacts on forward transactions outside of the ISO markets. It is noted 

http://www.sciencedirect.com.libproxy1.nus.edu.sg/science/article/pii/S019689040900288X#ref_bib4�
http://www.sciencedirect.com.libproxy1.nus.edu.sg/science/article/pii/S019689040900288X#ref_bib5�
http://www.sciencedirect.com.libproxy1.nus.edu.sg/science/article/pii/S019689040900288X#ref_bib6�
http://www.sciencedirect.com.libproxy1.nus.edu.sg/science/article/pii/S019689040900288X#ref_bib7�
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that after the day-ahead market, where the major part of the total energy is traded, 

subsequent short-term market mechanisms (such as, intraday markets, ancillary reserves, 

and real-time markets) can be executed in order to provide the final balance between 

power generation and demand [6]. However, usually the major part of the volume traded in 

the electricity markets are related to the day-ahead market[8]. So, this paper focuses on 

day-ahead electricity price prediction. 

In electricity markets, electrical energy is traded as a commodity. However, 

electricity has distinct characteristics from other commodities. The electrical energy cannot 

be considerably stored and the power system stability requires constant balance between 

generation and load. On short time scales, most users of electricity are unaware of or 

indifferent to its price. Transmission bottlenecks usually limit electricity transportation from 

one region to another. These facts enforce the extreme price volatility or even price spikes 

of the electricity market [6] and [9]. Besides, some researchers claimed that a uniform 

auction worsens spot price volatility as compared to a discriminatory auction [7]. Generation 

companies (GENCO) can create price volatility and outliers by their strategic biddings or, in 

other words, through exercising market power [1]. Since in a competitive environment all 

participants have the freedom to operate independently, the overall level of uncertainty in 

the operation of the power system increases, and the variables that might be relevant 

proliferate [10]. The real-time market activities can affect MCP and so the day-ahead MCP 

prediction is difficult under this market structure [11], Neural network based market 

clearing price prediction and confidence interval estimation with an improved extended 

Kalman filter method. Generally, when there is no transmission congestion, MCP is the only 

price for the entire system. However, when there is congestion, the zonal market clearing 

price (ZMCP) or the locational marginal price (LMP) could be employed. ZMCP may be 

http://www.sciencedirect.com.libproxy1.nus.edu.sg/science/article/pii/S019689040900288X#ref_bib6�
http://www.sciencedirect.com.libproxy1.nus.edu.sg/science/article/pii/S019689040900288X#ref_bib8�
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http://www.sciencedirect.com.libproxy1.nus.edu.sg/science/article/pii/S019689040900288X#ref_bib9�
http://www.sciencedirect.com.libproxy1.nus.edu.sg/science/article/pii/S019689040900288X#ref_bib7�
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different for various zones, but it is the same within a zone. LMP can be different for 

different buses. LMP is the sum of generation marginal cost, transmission congestion cost, 

and cost of marginal losses, although the cost of losses is usually ignored [9]. When there is 

no congestion, LMP is the same as MCP. When there is congestion, the transmission line 

constraints are considered in order to balance supply and demand at each bus. The marginal 

cost of each bus is the LMP. 

Market clearing price (MCP) is the lowest price that would provide enough electricity 

from accepted sales bids to satisfy all the accepted purchase bids. At MCP, total sales bids in 

their merit order would be equal to the total purchase bids down to that price in their merit 

order. In the presence of transmission constraints, the price of energy in constrained area, 

i.e., zonal market clearing price (ZMCP) or locational marginal price (LMP) is higher than the 

MCP [89]. LMP is defined as the price of supplying the next MW of load at a specific location, 

considering the generation marginal cost and delivery constraints of the physical network. 

ZMCP may be different for various zones, but it is the same within a zone. LMP can be 

different at different buses [90]. Besides, LMP forecasting is more important for market 

participants and it is more complex than MCP forecasting. The mainland Spain EM, a 

duopoly, is having a dominant player, which changes the price by strategic bidding and thus 

it is hard to predict the electricity prices accurately for the next day [6]. The PJM market 

handles congestion through LMP [91]. Publicly available data set of load weighted day-

ahead MCP of the PECO control zone is considered for PJM market. 

3.4 Market Design, Market Power and Pricing  

Numerous studies in industrial economics show how the design of markets can 

influence price behavior. The attributes of markets that these studies focus on include the 

price elasticity of demand, concentration of ownership and capacity of generators, 

http://www.sciencedirect.com.libproxy1.nus.edu.sg/science/article/pii/S019689040900288X#ref_bib9�
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generation technology, organization of pools (whether participation is voluntary or 

mandatory), transmission market structure and pricing, types of auctions (uniform versus 

discriminatory) and supply-curve bidding rules. With some exceptions, careful time-series 

modeling of spot prices is not emphasized in these studies. Ref [92] is an exception where 

author examines the design of electricity markets in England and Wales, NordPool, Australia 

and New Zealand and confirms that industries with a larger component of private 

participation in the generation market are associated with higher volatility of prices. He also 

shows that markets with mandatory participation in pools have higher price volatility.  

Authors in ref. [93-94] offer clinical studies of the PJM market during the summer of 

1999, California during the summer of 1999 and California power crisis in 2000, respectively, 

in which they relate price spikes to non-cooperative oligopoly behavior. These studies 

emphasize the important differences in the institutional features of the electricity markets 

around the world and their impact on pricing and volatility.  

3.4.1 The Electricity Supply Industry in the U.S., Norway/Sweden and Australia  

a) Australia  

Prior to 1997, electricity supply in Australia was provided by vertically-integrated 

publicly-owned state utilities with little interstate grid connections or trade. The Australian 

National Electricity Market (NEM) was created in 1997 from the merger of the Victoria pool 

and the New South Wales (NSW) pool and the NEM Management Company (NEMMCO), a 

self-funding company owned by participant states, jointly manages system operations. 

There are now five trading regions (Australian Capital Territory, NSW, Queensland, South 

Australia and Victoria), all of which are interconnected. Australia runs about 80 percent coal-

fired generation (15 percent renewable, hydro) and most of the consumption is in the 

eastern states of NSW, Victoria and Queensland.  
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      Demand-side bidding is allowed and wholesale customers can bid into the pool. 

Generation of power is highly concentrated: in Victoria, there are five generators and five 

distribution companies, whereas in NSW, there are two generation and six distribution 

companies. In 2003, all electricity consumers were able to choose between electricity 

retailers. Bids are used to construct a “merit order” and generation is scheduled according 

to this merit order and regional spot prices are calculated for each five-minute period from 

actual supply and demand. Hourly and half-hourly prices are constructed as the average 

price of these five-minute prices. Supply curve bidding by generators can be in price-

quantity pairs and 10 such pairs can be submitted each day. Re-bids and default-bids can be 

issued under certain restrictions. NEM is a mandatory auction market in which generators of 

30 MW or larger compete. NEMMCO manages the wholesale electricity market and settles 

the short-term forward market.  

It should be noted that there has been further restructuring in Australian market since 

2003, however the deregulated market previous to 2003 has been studied in this work and 

the corresponding data has been employed 

b)  United States  

      The 1978 Public Utilities Regulatory Policies Act (PURPA) initiated U.S. deregulation from 

a collection of regulated, local power monopolies to a competitive market of independent 

energy producers and distributors [95]. There are over 3,000 electric utilities in the U.S. that 

deliver power to customers. Most utilities (“wired companies”) are exclusively distribution 

utilities, purchasing wholesale power from those that generate power and distribute it over 

transmission lines owned by the larger “merchant power” utilities to customers. Merchant 

power companies, or generators, generate electricity and trade it on the open market and 

control 25 percent of all U.S. power plants. About 53 percent of net electricity generation is 



57 
 

thermal (coal-fired) followed by nuclear (20 percent), natural gas (14 percent) and 

hydropower (8 percent).  

      The U.S. bulk power system has evolved into three major networks, or power grids: 

Eastern Interconnected System, Western Interconnected System and the Texas 

Interconnected system. Utilities within each power grid coordinate operations and buy and 

sell power among them. Reliability planning and coordination is conducted by the North 

American Electric Reliability Council (NERC) and its ten regional councils. Electricity flows 

over all available paths of the transmission system to reach customers. Independent System 

Operators (ISOs) are regionally-based non-profit entities created by state regulators to 

manage the transmission grid in their area and maintain reliability by making a real-time 

spot and day-ahead forward market in various trading hubs. The major trading hubs (with 

acronyms in parentheses) are Cinergy (CIN, Ohio, Indiana), California North-Path 15 (NP15), 

California and Oregon Border (COB), Four Corners (FC, for Utah, Colorado, New Mexico, 

Arizona), Palo Verde (PV, Arizona), Mead (MEAD, Nevada), Mid Columbia (MID, Washington), 

Entergy (Missouri), New York, New England and PJM.  

In the PJM market, price spikes and the related high volatility are mostly due to the lack 

of generating capacity that can sometimes bring the electric system to emergency 

conditions. A situation of this kind took place, for example, in July 6, 1999, when an 

unexpectedly high relative humidity caused the load to suddenly increase due to air 

conditioning equipment, requiring the implementation of emergency procedures. During 

normal conditions, the volatility of this market is a little higher if compared with the 

volatility of the other markets analysed; this is more evident in summer time, which 

corresponds to yearly peak-loads. Volatility increases in peak load conditions are certainly 

due to a poor installed capacity. 
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c) Ontario 

The Ontario electricity market is unique because of various reasons; for example, even 

after deregulation, about 75% of generation capacity is held by one single entity, and there 

exist various kinds of price and revenue caps for wholesale market participants as well as for 

retail customers. Moreover, Ontario is a single-settlement realtime market, unlike the other 

four adjacent North American electricity markets- the New York, New England, Midwest, 

and PJM markets- which are two-settlement ones. Finally, the Ontario power network is 

directly connected to the New York and Midwest electricity markets and indirectly 

connected to the New England and PJM markets. It is also connected to the regulated 

utilities in Quebec and Manitoba, both having significant energy transactions with other 

utilities in the United States. In view of this, the operation of the Ontario electricity market 

can significantly impact the North American North- East and Mid-West power 

interconnections, and hence its structure, operation and outcomes need close examination. 

d)  Spain 

Spanish market shows the lowest price volatility among the markets analysed. This 

behaviour is mainly due to two reasons: - high amount of installed capacity; in 1999, the 

overall reserve capacity referred to the peak load was over 37%, while in 2000 it exceeded 

32%; - high stability of fuel prices; in Spain, most of the electric energy produced during 

1999 and 2000 came from nuclear (35%) and coal fired (43%) power plants (it must be taken 

into account that national coal is economically boosted by the Spanish government). In 

addition, any possible collusive behaviour among generating companies (the two main 

companies have a market share of over 70%), that could increase spot market prices and 

volatility, has been limited by the enforcement of a stranded costs refund system: the higher 

the market price, the lower the stranded costs refund. 
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3.5 Summary 

In this chapter, the structure of deregulated electricity market has been briefly discussed 

and the price formation mechanism has been studied. Various deregulated markets 

worldwide employ different deregulation models, which is why the volatility behaviour 

differs. However all these markets share one same attribute, which is, occurrence of spikes 

at irregular intervals with chaotic motion in the interspike interval. In the next chapter, 

these dynamics of electricity price time series have been studied. The invariant measures of 

time series, which are the inherent chaotic exponents have been calculated and employed 

for differentiating different markets.    
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CHAPTER 4 

Dynamic Characteristics of Electricity Price Time Series 

Electricity price time series are the class of complex time series with chaotic features. It is 

evident from fig. 4.1 and 4.2 that no clear information can be extracted directly and no 

predictive patterns can be seen from electricity price time series, its projected phase space 

or the corresponding recurrence plot. Chaotic systems have strange attractors characterized 

by properties of the attractor independent of particular trajectory which are called 

invariants of the system. The study of dynamic characteristics of this kind of time series 

include study of invariant sets of time series and, for this particular work, extraction of 

dynamic attributes which are the key to understanding and modelling of neural networks 

based on time series.  

 

Fig.4.1. 2D Projection of phase space of Ontario time series 
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Fig 4.2 Recurrence Plot [96] of Ontario time series 

The invariant set of dynamical system is a general entity in nonlinear dynamics. The 

important stable invariant sets are attractor in phase space and its attributes which are 

associated with asymptotically stable motion. Unstable invariant sets affect the global 

dynamical behaviours of dynamical systems and exhibit more complex properties. In this 

work we study both stable and unstable invariants of time series which include, embedding 

dimension, largest Lyapunov exponent, finite size Lyapunov exponent, scale dependent 

Lyapunov exponent and fixed point dynamics. The details are given in sections 4.1-4.5. 

4.1  Embedding Dimension 
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According to Takens’ delay embedding theorem [97], a time series in phase space can be 

geometrically fully represented by set of points in phase space of dimension n provided that 

n is sufficiently large to be able to uniquely locate the position of each pattern point in 

phase space. Such an embedding space preserves the invariant characteristics of original 

attractor.  

One of the unique characteristics of chaotic system is the non integer value dimension 

of original phase space containing the evolution of dynamical system, and such chaotic 

systems are also known as fractals. Standard manifolds in Euclidean geometrical phase 

space are not fractals but have integer dimensions D = d. The primary importance of fractals 

in dynamics is that strange attractors are fractals and their fractal dimension D is simply 

related to the embedding dimension of dynamical variables needed to model the dynamics 

of the strange attractor.  The first step towards calculating embedding dimension is to 

measure fractal dimension of given dynamic system. In this work, method of box counting 

dimension is employed where the trajectory in phase space where the measurement set is 

covered with small hypercubes of dimension r [98]. Let M( r ) be the number of such 

hyperspheres that contain the trajectory. The dimension is then defined as 
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In practical, the limit 0=r  is not feasible. Instead, the number M( r ) is measured for a 

range of small values of r  and the dimension D is estimated as the slope of straight line 

log(M(r) versus log(r) plot as shown in Fig 4.3. Takens' embedding theorem states that if a 

time series belongs to attractor represented by a D-dimensional manifold then the 

topological properties of this time series are equivalent to properties of embedding formed 

by vectors of dimension n>2D+1.  
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Applying the theory shown above, the embedding dimension and fractal dimension of price 

time series are obtained. The nature of values of these measures is shown in Table 5.1 

below. Given the suspected nonstationarity in the spiking regime of time series, only the 

non spiking part of phase space is used for these calculations 

 

Fig.4.3 Fractal Dimension plots for California market in the non spiking region of time series for 
embedding dimensions 4 to 22 are shown for even numbers. Fractal dimension is estimated as slope. 

 

Table 4.1 
Embedding Dimension Calculation for Various Deregulated Markets  

Market Fractal Dimension (D) Embedding dimension (n) 

PJM 3.34 8 
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Ontario 4.73 11 

Victoria 3.87 9 

NSW 3.58 9 

Spain 2.9 7 

California 2.43 6 

 

From the table 4.1 it is clear that time series corresponding to each deregulated market 

belong to class of chaotic system with fractal dimension. The above analysis shows that time 

series in Ontario and Australian markets belong to phase space with largest dimension. The 

value of embedding dimension is estimated which is used in later stages for time series 

modelling and reconstruction of phase space.    

4.2  Fixed Point Characteristics  

Location of fixed points and the dynamics in their neighbourhood are the inherent invariant 

features of time series which are responsible for local and global dynamics in phase space. 

Most of the real world time series consist of saddle points in phase space giving rise to 

complicated homoclinic or heteroclinic scenarios [99]. Eigenvalues of these saddles 

determine the behavior of the system.  

      In the first step of identifying these eigenvalues and their nature, a method is adopted 

for estimating the position of fixed saddle point in the time delay based reconstructed phase 

space. Then a combined method of radial basis function and linear modelling is used for 

estimation of gradient and eigenvalue of linearized neighbourhood of saddle.  
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4.2.1 Locating Fixed Point 

In the reconstructed phase space, the fixed point lies along the diagonal of 

embedding space. However the actual time series in which the trajectory passes through the 

vicinity of saddle, it is asymptotic to the spanning vectors of embedding space which are the 

set of straight lines corresponding to eigenvectors of fixed point. Since the trajectory 

doesn’t pass through exact fixed saddle of phase space, the point of trajectory closest to 

diagonal line is used as the first approximation of saddle, which is denoted as y . Now we 

choose a hypersphere of radius e and form a matrix eB whose rows constitute vectors 

yxt −  for all the points tx  such that eyxt <− . Then the spanning eigenspace of eB  is 

given by the eigenvectors obtained via SVD of matrix. Let the number of dimensions be d , 

the intersection of the hyperspace spanned by d  eigenvectors with the diagonal of 

embedding space is the closer estimate of location of saddle. In order to obtain this location 

of saddle fixed point, assume the vector normal to the hyperplane as dc , then the fixed 

point satisfies [99] 

( ) 0.. =− dcyux          (4.1) 

which implies 

d

d

cu
cyx
.
.

=
          (4.2)

    
 

where ( )Tu 1..11= .  
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4.2.2 Dynamics in Neighbourhood of Fixed Point 

It is assumed that a nonlinear function σ describes the evolution of vector nx  to 

the next vector in trajectory 1+nx , in the neighbourhood of saddle fixed point. The 

neighbourhood is considered to be a hypersphere of radius e which is formed in the same 

manner as described above. Let the neighbourhood contains N points. The mapping 

function σ  is considered to be a combination of a linear and nonlinear basis functions.  

∑
=

+=
p

l
nlljnj xbwbx

1
0 )()(σ

        (4.3)
 

and the weights are chosen such that the mapping error function over eB i.e. 

∑
=

+ −=
N

n
nn xxJ

1

2
1 ,)(σ

        (4.4)
 

is minimized. This can be achieved using a Least Square solution technique. In this work 

gradient descent algorithm is employed for obtaining the optimal weight values. The 

eigenvalues near the saddle is obtained by calculating Jacobian of the obtained model.   

 The results are given in table 4.2 below  

Table 4.2 
Eigenspectrum of Fixed Point of Time Series 

Market D Eigen spectrum 

PJM 6 ( ),38.0,32.007.0,25.009.0,13.0 −±−±− jj  

Ontario 7 ( )39.027.0,4.002.0,25.013.0,82.0 jjj ±−±±  
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Victoria 6 ( )24.017.0,38.002.0,09.0,433.0 jj ±−±+  

NSW 6 ( )27.0,82.023.0,1.109.0,59.0 −±−±+ jj  

Spain 5 ( )27.022.0,59.01.0,12.0 jj ±−±−  

California 4 ( )61.032.0,02.0,07.0 j±−−  

 

4.3 Lyapunov Exponents 

Largest Lyapunov exponent is one of the characteristics of time series which helps in 

detecting the presence of chaos in dynamical system and quantifying it. The assumption of 

determinism in the chaotic region of electricity price time series is characterized by small 

but positive largest Lyapunov exponent (LLE) of time series. This exponent quantifies 

exponential divergence of close trajectories in phase space and thus estimates the amount 

of chaos in the system. There are many methods available in literature for accurate 

calculation of largest Lyapunov exponent. In this work the largest Lyapunov exponent is 

obtained using fast and easy to implement method which is robust to small variations in 

time series and also works accurately for small size data set in presence of noise [100]. The 

results are shown in Table 4.3 below. Again the calculations are constrained to nonspiking 

region. 
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Table 4.3 
Lyapunov Exponent for Various Deregulated Markets 

Market PJM Ontario Victoria NSW Spain California 

Lyapunov 

Exponent 

0.24 0.69 0.5 0.73 0.17 0.09 

 

The results demonstrate the amount of chaos in all deregulated markets studied in this work. 

It can be observed that Ontario and Australian markets exhibit highest amount of chaos with 

largest values of LLE.    

4.4 Finite Time Lyapunov Exponent Analysis and Local Instability 

While asymptotic properties exhibited by dynamical systems are extensively studied and 

provide comprehensive information about the system, properties exhibited over finite time 

intervals are difficult for systematic description. However, investigating transient behaviours 

of dynamical systems is quite important in real world systems such as electricity price time 

series. A typical time series plot of electricity prices exhibits transient behaviour such as 

intermittent short lived spikes. Lyapunov exponents are useful tools applied for measuring 

such sensitivity in the case of asymptotic chaos, therefore it is important to observe and 

analyze finite-time Lyapunov exponents for understanding and characterizing the class of 

transient chaos present in the system. Studies of such systems with chaotic transients 

conclude that the behaviour can be either chaotic or periodic. Among various tools that may 

be used to distinguish between chaotic and nonchaotic evolution, finite time lyapunov 

exponents can be used. 
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 The key reason behind investigating FTLEs is the detection of loss of hyperbolicity in 

the system. Loss of hyperbolicity corresponds to loss of local stability along the direction 

normal to invariant manifold of time series. This loss of local stability is characterized by the 

change in real axis behaviour of one of the negative lyapunov exponent, or in other word 

change in sign of the corresponding lyapunov exponent, which adds an expanding direction 

of the invariant manifold. This phenomenon is popularly known as Unstable Dimension 

Variability (UDV).  This is an important investigation as presence of UDV can severely limit 

the scope of predictability and determinism in time series system [101].  

 While it is possible to obtain FTLEs using statistical methods [102] similar to those used 

for Lyapunov exponents, the approach adopted in this research is that the jacobian 

approximation be calculated in a mathematical manner. Here a model based approach has 

been employed for calculation of FTLEs, reproducing correctly variation in time of the finite-

time lyapunov exponents corresponding to transient chaos. A nonparametric model (RBF) 

based approach for calculation of FTLE has been implemented, because of excellent 

approximation abilities of RBF. They are defined in local neighbourhood of a point phase 

space with sufficient neighbours. For a system such as electricity price time series discussed 

herein, a numerical approximation for the Jacobian is readily available via the method 

described for obtaining fixed point behaviour in  Section 4.2.2.   

The results obtained for FTLEs for deregulated markets did not exhibit any behaviour 

supporting loss of hyperbolicity along the time series. The eigenspectrum of time series 

corresponding to deregulated markets were determined along the trajectory and it was 

observed that FTLEs do not change sign. One result with minor importance was obtained for 

3rd largest finite time lyapunov exponent for Ontario market (the first and second largest 
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FTLE’s remain positive during the complete time series). The result obtained is shown in 

Fig.4.4 where it is evident that FTLE doesn’t change sign during the course of time series 

except at 3 locations for only one hour which is an inconclusive observation from 

hyperbolicity point view.     

 

Fig. 4.4 Third Largest FTLE for Ontario Market Time Series 

From the above analysis it is evident that FTLEs for electricity price markets do not lose 

hyperbolicity and it can be conclusively said that UDV is not the responsible mechanism 

behind spiking dynamics.   
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4.5 Scale Dependent Lyapunov Exponent (SDLE): 

Despite extensive studies on electricity price time series using chaos theory, [103-106] 

fractal scaling analysis, and many other methods in the last decade, the issue of whether 

electricity price time series is chaotic or stochastic remains highly controversial. The debate 

can hardly be settled if one does not go beyond the standard theories of chaos and random 

fractals.  Chaos theory is mainly concerned with apparently irregular behaviors in a complex 

system that are generated by nonlinear deterministic interactions with only a few degrees 

of freedom, where noise or intrinsic randomness does not play an important role, while 

random fractal theory assumes that the dynamics of the system are inherently random. To 

shed new light on the problem, here we employ a newly developed multiscale complexity 

measure, the SDLE. SDLE is calculated in this work using the method proposed in [107]. 

In the case of a scalar time series x(1),x(2),…,x(n), in the time delay based reconstructed 

phase space, SDLE can be obtained using divergence of distance based approach. Let us 

denote the initial distance between two nearby trajectories by ε0 and their average 

distances at time t and t+Δt, respectively, by εt and εt+Δt, where Δt is small. The SDLE λ(εt) is 

defined by [107]  

t
ttt

t ∆
−

= ∆+ )ln()ln()( εεελ
        (4.5)

 

To compute SDLE, we can start from an arbitrary number of shells,  

,...,2,1, =∆+≤−≤ kVV kkjik εεε
      (4.6)

 

where Vi,Vj are reconstructed vectors and εk (the radius of the shell) and Δεk (the width of 

the shell) are arbitrarily chosen small distances (Δεk is not necessarily a constant). Then we 
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monitor the evolution of all pairs of points (Vi,Vj) within a shell and take average. Equation 

(4.5) can now be written as  

t

VVVV tjtittjtti
t ∆

−−−
=

++∆++∆++ lnln
)(ελ

      (4.7)
 

where t and Δt are integers in unit of the sampling time and the angle brackets denote 

average within a shell. 

The initial set of shells for computing SDLE serves as initial values of the scales; through 

evolution of the dynamics, they will automatically converge to the range of inherent scales. 

This is emphasized by the subscript t in ε when the scales become inherent, index t can then 

be dropped. Using this evaluation, the deterministic nature of electricity price time series 

can be established using the following three cases, which distinguish between low 

dimensional chaos, high dimensional chaos and stochastic noise. 

a) For clean chaos on small scales and noisy chaos with weak noise on 

intermediate scales, eq (4.7) follows the behavior 

       1)( λελ =          (4.8) 

Such a definition of chaos is able to detect chaos in intermittent time series 

with a long quiescent phase during which neighbouring trajectories do not 

diverge. 

b) For variation in chaos [108-109] on small scales,  

,ln)( εγελ −=         (4.9) 
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where γ>0 is a parameter.  

c) For random 1/f2H+1 processes, where 0<H<1 is called the Hurst parameter which 

characterizes the correlation structure of the process: depending on whether H 

is smaller than, equal to, or larger than 1/2, the process is said to have 

antipersistent, short-range, or persistent long-range correlations, 

H/1)( −≈ εελ                    (4.10) 

Note that the standard Brownian motion corresponds to H = 1/2 and generally 

H<1/2 for electricity price time series 

The result of SDLE procedure is shown in Fig. 4.5 as an example for the most volatile 

Ontario market. The fig indicates that curve most closely follows eq (4.9)  
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Fig.4.5. SDLE plot for Ontario Market 

The above plot immediately disregards presence of stochastic fluctuations in time series 

while variation in chaos at small scale, hence multi-scale behavior is evident. 

4.6 Summary 

In this chapter some selected nonlinear measures of time series are measured and 

observed. The main contributions and conclusions of this chapter come from the FSLE and 

SDLE analysis, which are local exponents. The observation of FSLE confirms that loss of 

hyperbolicity, or UDV is not the underlying mechanism behind spiking. Moreover the SDLE 

analysis confirms that noise does not play any role behind spiking dynamics, while it is the 

multiscaling characteristic of time series which are responsible behind complex behavior. 

Largest Lyapunov exponent and correlation dimension are the key invariant measures of a 
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chaotic time series. The values of obtained largest lyapunov exponent and fractal correlation 

dimension indeed confirmed the chaotic nature of time series in the interspiking region. 

Moreover the correlation dimension assists in obtaining the dimension of phase space in 

which a phase space can be reconstructed with topological sufficiency. This embedding 

dimension is used later for modeling of recurrent neural networks. Another important 

invariant measure obtained in this chapter is fixed point dynamics. The location of fixed 

point and the dynamics in the neighborhood are the invariant information which ought to 

be an essential component of the describing dynamic model. In the next chapter, these 

calculated invariant measures of time series are employed for developing neural network 

based models. The basic motive behind this approach is to bring the developed model close 

to actual dynamics of time series.    
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Chapter 5 

Electricity Price Time Series Prediction Using RNN Trained Using Invariant Dynamics 

Training recurrent neural networks (RNN) is one of the key challenges in nonlinear 

optimization. In this chapter, an approach based on the consideration that nonlinear time 

series are chaotic signals has been presented for intelligent learning of Recurrent Neural 

Networks. A desirable characteristic of RNN training algorithms is to be able to learn the 

inherent dynamic of the system to be approximated. In this chapter, some of the invariant 

dynamic features of time series have been extracted and incorporated in the training of RNN 

as constraints. It is demonstrated that this approach brings the trained model closer to exact 

nonlinear system. Time series from modern deregulated market electricity price have been 

modelled using the proposed approach. After extensive comparison with benchmarks, it has 

been demonstrated that the results are improved considerably.  

5.1 Introduction 

Currently there is an exceeding interest in recurrent neural networks learning 

algorithms. Training RNN weights is one of the key challenges due to sensitivity of network 

behaviour on feedforward and feedback weights. Concerning function approximation, 

specifically time series forecasting, there are many issues one of which involves ability to 

capture the exact nonlinear features of dynamic system represented by time series. This 

becomes absolutely “necessary” when the system exhibits critical transitions. Most of the 

real world physical system have critical thresholds, also known as tipping points, at which 

the system abruptly shifts its state from one to another. This phenomenon is quite often 

seen in medicine, weather, finance etc. In earth, abrupt shifts in ocean currents may cause 
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climate changes. Spontaneous changes known as epileptic seizures can occur in brain EEG 

signals. Although it is of utmost importance to predict these changes, the prediction 

becomes notably hard because the system shows unnoticeable change before tipping point 

is reached. Moreover the prediction models are not accurate enough and thus do not hold 

the essential dynamic features of system to forecast reliably where the critical threshold is 

present in phase space. However the behaviour of dynamic system near a critical point 

exhibits generic properties which explain that sharp transitions in a range of complex 

systems are related. In phase space, critical transitions correspond to bifurcation. There 

exist leading indicators that occur in the non equilibrium state of dynamic system before 

critical transition which are invariant variables or features. Such indicators, if existent in 

predictor models, can dramatically improve forecasting of critical transitions as well as 

overall time series modelling. These indicators are the footprints of critical transition on the 

phase space trajectory. We try to model an RNN using a novel learning algorithm which can 

most accurately inherit the invariant dynamics of nonlinear system so that these indicators 

can be captured.    

A gradient descent based training algorithm has been proposed which incorporates the 

invariant features of the dynamic system. This approach presents the possibility to find the 

optimal value of weights and biases for RNN in a gradient based supervised manner while 

using the invariant features as heuristic information. This is a unique attempt to employ 

heuristics in real world time series modelling.  

For accurate dynamic modelling in supervised learning, trained model should posses 

the same dynamic properties as the teacher signal. The learning problem includes modifying 

the weight of the network so that the trajectory has specified characteristics. However, this 



78 
 

training is a challenging task due to complexity of the error surface where the network often 

converges to undesired local optima. A possible solution to this problem is intelligent weight 

initialization. Invariant measures, in particular fixed point dynamics can be employed as 

necessary heuristic information for weight initialization. In the later stages, the fixed point 

dynamics are enforced on the RNN model during training using projection gradient descent 

learning and finite time Jacobian information are incorporated using penalty function based 

approach. This chapter includes extensive computation of various steps involved in this 

process. Section 5.2 discusses RNN weight initialization employing the fixed point dynamics 

derived in Section 4.2. In Section 5.3, the training algorithm based on projection descent 

learning is derived for enforcing fixed point conditions during each learning step. In Section 

5.4 the learning of local jacobian is incorporated using penalty function based approach. 

Finally the trained model is tested on electricity price time series data and results are 

presented along with discussion. 

 

Fig 5.1 Elman State Feedback Recurrent Neural Network 
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5.2 Weight Initialization  

The objective is to initialize U (feedforward weights from input to hidden layer), W 

(feedback weights) and V (feedforward weights from hidden layer to output layer). In this 

work the weights are initialized using the fixed point information of the system. Fixed points 

and the dynamics in their neighbourhood are the most important invariant information of 

the dynamic system as they affect the local system properties and, in most cases, global 

dynamics of the system. Most of the real world systems exhibiting complex chaotic 

properties consist of fixed points in the form of saddle and thus the phase space has 

homoclinic or heteroclinic orbits. Moreover it will be evident from discussion in Chapter 7 

that dynamic system such as electricity price time series with intermittent spiking dynamics 

consist of saddle in phase space where homoclinic orbits are characterized by two time 

scales. The position of saddle and the eigenvalues of linearized neighbourhood of saddle are 

key invariant information of the given dynamic system which we enforce during weight 

initialization and learning of recurrent neural network. 

Insights from control theory have helped in developing gradient descent based 

algorithms for learning of RNN. Different methods have been developed which calculate the 

gradient in a different and efficient manner. However the computational complexity is the 

main shortcoming of these approaches. So far gradient based approach has been used for 

learning. Most of the gradient based algorithms such as backpropagation through time [110], 

forward propagation [111], etc are just variation of a unified approach. In this thesis, a 

gradient descent based approach has been modified via incorporating invariant dynamics in 

the learning procedure.  

5.2.1  Identifying Fixed Point Location and Neighbourhood Dynamics  
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In this section, a method is adopted for estimating the position of fixed saddle point 

in the time delay based reconstructed phase space. Then a model which is a combination of 

radial basis function and linear modelling is used for estimation of gradient and eigenvalue 

of linearized neighbourhood of saddle.  

In the reconstructed phase space, the fixed point lies along the diagonal of embedding 

space. However the actual time series in which the trajectory passes through the vicinity of 

saddle, it is asymptotic to the spanning vectors of embedding space which are the set of 

straight lines corresponding to eigenvectors of fixed point. Since the trajectory doesn’t pass 

through exact fixed saddle of phase space, data point of trajectory closest to diagonal line is 

used as the first approximation of fixed point, which is denoted as 0Y . Now we choose a 

hypersphere of radius ε and form a matrix εB  whose rows constitute vectors 0YX n −  for all 

the points nX  such that ε<− 0YX n . Then the eigenspace spanning εB  is given by the 

eigenvectors obtained from SVD of matrix. The exact number of significant dimensions of 

spanning space is obtained as the number of significant singular values. Let this number of 

dimensions be d , the intersection of the hyperspace or hyperplane spanned by d  

eigenvectors with the diagonal of embedding space is the closer estimate of location of 

saddle. In order to obtain this location of saddle fixed point, assume the vector normal to 

the hyperplane as dc , then the fixed point 0x .u satisfies. 

0)..( 00 =− dcYux          (5.1) 

or, 
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d
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0 =
          (5.2)

 

where ( )Tu 1..11= .  

The neighbourhood is considered to be a hypersphere of radius ε which is formed in the 

same manner as described above, however this time we use 0x .u as the center of 

hypersphere. Let the neighbourhood contains N points. It is assumed that a nonlinear 

function σ describes the evolution of vector iX  to the next point in time series 1+iX , in 

the neighbourhood of saddle fixed point. The mapping function σ  is considered to be a 

combination of a linear and nonlinear basis functions.  
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        (5.3)
 

Here 0b is the linear part. And the weights liw , pl ,..,1=  are chosen such that the mapping 

error function over εB , i.e. 
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        (5.4)
 

is minimized. This can be achieved using a Least Square solution technique. In this work 

gradient descent algorithm is employed for obtaining the optimal weight values. The 

eigenvalues near the saddle are obtained by calculating jacobian of the obtained model. In a 

delay embedded phase space, the jacobian at a particular point Xi in trajectory is given by  
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Here 1+ix is the output of radial basis function eq. (5.3). Lyapunov exponent of the linearized 

neighbourhood of iX  is given by the eigenvalues of this jacobian. The result was 

demonstrated and discussed earlier in table 4.2 in section 4.2. 

5.2.2 Fixed point based initialization  

The objective is to initialize feedback, feedforward and third layer weights using the 

fixed point information. Let us denote these weight matrices as W, U and V respectively. 

Here yR, X and z are the scalar output, input vector and state vector respectively.  

)( zWXUfVyR ⋅+⋅⋅=         (5.6) 

Here Ry is the RNN output, X is the input vector including bias and z is the state vector. The 

RNN following the saddle fixed point x0 and the dynamics has to follow these three 

properties.  

1. For input vector x0.u, the output is equal to x0. Or 

00 )( xzWuxUfVyR =⋅+⋅⋅=        (5.7) 

where Ry  is the output of RNN  
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2. The jacobian of RNN is same as the calculated gradient of time series at the saddle 

fixed point. In a Takens’ delay embedding based restructuring, this condition can be 

formulated as  
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  (5.8) 

here matrix on right hand side is the obtained jacobian from time series.

 

3. Matrices W should be such that state vector is an asymptotically stable equilibrium 

when input vector is at the saddle. This condition can be formulated for the stability 

of state vectors for given input as follows.  

In the RNN formulation (5.6), the state evolution under constant input can be represented in 

continuous form as  

)( zWxUfz
dt
dz

⋅+⋅+−=
        (5.9)

 

For the given input at fixed point, it is desirable that the after short transient period, the 

network state reaches a steady state irrespective of the initial state. This implies that state 

should be attracted to a unique global equilibrium which is conditional on matrices  W  and 

probably U . These conditions are presented as a theorem.  
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Theorem 5.1: A network represented by (5.9) reaches a unique equilibrium state if the 

following condition is satisfied (where f is the nonlinear sigmoid function) 

( )∑∑ <
i j

ij fw 2'2 max/1
                   (5.10)

 

Let )(1 tz  and )(2 tz be the two solutions of (5.9). Let 

2
21 )()()( tztztJ −=

                    (5.11) 

Differentiating J with respect to time, 







 −−=
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dt
tdJ T )()())()((2)( 21

21
                 (5.12)

 

Using (5.9), we obtain,  

( ) [ ])()()()(2)()(2)(
2121

2
21 zWxUfzWxUftztztztz

dt
tdJ T ⋅+⋅−⋅+⋅⋅−+−−=

  (5.13)
 

Using Schwarz’s inequality [112], the expression becomes 

)()()()(2)()(2)(
2121

2
21 zWxUfzWxUftztztztz
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(5.14)
 

Now by mean value theorem, for maximum possible value of f, the equation becomes 

  ))()((|)(max(|)()(2)()(2)(
21

'
21

2
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tdJ T −⋅⋅−+−−≤

        (5.15)
 

Again applying mean value theorem, 
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Let 









⋅− ∑∑

i j
ijwf 2' |)(max(|1 = β , then multiplying both sides of (5.17) by )exp( tβ , 

we obtain 

( ) 0)( ≤tetJ
dt
d β  or       

teJtJ β−≤ )0()(                   (5.18) 

Given that )(tJ  is non-negative, it follows that )(tJ approaches zero as ∞→t , which is 

why starting from any initial condition, the states approach a unique equilibrium, which 

completes our proof.  

These conditions are satisfied progressively in iterative manner. Initially we start with 

randomly chosen U and W satisfying condition (5.10). Using these values, a steady state 

value of state vector is obtained using continuous application of equation (5.9). Now vector 

V can be obtained using condition 2, which can be solved using simple linear equation 

system. After we have all three matrices, value of output y is calculated. After calculating 

output y, matrices U and W are modified using gradient descent, while satisfying condition 

(2).  This particular procedure is one iteration. We repeat these iterations until output 

reaches equilibrium which is equal to y0. 
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5.3 Fixed Point Constraint During Learning 

Fixed point location and dynamics are the key invariant of nonlinear system, which should 

be included in the predicting RNN system. In this section the fixed point conditions derived 

in previous section are enforced during each step of continuous learning of RNN along the 

trajectory. This problem is approached as a constrained optimization point of view where 

the fixed point dynamics can be assigned as constraints while minimizing the mapping error 

over the whole time series. The problem is formulated as: 

 Minimize for U,V,W: ( )∑
=

−=
N

i
Rii YX
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            (5.19) 

Such that :  

00 )( xzWuxUV =⋅+⋅⋅
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( )∑∑ <
i j

ij fw 2'2 max/1
                 (5.22)

 
Where (5.20) and (5.21) are nonlinear equality constraints and (5.22) is an inequality 

constraint. In this work we enforce (5.20) and (5.21) using projected gradient descent 
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method. In this method the direction of descent also provides a constraint satisfying feasible 

point at each step, or the direction of descent is projected along constraint manifold.  

In order to solve above equation, the let us first consider the general linear equality 

constrained problem 

Minimize )(wf                    (5.23)
 

Such that 0=− bAw  

Here A  is a pr ×
 
matrix and b is r  vector.   

The gradient projection method is based on following argument [113]. Lets assume that w′   

is feasible, i.e. A direction ( )1, =ss  is sought such that a step sα  from in the direction w′  

also satisfies constraint, i.e. 0)( =−+′ bswA α . This implies 

0=As                     (5.24) 

Moreover since 1=s its follows that 

01 =− ssT                      (5.25) 

Now it is required to calculate the steepest direction s such that it satisfies constraints (5.24) 

and (5.25). This is equivalent to determine s such that directional derivative at w′ :  

swf
d

dF T

s

)()( ′∇=
α
α

                    (5.26)
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is minimized w.r.t. s, where ( )swfF αα +′=)( . By Lagrange theory for minimizing a 

function subject to equality constraints, we formulate the problem as lagrangian function 

)1()(),,( 00 ssAswfsL TTT −++′∇= λλλλ                  (5.27) 

where  [ ]psss ,,,1=  correspond to cosine of s . The lagrangian conditions for 

constrained minimum are: 

02)( 0 =−+′∇=∇ sAswfL T
s λλ                   (5.28) 

0==∇ AsLλ                      (5.29) 

0)1(
0

=−=∇ ssL T
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Equation (5.28) yields, 
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Now by (5.29) and (5.30)  
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            (5.32) 

Now substituting (5.32) in (5.31), we get 
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where we choose negative sign for maximum steepest descent. Thus the constrained 

direction of steepest descent is obtained as 

( )
λ
λ

T

T

Awf
Awfs

+′∇
+′∇

−=
)(
)(

       

            (5.33) 

Now from (5.29) and (5.31), we get ( ) 0)( =+′∇ λTAwfA . Thus if 0≠s  then 

)(wfAAAT ′∇−=λ , which implies  

( ) )(1 wfAAAT ′∇−=
−

λ                    (5.34) 

Substituting in (5.32) we get the final direction of constrained gradient descent as  

( )( )
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−
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                   (5.35) 

 

5.3.1 Extension to nonlinear constraint 

The original RNN learning is an optimization problem with nonlinear constraints w.r.t weight 

parameters as shown in eq (5.19) with equality constraints (5.20), (5.21) which can be 

formulated in general form as   

Minimize )(wf ′                     (5.36)
 

Such that riwhi ,...,2,1,0)( ==′  
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where the constraints are nonlinear. For solving this, the constraints can be linearized at 

every feasible point w′  by Taylors expansion:  

))(()())(()( wwwhwhwwwhwh i
T

iii ′−′∇+′≅′−+′=                 (5.37) 

which allows for the following constraint: 

riwwwhi
T ,...,2,1,0))(( ==′−′∇                  (5.38)

 

in the neighbourhood of w′ , since 0)( =′whi . This is written in matrix form as  

0)(
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which is equivalent to the linear constraint problem (5.20)  

where 
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(5.37) implies that matrix A is dependent on feasible point w′ . However due to nonlinearity, 

the approximation of linearization is applicable only in a small neighbourhood of w′ , which 

can result in condition 0)( 1 ≠whi where )(1 sww α+′= causing failure in satisfaction of 

constraint. A correction step 11 ww → is incorporated, such that the projection at 1w and 1w

is same, or 

( )( )( ) 011
1

=−−
− wwAAAAI TT

                   (5.41) 

Now since bAwwh −=)(  for both )( 1wh and )( 1wh , and given the fact that 0)( 1 =wh , 

we get  

( ) ( )1
1

11 whAAAww TT −
−=                   (5.42) 

which is the actual next step in gradient descent.  

 

5.4 Local Jacobian Learning    

Learning of Jacobian is beneficial in neural network training for learning of transient 

information hidden in time series. Moreover, learning of gradient of time series along with 

input output vector mapping enable better generalization. The merits of learning of jacobian 

along with the actual input output mapping has been demonstrated with examples in few 

works such as [114]. In this work we test if simultaneous jacobian learning assists in 

improving results in case of electricity price time series forecasting. In this section we 

employ penalty based formulation of gradient descent method for simultaneous learning of 
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mapping and its jacobian. This error correction learning rule and the corresponding weight 

adjustment can be formulated as 

jm www ∆+∆=∆
                   

(5.43) 

Where mw∆ is the weight adjustment for minimizing mapping error derived in the previous 

section using projected gradient descent, and jw∆ is the weight correction corresponding 

to minimization of jacobian error. This implies, 

w
Ew m

mm δ
δη−=∆  and 

w
Ew J

JJ δ
δη−=∆

                 
(5.44) 

where mE is the mapping error and JE is the jacobian error, while mη and Jη are the 

corresponding learning rates.  

We can derive the second term in (5.44)    

( )∑ −=
n

nnJ vvE 2ˆ
2
1

, where 
n

n x
yv

∂
∂

= = ∑ nkkk ufw ' ,               (5.45)  

and nv̂ is the actual gradient of time series with respect to state n which is calculated for 

each point in the trajectory using the method employed for calculating FTLE in section 4.5. 

5.5 Summary 

In this chapter a novel learning approach is proposed for training recurrent neural networks 

in complex scenario such as electricity price time series. The invariant dynamics of time 

series are incorporated during the learning process (in particular fixed point dynamics) and 
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enforced during each step of learning using gradient projection method. This approach was 

proposed in attempt to achieve a dynamic RNN model which learns the inherent complex 

nonlinearities of the system which makes it a closer approximation of actual nonlinear 

system. This approach can also be seen as using heuristic information to achieve global 

optimum solution during time series based RNN learning. The three steps of learning 

process include intelligent weight initialization using fixed point dynamics, enforcing fixed 

point conditions during each learning step and enforcing local jacobian during the course of 

time series. This approach is expected to perform with high accuracy in case of complex but 

deterministic systems. The developed RNN model is named as PGRNN (Projected Gradient 

based RNN). The implementation results of PGRNN are shown in chapter 8. 

While on one hand this approach brings the trained model closer to exact nonlinear 

dynamics of time series, the chances of unsuccessful learning are high in case of slight 

nonstationarity. Moreover the discussion in chapter 4 hints towards occurrence of 

nonstationarity at slow scale. Considering this scenario, multiple scale dynamics based 

approach has been adopted in neural networks modelling which has been discussed in 

chapter 6 and 7. 
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Chapter 6 

Electricity Price Time Series Prediction Using Hybrid RNN-FHN model 

In this chapter firstly the presence of multiple scale dynamics in the electricity price time 

series system is affirmed. The approach adopts extraction of dynamics of slow parameter 

system, variations in which affect the behaviour of fast actual time series [115]. Further a 

dynamic system with slow and fast scales, namely Fitz-Hugh Nagumo (FHN), is used and 

hybridized with recurrent neural networks. The property of the multiple scale equation 

system allows the mechanism of spiking in such regimes. In turn, the parameters and 

coupling variables of this excitable system are determined using an RNN based model. As a 

result the learned hybrid model would achieve a desired level of modelling accuracy. 

Evolutionary Strategies (ES), an evolutionary computation technique, has been emplyed for 

training the feed-forward and feedback weights of the RNN network, and the trained overall 

model is applied for forecasting in deregulated markets. The developed hybrid model was 

tested in various markets worldwide over different seasons to test its forecasting ability, 

adaptability and robustness. The developed approach is tested over the most volatile 

deregulated markets in hour-ahead and day ahead scenario. Extensive comparative studies 

suggest that our approach yields favourite results in both point and interval forecasting.  

It should be noted that in this chapter hour ahead spot and interval forecasting has been 

presented in this paper. Although day-ahead forecasting is more important  

This chapter is organized as follows. In the next section we describe and extract the 

multiple scale characteristics of electricity price time series. Section 6.3 briefly describes 

behavior of FHN is slow and fast time scales and presents the hybrid model. Section 6.4 

presents implementation over various markets worldwide and the results corresponding to 
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hour ahead forecasting (results for day ahead forecasting are given in chapter 7). Section 6.5 

presents discussion followed by conclusion in section 6.6. 

 
6.1 Multiple Scale Dynamics in Electricity Price Time Series 

 
Most of the current real world physical systems share a basic mechanism, where a hidden 

slowly evolving process leads to variation in the systems process evolving in a faster time 

scale. The slow dynamics may correspond to gradually evolving system parameters. Or at 

micro level, in competitive scenarios, multiple scales can “enter” the system when financial 

agents interact at different scales. Prices are endogenously formed in a financial market by 

the aggregate trading decisions of a large number of investors who interact by trading assets, 

while the resource money is limited. While dealing with huge amount of money for the 

same asset, these agents differ with respect to the time scale in which take trading decisions. 

These different time scales significantly impact the dynamics of price. When the dynamics of 

market prices is modeled on a macro-level as the result of the dynamic coupling of two 

dynamical components, the degree of their dynamical decoupling is shown to have a 

significant impact on volatility clustering, and the multifractal behavior of time series.  

The primary motivation in this work is to study the evolution of parameter changes in 

the slow scale and prediction of changes. In this section we extract the slow and fast scale 

characteristics of electricity price time series, which in turn will help in justifying FHN based 

modeling of time series. In FHN model, the spike formation is possible because of presence 

of these two time scales, slow evolution along an invariant manifold and instability of fast 

dynamics transverse to this manifold. The location of these spikes is fixed and can be 

determined from an analysis of the dynamics on the slow manifold. We are interested in 

developing methods capable of tracking the evolution of slow damage states in real time. 
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This will provide the hidden time series dataset that will shed light on poorly understood 

multi-scale dynamics of process. The approach tracks the evolution of slowly evolving 

hidden state using only measurement of fast subsystem which is source of non-stationarity 

on long time scales [116].   

),(

),),(,(

ωεω

ω

xg

tlxfx

=

=
⋅

⋅

                     (6.1) 

where x is the fast observable variable,  is the slow dynamic variable which is  not directly 

accessible and behaves as the parameter whose variation causes nonstationarity in fast 

variable.  is the function of parameter vector , t is the time, the constant  is the 

separation of time-scale between fast and slow dynamics, and y is the scalar quantity 

derived from fast variable x via function h.  

We implement the algorithm proposed by Chelidze et. al. [116] based on extraction of 

slow variable features based on fast variable dynamics. The method uses idea of phase 

space warping which refers to distortions in fast dynamics phase space and uses short-time 

reference modeling error as its primary measurement.  

Basically reconstruction of slow time trajectory based on fast time measurement is 

done based on a metric which is sensitive to change in the dynamics caused by variation in 

slow parameter. This metric can be viewed as measure of deformation of fast time phase 

space due to slow time drifts. This metric used by Chelidze et. al [116] is called Phase Space 

Warping Function (PSWF). 

Scalar data of fast measurements is collected and phase space is reconstructed using 

delay coordinate embedding as  
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n Rdnynynyy ∈−++= )]1(),...,1(),([                   (6.2) 

Here d is the embedding dimension. PSWF is formulated as  

);();( 1 damagennnR yPyye φφ −= +                    (6.3) 

Here yn is a point in the reconstructed fast phase space. );( damagenyP φ is the prediction of 

fast state for next time step based on a linear prediction model P . 

The procedure for evaluating PSWF follows the partition of phase space into multiple 

disjoint hypercuboids, iC , i=1,…,N which are small enough such that linear approximation is 

applicable. The PSWF value is calculated in each such region as  

∑
∈

=
iCyci

i e
N

e 1)(φ                                                  (6.4) 

Here Nci is the number of points in hypercuboid Ci, using data based estimated linear model 

P . All of these averaged PSWFs are collected as dN-dimensional feature vector 

[ Neee ;...;; 21 ] for each stack of observation, or {j} j=1,..,q snapshot of observation. In order 

to examine if the phase space of slow parameter can be reconstructed without a priori 

knowledge of the changes occurring in damage states, The authors stacked the feature 

vectors as a time sequence in a row vector of a tracking matrix dNqRT ×∈ . Then the smooth 

orthogonal decomposition (SOD) of this tracking matrix provides the reconstructed damage 

phase space (damaged by slow variable variation) which is an approximation of actual 

damage phase space but is in affine relationship with it. Here the SOD is performed via 

generalized singular value decomposition (GSVD) of tracking matrix and its derivative DT

[116].  
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TT VSXDTUCXT == ;        (6.5) 

Upon GSVD [116], the smooth orthogonal coordinates are given by the columns of UC 

while smooth orthogonal modes of damage phase space are provided by columns of 1−X . 

Smooth orthogonal values SOVs are obtained as ).(/)( SSdiagCCdiag TT=σ  

In this work we implemented the above procedure on electricity price time series to 

obtain the damage caused by hidden parameters in the system. These act as the variables 

which cause sudden transitions in time series such as spiking. The time series from California 

and Ontario market was taken as reference to study the damage evolution. Each time series 

was observed via moving window of snapshots containing 300 patterns each. Each 

observation was divided into 35 neighborhood hypercuboids. The corresponding SOVs for 

Ontario market are shown in fig. 6.1 below.  

 

Fig.6.1 Smooth Orthogonal Values of slow subsystem 
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It can be observed that the damage phase space dynamics are dominated by single 

variable. The SOD analysis shows that the there is only one SOV that is substantially larger 

than the rest. More importantly, the presence of additional time scale in this system is 

verified.  

Furthermore, the SOMs corresponding to this SOV is plotted along with the actual time 

series as shown in Fig. 6.2 below. Interestingly it can be noted that the variation in 

parameter value take place a little ahead of actual tipping state in time series. This could 

greatly facilitate in prediction of critical transition in these time series systems.    

Fig. 6.2 Dominating Slow Component vs Time Series 

The presence of multiple scales in this system encourages us to use a two-scale system 

for modelling this time series. Famous two scale Fitz-Hugh Nagumo (FHN) system has been 

employed for this task. This is further hybridized with recurrent neural networks, given their 

universal nonlinear approximation capability, to successfully model this system. The hybrid 

model is described in next sections. 
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6.2 Fitz-Hugh Nagumo Model  

Dynamic models are extremely difficult to model, especially when incorporating 

intermittent spikes of variable height along with stable region dynamics. While, in general 

jump processes are not ideal choice for modeling market prices as they face the problem of 

mean reversion and inaccurate modeling capability in stable region. In this work, both 

approaches have been hybridized for accurate prediction on overall time series. FHN system 

has been taken as the basic mathematical model for spiking. Under suitable choice of 

parameters, FHN operates in resonating regime which works well for power markets [117]. 

FHN model represents a wide class of non-linear excitable oscillatory systems [117-118] and 

is described using following equation. 
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                                 (6.6) 

Here bkA ,,,,,,, ϖβλγε  and I are equation parameters. Variations in these parameter 

values lead to “Bifurcation” phenomenon of behaviour transition in dynamics of the system. 

A bifurcation occurs when a small smooth change made to the parameter values (the 

bifurcation parameters) of a system causes a sudden 'qualitative' or topological change in 

system behaviour. Detailed study of this phenomenon can be found in [118]. In (6.6), u

behaves as an excitable variable and v  is the slow refractory variable and I  is an external 

variable. FHN model follows a symmetric property when 0=I , namely, (6.6) is invariant 

under transformation with respect to u and v . With 0≠I , the symmetric property is 

broken. The system exhibits topologically different dynamics for different values of 

bifurcation parameters. There are at least two time scales present in eq (6.6) due to spike 

refractory period (which corresponds to internal frequency of the system) and the sinusoidal 
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forcing frequency. The interplay between these time scales result leads to multiple scale 

behaviour which is a typical source of intermittent spikes in a dynamical system. Fig. 6.3 

depicts the behaviour of eq(6.6) for certain parameter values. It can be observed that the 

dynamics match typical power market. . 

 

Fig.6.3. Time response of FHN for ε=0.11, k=1, λ=1, b=2, γ=1, β=1, A=2, ωƒ=2 and I=1. 

6.3 Proposed Model 

The proposed approach consisted of three components; a FHN model to mimic spiking 

behaviour, a RNN unit to regulate FHN, and feedforward neural network to model the 

residue of RNN-FHN.  

Hybrid RNN-FHN Model 

Desired behaviour is achievable upon intelligent control of the bifurcation parameters

Abk ,,,,,,, βγλγε and ω are modulated using RNN according to the input values from 

the past time series which reflect market conditions. The motivation behind using RNN for 
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this task is its dynamic nature and nonlinear approximation capabilities [23]. RNN offers 

explicit modeling of time and memory and exhibits temporal behaviour which makes it 

pertinent for this dynamic problem. In this work, Elman state feedback configuration of RNN 

has been used, as shown in Fig. 6.4. 

Equation (6.7) presents the discrete version of the FHN model obtained by Euler 

discretization. 
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          (6.7) 

Here ∂  is the discretization step size. The value of ∂  was chosen to be 0.05 in this work for 

good approximation of the continuous model and providing stability to the iterations, and I 

was chosen as 1.  

 

Fig.6.4 Proposed Hybrid Model with RNN and FHN coupled system 

Fig. 6.4 illustrates the proposed strategy. RNN uses K previous time series values XN-1, XN-

2 …, XN-K as inputs. Wi , ni ≤≤1  are the complete set of weights connecting input layer to 
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hidden layer, hidden layer to output layer and feedback weights connecting hidden layer to 

input layer. One training vector is, therefore, of length n. RNN evaluates the bifurcation 

parameter values. Subsequently, FHN system of equations uses these calculated bifurcation 

parameters and obtains the future value in time series XN. The learning in this model is 

carried out through training of RNN weights, using evolutionary strategies, for the network 

to approximate the relationship between time series values and bifurcation parameters, as 

explained in the next subsection. 

Feedforward neural network used to predict the residual error of uses K previous time 

series values as inputs. The output of this network is added to the predicted output of RNN-

FHN. The network is trained using backpropagation algorithm. The overall hybrid model and 

complete strategy are elaborated in Fig.6.4. 

6.4 Training of RNN in Hybrid Model 

Evolutionary Strategies ([119]) provide a promising algorithm for parametric learning of 

RNN. These algorithms are distinguished by their reliance on a population of search space 

positions, rather than a single position to locate the extrema of a function defined over a 

search space. Using random search operators such as mutation and recombination, and 

probabilistic selection, these algorithms implement a non-monotonic search that performs 

better in complex multimodal environments, which is pertinent to this forecasting problem. 

Derivation of a learning procedure in this hybrid problem can be a rigorous task for 

numerical and gradient based techniques, while in contrast ES is representation 

independent. The main motivation behind using ES is that it is a global optimization method 

which scales well to high dimensional problems, while most of other learning algorithms run 

a risk of premature convergence to local extremum in complex problems.   

The objective is to evaluate all connecting weight values of the network shown in Fig. 
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6.4. Each chromosome, which represents the solution weights, can be represented as an 

array of weight values along with the mutation parameters for the individual weights. The 

weight vector chromosome representation is shown in Fig. 6.5.  

 

Fig.6.5. Chromosome Representation 

Here mutation parameter σ k corresponds to weight Wk.  Mutation of weights takes 

place as given in (6.8) below.  
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            (6.8) 

The mutation scheme used in this work is adaptive, uncorrelated mutation scheme as 

shown in (6.9). Here N(0,1) is a Gaussian variable with 0 mean and variance equal to 1. τ  

and 'τ are learning rate parameters which are determined as  
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                (6.9) 

where m  is the length of the chromosome. Here the mutation works on coordinate level 

which allows the algorithm to adapt the nature and scale of its search to learning task. More 

details on mutation mechanism can be found in [119]. During one search cycle, members of 

the population are ranked according to a fitness function, and those with higher fitness are 

probabilistically selected to become parents. A population of λ  children is reproduced from 

a population of µ parents. Selective numbers of these parents or children constitute the 

population for the next generation which takes part in the next iteration in training 

procedure. This selection process is crucial for the effectiveness of algorithm.  
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In the proposed strategy, non-elitist, or (µ ,λ ) selection scheme was used, allowing 

good exploration of search space and averting convergence to suboptimal solutions [119]. 

The fitness of each child is inversely proportional to the error evaluated over complete 

training data. Thus lowering the training error (obtained using that child chromosome) 

improves the fitness of the child and the chances of it being selected for the next generation.   

Table 6.1  
Evolutionary Strategy Parameters 

Mutation Type Adaptive 

Crossover Type No Crossover 

Population Size(µ ) 10-20 

Children Size(λ ) 8*Population size 

Selection Non-Elitist ),( λµ strategy 

 

     The parameters of ES applied in this work are shown in Table I. Population size and the 

numbers of offspring were chosen to be high to facilitate good exploration of solution space.  

The overall strategy is illustrated in Fig. 6.4. Various hyper-parameters such as the size of 

recurrent neural network, RNN topology (number of inputs and size of middle layer), 

population size in evolutionary strategy, children size, selection scheme etc. were chosen 

based on extensive experimentation 

6.5 Prediction of Hourly Prices 

The proposed hybrid model was implemented for forecasting of hourly prices in testing 

data. Time series data from each market was divided into training and testing sets. Training 

of hybrid model was carried out in supervised manner and the performance of trained 

model was examined on unseen test data, without any adaptation.  
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6.6 Training and Testing Data 

 The electricity markets most affected by restructuring include California and PJM 

markets in the US, UK, Spain, Ontario market in Canada, and NEMMCO market in Australia. 

In some of these markets, higher energy prices have enticed new generating companies to 

enter, resulting in a greater competition and higher volatility [120], while in markets like 

Ontario, huge networks with neighbor markets and regulated utilities significantly 

complicates the competition scenario. Volatility analysis done in some of the previous works 

has concluded that UK and Ontario markets exhibit highest degree of volatility compared to 

other deregulated markets worldwide [120]. We have presented the implementation results 

in these five markets. The trained model was implemented on unseen testing datasets given 

in Table II. The training dataset includes one month data prior to testing period. The 

datasets used incorporate the defining characteristics of electricity price time series, like 

high volatility, occasional extreme jumps, and volatility clustering. 

Table 6.2.  
Testing Dataset Used 

Market Season Testing Data 

Ontraio(week 

1-2) 

Spring Apr 26 – May 9, 2004 

Ontario(week 

3-4) 

Summer Jul 26 – Aug 8, 2004 

Ontario(week 

5-6) 

Winter Dec 13 – Dec 26, 2004 

NEMMCO 

Victoria 

Summer Sep 01 – Sep 07, 2004 
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NEMMCO 

NSW 

Fall May 21 – May 27,2006 

Spain Summer Aug 19 – Aug 25, 2002 

California Winter Dec 26 – Jan 9, 1999 

      In normal circumstances, range of dataset is normalized from 0.1-0.9 with 0.9 

corresponding to maximum value in data and 0.1 corresponding to minimum. However 

presence of large and rare spikes can affect the data characteristics upon normalization. 

Thus we incorporate a special normalization procedure where high value spikes are ignored 

while normalizing the range of dataset, as shown in Fig. 6.6.  

 

Fig.6.6. Selection of range of normalization for spiky time series. The high value spikes are 
neglected.  
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The normalization is carried out as in (5), where maxP and minP are selected as shown in Fig. 
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5. In this work, maxP is chosen after neglecting 10% of the highest prices to avoid spikes. 

Output of (5) is the desired normal price. It should be noted that normalized prices in spiking 

region exceed normalized maxP . Application of the proposed model on these training and 

testing data is presented in the next section.  

6.7 Experimental Results 

MAPE (Mean Absolute Percentage Error) has been chosen as the error metric due to its 

wide application in evaluating forecasting models. MAPE is defined as:  
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Here N is the total number of data, iP  is the actual price and iP  is the predicted price. 

Many texts use variants of MAPE, namely mean absolute daily error (MADE), mean absolute 

weekly error (MAWE) etc. as forecasting error indices as low prices can have adverse 

shooting effects on MAPE. However for fair comparison with other works on hourly prices 

we use MAPE in this work as a performance index for hour ahead forecasting.  

Section 6.6 presents the performance of the hybrid model over point forecasting of 

hourly prices compared to other approaches recently proposed in the past, and relevant 

benchmarking is performed. Application of evolutionary algorithms as the training 

procedure brings large computation time to this developed model. However this 

computation time is not a key matter of concern as the learning process is carried out in 

offline manner and the trained model can be applied on a large set of unseen test data. 

The corresponding performance curves, which show the comparison of predicted and 

actual results, are shown in Fig.6.7 for Spanish and Ontario market.  
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Fig. 6.7(a). Actual and Predicted curve in Spanish market during Summer 

 

Fig. 6.7(b). Actual and Predicted curve in Ontario market during Spring 

These performance curves depict the ability of the proposed model of providing close 

approximations over the stable regimes of time series while satisfactorily tracking the spiky 

regions. It can be seen that market clearing price (MCP) in Spanish market are stable and 

proposed approach closely approximates these prices, except 3rd (Tue) and 4th (Wed) day 
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of the week. While hour-ahead energy prices (HOEP) in Ontario market are comparatively 

more volatile with presence of intermittent spikes. Fig. 6.7(b) indicates that proposed 

approach performs satisfactorily in these spiking regimes (except day 5) and also in stable 

regimes (except day 2-3). Prediction results in terms of MAPE are presented in Table III, 

where comparison with benchmark models is given. 

The studies carried out in the past for prediction in Spanish, California, Ontario and 

Australia markets are given in [19, 120-126]. In [120], [121] and [124], one hour ahead HOEP 

forecasts have been reported using multi-adaptive regressive spline (MARS), RNN trained 

using expectation maximization procedure  and nonlinear neuro-fuzzy model respectively. In 

[127], Spanish hourly prices have been modeled using hybrid NN-wavelet model; and using 

input-output hidden markov model in [123]. A hybrid approach based on NN-ARIMA and 

wavelet-TAR model has been applied for modeling hour-ahead prices in NSW market [126, 

128]. The benchmark model used for comparison in Victoria and California market includes 

NN based model [19, 129]. The corresponding results are compared with the proposed 

approach in Table 6.3. Here, column 3 includes benchmark models used for direct 

comparison with proposed approach. For fair comparison, the testing periods used for 

proposed work are exactly same as those used in benchmark models given in column 3. 

While in column 4, other approaches applied in past over similar datasets (but different test 

periods) in same markets are given.   
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Table 6.3 
Performance Comparison over Deregulated Markets 

 

 

Market 

 

Proposed 
Model 

 

Benchmark 
models 

 

Other Approaches 

 

Ontario 

Season1 

(week1,2) 

 

10.76% 

 

15.12% [122]  

 

12.25% [120]/ 

19.83% [124] 

 

Ontario 

Season2 

(week3,4) 

 

9.12% 

 

10.31% [122] 

 

10.20% [120] 

 

Ontario 

Season3 

(week5,6) 

 

11.61% 

 

15.74%[122]  

 

12.85% [120]  

 

Nemmco Vic 

 

8.24% 

 

10.69% [19] 

 

- 

 

Nemmco NSW 

 

 

8.33% 

 

15.00% [128] 

 

10.00%[126] 

Spain 8.87% 9.50% [125] 
10.38% [122]/ 

15.83 [123] 

California 5.32% 7.932[129] - 

 

Performance curves in Fig. 6.7 and the comparison table 6.3 depict the forecasting ability 

of proposed model. It can be deduced that the proposed hybrid model is able to 
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approximate the dynamics of hourly electricity prices with satisfactory degree of accuracy. It 

is observed that the proposed approach outperforms the methods suggested in past on 

specified test set. Ability of the developed model to satisfactorily predict seemingly sporadic 

spikes allows the market participants to reduce financial losses in the high risk zone.   

6.8 Interval Forecasting  

In addition to forecasting the price value, predicting the distribution of the future price, 

i.e., the prediction interval (PI) is highly meaningful. Price intervals effectively reflect the 

uncertainties in the predication results and thus the risk associated with forecasting model. 

Prediction intervals are important in time series forecasting as they- 

a) Allow to assess future uncertainty, 

b) Enable different strategies to be planned for different outcomes indicated by the P.I.  

c) It can be employed to evaluate the risks of the decisions made by market 

participants.  

Interval forecasting includes proposition of a prediction interval [ ]ii ul , , shown in Fig. 7, or 

future values with a specific confidence level (α -level) in that interval [130-131]. 

Interval forecasts with confidence interval (CI) of 90%, 95% and 99% were obtained 

using the proposed approach for deregulated markets by following the statistical 

methodology [132] where the mean µ  and variance σ of forecasts are obtained upon m  

multiple runs on testing data. The mean µ  is the mean of m predictions and σ  is the 

variance of those predictions. CI is obtained as 

)/( mzCI σµ ±=                        (6.12) 

Here z = 2.576, 1.96 and 1.645 for α =99%, 95% and 90% respectively. 
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Fig.6.8(a). Enlarged section of Interval Forecasts for Ontario market 

 

Fig.6.8(b). Enlarged section of Interval Forecasts for California market with large forecasting range 
around spiky region. 

 
The criteria of absolute coverage error (ACE) [130], conditional coverage (CC) and 

unconditional coverage (UC) [133] have been used to evaluate the obtained intervals. Given 

N observations Niyi ≤≤1,  of time series and corresponding interval [ ]ii ul ,  with CI=α  
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αα ˆ−=ACE ; where 

[ ]
N

ulyfreq iii ),(ˆ ε
α =

                       (6.13) 

Thus α̂ is the fraction of observations lying within the interval.  

Fig. 6.8(a) shows the enlarged section of time series along with forecasted prediction 

intervals with CI=95% for Ontario market. It desirable to achieve intervals with smaller range

[ ]ii ul , , while maintaining low value of ACE. Similar criteria of unconditional coverage, LRuc, 

indicates the quality of coverage [133], as shown in (6.14). 

( ) 
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Here p is the coverage rate; n1 is the number of exceptions for the proposed prediction 

interval; n0 is the number of non-exceptions. 

In addition of having a good absolute coverage, a good interval forecast should be 

narrow in stable periods and wide in volatile spiky regions, indicated by test of conditional 

coverage (CC) [133]. This property allows uniformity of coverage. To assess this property for 

interval forecast obtained from proposed model, Pearson-type 2χ  test has been used [134]. 

This test is asymptotically equivalent to likelihood ratio test suggested in [134]. The chi-

square statistic is evaluated as [135].  
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here nij is the number value i followed by j in indicator sequence; and 
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                 (6.16) 

The statistics ACE, LRuc and LRcc are given in Table 6.4. Low values of ACE indicate that 

the proposed CI has coverage and confidence level closed to desired value. This suggests 

that quality of one-hour-ahead PI obtained using proposed approach is good. ACE and 

unconditional coverage statistic LRuc for Ontario are higher compared to other markets due 

to higher volatility in this market. Moreover, it can be observed in Fig.6.8(b) that prediction 

interval are narrow in stable regime while interval range is large in spiking region which is 

due to high uncertainty associated with the regime. This property suggests uniformity of 

coverage over testing dataset. However it can be observed in Table IV that conditional 

coverage statistic vary significantly from LRuc implying that coverage uniformity is not as 

good as indicated by Fig. 6.8(b). 
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Table 6.4. 
 Interval Forecast 

 

 

Market 

 

ACE 

 

LRUC 

 

LRCC 

CI 

=90 

CI 

=95 

CI 

=99 

CI 

=90 

CI 

=95 

CI 

=99 

CI 

=90 

CI 

=95 

CI 

=99 

Ontario 

Season1 

(week1,2) 

6.2 5.33 5.3 
 

33.4 

 

28.4 

 

28.27 

 

36.2 

 

32.54 

 

31.6 

Ontario 

Season2 

(week3,4) 

7.4 8.4 7.2 
 

33.3 

 

38.2 

 

32.0 

 

34.2 

 

40.46 

 

34.3 

Ontario 

Season3 

(week5,6) 

4.5 6.2 5.7 
 

20.2 

 

28.4 

 

25.8 

 

22.6 

 

30.56 

 

28.37 

Nemmco 
Vic 

5.1 5.6 6.4 
 

24.2 

 

24.8 

 

26.86 

 

27.45 

 

28.7 

 

29.12 

Nemmco 
NSW 

3.3 5.28 4.2 
 

15.7 

 

22.0 

 

28.2 

 

18.1 

 

23.0 

 

31.7 

Spain 5.2 4.7 4.5 
 

19.3 

 

22.3 

 

26.5 

 

21.7 

 

24.1 

 

27.4 

California 2.2 2.3 2.5 
 

16.8 

 

18.5 

 

19.7 

 

18.8 

 

21.73 

 

20.57 

 

Statistical Analysis 

Fig.6.9 depicts the distribution of percentage errors corresponding to the predicted 

forecasts. Each bar of the histogram corresponds to the number of forecasts in that error 

range. It can be seen that height of bars is maximum around minimum error, while there are 
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very few bars with low height in high error value range. This scenario is favourable in 

reducing eminent financial risks associated with high forecasting error which is important in 

spiky time series scenario.    

 

Fig.6.9. Histogram for error values of California market 

Table 6.5. 
Error Statistics 

Market Min(%) Max(%) Mean(%) Std. Dev(%) 
Ontario (Season 

1) 
0.00018 100.8 10.2 12.92 

Ontario (Season 
2) 

0.0004 102 9.92 12.57 

Ontario (Season 
3) 

0.00022 99.4 11.9 16.32 

Victoria 0.00009 44.17 8.38 10.62 

NSW 0.00014 55.83 8.77 8.68 
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Spain 0.00004 53.64 8.63 8.74 

California 0.0011 80.6 5.32 11.39 

 
 

Table 6.5 shows the relevant statistical measures for the analysis of error achieved over 

the entire time series. Large standard deviation is noteworthy in case of Ontario market 

which experiences large values of standard deviation of error in all seasons of the year. 

Moreover the forecasts in Ontario market exhibit highest value of maximum error which 

testifies the presence of highest degree of volatility in this market.   

 

6.9 Summary 

   A hybrid intelligent model was proposed for improving the prediction accuracy in the task 

of electricity price time series forecasting. The proposed model hybridizes Recurrent Neural 

Network with FHN excitable system of coupled equations for price forecasting. The 

forecasting performance in stable regions and spiking regions was found to be satisfactory, 

over many deregulated markets in the world over different seasons, verifying its adaptability.   

   Success of this synergistic combination of RNN and coupled system of equations 

presents exciting opportunities for future work in day-ahead prediction in this time series 

system using multi-scale system. If the exact underlying slow-fast interaction mechanism 

can be extracted from time series, results can be considerably improved. Exact multiscale 

modelling will be the future approach in this context. 
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Chapter 7 

Multi-Scale Modelling of Electricity Price Time Series using Multi-Scale Neural Network 

In this chapter spikes are seen as critical transitions or tipping points which are sudden 

changes in the dynamical system. Typical examples of critical transition are the changes 

occurring in climate, medicine, ecological systems and finance. Although several approaches 

have been proposed for analysis of specific models, a detailed deterministic model has not 

been developed for exact modelling of spikes in time series.  There exist strand of models 

where early warning signals for these tipping points have been developed. In this work a 

mathematical framework is adopted to obtain the qualitative and quantitative 

understanding of critical transition to check the underlying nonlinear scenarios.  

A variety of systems showing the behaviour of nonperiodic spiking can be 

mathematically described by means of slow and fast systems coupled together [136-137]. In 

a two dimensional system, nonperiodic spiking appears when the system state is in the 

vicinity of fixed point or limit cycle bifurcations (subcritical/supercritical, andronov saddle-

node collisions). On the other hand higher dimensional systems can exhibit more varied and 

complex behaviour such as bursting [138], mixed mode oscillations [139] etc. In the case of 

electricity price time series, which occupies a high dimensional phase space, irregular spikes 

occur as the result of complex bifurcation sequences which have deterministic origin instead 

of stochastic, which implies that spiking sequences are chaotic instead of irregular. In most 

of the cases where model equations are available, the phenomenon has been understood in 

terms of Shilnikov Homoclinic Chaos (SHC) [140]. SHC occurs in a typical three dimensional 

phase space when a growing periodic orbit reaches a saddle focus and become biasymptotic 

to it, i.e they become homoclinic. Typical spiking time series consists of large amplitude 
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pulses (corresponding to homoclinic orbit in phase-space), while the interspike time 

intervals consist of small amplitude chaotic oscillations. Although, this mechanism is the one 

suggested by Shilnikov theorem, which predicts the occurrence of complex dynamics near 

homoclinicity whenever the saddle-focus, with eigenvalues in the linearized neighbourhood 

( )ϖρµ i±−,   where ( ) 0, >ρµ and they satisfy the condition 1/ <µρ . However, SHC is not 

a generalized explanation for the presence of chaotic spiking, though each spike is definitely 

associated with a reinjection mechanism. For example, and in a particular slow-fast system, 

a Hopf bifurcation is sometimes followed with a period doubling cascade which generates a 

sequence of small-periodic and chaotic excitable dynamics, that develops before relaxation 

oscillations take place. As the amplitude of the chaotic attractors grows, some particular 

fluctuations of the occurring chaotic dynamics spontaneously trigger excitable spikes in an 

erratic but deterministic manner [141]. Such phenomena are referred to as incomplete 

homoclinic scenarios [142] since, in the appropriate parameter range, mimic trajectories 

close to Shilnikov conditions. 

 

7.1 Slow-Fast Systems 

A detailed introduction to the role of fast-slow dynamical systems for critical transitions has 

been developed in [143]; in particular, the link between applications and a rigorous 

mathematical theory has been established. In this section we recall the major definitions 

and results from multiple time scale dynamics [144-145] that are required to define critical 

transitions. A fast-slow system of ordinary differential equations (ODEs) is given by 

 

),,,(

),,,(
.

ε

εε
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=

=
⋅

⋅

          (7.1) 

where 0 < ε << 1, a ∈  Rn are fast variables and b∈  Rm are slow variables.  
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Changing in (7.1) from the slow time scale s to the fast time scale ετ /t=  gives 

),,,(

),,,(
'

.
'

εε

ε

bagb

bafa

=

=

          (7.2)

 

Now if we consider the singular limit ε → 0, we obtain the slow subsystem 

),,,(
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⋅

          (7.3)

 

which is a differential-algebraic equation restricted to the critical manifold 

( ){ }0)0,,(:,0 =∈= + bafRbaC nm  

The slow subsystem is obtained as the singular limit of (7.2) 

,0

),,,(
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=

=
⋅

b

bafa ε              (7.4) 

here the slow variables can be viewed as parameters. The flows generated by (7.3) and (7.4) 

are called the slow flow and the fast flow respectively. Assume a point 0Cp ∈  which is an 

equilibrium point of the fast subsystem. The critical manifold is normally hyperbolic at 

0Cp ∈ is the n×n matrix )( pfDa  is a hyperbolic i.e. has no eigenvalues with zero real parts. 

In this case, the implicit function theorem provides a map nm RRh →:0  that describes 0C , 

in the neighbourhood of p, as a graph 

( ){ })(:, 00 bhaRbaC nm =∈= + .        (7.5) 

Then the slow subsystem (7.4) can be written more concisely as 

).),(( 0

.
bbhgb =           (7.6) 
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If all eigenvalues of )( pfDx  are positive(negative) then 0C  is repelling (attracting), 

otherwise it is of saddle-type. Observe that 0C  is attracting at p  if and only if the fast 

subsystem has a stable hyperbolic equilibrium at p .  

Fenichel’s Theorem provides a complete description of the dynamics for normally 

hyperbolic invariant manifolds for sufficiently smooth vector fields (f, g).   

Theorem 7.1 (Fenichel’s Theorem) [Neil Fenichel, 1979]: Suppose S = S0 is a compact 

normally hyperbolic submanifold of the critical manifold C0. Then for ε  > 0 sufficiently small 

the following holds: 

• There exists a locally invariant manifold Sε  diffeomorphic to S0. Local invariance 

means that Sε  can have boundaries through which trajectories enter or leave. 

• The flow on Sε  converges to the slow flow as ε → 0. 

• Sε  is normally hyperbolic and has the same stability properties with respect to the 

fast variables as S0 (attracting, repelling or saddle type). 

• Sε  is usually not unique. In regions that remain at a fixed distance from the 

boundary of Sε . 

All manifolds satisfying above four conditions lie at a Hausdorff distance O(e−K/ε ) from 

each other for some K > 0 with K = O(1).  

 

It should be noted that in the above theorem is stated for slow-fast systems where the 

invariant manifold corresponding to unperturbed system dynamics is considered as the slow 

manifold and the critical transitions are considered as variation in fast manifold. This 

definition is different from the notion of slow-fast systems used in this thesis where the 

unperturbed invariant manifold of dynamics is considered to be the fast manifold. Later in 
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this chapter, this theorem is employed (in theorem 7.2), however, using the notion of slow-

fast systems used in this thesis.  

A wide class of nonlinear physical systems contains slow and fast dynamic processes 

that occur at different moments. Recent research results show that neural networks are 

very effective for modelling the complex nonlinear systems with different time scales when 

we have incomplete model information, or even when we consider the plant as a black-box 

[146]. Dynamic neural networks with different time scales can model the dynamics of the 

short-term memory of neural activity levels and the long-term memory and the dynamics of 

unsupervised synaptic modifications [147]. Different methods have been applied in this 

domain. The stability of equilibrium of competitive neural network with short and long-term 

memory was analyzed in [148] by a quadratic-type Lyapunov function. Refs. [149-151] 

presented new methods of analyzing the dynamics of a system with different time scales 

based on the theory off low invariance. The K-monotone system theory was used for 

analyzing the dynamics of a competitive neural system with different time scales in [152]. 

The past decade has witnessed great activities in stability analysis, identification and control 

with continuous time dynamic multi-time scale neural networks [153]. In [154], Sandoval et 

al. developed new stability conditions using the Lyapunov function and singularly perturbed 

technique 

 

7.2 Multi-Scale Neural Network (MSNN) 

Numerous systems in the industrial fields demonstrate non-linearities and uncertainties, 

which can be considered as partially or totally black-box. Dynamic neural networks have 

been applied in system identification and control for those systems for many years and due 

to the fast adaptation and superb learning capability, they have transcendent advantages 
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compared to the traditional neural network methods [146, 155]. Dynamic neural networks 

with different time-scales can model the dynamics of the short-term memory and the long-

term memory. The dynamics of dynamic neural networks with different time-scales are 

extremely complex, exhibiting convergence point attractors and periodic attractors [147]. 

Networks where both short-term and long-term memory are dynamic variables cannot be 

placed in the form of the Cohen-Grossberg equations [156-157]. However, a large class of 

competitive systems have been identified as being ”generally” convergent to point 

attractors even though no lyapunov functions have been found for their flows. 

Until now some artificial neural networks based approaches have been proposed for 

system identification. However these models have not been applied for function 

approximation tasks of spiky time series modelling.  

 

7.3 MSNN for Electricity Price Modelling 

In this work, we consider the electricity price time series as nonlinear system with 

multiple time scales and model it via a discrete time dynamic neural network with different 

time scales including both fast and slow phenomena. Two RNN identifiers at different scale, 

based model are proposed for nonlinear systems identification. For two RNN identifiers, the 

steepest descent and singularly perturbed techniques are used to develop the update laws 

for both dynamic neural network weights. 

In this section we consider the problem of identifying the nonlinear system namely 

electricity price time series which is assumed to belong to class of singular perturbation 

nonlinear systems with two different time scales described by equation (7.2). In order to 

identify the nonlinear dynamic system, we employ the MSNN with two time scales:  
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Here nnx 1nR∈  and nny 2nR∈  are fast and slow variables, 11 ii kn
i RU ×∈  (i=1,2) is the weight 

matrix connecting input layer to hidden layer for fast/slow subsystem for i=1/2, iG  is the 

weight matrix connecting slow/fast variables to hidden layer of fast/slow subsystem for 

i=1/2. iV   is the weight vector connecting hidden layer of slow/fast variables to output layer 

of fast/slow subsystem for i=1/2. iW  is the feedback weight connecting output of fast/slow 

variables to hidden layer of fast/slow subsystem for i=1/2. )(Zf  ( [ ]TkzzzZ ..21=

is the vector of squashing function (in this work we use sigmoid) = 

[ ]Tkzzz )(..)()( 21 σσσ  
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Fig. 7.1.Multiple Scale Neural Network 

In general the multiple scale neural network is trained to follow the states of slow and 

fast subsystems. However in this context only time series values are available. In this work 

we use delay embedding based vector as the input nnX to the fast subsystem. The slow 

manifold or the slow subsystem is responsible for critical transitions. Or in other words, 

perturbations in the slow variable cause the so called tipping points such as spiking. There 

are several attributes that have been observed in systems before critical transitions such as  
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• There is a slowing down of system states as system recovers from slowly from 

perturbation.  

• There is increase in system variance as critical transition is approached. 

• The autocorrelation of time series increases before transition.  

In this work we embed these observations into mathematical modelling of system dynamics. 

In particular, system specific criteria can be introduced for learning in MSNN, however in 

this case due to complex nature of time series and difficulty in extraction of system specific 

dynamics, we have employed generic indicator which are applicable to large class of 

transitions. The local variance of time series and autocorrelation are used as inputs to the 

slow subsystem. These two networks are coupled using coupling matrix iG . The presence of 

multiple dimensions in fast and slow subsystems allows for possible dynamics in phase 

space due to complex interaction of slow and fast manifolds and nature of eigenvalues at 

the equilibrium.   

7.4 MSRNN learning 

The learning of multiple scale neural network can be an intricate issue. In this work we 

employ steepest descent and geometrical singular perturbation theory for modelling. Firstly 

there is no way of learning the scaling parameter ε . Secondly the slow and fast subsystems 

represent two different manifolds which can be difficult to learn using single time series. 

The fact that the two submanifolds evolve at different time scales, it is not possible to train 

them together with same learning algorithms.     

In this work we propose a different schema for learning of both fast and slow neural 

networks. The parameter ε describes the separation of time scales. These different scales 
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are characteristic of slow fast systems which are an important class of singular perturbation 

system. One successful strategy to understand fast-slow systems from singular perturbation 

theory point of view is to understand the case ε  = 0 and using this knowledge to analyze 

perturbation results for ε > 0 sufficiently small; many geometric and asymptotic methods 

follow this pattern. The full system is trained following the procedure mentioned below 

1. Approximate Learning of fast subsystem 

In the nonspiking regime, given very small value of 0<ε <<1, we assume that ε =0. For ε =0, 

equation (7.2) results in  
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     (7.8)
 

which implies that the slow subsystem is virtually stagnant and there is no variation in slow 

parameter value which isolates the fast component of MSNN. This observation follows that 

in the nonspiking regime, where the slow component hardly varies, fast component 

dynamics are the only functioning mechanism. Using this information, we train the fast 

subsystem of MSNN in the nonspiking regime. This constitutes the first step of training, 

where the trained network learns the invariant manifold. In the next step we suggest a 

theorem which ascertains that this trained network is the near accurate approximation of 

the fast subsystem.  

Theorem 7.2: A set M , which belongs to invariant fold of a flow corresponding to ε =0, 

then there exists a manifold εM that lies within )(εO of M and is diffeomorphic to M . 

Moreover it is locally invariant under the flow including in ε .  

The proof of this theorem follows from the first theorem of Fenichel. Using this theorem 

it can be stated that the neural network trained for ε =0 is a close approximation for the fast 

subsystem of MSNN for conditions where perturbation is present, or 0<ε <<1. 
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We exploit this condition for training fast component of the MSNN. Firstly the spiking 

and nonspiking regimes of time series are identified. The spiking region can be 

approximately considered as 10 hours before spike, the spiking region and 10 hours after 

spike. The network is trained using steepest descent using the same algorithm suggested 

in chapter 5 using the fixed point dynamics based initialization and learning of network 

weights.  

2. Approximate Learning of slow subsystem 

The slow subsystem, which is chosen to be relatively smaller in size is trained on the spiking 

regime of time series. During this training procedure, the structure of fast subsystem is kept 

fixed.  

3. Approximate Learning of scaling parameter 

The scaling parameter which reflects the time scaling of slow and fast variable is denoted by 

ε in the MSNN. A very close approximate of ε can be obtained using spectrum analysis of 

the time series. The eigenspectrum of Jacobian matrix in table 4.2 of time series 

approximately denote the different temporal scales at which system dynamics take place 

[158]. Presence of two time scales is characterized by two main clusters of eigenvalues. If 

the absolute value of largest eigenvalue of the small eigenvalue cluster is denoted as sλ  and 

the smallest eigenavlue of the large eigenvalue cluster is denoted by lλ , then the scaling 

parameter ε can be obtained as  

l

s

λ
λε =

          (7.9)
 

4. Learning of full MSRNN  
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The above 3 steps provide us the network trained with slow and fast component trained 

individually. In the next step the fully connected MSRNN is trained over the complete time 

series using steepest descent.  

 

7.5 Summary  

In this work, a Multilayer Recurrent Neural Network (MSRNN) has been proposed for 

improving the prediction accuracy in the task of electricity price time series forecasting. The 

proposed approach exploits the multi-scale nature of time series and a slow-fast recurrent 

neural network is proposed. For more accurate modeling of time series and the associated 

homoclinic scenarios, a multiple scale neural network (MSRNN) is developed. Slow fast 

systems deal with slow manifold and fast manifold where the key dynamics of time series 

occur on fast invariant manifold while the dynamics occurring on slow manifold is 

responsible for intermittent critical transitions. The developed model is trained using 

singular perturbation theory for slow-fast systems combined with gradient descent 

algorithm.  

The forecasting performance of this model in the spiking and nonspiking region was 

found to be excellent (implementation results given in chapter 8). 

   Success of this MSRNN model presents exciting opportunities for future work in this 

time series system. Further work will include extensive investigation of slow-fast scale 

analysis of electricity price time series and include the results as heuristics in modeling of 

MSRNN.  
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Chapter 8 

Results and Discussion 

In chapter 5,6 and 7, three RNN based approaches have been proposed with the objective of 

achieving better prediction accuracy in day-ahead electricity price time series system, with 

particular focus on spiking regions of time series. The motivation behind the first model, 

PGRNN, is to learn the inherent invariant dynamics of time series system in order to obtain a 

better nonlinear modelling. The second model, RNNFHN incorporates multiscale behaviour 

via employing FHN self-coupled equation system.  However due to hybridization, stochastic 

learning (ES) had to be employed in this model which results in low prediction accuracy in 

some cases. The motivation behind development of third model was to overcome this 

limitation and a multi-scale neural network was developed using singular 

perturbation+gradient descent based deterministic learning approach.  

In this thesis these models have been tested on worldwide deregulated markets for various 

seasons. The details of dataset used are mentioned in next section.  

     

8.1 Data and Preliminary Statistical Analysis  

8.1.1 Data  

The electricity markets most affected by restructuring and which are studied in used 

for forecasting include California and PJM markets in the US, Spain, Ontario market in 

Canada, and NEMMCO market in Australia. In some of these markets, higher energy prices 

have enticed new generating companies to enter, resulting in a greater competition and 

higher volatility [159], while in markets like Ontario, huge networks with neighbour markets 
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and regulated utilities significantly complicates the competition scenario. The 

implementation results in these five markets have been presented. The trained model was 

implemented on unseen testing datasets given in Table 8.1. The training dataset includes 

one month data prior to testing period. The datasets used incorporate the defining 

characteristics of electricity price time series, like high volatility, occasional extreme jumps, 

and volatility clustering.   

Table 8.1 presents a data description of the electricity price series in our study. For the 

California and PJM, price data are based on Dow Jones Electricity Price Indexes and are 

drawn from Datastream International. These are volume-weighted price indexes based on 

Dow Jones Firm On-Peak daily indexes and are denominated in U.S. dollars per MW. For PJM, 

the data from PECO zone is considered for analysis. 

In this proposed work, six deregulated markets worldwide were investigated and 

experimented upon. The idea of deregulation has disseminated among many countries with 

large power markets referable to its lowering in price effect. The markets most affected by 

restructuring include California, PJM, UK electricity market, Ontario and NEMMCO Australia.   

The market data was obtained from www.elexon.co.uk for UK market, from www.ieso.ca for 

Canadian Ontario market, from www.nemmco.com.au for NEMMCO Australian data etc. 

Some of the literatures have tried to analyze these markets and the effects of deregulation 

upon them using various volatility indices. The Australian data is obtained from NEMMCO 

(www.nemmco.com.au) and represents hourly prices. The prices are denominated in 

Australian dollars per MW. The two trading hubs in the transmission network for which we 

obtain data are New South Wales (NSW) and Victoria (VIC).  
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Table 8.1  
Testing Dataset Used. Training Set is One Month Data Prior to Testing Dataset. 

Market Season Testing Data 

Ontario(week 1-2) Spring Apr 26 – May 9, 2004 

Ontario(week 3-4) Summer Jul 26 – Aug 8, 2004 

Ontario(week 5-6) Winter Dec 13 – Dec 26, 2004 

NEMMCO Victoria (Week1) Summer Jul 26 – Aug 1, 2003 

NEMMCO Victoria (Week2) Summer Aug 19-Aug25, 2003 

NEMMCO Victoria (Week3) Winter Dec 1-7 , 2003 

NEMMCO NSW(Week1) winter Jan 22 – Jan 28,2006 

NEMMCO NSW(Week2) Fall May 21 – May 27,2006 

NEMMCO NSW(Week3) Summer Aug 20 – Aug 26, 2006 

NEMMCO NSW(Week4) Spring Oct 22 – Oct 28, 2006 

Spain Summer Aug 19 – Aug 25, 2002 

California Spring Feb 21 – Feb 28, 2000 

PJM (week 1) Spring Feb 22- Feb 28, 2006 

PJM (week 2) Fall May 17-May 23, 2006 

PJM (week 3) Summer Aug 23-Aug28, 2006 

PJM (week 4) Winter Nov 22-Nov 28, 2006 

 

8.1.2 Summary Statistics  

      Comparisons across the price levels show notable differences in volatility among the 

markets. For example, Ontario prices exhibit more variability than either the U.S. or 
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Australian prices. In all three sets of price figures, the volatility is dominated by episodes of 

extremely high prices. During the California power crisis of summer 1999 prices spiked to 

over $1,500 per MW. The Australian prices for NSW and Vic show a greater frequency of 

extreme price spikes than any of the other series. The time series are more clearly mean-

reverting. There are episodes of “clustering” or volatility that are visibly more frequent than 

just the price spikes that dominate volatility in the price levels series. 

Table 8.2  
Statistics of Training Data (The units of Mean, Std. Dev, Min and Max are Euro/MW for Spain and 

$/MW for rest of the markets)  
 PJM  Ontario  Spain  Victoria  NSW  California 

Mean  38.65 46.9 3.81 42.32 38.63 26.34 

Std. Dev 13.3 18.8 1.469 170 60.97 17.1 

Minimum 21.18 10 1.37 11 14.35 9.97 

Maximum 70.16 94.8 7.4 2542 529.8 55.32 

Skewness 57.2 51.47 37.93 12.5 74.75 35.2 

Kurtosis 2.11 3.22 2.0 179.24 32.4 1.64 

 

      Table 8.2 presents summary statistics for the time series for each of the six markets. We 

report the mean, standard deviation, minimum, maximum, skewness, kurtosis for time 

series. The hourly standard deviations of the time series are, on average, very high and 

widely dispersed across trading hub series even within countries. The magnitude of and 

cross-sectional dispersion in standard deviations is much lower in spain than the U.S. and 

much higher in Australia and Ontario than in the U.S. Manifestly California market is the 

most studied one ascribable to the instability occurred during end of 2000. The price trends 

show volatile behavior around this period as the electricity market began to reach its limits. 

Large generation capacity leads to higher prices alluring more market participants and thus 
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altering the competition scenario. On the contrary, the reason behind high volatility in PJM 

market is the lack of sufficient generation imparting emergency conditions. The Ontario 

power network is connected to the New York and Midwest electricity markets directly, and 

to the New England and PJM markets indirectly. It is also connected to the regulated utilities 

in Quebec and Manitoba, both having significant energy transactions with other utilities in 

the United States. Volatility of the Ontario electricity market prices is shown to be 

significantly higher than price volatility in the New England, New York and PJM electricity 

markets, as well as in other markets around the world, revealing that Ontario’s electricity 

market prices are among the most volatiles world-wide. Table I explains the characteristic 

nature of Electricity price time series system. High volatility, intermittent spikes etc are 

clearly evident in this time series system.  

None of the series exhibit much skewness, but all have high positive excess kurtosis, 

which is again likely to signify fat-tailedness due to very large outliers. The magnitude of the 

kurtosis statistic, which mostly hover around 10 for the various series, is aligned with the 

magnitude of the range defined by the maximum and minimum in each series.  

Table 4.2 demonstrates the defining characteristics of the time series data used from the 

electricity markets, like high volatility, occasional extreme jumps, volatility clustering etc, 

Standard deviation is the measure of high volatility index and the high difference between 

maximum and mean value tells us the time series observes intermittent extreme jumps. The 

application of the proposed model on these various training and testing data are presented 

in next section and the relevant analysis is given.    

The volatility and non-stationarity in these markets correspond to prominent and sporadic 

movements of price from the mean value. In the past literature, this behavior was explained 

based on existence of different regimes of dynamics in phase space at different time which 
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corresponds to different behaviors in electricity price time series system. Mainly two 

regimes can be identified in this nonlinear system and the prices transit from one regime to 

other based on dynamics of the market during that period. During stable periods, prices 

exhibit mean-reverting behavior with random fluctuations around some long-term mean 

while in unstable regions fluctuations are more pronounced, and prices experience jumps 

and short-lived spikes, that is, unpredictable and very pronounced upward jumps shortly 

followed by steep downward moves. Mean reversion is a very important property of power 

prices also in turbulent periods because it is responsible for strongly reducing prices after a 

spike has occurred. A similar behavior is rarely found in financial markets or in commodities 

markets, [160].  

As discussed here, the different deregulated markets exhibit varying dynamic behavior. 

Although they share one attribute of spiking at irregular intervals with chaotic behaviour in 

interspiking region, the volatility characteristics in spiking region and chaotic region are 

different for different markets. As a result, the three models proposed in previous three 

chapters are expected to perform differently for these markets, which was the observation 

upon implementation. The details are given in section 8.3 after brief discussion of used 

performance indices in next section.  

 

8.2 Forecasting Indices Used 

Several measurements are used to examine the accuracy of forecast results. The mean 

absolute Percentage error (MAPE) index is considered here to evaluate the performance of 

forecast results. MAPE represents the absolute average prediction error between 

predictions and actual targets, has been chosen as the error metric due to its wide 

application in evaluating forecasting models. MAPE is defined as:  
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Here N is the total number of data, iP  is the actual price and iP  is the predicted price. 

Many texts use variants of MAPE, namely mean absolute daily error (MADE), weekly mean 

absolute percentage error (MAWE) etc. as forecasting error indices as low prices can have 

adverse shooting effects on MAPE. In order to avoid the adverse effect of very small prices, 

sometimes WMAPE is adopted and compared with those in the literature.  
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However for fair comparison with other benchmark papers mentioned in later chapters, we 

use both MAPE and WMAPE in this work as a performance index for the corresponding 

markets. For California, Ontario, Victoria and NSW day-ahead markets, MAPE has been used, 

while for PJM market WMAPE has been used for performance evaluation and comparison. 

For hourly forecasts, MAPE has been used.    

8.3 PGRNN Implementation Results 

As mentioned in chapter 5, PGRNN model was developed gradually with 1) fixed point based 

weight initialization (RNN1), 2) fixed point based weight initialization + enforcing fixed point 

dynamics during learning (RNN2) and 3) fixed point based weight initialization  + enforcing 

fixed point dynamics during learning + local jacobian learning along time series (RNN3). The 
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individual effects of all these approaches were observed on all markets. Time series data 

from each market was divided into training and testing sets mentioned in section 8.1. The 

results are given in table 8.3.  

Table 8.3 
Prediction Error for Worldwide Deregulated Markets Using Three Proposed Approaches of RNN 

Learning (Error is in MAPE for Ontario and NEMMCO and WMAPE for PJM)    
Market Season RNN 1 (%) RNN 2 (%) RNN 3 (%) 

Ontario(week 1-2) Spring 13.01 13.12 12.2 

Ontario(week 3-4) Summer 13.92 13.82 12.96 

Ontario(week 5-6) Winter 12.87 12.99 12.75 

NEMMCO Victoria (Week1) Summer 14.41 16.21 14.61 

NEMMCO Victoria (Week2) Summer 14.04 15.52 14.99 

NEMMCO Victoria (Week3) Winter 15.38 16.0 15.7 

PJM (week 1) Spring 6.92 6.9 6.29 

PJM (week 2) Fall 5.90 5.36 5.34 

PJM (week 3) Summer 5.97 5.88 5.9 

PJM (week 4) Winter 7.01 6.91 6.89 

As observed in table 8.3, the proposed models exhibit interesting results on tested markets. 

The RNN model trained using learning algorithm employing weight initialization with 

projected descent and local jacobian gives best results for Ontario markets and PJM markets, 

while for Victoria market, RNN with simple weight initialization gives best results among the 

three. This observation can be associated with high spiking nature of time series in Victoria 

market. Moreover RNN with weight initialization performs better than RNN with Weight 

Initialization + Projected Descent for most markets except PJM.  A possible explanation 

behind these two observations can be found in the nonlinear theory behind spiking 
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phenomenon. During learning of RNN models using projected gradient descent based 

algorithm, the basic assumption is that the system fixed point location and dynamics of 

system are constant during the course of time series. However it has been suggested in 

theories and also observed in chapter 6 that spiking is caused due to variation in fixed point 

behaviour during critical transition associated with spiking. However in case of PJM market, 

the spiking behaviour is not very prominent and chaotic behaviour dominates the whole 

time series. Which is why in this scenario RNN trained using all three approaches dominates 

in PJM market. 

In the next table, we present the results corresponding to the RNN trained using all 

three approaches and compare them with recently published benchmark papers.  

Table 8.4 
Comparison of Prediction Error for proposed PGRNN trained using combination of all three 

approaches with Benchmarks (Error is in MAPE for Ontario, NSW and NEMMCO and WMAPE for PJM)    
Market Season Benchmark (%) Proposed RNN (%) 

Ontario(week 1-2) Spring 17.35 [161] 13.43 

Ontario(week 3-4) Summer 18.266 [161] 12.96 

Ontario(week 5-6) Winter 17.626 [161] 12.75 

NEMMCO Victoria (Week1) Summer 22.1 [162] 12.61 

NEMMCO Victoria (Week2) Summer 23.1 [162] 12.99 

NEMMCO Victoria (Week3) Winter 32.5 [162] 14.17 

NEMMCO NSW(Week1) Winter 15.57 [128] 10.19 

NEMMCO NSW(Week2) Fall 13.03 [128] 9.03 

NEMMCO NSW(Week3) Summer 13.84 [128] 9.54 

NEMMCO NSW(Week4) Spring 9.89 [128] 8.34 
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PJM (week 1) Spring 6.392 [127] 5.29 

PJM (week 2) Fall 5.976 [127] 5.34 

PJM (week 3) Summer 5.974 [127] 5.9 

PJM (week 4) Winter 6.648 [127] 6.49 

It can be observed that the accuracy obtained using the proposed model is better than 

benchmark models in most of the markets except PJM in season of winter. In case of 

Ontario and Victoria markets, the improvement in accuracy achieved is considerable. It can 

be deduced that the proposed model accurately models the time series and the 24 hours 

ahead market can be forecasted using this approach. The corresponding predicted curves 

for all markets are shown in figures 8.2 – 8.15 below. 

8.3.1 Results for PJM market 

The implementation results for PGRNN for PJM market are shown from Fig. 8.1-8.4 where 

actual and predicted curves are presented.  
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Fig. 8.1. Actual and Predicted curve in PJM market during Week1 for PGRNN 

 

 

Fig. 8.2. Actual and Predicted curve in PJM market during Week2 for PGRNN 
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Fig. 6(b). Actual and Predicted curve in PJM market during Week1 

Fig. 8.3. Actual and Predicted curve in PJM market during Week3 for PGRNN 

 

 

Fig. 8.4. Actual and Predicted curve in PJM market during Week4 for PGRNN 

 

In the above four figures, it can be observed that the testing dataset for PJM market 
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consists mainly of chaotic oscillations with almost no presence of spikes. The predicted and 

actual curve comparison confirms that PGRNN works very well in chaotic regions of time 

series.  

8.3.2 Results for Ontario Market 

The implementation results for PGRNN for Ontario market are shown from Fig. 8.5-8.7 

where actual and predicted curves are presented.  

 

 

 

Fig. 8.5 Actual and Predicted curve in Ontario market during Week1 for PGRNN 
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Fig. 8.6. Actual and Predicted curve in Ontario market during Week2 for PGRNN 

 

 

Fig. 8.7 Actual and Predicted curve in Ontario market during Week3 for PGRNN 

In the above three figures, it can be observed that the testing dataset for Ontario 

market consists of highly volatile chaotic oscillations with intermittent presence of single 

spikes. The developed model performs with considerable accuracy in chaotic regions while 
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exhibiting few misses during spiking.  

8.3.3 Results for Victoria Market 

The implementation results for PGRNN for Victoria market are shown from Fig. 8.8-8.10 

where actual and predicted curves are presented.  

  

Fig. 8.8 Actual and Predicted curve in Victoria market during Week1 for PGRNN 
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Fig. 8.9 Actual and Predicted curve in Victoria market during Week2 for PGRNN 

 

Fig. 8.10 Actual and Predicted curve in Victoria market during Week3 for PGRNN 

In the above three figures, it can be observed that the testing dataset for Victoria 

market consists of low volatile chaos during week 1 and 2 while highly volatile chaotic 

oscillations in week 3 with intermittent presence of single spikes. The developed model 
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performs with considerable accuracy in chaotic regions while the accuracy in spiking region 

is not very satisfactory.  

 

8.3.4 Results for NSW market 

The implementation results for PGRNN for NSW market are shown from Fig. 8.11-8.14 

where actual and predicted curves are presented. 

 

Fig. 8.11 Actual and Predicted curve in NSW market during Week1 for PGRNN 
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Fig. 8.12. Actual and Predicted curve in NSW market during Week2 for PGRNN 

 

 

Fig. 8.13. Actual and Predicted curve in NSW market during Week3 for PGRNN 
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Fig. 8.14. Actual and Predicted curve in NSW market during Week4 for PGRNN 

In the above four figures, it can be observed that the testing dataset for NSW market 

consists of low volatile chaos during week 1, 2 and 3 with intermittent spikes while highly 

volatile chaotic oscillations in week 4. However the unique feature of week 1 and week 4 is 

the nature of spikes which is in the form of low frequency bursting. The developed model 

performs with considerable accuracy in chaotic regions while the accuracy in spiking region 

is not very satisfactory.  

8.4 RNNFHN Implementation Results 

The proposed hybrid model was implemented for forecasting of day ahead prices in testing 

data. Time series data from each market was divided into training and testing sets. Training 

of hybrid model was carried out in supervised manner and the performance of trained 

model was examined on unseen test data, without any adaptation. The corresponding 

performance curves, which show the comparison of predicted and actual results, are shown 

in Fig 8.15-8.28. The comparison to benchmark results, previously published in literature, is 

given in table 8.5. 
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Table 8.5 

Comparison of Proposed RNNFHN and Benchmark Approaches for Worldwide Markets (Error is in 
MAPE for Ontario, NSW and NEMMCO and WMAPE for PJM) 

Market Season Benchmark (%) Proposed RNN (%) 

Ontario(week 1-2) Spring 17.35 [161] 12.65 

Ontario(week 3-4) Summer 18.266 [161] 12.71 

Ontario(week 5-6) Winter 17.626 [161] 12.04 

NEMMCO Victoria (Week1) Summer 22.1 [162] 13.5 

NEMMCO Victoria (Week2) Summer 23.1 [162] 14.02 

NEMMCO Victoria (Week3) Winter 32.5 [162] 15.66 

NEMMCO NSW(Week1) Winter 15.57 [128] 10.39 

NEMMCO NSW(Week2) Fall 13.03 [128] 11.28 

NEMMCO NSW(Week3) Summer 13.84 [128] 8.93 

NEMMCO NSW(Week4) Spring 9.89 [128] 9.53 

PJM (week 1) Spring 6.392 [127] 5.95 

PJM (week 2) Fall 5.976 [127] 5.99 

PJM (week 3) Summer 5.974 [127] 6.71 

PJM (week 4) Winter 6.648 [127] 6.65 

 

 

8.4.1 Results for Ontario market 

The implementation results for RNNFHN for Ontario market are shown from Fig. 8.15-8.17 

where actual and predicted curves are presented.  
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Fig. 8.15. Predicted and Actual Prices for Ontario Market for Week 1 for RNNFHN 

 

 

Fig. 8.16.Predicted and Actual Prices for Ontario Market for Week 2 for RNNFHN 
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Fig. 8.17 Predicted and Actual Prices for Ontario Market for Week 3 for RNNFHN 

In the above three figures, it can be observed that the testing dataset for Ontario 

market consists of highly volatile chaotic oscillations with intermittent presence of single 

spikes. The developed model performs well in spiking region with considerable accuracy. 

However the performance in chaotic region was observed to be rather unsatisfactory, 

especially when compared with PGRNN model.  In chaotic region the behaviour is oscillatory 

ripples, especially during week 3. 

 

8.4.2 Results for PJM market 

The implementation results for PGRNN for PJM market are shown from Fig. 8.18-8.21 where 

actual and predicted curves are presented.  
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Fig.8.18 Predicted and Actual Prices for PJM Market for Week 1 for RNNFHN 

 

 

Fig. 8.19.Predicted and Actual Prices for PJM Market for Week 2 for RNNFHN 
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Fig. 8.20 Predicted and Actual Prices for PJM Market for Week 3 for RNNFHN 

 

 

Fig. 8.21 Predicted and Actual Prices for PJM Market for Week 4 for RNNFHN 

In the above four figures, it can be observed that the testing dataset for PJM market 

consists mainly of chaotic oscillations with almost no presence of spikes. The predicted and 

actual curve comparison confirms that RNNFHN works well in low dimensional chaotic 
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regions however results are inferior compared to benchmarks or PGRNN model.  

 

8.4.3 Results for Victoria market 

The implementation results for PGRNN for Victoria market are shown from Fig. 8.22-8.24 

where actual and predicted curves are presented.  

 

 

Fig. 8.22.Predicted and Actual Prices for Victoria Market for Week 1 for RNNFHN 
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Fig. 8.23.Predicted and Actual Prices for Victoria Market for Week 2 for RNNFHN 

 

 

Fig. 8.24.Predicted and Actual Prices for Victoria Market for Week 3 for RNNFHN 

In the above three figures, it can be observed that the testing dataset for Victoria 

market consists of low volatile chaos during week 1 and 2 while highly volatile chaotic 

oscillations in week 3 with intermittent presence of single spikes. The developed model 
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performs with considerable accuracy in both chaotic and spiking regions.  

 

8.4.4 Results for NSW market 

The implementation results for PGRNN for NSW market are shown from Fig. 8.25-

8.28 where actual and predicted curves are presented. 

 

 

Fig. 8.25.Predicted and Actual Prices for NSW for Week 1 for RNNFHN 
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Fig. 8.26.Predicted and Actual Prices for NSW for Week 2 for RNNFHN 

 

 

Fig. 8.27.Predicted and Actual Prices for NSW for Week 3 for RNNFHN 
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Fig. 8.28.Predicted and Actual Prices for NSW for Week 4 for RNNFHN 

In the above four figures, it can be observed that the testing dataset for NSW market 

consists of low volatile chaos during week 1, 2 and 3 with intermittent spikes while highly 

volatile chaotic oscillations in week 4. However the unique feature of week 1 and week 4 is 

the nature of spikes which is in the form of low frequency bursting. The developed model 

performs with considerable accuracy in chaotic regions and single spiking regions, while the 

accuracy in bursting spiking region is much better compared to PGRNN.  

 

8.5 MSRNN Implementation Results 

The proposed model was implemented for forecasting of day-ahead prices in testing data. 

Time series data from each market was divided into training and testing sets. The 

corresponding performance curves, which show the comparison of predicted and actual 

results, are shown in Fig 8.29-8.42.  



160 
 

 

Table 8.6 
Comparison of Proposed MSRNN and Benchmark Methods on Worldwide Deregulated Markets (Error 

is in MAPE for Ontario, NSW and NEMMCO and WMAPE for PJM) 
Market Season Benchmark (%) Proposed MSRNN 

Ontario(week 1-2) Spring 17.35 [161] 12.83 

Ontario(week 3-4) Summer 18.266 [161] 12.9 

Ontario(week 5-6) Winter 17.626 [161] 12.42 

NEMMCO Victoria (Week1) Summer 22.1 [162] 10.4 

NEMMCO Victoria (Week2) Summer 23.1 [162] 10.96 

NEMMCO Victoria (Week3) Winter 32.5 [162] 13.86 

NEMMCO NSW(Week1) Winter 15.57 [128] 10.65 

NEMMCO NSW(Week2) Fall 13.03 [128]                9.78 

NEMMCO NSW(Week3) Summer 13.84 [128] 9.33 

NEMMCO NSW(Week4) Spring 9.89 [128] 8.60 

PJM (week 1) Spring 6.392 [127] 6.42 

PJM (week 2) Fall 5.976 [127] 5.01 

PJM (week 3) Summer 5.974 [127] 5.83 

PJM (week 4) Winter 6.648 [127] 6.81 

 

As observed in table 8.6, the proposed model exhibitS interesting results on tested 

markets. The RNN model trained using learning algorithm employing geometrical singular 

perturbation and fixed weight initialization based learning of fast subsystem gives best 

results for each tested deregulated markets. It can be observed that the accuracy obtained 

using the proposed model is better than benchmark models in most of the markets except 
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PJM in season of winter. However in case of Ontario market the results are particularly high, 

while the performance accuracy is quite good in Victoria markets. In NSW market the results 

are good in particular regions of time series.  

It can be deduced that the proposed model accurately models the time series and the 

24 hours ahead market can be forecasted using this approach. The corresponding predicted 

curves for all marktes are shown in figures 8.29 – 8.42 below.  

 

8.5.1 Results for Ontario Market 

The implementation results for MSRNN for Ontario market are shown from Fig. 

8.29-8.31 where actual and predicted curves are presented.  

 

 

Fig.8.29.Predicted and Actual Prices for Ontario for Week1 for MSRNN 
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Fig.8.30. Predicted and Actual Prices for Ontario for Week2 for MSRNN 

 

 

 

Fig.8.31. Predicted and Actual Prices for Ontario for Week3 for MSRNN 
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In the above three figures, it can be observed that the testing dataset for Ontario 

market consists of highly volatile chaotic oscillations with intermittent presence of single 

spikes. The developed model performs well in both spiking region and chaotic region with 

high accuracy.  

 

8.5.2 Results for PJM market 

The implementation results for PGRNN for PJM market are shown from Fig. 8.2-8.5 

where actual and predicted curves are presented.  

 

 

Fig.8.32. Predicted and Actual Prices for PJM for Week 1 for MSRNN 
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Fig.8.33. Predicted and Actual Prices for PJM for Week 2 for MSRNN 

 

 

Fig.8.34 Predicted and Actual Prices for PJM for Week 2 for MSRNN 
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Fig.8.35. Predicted and Actual Prices for PJM for Week 3 for MSRNN 

 

In the above four figures, it can be observed that the testing dataset for PJM market 

consists mainly of chaotic oscillations with almost no presence of spikes. The predicted and 

actual curve comparison confirms that RNNFHN works well in low dimensional chaotic 

regions however results are inferior compared to benchmarks or PGRNN model.  

8.5.3 Results for Victoria Market 

The implementation results for PGRNN for Victoria market are shown from Fig. 8.36-

8.39 where actual and predicted curves are presented.  

 



166 
 

 

Fig.8.36. Predicted and Actual Prices for Victoria for Week 1 for MSRNN 

 

 

Fig.8.37. Predicted and Actual Prices for Victoria for Week 2 for MSRNN 
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Fig.8.38. Predicted and Actual Prices for Victoria for Week 3 for MSRNN 

In the above three figures, it can be observed that the testing dataset for Victoria 

market consists of low volatile chaos during week 1 and 2 while highly volatile chaotic 

oscillations in week 3 with intermittent presence of single spikes. The developed model 

performs with considerable accuracy in both chaotic and spiking regions.  

 

8.5.4 Results for NSW market 

The implementation results for PGRNN for NSW market are shown from Fig. 8.12-

8.15 where actual and predicted curves are presented. 
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Fig.8.39. Predicted and Actual Prices for NSW for Week 1 for MSRNN 

 

 

Fig.8.40. Predicted and Actual Prices for Victoria for Week 2 for MSRNN 
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Fig.8.41. Predicted and Actual Prices for NSW for Week 3 for MSRNN 

 

 

 

Fig.8.42. Predicted and Actual Prices for NSW for Week 4 for MSRNN 
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In the above four figures, it can be observed that the testing dataset for NSW market 

consists of low volatile chaos during week 1, 2 and 3 with intermittent spikes while highly 

volatile chaotic oscillations in week 4. However the unique feature of week 1 and week 4 is 

the nature of spikes which is in the form of low frequency bursting. The developed model 

performs with considerable accuracy in chaotic regions and single spiking regions, while the 

accuracy in bursting spiking region is much better compared to PGRNN.  

8.6 Comparison of Performance of Three Proposed Models  

The results from all three proposed approaches are compared in table 8.7 below.  

Table 8.7 
Comparison of the Proposed Approaches for Worldwide Deregulated Markets in Terms of 

Error Indices (Error is in MAPE for Ontario, NSW and NEMMCO and WMAPE for PJM) 

Market 
Proposed RNN 

(approach 1) (%) 

Proposed RNN-FHN 

(approach 2) (%) 

Proposed MSRNN 

(approach 3) (%) 

Ontario(week 1-2) 13.43 12.65 12.83 

Ontario(week 3-4) 12.96 12.71 12.9 

Ontario(week 5-6) 12.75 12.04 12.42 

NEMMCO Victoria 

(Week1) 

12.61 13.5 10.4 

NEMMCO Victoria 

(Week2) 

12.99 14.02 10.96 

NEMMCO Victoria 

(Week3) 

14.17 15.66 13.86 

NEMMCO 

NSW(Week1) 

10.19 10.39 10.65 

NEMMCO 9.03 11.28                9.78 
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NSW(Week2) 

NEMMCO 

NSW(Week3) 

9.54 8.93 9.33 

NEMMCO 

NSW(Week4) 

8.34 9.53 8.60 

PJM (week 1) 5.29 5.95 6.42 

PJM (week 2) 5.34 5.99 5.01 

PJM (week 3) 5.9 6.71 5.83 

PJM (week 4) 6.49 6.65 6.81 

 

The above table exhibits some interesting results. It can be observed that RNN model 

trained using approach 1 and approach 3 perform well in most of the markets. However in 

Ontario market where the spiking behavior is a combination of isolated spikes and burst of 

spikes, the approach 2 based on RNN-FHN outperforms other two approaches, while 

approach 3, which is capable of predicting spikes, outperforms approach 1. In Victoria 

market, where the spiking transitions occur only in form of isolated spikes at irregular 

intervals, approach 3 based on MSRNN performs very well and outperforms other two 

approaches. In NSW market, where the inherent dynamics is complex chaos, the approach 

based on state feedback based RNN trained using invariant dynamics performs the best. 

Finally in PJM market, where the dynamics are relatively less complex compared to other 

markets, approach 1 and approach 3 perform well compared to approach 2. The evidence of 

above analysis can be seen in error histogram analysis in next section. 

 

8.7 Error Histogram Analysis 
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The results shown above in terms of MAPE and WMAPE represent an important metric 

based evaluation, however they do not give a clear picture of error distribution over the test 

period. This distribution is important for decision makers in competitive markets, especially 

in case of spiky time series. In spiking scenarios, the high spike regions represent very high 

risk regions where high error in prediction can result in loss of millions of worth of utilities. 

Hence it is desired to have a lower error in spiking regions. These scenarios can be analyzed 

through error histogram plots which absolute error distribution along the time series. Hence 

an important desirable feature of error histogram is symmetric bar heights over moderately 

lower error regions with no bars in very high error range.  This scenario is highly favored 

compared to tall bars of very low error regions and short bars over corresponding to very 

high error regions.  

The error histogram plots are shown in Table 8.8 – 8.10 where the first, second and 

third column represents results corresponding to PGRNN, FHNRNN and MSRNN.   

 
Table 8.8 

Error Histogram Plots for Ontario Market 

   

PGRNN Week 1 RNNFHN Week 1 MSRNN Week 1 
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PGRNN Week 2 RNNFHN Week 2 MSRNN Week 2 

   

PGRNN Week 3 RNNFHN Week 3 MSRNN Week 3 

 

 
Table 8.9 

Error Histogram Plots for Victoria Market 

   

PGRNN Week 2 RNNFHN Week 2 MSRNN Week 2 



174 
 

   

PGRNN Week 3 RNNFHN Week 3 MSRNN Week 3 

   

PGRNN Week 4 RNNFHN Week 4 MSRNN Week 4 

 

Table 8.10 
Error Histogram Plots for NSW Market 

   

PGRNN Week 1 RNNFHN Week 1 MSRNN Week 1 
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PGRNN Week 2 RNNFHN Week 2 MSRNN Week 2 

   

PGRNN Week 3 RNNFHN Week 3 MSRNN Week 3 

 
  

PGRNN Week 4 RNNFHN Week 4 MSRNN Week 4 

 

The histogram plots allow examination of error characteristics of each model. It can be 

seen that best error characteristics are exhibited by PGRNN for Ontario market, MSRNN for 

Victoria market, and RNNFHN for NSW market. The explanation for this behaviour is similar 

to discussion above, i.e. the difference in models performance in chaotic and spiking 

regimes.   

8.8 Discussion 

In this chapter implementation results for three novel approach is discussed. 

In first approach the invariant dynamics of time series are incorporated during the 

learning process (in particular fixed point dynamics) and enforced during each step of 
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learning. This approach was proposed in attempt to achieve a dynamic RNN model which 

learns the inherent complex nonlinearities of the system which makes it a closer 

approximation of actual nonlinear system. This approach can also be seen as using heuristic 

information to achieve global optimum solution during time series based RNN learning. The 

three steps of learning process include intelligent weight initialization using fixed point 

dynamics, enforcing fixed point conditions during each learning step and enforcing local 

jacobian during the course of time series. The trained model outperforms the recent 

benchmark approaches in most of the deregulated markets. The results of all three steps of 

incorporating invariant dynamics are shown individually in table 8.3 . It can be observed that 

the weight initialization step is the most contributing factor towards improvement in results 

using RNN. The projection gradient descent contributes in improving the result in case of 

hyperchaotic systems such as Ontario time series, which implies that the Ontario time series 

system has strong but stationary chaotic behaviour in most of the region of phase space. 

The contribution of learning of local jacobian during the training process is not very 

significant although this step helps in learning the local variations in time series. 

For second approach, the performance curves and the comparison table indicates the 

superiority of proposed model over other forecasting approaches proposed in past, over 

specified testing dataset. Moreover closer prediction in spiking region strengthens its 

applicability as forecasting tool in high risk electricity markets. The main contributions of this 

thesis and the key advantages of the proposed model can be summarized as follows.  

• Improved prediction performance achieved through development of a heuristic 

based hybrid model combining merits of RNN models and excitable properties of 

FHN coupled system of equations with better forecasting.  
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• Satisfactory tracking and forecast in the spiking region which helps in good statistical 

results, thereby reducing the financial risk in this region of uncertainty.  

• Reasonably accurate performance over worldwide deregulated markets from 

different regions of the world over different seasons and time of the year, verifying 

the adaptability and applicability of the proposed model.  

• Satisfactory unconditional coverage provided by obtained prediction intervals upon 

interval forecasting. Prediction intervals obtained are narrow in stable regime and 

wider in spiky volatile regions.  

• The developed model avoids preprocessing of time series data, thereby avoiding 

possible loss of data due to filtering. In particular, avoiding the decomposition of 

time series signal averts the risk of losing high frequency components.  

• The developed model handles the problem of non-stationarity, which is why it 

doesn’t necessitate limiting the size of training data.   

While the proposed model is able to achieve better results compared to traditional 

models on this time series, the MAPE of the forecasts can be further improved. The absence 

of information about the structure of the network required is a small disadvantage with this 

approach, but the key advantage of using this model is the ability to achieve fair predictions 

in the spiking region, which will help the bidders and strategy makers a great deal at the 

critical time. 

In third approach, the forecasting performance of this model in the spiking and 

nonspiking region was found to be excellent.   Success of this MSRNN model presents 

exciting opportunities for future work in this time series system. Further work will include 

extensive investigation of slow-fast scale analysis of electricity price time series and include 

the results as heuristics in modelling of MSRNN.  
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8.9 Limitations of Developed Models 

In this chapter it was observed that the three developed models perform better 

compared to benchmark approaches. However it can be seen that the volatility structure of 

all deregulated markets and the three models underperform in few cases. The limitations of 

all proposed model are summarized and discussed below 

8.9.1 Limitation of PGRNN  

• From the results it can be observed that the model doesn’t predict 

and model the spikes accurately.  

• One major limitation of this model is modelling complexity and 

dependence of model on accuracy of extracting fixed point of time 

series. 

• Another limitation of this model is that it is not adaptable in case 

of occurrence of non-stationarity. 

8.9.2 Limitation of RNNFHN 

• From results it can be observed that the model doesn’t perform 

well in chaotic region of time series particularly.  

• Due to unique hybrid nature of this model, it is difficult to prove 

the stability of model. 

8.9.3 Limitation of MSRNN 

• From the results it can be observed that this model perform well in 

spiking as well as chaotic regime, however the model 

underperforms in cases when spiking behaviour deviates from 

single spikes to bursting spikes. 
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• Another limitation of this approach is separate training of slow 

subsystem and fast subsystem of MSRNN. This results in slower 

learning process which renders the system inapplicable in cases 

where real time learning is required.   
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Chapter 9 

Conclusion and Future Work 

In this thesis, a systematic approach based on nonlinear dynamics has been adopted 

towards successful modelling of spiking time series in deregulated electricity markets using 

Recurrent Neural Networks. The first step involved analyzing time series using nonlinear 

systems theory and observing the invariants measures constituting time series which is 

presented in chapter 4. Embedding dimension is the basic invariant measure which is crucial 

for reconstruction of phase space of time series. Furthermore, the lyapunov exponent of 

time series is calculated to measure the degree of chaos in the system. However due to 

presence of possible intermittent variation in dynamics, lyapunov exponent is not a reliable 

index, which is why Finite Size Lyapunov Exponent (FSLE) and Scale Dependent Lyapunov 

Exponent (SDLE) are calculated to analyze the transient dynamics of time series along with 

global behavior. Observing FSLE allows in detecting the possible presence of loss of 

hyperbolicity in the system. Moreover it is proven that spiking mechanism doesn’t occur due 

to loss of local hypervbolicity, or UDV. SDLE analysis allows establishing the fact that 

electricity price is not a noisy time series, on the other hand exhibits complex irregular 

behavior due presence of dynamics on multiple scales. Most importantly, fixed point 

location and the dynamics in neighbourhood are analyzed which are the crucial invariant of 

time series. It was observed that all time series are nonlinear systems with presence of 

saddle. Eigenvalues of these saddles determine the behavior of the system globally and 

locally. In chapter 5, RNN is developed which employ the fixed point dynamics during 

learning process. The proposed approach results in better learning of RNN by bring the RNN 

closer to exact nonlinear system underlying time series. The results indicated that although 

this model outperforms classically trained RNN and benchmark models, and perform quite 
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well in the interspike chaotic region, the results in spiking region still required improvement. 

In the next two chapters we pay particular attention on modelling spiking region of time 

series. From dynamical system perspective, spiking transition is approached from multiple 

scale behavior. We describe the spiking behavior as critical transition in a multiple scale 

system where the system dynamics bifurcate due to variation in “parameter” at slower scale.  

In chapter 6, one of the dynamical systems exhibiting multiple scale dynamics is used to 

study spiking, the well known Fitz-Hugh Nagumo (FHN). A proposed hybridized model with 

recurrent neural network (RNN) is used for forecasting in electricity price time series. First 

the presence of multiple scale dynamics in the time series system is confirmed. The 

approach adopts extraction of dynamics of slow parameter system, variations in which 

affect the behavior of fast actual time series. Further a dynamic system with slow and fast 

scales, namely Fitz-Hugh Nagumo (FHN), is used and hybridized with recurrent neural 

networks. The property of the multiple scale equation system allows the mechanism of 

spiking in such regimes. In turn, the parameters and coupling variables of this excitable 

system are determined using an RNN based model. As a result the learned hybrid model 

would achieve a desired level of modeling accuracy. The developed hybrid model was tested 

in various markets worldwide over different seasons to test its forecasting ability, 

adaptability and robustness. Most volatile electricity markets, California, Australia, PJM, 

Spain and Ontario market in Canada were modeled using the proposed approach. Extensive 

comparative studies suggest that our approach yields favorite results in hour-ahead and day 

ahead price prediction and day-ahead market.  

In chapter 7, for more accurate modeling of time series and the associated slow fast 

dynamics, a multiple scale neural network (MSNN) is developed. Slow fast systems deal with 
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slow manifold and fast manifold where the key dynamics of time series occur on fast 

invariant manifold while the dynamics occurring on slow manifold is responsible for 

intermittent critical transitions. The developed model is trained using singular perturbation 

theory for slow-fast systems combined with gradient descent algorithm. The results from all 

three proposed approaches are compared in table 9.1 below.  

Table 9.1 
Comparison of the Proposed Approaches for Worldwide Deregulated Markets in 

Terms of Error Indices (Error is in MAPE for Ontario, NSW and NEMMCO and WMAPE for PJM) 

Market 
PGRNN 

(approach 1) (%) 

RNNFHN 

(approach 2) (%) 

MSRNN 

(approach 3) (%) 

Ontario(week 1) 13.43 12.65 12.83 

Ontario(week 2) 12.96 12.71 12.9 

Ontario(week 3) 12.75 12.04 12.42 

NEMMCO Victoria 

(Week1) 

12.61 13.5 10.4 

NEMMCO Victoria 

(Week2) 

12.99 14.02 10.96 

NEMMCO Victoria 

(Week3) 

14.17 15.66 13.86 

NEMMCO 

NSW(Week1) 

10.19 10.39 10.65 

NEMMCO 

NSW(Week2) 

9.03 11.28                9.78 

NEMMCO 

NSW(Week3) 

9.54 8.93 9.33 
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NEMMCO 

NSW(Week4) 

8.34 9.53 8.60 

PJM (week 1) 5.29 5.95 6.42 

PJM (week 2) 5.34 5.99 5.01 

PJM (week 3) 5.9 6.71 5.83 

PJM (week 4) 6.49 6.65 6.81 

 

The above table exhibits some interesting results. It can be observed that RNN model 

trained using approach 1 and approach 3 perform well in most of the markets. However in 

Ontario market where the spiking behavior is a combination of isolated spikes and burst of 

spikes, the approach 2 based on RNN-FHN outperforms other two approaches, while 

approach 3, which is capable of predicting spikes, outperforms approach 1. In Victoria 

market, where the spiking transitions occur only in form of isolated spikes at irregular 

intervals, approach 3 based on MSRNN performs very well and outperforms other two 

approaches. In NSW market, where the inherent dynamics is complex chaos, the approach 

based on s tate feedback based RNN trained using invariant dynamics performs the best. 

Finally in PJM market, where the dynamics are relatively less complex compared to other 

markets, approach 1 and approach 3 perform well compared to approach 2.  

 

9.1   List of Achievements 

In summary, the list of achievements in this thesis can be given as  

• The presence of multiple scale dynamics in electricity price time series was 

confirmed in chapter 4.  

• From SDLE analysis it was validated that noise does not play crucial part in 
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dynamics of time series.  

•  A novel learning algorithm for training RNN was developed in chapter 5, 

which incorporates invariant dynamics of time series in learning process. The 

developed model achieved high accuracy in interspike chaotic regime.  

• A multiple scale neural network was developed in chapter 7 and trained using 

singular perturbation theory and the novel RNN learning algorithm developed 

in chapter 5. The developed model achieved high accuracy in both spiking and 

interspike chaotic regime.  

 

 

9.2 Future Work 

 The proposed approaches were developed to learn the complex inherent dynamics of 

electricity price time series in deregulated markets, along with the spiking behavior. The 

approaches perform better over worldwide markets compared to benchmarks. Interesting 

avenues of future research can be found in MSRNN and PGRNN. The limitations of these 

approaches are discussed in section 8.9. The main shortcoming of approach based on 

PGRNN is the inability to handle spikes successfully; however they perform quite well in 

highly volatile chaotic/hyperchaotic scenarios. The future work employing PGRNN will 

include application forecasting in case of other financial time series. Competitive and 

exchange rate markets are complex systems with large number of market players rendering 

highly volatile behavior. However the existing forecasting models do not perform 

satisfactorily to be employed with high confidence by market players. In order to implement 

PGRNN in these systems, it is of utmost importance to perform stability analysis of the 

developed learning algorithm. Hence the future work will include extensive stability analysis 
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of PGRNN learning algorithms.  

 While approach based on MSRNN performs very well in all markets with both spiking 

and chaotic regimes and outperform all benchmark approaches, they perform well in case of 

islolated spiking scenarios. It was observed that MSRNN doesn’t capture the complex spiking 

patterns such as mixture of isolated spike and bursts, which are associated to complex 

homoclinic/heteroclinic scenarios. The future work will include extraction of these dynamics 

from time series. Investigation of these dynamics will include sophisticated analysis of 

variation in fixed point dynamics as the slow scale parameter variation takes place. This 

involves identification of exact slow manifold from time series and analysis of system using 

geometrical singular perturbation theory.  This analysis and the obtained dynamic 

information can be incorporated during learning of multiple-scale RNN.  

To summarize, the future work will broadly include.  

• Application of MSRNN and PGRNN on other financial systems such as stock 

markets, given the excellent approximation capabilities of the model in the 

complex chaotic scenarios.   

• Extensive stability analysis of PGRNN.  

• Improving prediction performance of MSRNN by incorporating exact 

homoclinic/heteroclinic scenarios in the learning process.  
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