42 research outputs found

    Objective automatic assessment of rehabilitative speech treatment in Parkinson's disease

    Get PDF
    Vocal performance degradation is a common symptom for the vast majority of Parkinson's disease (PD) subjects, who typically follow personalized one-to-one periodic rehabilitation meetings with speech experts over a long-term period. Recently, a novel computer program called Lee Silverman voice treatment (LSVT) Companion was developed to allow PD subjects to independently progress through a rehabilitative treatment session. This study is part of the assessment of the LSVT Companion, aiming to investigate the potential of using sustained vowel phonations towards objectively and automatically replicating the speech experts' assessments of PD subjects' voices as “acceptable” (a clinician would allow persisting during in-person rehabilitation treatment) or “unacceptable” (a clinician would not allow persisting during in-person rehabilitation treatment). We characterize each of the 156 sustained vowel /a/ phonations with 309 dysphonia measures, select a parsimonious subset using a robust feature selection algorithm, and automatically distinguish the two cohorts (acceptable versus unacceptable) with about 90% overall accuracy. Moreover, we illustrate the potential of the proposed methodology as a probabilistic decision support tool to speech experts to assess a phonation as “acceptable” or “unacceptable.” We envisage the findings of this study being a first step towards improving the effectiveness of an automated rehabilitative speech assessment tool

    A Review of the Assessment Methods of Voice Disorders in the Context of Parkinson's Disease

    Get PDF
    In recent years, a significant progress in the field of research dedicated to the treatment of disabilities has been witnessed. This is particularly true for neurological diseases, which generally influence the system that controls the execution of learned motor patterns. In addition to its importance for communication with the outside world and interaction with others, the voice is a reflection of our personality, moods and emotions. It is a way to provide information on health status, shape, intentions, age and even the social environment. It is also a working tool for many, but an important element of life for all. Patients with Parkinson’s disease (PD) are numerous and they suffer from hypokinetic dysarthria, which is manifested in all aspects of speech production: respiration, phonation, articulation, nasalization and prosody. This paper provides a review of the methods of the assessment of speech disorders in the context of PD and also discusses the limitations

    Accurate telemonitoring of Parkinson's disease symptom severity using nonlinear speech signal processing and statistical machine learning

    Get PDF
    This study focuses on the development of an objective, automated method to extract clinically useful information from sustained vowel phonations in the context of Parkinson’s disease (PD). The aim is twofold: (a) differentiate PD subjects from healthy controls, and (b) replicate the Unified Parkinson’s Disease Rating Scale (UPDRS) metric which provides a clinical impression of PD symptom severity. This metric spans the range 0 to 176, where 0 denotes a healthy person and 176 total disability. Currently, UPDRS assessment requires the physical presence of the subject in the clinic, is subjective relying on the clinical rater’s expertise, and logistically costly for national health systems. Hence, the practical frequency of symptom tracking is typically confined to once every several months, hindering recruitment for large-scale clinical trials and under-representing the true time scale of PD fluctuations. We develop a comprehensive framework to analyze speech signals by: (1) extracting novel, distinctive signal features, (2) using robust feature selection techniques to obtain a parsimonious subset of those features, and (3a) differentiating PD subjects from healthy controls, or (3b) determining UPDRS using powerful statistical machine learning tools. Towards this aim, we also investigate 10 existing fundamental frequency (F_0) estimation algorithms to determine the most useful algorithm for this application, and propose a novel ensemble F_0 estimation algorithm which leads to a 10% improvement in accuracy over the best individual approach. Moreover, we propose novel feature selection schemes which are shown to be very competitive against widely-used schemes which are more complex. We demonstrate that we can successfully differentiate PD subjects from healthy controls with 98.5% overall accuracy, and also provide rapid, objective, and remote replication of UPDRS assessment with clinically useful accuracy (approximately 2 UPDRS points from the clinicians’ estimates), using only simple, self-administered, and non-invasive speech tests. The findings of this study strongly support the use of speech signal analysis as an objective basis for practical clinical decision support tools in the context of PD assessment.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Improved Emotion Recognition Using Gaussian Mixture Model and Extreme Learning Machine in Speech and Glottal Signals

    Get PDF
    Recently, researchers have paid escalating attention to studying the emotional state of an individual from his/her speech signals as the speech signal is the fastest and the most natural method of communication between individuals. In this work, new feature enhancement using Gaussian mixture model (GMM) was proposed to enhance the discriminatory power of the features extracted from speech and glottal signals. Three different emotional speech databases were utilized to gauge the proposed methods. Extreme learning machine (ELM) and k-nearest neighbor (kNN) classifier were employed to classify the different types of emotions. Several experiments were conducted and results show that the proposed methods significantly improved the speech emotion recognition performance compared to research works published in the literature

    Models and Analysis of Vocal Emissions for Biomedical Applications

    Get PDF
    The MAVEBA Workshop proceedings, held on a biannual basis, collect the scientific papers presented both as oral and poster contributions, during the conference. The main subjects are: development of theoretical and mechanical models as an aid to the study of main phonatory dysfunctions, as well as the biomedical engineering methods for the analysis of voice signals and images, as a support to clinical diagnosis and classification of vocal pathologies

    Models and Analysis of Vocal Emissions for Biomedical Applications

    Get PDF
    The International Workshop on Models and Analysis of Vocal Emissions for Biomedical Applications (MAVEBA) came into being in 1999 from the particularly felt need of sharing know-how, objectives and results between areas that until then seemed quite distinct such as bioengineering, medicine and singing. MAVEBA deals with all aspects concerning the study of the human voice with applications ranging from the newborn to the adult and elderly. Over the years the initial issues have grown and spread also in other fields of research such as occupational voice disorders, neurology, rehabilitation, image and video analysis. MAVEBA takes place every two years in Firenze, Italy. This edition celebrates twenty-two years of uninterrupted and successful research in the field of voice analysis

    Computer-Aided Diagnosis of Parkinson's Disease Using Complex-Valued Neural Networks and mRMR Feature Selection Algorithm

    Get PDF
    ABSTRACT Parkinson's disease (PD) is a neurological disorder which has a significant social and economic impact. PD is diagnosed by clinical observation and evaluations, coupled with a PD rating scale. However, these methods may be insufficient, especially in the initial phase of the disease. The processes are tedious and time-consuming, and hence systems that can automatically offer a diagnosis are needed. In this study, a novel method for the diagnosis of PD is proposed. Biomedical sound measurements obtained from continuous phonation samples were used as attributes. First, a minimum redundancy maximum relevance (mRMR) attribute selection algorithm was applied for the identification of the effective attributes. After conversion to a complex number, the resulting attributes are presented as input data to the complex-valued artificial neural network (CVANN). The proposed novel system might be a powerful tool for effective diagnosis of PD

    Models and Analysis of Vocal Emissions for Biomedical Applications

    Get PDF
    The MAVEBA Workshop proceedings, held on a biannual basis, collect the scientific papers presented both as oral and poster contributions, during the conference. The main subjects are: development of theoretical and mechanical models as an aid to the study of main phonatory dysfunctions, as well as the biomedical engineering methods for the analysis of voice signals and images, as a support to clinical diagnosis and classification of vocal pathologies
    corecore