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FOREWORD

This book of Proceedings includes the contributions presented at the 12th International Workshop on Models and Anal-
ysis of Vocal Emissions for Biomedical Applications – MAVEBA 2021, held in Firenze from 14 to 16 December, 2021� 

The previous edition of MAVEBA in December 2019 was an opportunity to happily celebrate the twentieth anni-
versary of MAVEBA with “historical” colleagues and many new ones� No one would have imagined that just a couple 
of months later everyone’s life would have changed dramatically due to the COVID-19 pandemic!

This year’s edition wants to be a sort of revenge for life and a wish to start again meeting each other for everyone� 
For this reason it is mostly carried out not in a virtual way but in person�

I thank all the participants who, with their presence, wanted to be next to me once again� I also thank those who 
could not participate directly for personal or security reasons�

Thus, the question that I asked me two years ago is still the same, and I give the same answer: MAVEBA started 
because of curiosity and continued thanks to the enthusiasm of the participants: and today? Curiosity and enthusiasm 
are still there despite pandemic, with the awareness of a fascinating and increasingly interdisciplinary world� 

The main subjects of MAVEBA 2021 still concern methods for analyzing the human voice and retrieving its fea-
tures related to particular physiological or neurological conditions� The aim is that of assessing reliable procedures for 
objective and quantitative definition of levels of voice disorders, singing voice parameters, newborn cry features, vocal 
fold and vocal tract modelling and mechanics� The interdisciplinarity, that has always characterized the MAVEBA 
workshops, is well highlighted by the themes addressed, that are listed below� 

The papers presented at MAVEBA 2021 and collected in this volume are divided into eight Sessions� 
SESSION I – MODELS AND ANALYSIS
SESSION II – SPEECH
SESSION IIII – NEUROLOGICAL DISORDERS
SESSION IV - BIOMECHANICS
SESSION V - SINGING
SESSION VI – NEWBORNS AND CHILDREN
SESSION VII - PARKINSON
SESSION VIII – COVID-19

I am very grateful to the authors for their contribution and to all participants, near and far, but present anyway, that 
stimulated the discussion and helped to propose new research themes and methodologies of analysis in the continuous-
ly evolving field of the study of the human voice.

Claudia Manfredi
MAVEBA 2021 Chair

ACKNOWLEDGEMENTS
I greatly acknowledge my PhD student Dr�Eng� Lorenzo Frassineti, who manages and constantly updates the web-

site, collaborated in reviewing the Proceedings and in solving the daily difficulties with patience and professionalism, 
Dr� Eng� Benedetta Olmi, research fellow, the biomedical Engineering students Federico Calà, Angela Parente, Valen-
tina Guarguagli and the ScaramuzziTeam Congress Agency for its professionalism�
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SESSION I
MODELS AND ANALYSIS





Abstract: Traditionally, glottal area waveform 
(GAW) of modal voice have negligible amplitude 
modulation. Contrarily, for other voice qualities, like 
vocal fry and diplophonic voice qualities in 
particular, the GAWs contain multiple amplitude 
modulated pulses in a single modulator cycle. In this 
proposed approach, amplitude modulated vocal fry 
GAW segments are objectively detected. First, 
GAWs are modelled using an analysis-by-synthesis 
approach. This approach fits two modelled GAWs 
for each of the input GAW. One modelled GAW is 
modulated to replicate the amplitude and frequency 
modulations of the input GAW and the other 
modelled GAW is unmodulated. Modelling errors 
are obtained by taking root mean squared difference 
between the input and two modelled GAWs 
separately. These two modelling errors are used as 
features for detection of amplitude modulated 
segments using a support vector machine (SVM) 
followed by a hidden Markov model (HMM). The 
sensitivity, specificity and accuracy of detecting the 
amplitude modulated GAW segments are 0.79, 0.92 
and 0.92 respectively. 

Keywords: voice quality, vocal fry, glottal area 
waveform

I. INTRODUCTION

Typical voice qualities are modal, breathy, hoarse, 
diplophonic, and vocal fry. In this study, amplitude 
modulated vocal fry voice quality is investigated. Vocal 
fry is mainly characterized by a low fundamental 
frequency which gives an auditory impression of “a 
stick being run along a railing”, “popping of corn” or 
“cooking of food on a pan” [1, 2, 3]. Other 
characteristics include shimmer, jitter, and damping of 
pulses. Also, sub-glottal air pressure and air flow were 
found to be smaller in vocal fry than in modal registers 
[2]. However, fundamental frequency is one of the main 
factors which distinguishes vocal fry from modal and 
harsh voice [4]. In our work, we identify vocal fry based 
on the impulsivity of voice samples, i.e., the auditory 
attribute associated with the separate perception of 
glottal cycles.

Traditionally, vocal fry was associated with a single 
pulse and a long closed phase of the glottis in each 
modulator cycle. However, several studies have 
investigated the vibration patterns of vocal fry which 
have amplitude modulated cycles with multiple pulses.
Authors of [5] and [6] found single and double pulsed 
patterns respectively using high-speed videos where the 
closed phase is longer than the open phase. More 
evidence for the existence of multiple pulses in a single 
cycle was reported in [1, 2 and 3]. Also, multiple pulses 
in a single cycle without a long closed phase were 
observed using electroglottograms which reflect 
translaryngeal electrical resistance that is proportional 
to the contact area of the vocal folds [7]. In this paper, 
we observe vocal fry GAWs with multiple single-peak
pulses in a single cycle as shown in Fig. 1.

For objective detection of vocal fry, several approaches 
have been used in the past. Presence of vocal fry 
segments in speech utterances were detected based on 
the autocorrelation properties of the audio signals [8]. In 
[9], audio features like inter-frame periodicity, inter-
pulse similarity, peak fall and peak rise, H2-H1, i.e., the 
difference in amplitudes of the first two harmonics, F0 
contours in each frame and peak prominence were used 
for vocal fry detection. A Fourier spectrum analysis 
approach of the audio signals was also proposed for 
distinguishing vocal fry segments from diplophonic 
voice [10]. Distinct characteristics of fry and modal 
regions were obtained using so called epoch parameters 
[11]. Epochs are negative to positive zero crossing 
instances of zero frequency filtered audio signals.
Though these methods detect vocal fry or creaky 
segments, they do not allow a detailed study of voice 
production. In this study, we use GAWs which provide 
in depth investigation of voice production.

II. METHODS

Data used:
In this study, 398 GAWs are used which are 

extracted from the high-speed videos using a 
segmentation tool. These GAWs are annotated with 
regard to the presence or absence of amplitude 
modulation. Unvoiced GAW segments are also marked 

Objective Detection of Amplitude Modulation in Glottal Area 
Waveforms

Vinod Devaraj1,2, Philipp Aichinger1

1Dept. of Otorhinolaryngology, Division of Phoniatrics-Logopedics, Medical University of Vienna, 
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as unmodulated. Two tasks are performed in this study: 
1) detection of amplitude modulated GAW segments 
and 2) detection of amplitude modulated GAW 
segments which are audio annotated as vocal fry. For 
task 1, the positive data consists of amplitude modulated
GAW segments. This constitutes seven percent of the 
total GAW segments. The negative data consists of 
unmodulated and unvoiced GAW segments. With these 
annotations as ground truth, we investigate the 
efficiency of a detector which detects the presence of 
amplitude modulation present in the GAWs. The 
detector will be explained later in this section. The 
detector trained for task 1 is used for task 2 also. For
annotating the GAW segments as fry in task 2, audio 
signals corresponding to the GAWs are annotated with 
regard to the presence or absence of vocal fry. The 
amplitude modulated GAWs segments which overlap 
with the audio annotations labelled as vocal fry, are used 
as positive data. The amplitude modulated fry GAW 
segments constitutes of around one percent of the total 
GAW segments. All the remaining GAW segments
(unvoiced, unmodulated and amplitude modulated 
segments which have the corresponding audio 
annotation as non-fry) are used as negative data.

Figure 1: Example GAWs extracted by segmentation of 
the HSVs:(a) euphonic voice and (b, c, and d) vocal fry.
Vocal fry GAWs are amplitude modulated. Euphonic 
GAW has negligible amplitude modulation. 

GAW model:
GAWs are modelled using an analysis-by-synthesis 

approach [12,13]. Fig. 2 shows the block diagram of the 
analysis-by-synthesis approach used for modelling each 
of extracted GAWs. For each input GAW, two modelled 
GAWs are obtained, where one modelled GAW is 
modulated and the other modelled GAW is 
unmodulated. Using this approach, first, the 
fundamental frequency (fo) track of each input GAW is 
estimated using a hidden Markov model (HMM). An 
unmodulated quasi-unit pulse train 𝑢𝑢𝑡𝑡 is generated by an 
oscillator driven by the extracted fo track. The pulse 
locations of this pulse train approximate the time 
instants of the maxima of the input GAW. Pulse shapes 

𝑟𝑟𝑙𝑙 are obtained by cross-correlating the quasi-unit pulse 
with each block of the input GAW of length 32 ms 
obtained using a Hanning window with a 50 percent 
overlap. These single-peak pulse shapes are then 
modelled using Chen’s model [14]. Fourier coefficients 
of the pulse shapes are then obtained by transforming 
the pulse shapes using the discrete Fourier transform 
(DFT). A Fourier synthesizer (FS) uses the Fourier 
coefficients 𝑅𝑅𝑘𝑘 and the instantaneous phase Θ(t)
extracted from the quasi-unit pulse train to obtain 𝑦𝑦𝐹𝐹(t).
The synthesized GAW 𝑦𝑦𝐹𝐹(t) is multiplied with an 
amplitude modulator 𝑚𝑚(𝑡𝑡) to obtain a modelled GAW,

�̂�𝑦(𝑡𝑡) = 𝑦𝑦𝐹𝐹(t) · 𝑚𝑚(𝑡𝑡). (1)

𝑚𝑚(𝑡𝑡) is obtained using the pulse heights of the quasi-
unit pulse train. 

Figure 2: Analyzer used for modelling GAWs. For each input 
GAW, two modelled GAWs are output by the analyzer, where 
one modelled GAW is modulated and the other is unmodulated 
[12].

�̂�𝑦(𝑡𝑡) obtained using the unmodulated quasi-unit 
pulse train 𝑢𝑢𝑡𝑡 is the output of a non-modulating model
where the amplitude and frequency modulations present 
in the input GAWs are not modelled. To model these 
random modulations of the input GAW, the quasi-unit 
pulse train is modulated iteratively on a pulse-to-pulse 
time scale by minimizing the modelling error between 
the input and the modelled GAW. �̂�𝑦(𝑡𝑡) obtained using 
the modulated quasi-unit pulse train �̃�𝑢𝑡𝑡 is the output of 
a modulating model. Modelling error 𝐸𝐸 is the root mean 
squared difference between the input and the modelled 
GAW. 

𝐸𝐸(𝑡𝑡) = 20 · 𝑙𝑙𝑙𝑙𝑙𝑙10
(

 
√(𝑦𝑦(t) − 𝑦𝑦(𝑡𝑡))2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

√𝑦𝑦2(𝑡𝑡)̅̅ ̅̅ ̅̅ ̅ )

 [𝑑𝑑𝑑𝑑], (2)

𝐸𝐸𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 is the modelling error obtained using an 
unmodulated quasi-unit pulse 𝑢𝑢(t) train and 𝐸𝐸𝑢𝑢𝑢𝑢𝑢𝑢 is the 
improved modelling error obtained using a modulated 
pulse train �̃�𝑢(t). 

Detector:
An SVM classifier with a Guassian kernel is used to 

detect amplitude modulated segments using the two 
modelling errors (𝐸𝐸𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 and 𝐸𝐸𝑢𝑢𝑢𝑢𝑢𝑢) as features. The 
SVM outputs posterior probabilities which indicates the 
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as unmodulated. Two tasks are performed in this study: 
1) detection of amplitude modulated GAW segments 
and 2) detection of amplitude modulated GAW 
segments which are audio annotated as vocal fry. For 
task 1, the positive data consists of amplitude modulated
GAW segments. This constitutes seven percent of the 
total GAW segments. The negative data consists of 
unmodulated and unvoiced GAW segments. With these 
annotations as ground truth, we investigate the 
efficiency of a detector which detects the presence of 
amplitude modulation present in the GAWs. The 
detector will be explained later in this section. The 
detector trained for task 1 is used for task 2 also. For
annotating the GAW segments as fry in task 2, audio 
signals corresponding to the GAWs are annotated with 
regard to the presence or absence of vocal fry. The 
amplitude modulated GAWs segments which overlap 
with the audio annotations labelled as vocal fry, are used 
as positive data. The amplitude modulated fry GAW 
segments constitutes of around one percent of the total 
GAW segments. All the remaining GAW segments
(unvoiced, unmodulated and amplitude modulated 
segments which have the corresponding audio 
annotation as non-fry) are used as negative data.

Figure 1: Example GAWs extracted by segmentation of 
the HSVs:(a) euphonic voice and (b, c, and d) vocal fry.
Vocal fry GAWs are amplitude modulated. Euphonic 
GAW has negligible amplitude modulation. 

GAW model:
GAWs are modelled using an analysis-by-synthesis 

approach [12,13]. Fig. 2 shows the block diagram of the 
analysis-by-synthesis approach used for modelling each 
of extracted GAWs. For each input GAW, two modelled 
GAWs are obtained, where one modelled GAW is 
modulated and the other modelled GAW is 
unmodulated. Using this approach, first, the 
fundamental frequency (fo) track of each input GAW is 
estimated using a hidden Markov model (HMM). An 
unmodulated quasi-unit pulse train 𝑢𝑢𝑡𝑡 is generated by an 
oscillator driven by the extracted fo track. The pulse 
locations of this pulse train approximate the time 
instants of the maxima of the input GAW. Pulse shapes 

𝑟𝑟𝑙𝑙 are obtained by cross-correlating the quasi-unit pulse 
with each block of the input GAW of length 32 ms 
obtained using a Hanning window with a 50 percent 
overlap. These single-peak pulse shapes are then 
modelled using Chen’s model [14]. Fourier coefficients 
of the pulse shapes are then obtained by transforming 
the pulse shapes using the discrete Fourier transform 
(DFT). A Fourier synthesizer (FS) uses the Fourier 
coefficients 𝑅𝑅𝑘𝑘 and the instantaneous phase Θ(t)
extracted from the quasi-unit pulse train to obtain 𝑦𝑦𝐹𝐹(t).
The synthesized GAW 𝑦𝑦𝐹𝐹(t) is multiplied with an 
amplitude modulator 𝑚𝑚(𝑡𝑡) to obtain a modelled GAW,

�̂�𝑦(𝑡𝑡) = 𝑦𝑦𝐹𝐹(t) · 𝑚𝑚(𝑡𝑡). (1)

𝑚𝑚(𝑡𝑡) is obtained using the pulse heights of the quasi-
unit pulse train. 

Figure 2: Analyzer used for modelling GAWs. For each input 
GAW, two modelled GAWs are output by the analyzer, where 
one modelled GAW is modulated and the other is unmodulated 
[12].

�̂�𝑦(𝑡𝑡) obtained using the unmodulated quasi-unit 
pulse train 𝑢𝑢𝑡𝑡 is the output of a non-modulating model
where the amplitude and frequency modulations present 
in the input GAWs are not modelled. To model these 
random modulations of the input GAW, the quasi-unit 
pulse train is modulated iteratively on a pulse-to-pulse 
time scale by minimizing the modelling error between 
the input and the modelled GAW. �̂�𝑦(𝑡𝑡) obtained using 
the modulated quasi-unit pulse train �̃�𝑢𝑡𝑡 is the output of 
a modulating model. Modelling error 𝐸𝐸 is the root mean 
squared difference between the input and the modelled 
GAW. 

𝐸𝐸(𝑡𝑡) = 20 · 𝑙𝑙𝑙𝑙𝑙𝑙10
(

 
√(𝑦𝑦(t) − 𝑦𝑦(𝑡𝑡))2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

√𝑦𝑦2(𝑡𝑡)̅̅ ̅̅ ̅̅ ̅ )

 [𝑑𝑑𝑑𝑑], (2)

𝐸𝐸𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 is the modelling error obtained using an 
unmodulated quasi-unit pulse 𝑢𝑢(t) train and 𝐸𝐸𝑢𝑢𝑢𝑢𝑢𝑢 is the 
improved modelling error obtained using a modulated 
pulse train �̃�𝑢(t). 

Detector:
An SVM classifier with a Guassian kernel is used to 

detect amplitude modulated segments using the two 
modelling errors (𝐸𝐸𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 and 𝐸𝐸𝑢𝑢𝑢𝑢𝑢𝑢) as features. The 
SVM outputs posterior probabilities which indicates the 

likelihood of each observation belonging to one of the 
two classes. To refine the prediction accuracy, a second
HMM is used in addition, which eliminates sudden 
transitions present in SVM prediction. The HMM 
parameters include a prior probability vector, 
observation matrix which contains the posterior 
probabilities output by SVM and a parameter matrix. 
The parameter matrix is optimized in the training phase 
to maximize the average of sensitivity and specificity of 
prediction. Optimum state sequence is estimated using 
Viterbi algorithm with the given HMM parameters.

III. RESULTS

The scatter plot of the two modelling errors of all the
GAW segments is shown in Fig. 3. Here a GAW 
segment refers to all the adjacent GAW blocks with the
same annotation as either amplitude modulated or 
amplitude unmodulated. Each point on the plot indicates 
modelling errors of a GAW segment which is obtained 
by taking the mean of modelling errors of all the blocks 
corresponding to the GAW segment. For amplitude 
modulated GAW segments, the modulating model 
resulted in a better modelling error than the non-
modulating model. On the other hand, for most of the 
unmodulated GAW segments, modulating and non-
modulating model resulted in similar modelling errors.

Figure 3: Scatter plot of modelling errors for all the 
GAW segments obtained using the modulating model 
(along the x-axis) and the non-modulating (along the y-
axis).

Task 1: Detection of amplitude modulated GAW 
segments:

The two modelling errors are used as features for 
classification between amplitude modulated and 
unmodulated GAWs using the SVM. Posterior 
probabilities are estimated by the SVM. Fig. 3.a shows 
an example GAW having amplitude modulated segment
in between unmodulated segments. The corresponding 

posterior probabilities increase for amplitude modulated 
GAW segments and decrease for unmodulated 
segments. Based on these probabilities, SVM predicts 
the presence or absence of amplitude modulation in the 
GAW with the decision threshold at 0.5. Sensitivity, 
specificity and accuracy of classifying the modulated 
and the unmodulated segments of all the GAWs are
0.45, 0.98 and 0.94 respectively. Sudden change in 
posterior probabilities causes instantaneous transition in 
state prediction, which is undesirable. 

Further, to eliminate the instantaneous transitions in 
state predictions, the HMM is used, which increased the 
proposition of true positives. The sensitivity and 
specificity of predicting the amplitude modulated GAW 
blocks by the HMM are 0.69 and 0.96 respectively. 

Figure 4: An example GAW containing amplitude
modulated and unmodulated segments (top). 
Corresponding posterior probabilities of the GAW
output by the SVM, HMM prediction, GAW and audio 
labels (bottom). GAW label at level ‘0’ and ‘1’ indicates 
the absence and presence of amplitude modulation in 
GAW. Audio label at level ‘0’ and ‘1’ indicates the 
absence and presence of fry voice quality.

Table 1: Sensitivity, specificity and accuracy of 
predicting all the amplitude modulated GAW segments 
and only amplitude modulated fry GAW segments.

Prediction results Sensitivity Specificity Accuracy
Task 1 SVM 0.4575 0.9861 0.9465

HMM 0.6916 0.9630 0.9426
Task 2 SVM 0.5785 0.9590 0.9547

HMM 0.7972 0.9221 0.9207

Task 2: Detection of amplitude modulated fry GAW 
segments:

To analyze the prediction of amplitude modulated 
fry GAW segments, the detector trained for the
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detection of amplitude modulated GAW segments is 
used. However, the non-fry amplitude modulated GAW 
segments are also used as negative data along with the 
negative data used in task one. Only, amplitude 
modulated fry segments are used as positive data. The 
sensitivity, specificity and accuracy of predicting the 
amplitude modulated fry GAW segments by the SVM 
and the HMM are given in Tab.1. 
 

IV. DISCUSSION AND CONCLUSION 
 
In this paper, amplitude modulation in GAWs is 
investigated. First, the GAWs are modelled using an 
analysis-by-synthesis approach to obtain two modelling 
errors for each input GAW. Amplitude modulated GAW 
segments are detected based on the modelling errors, 
𝐸𝐸𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 and 𝐸𝐸𝑢𝑢𝑢𝑢𝑢𝑢  using a SVM followed by a HMM.  In 
task 1, the sensitivity of detecting amplitude modulated 
GAW is 0.69. Firstly, this could be improved by 
annotating the ground truth precisely. Noisy GAWs 
could have been wrongly annotated as amplitude 
modulated segments. Secondly, amplitude modulated 
GAW segments constitutes only seven percent of the 
total GAW segments used. Therefore, more positive 
data should be used.  In task 2, the specificity of 
detecting the amplitude modulated fry segments 
decreased compared to specificity in task 1. This is 
because, in task 2, only amplitude modulated fry 
segments are used as positive data. The remaining 
amplitude modulated segments might belong to any 
other voice quality. The proposed detector provides a 
possible detection of amplitude modulation in GAWs. 
To distinguish amplitude modulated vocal fry from 
other amplitude modulated voice quality, modulator 
frequency could be investigated in the future. 
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used. However, the non-fry amplitude modulated GAW 
segments are also used as negative data along with the 
negative data used in task one. Only, amplitude 
modulated fry segments are used as positive data. The 
sensitivity, specificity and accuracy of predicting the 
amplitude modulated fry GAW segments by the SVM 
and the HMM are given in Tab.1. 
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Abstract: Communicative adaptation is 
understood as a phenomenon when the speaker 
adopts the characteristics of the interlocutor. 
Phonetic adaptation assumes that there is an 
interaction between the perception and production 
of speech.  The speech corpus SibLing consisting of 
90 dialogues in Russian was used. The corpus 
consists of dialogues between pairs of twins and 
siblings with the difference of 1-2 years and all of 
them with close friends, strangers of the same sex, 
strangers of the opposite sex, strangers of higher 
rank and greater age.  The formant characteristics 
of the vowels for all speakers were calculated.  The 
average values of the Euclidean distance for the two 
first formants and the analysis of the formant 
pictures of vowels showed that in most cases there is 
a mutual adjustment of the interlocutors in the 
process of dialogue for vowel formant values.  
Keywords: Speech adaptation, dialogue, vowel 
formants, phonetics 

 
I. INTRODUCTION 

 
Communicative adaptation is a very complex 

phenomenon. In the process of communication, the 
speaker adopts the characteristics of their speech to the 
interlocutor. Phonetic adaptation is also a very 
complex phenomenon which assumes that there is an 
interaction between the perception and production of 
speech. When a listener perceives the speech of his 
interlocutor, the perceived utterances can influence the 
subsequent production of speech. In the process of 
speech production, the difference between the 
interlocutors can be explained by their physiology. 
However, if you do not take into account the difference 
in the physiological characteristics of speakers, the 
speech characteristics depend the situation, the 
emotions and physical state. Thus, the study of the 
phenomenon of adaptation allows us to understand 
changes in the process of speech production of a 
speaker [1, 2, 3] 

The degree of adaptation is associated with various 
social factors (gender of participants, social status), 
individual differences, personality factors (the degree 

of openness of a person, the ability to concentrate, the 
number of social connections and the tendency to 
compromise), race, gender, the status of the 
interlocutor and the speaker's role in the performed 
task. The previous research shows that phonetic 
convergence increases with time and experience. Thus, 
speakers with very different phonetic characteristics 
seem to be more similar in later stages of interaction 
than in earlier stages [4] or after several trials [1, 2, 3, 
5, 6, 7]. The previous research also shows that in the 
case of strangers, there was only slight convergence, 
while friends were more adapted to each other's 
speech. Moreover, scientists note that convergence also 
depends on the type of vowel: rounded vowels are 
more exposed to this phenomenon. Speakers shift 
vowels to varying degrees, especially for middle 
vowels [8]. 

The degree of adaptation depends on the role of the 
speaker: the explainers adapted to those to whom they 
were explaining [7]. Sometimes the experiment was 
conducted not on the analysis of all acoustic material, 
on the research of keywords. The results turned out to 
be quite interesting: in the process of conversation, the 
realizations of vowels and consonants became closer 
[9]. 

In another experiment, the researcher also found out 
how the formants shift in the process of performing 
tasks. The photo of the interlocutor on the screen 
influenced the degree of adaptation. Men showed more 
adaptation (for women, the situation was the opposite). 
When there was no photo on the screen, there were no 
differences in the degree of adaptation (regardless of 
the gender of the speaker) [2].  
 

II. METHODS 
 
Material: The SibLing Russian speech corpus was 
used in this study [10]. It was recorded at the 
Department of Phonetics of Saint Petersburg State 
University during the project 19-78-10046 “Phonetic 
manifestations of communication accommodation in 
dialogues” supported by the Russian Science 
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with close friends, strangers of the same sex, strangers 
of the opposite sex, strangers of higher rank and 
greater age (a “boss”). Each dialogue consists of two 
tasks. In the first part the speakers tried to find similar 
notions on the dixit playing card. In the second task 
they explained the routes presented in the pictures. 
Therefore, the interlocutors used the same words in a 
dialogue.

The previous research on 7 dialogues from the 
SibLing corpus confirmed the presence of speech 
entrainment in the values of the formants of stressed 
vowels [12]. Based on the calculation of the Euclidean 
distance and the analysis of the vowel formant patterns, 
the following conclusions can be drawn: 

1) In most cases, there is a mutual shift in the 
formant characteristics of vowels in the process of 
dialogue. 

2) According to preliminary data, the degree of
familiarity of the interlocutors quite strongly affects the 
speed of speech entrainment. The one case of 
divergence was observed. The degree of entrainment 
can be affected by the difference in age and social 
status. 

3) The degree of adjustment of the acoustic 
characteristics depends on the quality of the vowel. To 
a greater extent, speakers adapt to each other by the 
rounded vowels of the back row (/o/, /u/), and also 
actively change the location of the vowels /a/ and /i/, 
adapting to each other. Moreover, the speakers often 
shift the focus of pronunciation of all cardinal vowels 
at once [12].

Method: The formant characteristics of the vowels 
for all speakers were calculated using the method for 
determining the characteristics of the transfer function 
of the vocal tract using the reverse filtering of the 
speech signal for the whole speech material and all the 
vowels in the material [11]. The formant characteristics 
were obtained for all speakers and all the interlocutors 
for both tasks in the speech corpus and allows 
analyzing the whole material.

In this paper the calculating the transfer function of 
vowels was performed on an unlabeled speech corpus. 
The written software makes it possible to carry out a 
general assessment of the average position of the 
formant characteristics for unannotated material and 
find the average values of the vowel formants. For 
each speaker, about 30,000 vowel processing 80 ms 
windows were calculated. Formant characteristics of 
vowels were calculated for all 90 dialogues in the 
corpus.

III. RESULTS

To calculate the difference in the relative position of 
the formant characteristics for two speakers in different 

types of tasks, the Euclidean distance between a vowel 
was calculated using two formants in Hertz. The results 
showed that in part of the dialogues, the formants were 
adjusted from the first to the second task. However, 
sometimes the closeness of the values of the formant 
characteristics was higher in the first task and dropped 
sharply in the second, which may be due to the fact 
that during the monologue, the share of which is 
greater in the second task, the announcers stop 
adjusting to the interlocutor and speak in their own 
more familiar mode.

Figure 1. The average location of two first formant of 
the vowels on the formant chart in the first task.

Figure 2. The average location of two first formant of 
the vowels on the formant chart in the second task.

The average values of the Euclidian distance and the 
analysis of the formant pictures of vowels showed that 
there is a mutual adjustment of the interlocutors in the 
process of dialogue. The formant chart shows that the 
places of the formants for two tasks become closer 
(Fig.1 and Fig.2).
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there is a mutual adjustment of the interlocutors in the 
process of dialogue. The formant chart shows that the 
places of the formants for two tasks become closer 
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Figure 3. The average Euclidian distance between the 
formants in all dialogues.

The Euclidean distance decreases for vowels /o/, /u/|,
/ɨ/ (sign y in the pictures), /e/. Also, speakers actively 
change, adjusting to each other, the location of the 
vowel / a / (Fig,3). Euclidian distance for /i/ increases 
on average for dialogues.

Figure 4. The average Euclidian distance between the 
formants in dialogues with a sibling.

In dialogues with a twin or sibling there is no 
adjustment in formants between two tasks. This can be 
explained by the closeness of their acoustic 
characteristics and similarity of the vocal tract 
characteristics.

Figure 5. The average Euclidian distance between the 
formants in dialogues with a friend in the first and 
second tasks.

Figure 6. The average Euclidian distance between the 
formants in dialogues with a stranger of the same sex
in the first and second tasks.

Figure 7. The average Euclidian distance between the 
formants in dialogues with a stranger of the opposite
sex in the first and second tasks.

Figure 8. The average Euclidian distance between the 
formants in dialogues with a stranger of the same sex
and higher age and position (a “boss”) in the first and 
second tasks.
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The formant movement showed high variability for 
vowels within different types of dialogues with 
different interlocutors (Fig.4-8).

V. CONCLUSION

The analysis of the places of the first two formants in
dialogues with a sibling or twin showed that there  is 
no formant adaptation for speakers. In dialogues with a 
friend speakers try to adapt more. In dialogues with a 
strangers the Euclidean distance for formants for 
different vowels show different tendencies. However 
the average values of the Euclidean distance for the 
two first formants and the analysis of the formant 
pictures of vowels for all 90 dialogues in the corpus 
showed that in most cases there is a mutual adjustment 
in formants of the interlocutors in the process of a
dialogue.
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Abstract: An in-vitro testbed was designed to study 
the vibromechanical behaviour of biomimetic and 
extensible vocal folds. The paper describes the several 
steps of its conception. It consists of a deformable 
laryngeal envelope in which stretchable vocal-fold 
replicas of adjustable material and structural 
properties can be inserted for testing. The folds are 
able to oscillate for a wide range of aerodynamic 
conditions and material elongations.
Keywords:  biomimetic vocal fold, in vitro testbed, 
self-oscillation

I. INTRODUCTION

The understanding of human vocal-fold vibratory 
properties is based on the development of testbeds that 
allow to reproduce self-sustained oscillations [1-4]. 
Such in vitro set-ups are used to study the physics of 
phonation. Most models already developed in past 
decades correspond to deformable folds, albeit   fixed 
in a given geometry and pre-tension prior oscillations.
Their microstructure has been progressively refined, 
ranging from isotropic and mono-layered oscillators to 
anisotropic and multi-layered ones [1,4]. To our 
knowledge however, only two studies present 
extensible folds, even though vocal-fold stretching is a 
major aspect of phonation biomechanical control [5,6]. 
The aim of this work was to design a testbed dedicated 
to the study of vibromechanical behaviour of 
biomimetic vocal folds. Emphasis was placed on the 
possibility of reproducing the actions of crico-thyroid 
tilt (fold stretching) and inter-arytenoid compression 
(fold abduction and adduction).  

II. METHODS

A. A deformable laryngeal envelope

The chosen approach was to enable folds actuation in 
stretching and compression. We designed a flexible 
laryngeal envelope made up of silicone (Ecoflex™ 00-
50), into which vocal folds to be tested could be 
inserted while maintaining a seal. This three-part
envelope is shown in Figure 1. It consists of i) a 

subglottal tract attached to the air inlet tube, and 
representing the trachea upper part (subglottal stage); 
ii) a divergent tract that joins the subglottal and glottal
stages; iii) a case in which deformable folds can be
positioned (glottal stage). An air pressure sensor is
inserted in the subglottal stage.

Figure 1 : Design of a deformable laryngeal envelope

Figure 2 : (a) : 3D initial geometry chosen for one 
deformable fold and its surrounding (subglottal 
convergent tract and glottal plane).  (b) : illustration of 
the 3D-printed mould of the folds, and its CAO design.
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B. Choice of material and vocal-fold design 
 
Our ultimate goal is to design architectured vocal folds. 
In a first step, homogeneous mono-layered oscillators 
were conceived, made of isotropic polymers and 
processed using 3D-printed moulds (see Figure 2). 
Two complementary approaches were tested, using 
either : (i) silicone rubbers of reference (Ecoflex™ 00-
10, 00-30, 00-50) owning distinct mechanical 
properties (e.g. shore hardness, tensile strength, 
elongation at break, viscosity);  (ii) cross-linked 
gelatin-based hydrogels chosen for their ability to 
retain high tissue-like water content. In a second step, a 
two-layered version was made. The surface layer can 
be homogeneous or composed of a fiber mat.  
 
C. Mechanical behaviour in tension and compression 
 
The mechanical behaviour of the selected materials 
were explored in tension and compression, using a 
uniaxial machine (INSTRON® 5944) equipped with a 
±10 N load cell, and combined to an hygro-regulated 
chamber. These mechanical tests made it possible to 
better understand the impact of each material’s 
formulation on its stress-strain behaviour, and to 
characterize the impact of various loading conditions 
(e.g. loading mode, cyclic paths, deformation rate) on 
its mechanical properties. This step allowed to 
compare the mechanical properties of each vocal-fold 
model to reference database previously acquired on  
native vocal folds [7], and to better understand their 
vibromechanical behaviour observed under fluid-
structure interaction in step E.  
 

 
Figure 3 : Photo of the testbed with all equipments 

D. Vibromechanical characterisation 
 
In addition to the mechanical characterisation of the 
selected materials, the vibromechanical behaviour of 
the 3D vocal folds were measured by laser-Doppler 
vibrometry. The tesbed is shown in Figure 3. The 
structure was installed on the testbed in its phonatory 
position and without air supply. The vibromechanical 
eigenmodes were excited with a sine sweep signal 
delivered by a vibration shaker.  
 
E. Behaviour in fluid-structure interaction 
 
Pressurised air injected into the model through the 
subglottal tract enabled the synthetic folds to vibrate. 
Subglottal air flow was controlled by the degree of 
valve opening and measured with a flow-meter. For 
different levels of fold elongation, the aero-acoustic 
behaviour was characterised by measuring 
aerodynamic parameters (subglottal phonation 
pressure, vocal efficiency) and acoustic parameters 
(intensity, frequency, spectral centroid). Vibratory 
behaviour was characterised by highspeed 
cinematography through computing kymograms and 
glottal area waveforms.  
 

 
Figure 4 : Illustration of stretching action and 
abduction/adduction on deformable folds.  

 
III. RESULTS 

 
A. Ability to be stretched and abducted/adducted 
 
Figure 4 illustrates the stretching action on vocal-fold 
replica. In a first measurement campaign, the stretch  
ratio λ=L/L0 was varied from 1.05 to 1.21, L (resp. L0) 
being the length of the fold in the deformed (resp. 
undeformed) configuration. A greater elongation could 
be obtained, yet not tested for allowing the whole 
measurement campaign without damaging the 
biomimetic folds.  

 
B. Ability to oscillate in fluid-structure interaction 

 
As  illustrated in Figures 5 and 6, vocal folds were able 
to oscillate in response to an increase of subglottal air 
flow in most cases. The greater the material stiffness, 
the higher the subglottal pressure measured during 
stabilized vibration. For a given material, the greater 
the applied stretching, the higher the subglottal 

24



B. Choice of material and vocal-fold design 
 
Our ultimate goal is to design architectured vocal folds. 
In a first step, homogeneous mono-layered oscillators 
were conceived, made of isotropic polymers and 
processed using 3D-printed moulds (see Figure 2). 
Two complementary approaches were tested, using 
either : (i) silicone rubbers of reference (Ecoflex™ 00-
10, 00-30, 00-50) owning distinct mechanical 
properties (e.g. shore hardness, tensile strength, 
elongation at break, viscosity);  (ii) cross-linked 
gelatin-based hydrogels chosen for their ability to 
retain high tissue-like water content. In a second step, a 
two-layered version was made. The surface layer can 
be homogeneous or composed of a fiber mat.  
 
C. Mechanical behaviour in tension and compression 
 
The mechanical behaviour of the selected materials 
were explored in tension and compression, using a 
uniaxial machine (INSTRON® 5944) equipped with a 
±10 N load cell, and combined to an hygro-regulated 
chamber. These mechanical tests made it possible to 
better understand the impact of each material’s 
formulation on its stress-strain behaviour, and to 
characterize the impact of various loading conditions 
(e.g. loading mode, cyclic paths, deformation rate) on 
its mechanical properties. This step allowed to 
compare the mechanical properties of each vocal-fold 
model to reference database previously acquired on  
native vocal folds [7], and to better understand their 
vibromechanical behaviour observed under fluid-
structure interaction in step E.  
 

 
Figure 3 : Photo of the testbed with all equipments 

D. Vibromechanical characterisation 
 
In addition to the mechanical characterisation of the 
selected materials, the vibromechanical behaviour of 
the 3D vocal folds were measured by laser-Doppler 
vibrometry. The tesbed is shown in Figure 3. The 
structure was installed on the testbed in its phonatory 
position and without air supply. The vibromechanical 
eigenmodes were excited with a sine sweep signal 
delivered by a vibration shaker.  
 
E. Behaviour in fluid-structure interaction 
 
Pressurised air injected into the model through the 
subglottal tract enabled the synthetic folds to vibrate. 
Subglottal air flow was controlled by the degree of 
valve opening and measured with a flow-meter. For 
different levels of fold elongation, the aero-acoustic 
behaviour was characterised by measuring 
aerodynamic parameters (subglottal phonation 
pressure, vocal efficiency) and acoustic parameters 
(intensity, frequency, spectral centroid). Vibratory 
behaviour was characterised by highspeed 
cinematography through computing kymograms and 
glottal area waveforms.  
 

 
Figure 4 : Illustration of stretching action and 
abduction/adduction on deformable folds.  

 
III. RESULTS 

 
A. Ability to be stretched and abducted/adducted 
 
Figure 4 illustrates the stretching action on vocal-fold 
replica. In a first measurement campaign, the stretch  
ratio λ=L/L0 was varied from 1.05 to 1.21, L (resp. L0) 
being the length of the fold in the deformed (resp. 
undeformed) configuration. A greater elongation could 
be obtained, yet not tested for allowing the whole 
measurement campaign without damaging the 
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B. Ability to oscillate in fluid-structure interaction 

 
As  illustrated in Figures 5 and 6, vocal folds were able 
to oscillate in response to an increase of subglottal air 
flow in most cases. The greater the material stiffness, 
the higher the subglottal pressure measured during 
stabilized vibration. For a given material, the greater 
the applied stretching, the higher the subglottal 

pressure needed to self-oscillate. Homogenous vocal 
folds in Ecoflex™ 00-10 demonstrated self-oscillations 
on a limited mid-to-high range of airflow (from 1.5 to 
3.5 L/s), with lesser subglottal pressure variation. On 
the other side, oscillations of hydrogel-based folds 
were limited to low-to-mid range of airflow (from 0.5 
to 2.5 L/s). The linear relationship between subglottal 
pressure and airflow was similar for all materials and 
stretching conditions, except for folds in Ecoflex™ 00-
10 for which subglottal pressure did not vary much.  

Figure 5 : Visualisation of a glottal vibratory cycle for 
two types of material. Top : silicone. Bottom : cross-
linked gelatin. The laryngeal envelope is identical in 
both cases. 

Figure 6 : Subglottal pressure as a function of air flow 
(control parameter) for three different types of silicone 
(variable stiffness poperties) and for the cross-linked 
hydrogel. Each dot represents mean value computed on 
a sequence of stabilized vocal-folds oscillation. 

IV. DISCUSSION

With a simple and homogenous model of vocal folds 
and laryngeal envelope, self-sustained oscillations 
were obtained on a wide range of subglottal airflow 
and pressures. Stretching did not impede the oscillatory 

capabilities for Ecoflex™ 00-30 and Ecoflex™ 00-50 
folds. Yet Ecoflex™ 00-10 folds could not oscillate at 
low airflow rate, and hydrogel-based one at high 
airflow rate. 
Several improvements can be made. Concerning the 
folds, a two-layer version has been designed, yet not 
tested. Other geometries of vocal folds can also be 
designed, closer to synthetic models used in the 
literature  [7]. Replicas of arytenoid cartilages can be 
easily 3D printed and inserted in the posterior part.

V. CONCLUSION

The implemented approach allows the development of 
biomimetic vocal folds step by step, so as to better 
understand the relationships between material and 
structural properties of the replica, and their vibratory 
outcomes under fluid/structure interaction. Vocal folds 
designed separately (left-right) or as a whole 
(monobloc setting) were able to sustain self-oscillation 
at a wide range of subglottal flows and pressures, and 
at various degrees of stretching.
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Abstract: This contribution is focused on numerical 
modeling of 3D incompressible laryngeal flow through 
healthy vocal folds oscillating at a fundamental 
frequency of 100 Hz. The investigation is based on a 
realistic CFD simulation of turbulent flow by Large-
Eddy Simulation with various subgrid-scale models 
and monitoring their influence on the aeroacoustic 
spectrum during human phonation of five vowels /u, i, 
a, o, æ/.  
 
Keywords: human phonation, turbulent flow, 
aeroacoustic simulations, vocal tract shapes, vowels 

 
I. INTRODUCTION 

 
Voice production has been investigated by 

experimental measurements and numerical simulations. 
However, the experiments often bring numerous 
limitations, especially when the in-vivo measurements 
have to be carried out. High-performance computing 
can be used as an alternative method An extensive list 
of numerical models of human phonation is available in 
[1]. The current contribution presents a computational 
aeroacoustic model of human phonation based on high-
resolution Large-Eddy Simulation of glottal flow with 
advanced turbulence modeling. 
 

II. METHODS 
 

Considering the enormous disparity of scales in the 
flow and acoustics, the aeroacoustic simulation has been 
divided by computing the flow by the finite-volume 
method, and subsequently the sound sources and wave 
propagation by the finite-element method, see [2] for 
more details. The Large-Eddy Simulation of flow 
resolves the  large-scale vortices, while the influence of 
the subgrid-scale vortices is modeled by a subgrid-scale 
closure model. Various subgrid-scale models have been 
studied to cope with near-wall modeling in the glottis, 
where inaccurate prediction of the shear stress at the 
surface of vocal folds delays the transition to turbulence. 
The dominant sound source caused by flow-induced 
vibration of vocal folds lie within the glottis. Thereby 
the geometry and kinematics were specified with care, 
but some necessary simplification had to be included. 

Fig. 1 presents  the simplified 3D model of the larynx in 
a coronal view with a square cross-section in the straight 
subglottal and supraglottal segments 12x12 mm (y-z 
plane). The kinematics of vocal folds is prescribed by 
sinusoidal displacement of inferior-superior margins in 
medial-lateral (y) direction with two degrees of freedom 
with the amplitude A=0.3 mm for both vocal folds, 
allowing closing/opening the glottal gap g in the range 
0.42-1.46 mm, having  the medial surface convergence 
angle ψ/2 (in clockwise) for convergent and divergent 
position -10° and +10°, respectively, and with the same 
phase difference π/2 between the inferior and superior 
vocal fold margin on both vocal folds. The distance (y) 
between both ventricles and false vocal folds is equal to 
16 and 6.15 mm, respectively. The boundary conditions 
for the fluid flow are listed in Tab. 1. 

 
 

Figure 1 - Geometry, boundaries and mesh of the larynx 

Table 1 – Boundary conditions of filtered flow variables 
velocity and static pressure. 
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Healthy phonation reaches the Reynolds number in the 
range (100-10,000), thereby the flow field is highly 
turbulent. The large eddies carrying the most energy in 
the flow are resolved directly by Navier-Stokes 
equations (NSE), whereas the small scales are modeled 
applying a spatial filter ( . ̅) to the NSE, that gives 
 
         ̅  ,   0,   (1) 
 
where the subgrid-scale tensor  represents the 
effect of small scales on directly resolved large eddies. 
To include local increasing of turbulent (eddy) viscosity 
 from the unresolved eddies into molecular viscosity 
 is applied the eddy-viscosity equation 
 

  1
3   2,                              2 

 
where  is the identity matrix and   is resolved rate-
of-strain tensor. This study is focused on approximation 
of  by various turbulence subgrid-scale models, 
namely the standard One-Equation (OE) [3], Wall-
Adapting Local-Eddy (WALE) [4] and a newly 
implemented Anisotropic Minimum Dissipation (AMD) 
model [5]. For completeness, the fourth case (LAM) is 
included with no turbulence modeling. The used 
acoustic grids are shown in Figs. 2-6, varying in shapes 
for each vowel. 
  

 
Figure 2 - Acoustic mesh for /u/ 

 
Figure 3 - Acoustic mesh for /i/ 

 
Figure 4 - Acoustic mesh for /a/ 

 
Figure 5 - Acoustic mesh for /o/ 

 
Figure 6 - Acoustic mesh for /æ/ 

At the laryngeal and vocal tract walls, a sound-hard 
boundary condition perfectly reflecting the sound waves 
are specified. At the boundary of the radiation region 
and subglottal inlet, a Perfectly Matched Layers 
suppressing the acoustic reflections are used. The 
Perturbed Convective Wave Equation [6] were used to 
solve the acoustic potential   from the partial 
differential equation 
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̅
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where the acoustic potential is equal to the acoustic 
pressure in this case of   1. The probe location MIC1 
(Fig. 7), 1 cm from mouth, is used for the Fast Fourier 
Transform (∆  5 Hz).  
 

 
Figure 7 – Coronal view of the computational domain for /o/. 

Distribution of acoustic potential  

III. RESULTS 
 
Four CFD simulations over 20 periods of vocal fold 
oscillations were realized, with subsequent aeroacoustic 
simulations yielding the acoustic spectra (Figs. 8-12). 
The usage of subgrid-scale turbulence models does not 
modify positions of formant frequencies, but it modifies 
considerably the SPLs. The simulations using the new 
AMD model enforced higher harmonics compared the 
rest of models, except the higher harmonics at low 
frequencies in the spectrum of vowel /i/. 

Vowel /u/. SPLs at F2=1000 Hz and F3 ≈ 2500 Hz are 
nonuniform, at the second formant AMD is higher by 
22 % than WALE, and subsequently at the third formant 
WALE is higher by 28 % than AMD. This trend occurs 
only for vowels /u, a/.  

 

 
Figure 8 - Acoustic sound spectrum for /u/ 

Vowel /i/. At fo=100 Hz the SPL for the AMD model 
refers to a very low value around 35 dB, whereas the 
other SPLs are minimally 17 % higher. In general the 
SPLs for the AMD model are low in low-frequency 
bandwidth, but for the F2 ≈1400 Hz the AMD model is 
enforced by 21 % compared to WALE. In the situation 
at F3=2500 Hz the WALE and AMD models are close 
to each other and 1-2 dB higher than the laminar case. 
This could mean that the AMD and WALE models have 
a similar behavior at high-frequency bandwidth, but this 
assumption holds only for /i, o, æ/.  The WALE model 
also enforced the sound pressure levels at F2 and F3 
stronger than the OE model, by 6 dB and 15 dB, 
respectively, which is related to higher flow rate through 
the glottis. 
 

 
Figure 9 - Acoustic sound spectrum for /i/ 

Vowel /a/. SPLs at fo stayed at similar levels for the 
WALE and AMD models, which happened only twice, 
in cases /a, æ/. The space between formants F1-F2 is 
typical for vowels /u, a, o/, but in simulation of /a/ the 
second formant (around 1300 Hz) was not distinct. On 
the other hand, the third formant is clearly visible and 
presents the same behavior as it was seen in /u/, i.e. a big 
drop predicted by AMD up to 9 and 13 dB compared to 
WALE and LAM, respectively. 

 

 
Figure 10 - Acoustic sound spectrum for /a/ 

Vowel /o/. The SPLs are held at high levels up to 3 kHz, 
with some little skips, however the vocal tract shape (see 
again Fig. 5 and 7) has contained the widest throat 
7.25 cm2 of presented acoustic grids.  
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where  is the identity matrix and   is resolved rate-
of-strain tensor. This study is focused on approximation 
of  by various turbulence subgrid-scale models, 
namely the standard One-Equation (OE) [3], Wall-
Adapting Local-Eddy (WALE) [4] and a newly 
implemented Anisotropic Minimum Dissipation (AMD) 
model [5]. For completeness, the fourth case (LAM) is 
included with no turbulence modeling. The used 
acoustic grids are shown in Figs. 2-6, varying in shapes 
for each vowel. 
  

 
Figure 2 - Acoustic mesh for /u/ 

 
Figure 3 - Acoustic mesh for /i/ 

 
Figure 4 - Acoustic mesh for /a/ 

 
Figure 5 - Acoustic mesh for /o/ 

 
Figure 6 - Acoustic mesh for /æ/ 

At the laryngeal and vocal tract walls, a sound-hard 
boundary condition perfectly reflecting the sound waves 
are specified. At the boundary of the radiation region 
and subglottal inlet, a Perfectly Matched Layers 
suppressing the acoustic reflections are used. The 
Perturbed Convective Wave Equation [6] were used to 
solve the acoustic potential   from the partial 
differential equation 
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where the acoustic potential is equal to the acoustic 
pressure in this case of   1. The probe location MIC1 
(Fig. 7), 1 cm from mouth, is used for the Fast Fourier 
Transform (∆  5 Hz).  
 

 
Figure 7 – Coronal view of the computational domain for /o/. 

Distribution of acoustic potential  

III. RESULTS 
 
Four CFD simulations over 20 periods of vocal fold 
oscillations were realized, with subsequent aeroacoustic 
simulations yielding the acoustic spectra (Figs. 8-12). 
The usage of subgrid-scale turbulence models does not 
modify positions of formant frequencies, but it modifies 
considerably the SPLs. The simulations using the new 
AMD model enforced higher harmonics compared the 
rest of models, except the higher harmonics at low 
frequencies in the spectrum of vowel /i/. 

Vowel /u/. SPLs at F2=1000 Hz and F3 ≈ 2500 Hz are 
nonuniform, at the second formant AMD is higher by 
22 % than WALE, and subsequently at the third formant 
WALE is higher by 28 % than AMD. This trend occurs 
only for vowels /u, a/.  

 

 
Figure 8 - Acoustic sound spectrum for /u/ 

Vowel /i/. At fo=100 Hz the SPL for the AMD model 
refers to a very low value around 35 dB, whereas the 
other SPLs are minimally 17 % higher. In general the 
SPLs for the AMD model are low in low-frequency 
bandwidth, but for the F2 ≈1400 Hz the AMD model is 
enforced by 21 % compared to WALE. In the situation 
at F3=2500 Hz the WALE and AMD models are close 
to each other and 1-2 dB higher than the laminar case. 
This could mean that the AMD and WALE models have 
a similar behavior at high-frequency bandwidth, but this 
assumption holds only for /i, o, æ/.  The WALE model 
also enforced the sound pressure levels at F2 and F3 
stronger than the OE model, by 6 dB and 15 dB, 
respectively, which is related to higher flow rate through 
the glottis. 
 

 
Figure 9 - Acoustic sound spectrum for /i/ 

Vowel /a/. SPLs at fo stayed at similar levels for the 
WALE and AMD models, which happened only twice, 
in cases /a, æ/. The space between formants F1-F2 is 
typical for vowels /u, a, o/, but in simulation of /a/ the 
second formant (around 1300 Hz) was not distinct. On 
the other hand, the third formant is clearly visible and 
presents the same behavior as it was seen in /u/, i.e. a big 
drop predicted by AMD up to 9 and 13 dB compared to 
WALE and LAM, respectively. 

 

 
Figure 10 - Acoustic sound spectrum for /a/ 

Vowel /o/. The SPLs are held at high levels up to 3 kHz, 
with some little skips, however the vocal tract shape (see 
again Fig. 5 and 7) has contained the widest throat 
7.25 cm2 of presented acoustic grids.  
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Figure 11 - Acoustic sound spectrum for /o/ 

Vowel /æ/. In this case, the AMD model highlighted the 
first formant very well, 14 dB higher than the WALE. 
The predictions of the SPL of the second and third 
formants by various SGS models were similar, with 
differences less than 3 dB.  
 

 
Figure 12 - Acoustic sound spectrum for /æ/ 

 
IV. DISCUSSION 

 
So far, the AMD subgrid-scale model has not been 

studied in the application associated with human 
phonation. In addition, the computational efforts can be 
reduced compared to conventional subgrid-scale 
models, due to the more accessible algorithm computing 
no invariants from the rate-of-strain tensor. 
 
 

V. CONCLUSION 
 

In the result section was demonstrated that the 
subgrid-scale models have a considerable impact on 
sound pressure levels. In the simulations using the OE 
model, formants were hardly visible and significantly 
weaker compared to other models. Usage of the WALE 
model, which is well-known to handle the turbulent 

viscosity at near-wall and high-shear regions more 
precisely than the OE model, predicted 7 % higher 
volumetric flow rates of air through the glottis compared 
to the OE model, and only slightly lower than the LAM 
and AMD models (by 9 and 4 %, respectively). The 
(widely-used) WALE model was able to uncover all 
characteristics for identification of formant frequencies, 
even so it gave the best recognition of third formants in 
high-frequency bandwidth in cases /u, a/. In contrary, 
the newly implemented AMD model has proven a good 
agreement with the WALE model, and even more it 
identified the SPLs at lower formants F1 and F2 the most 
evident, with the exception of the vowel /i/. 
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Abstract: The  measurement  of  vocal  tract

resonances is crucial to understand voice acoustics.

Their  characterization  using a  broadband

excitation signal and pressure  measurements both

at the lips is a good compromise between accuracy,

speed and intrusiveness.  In this paper we address

some  practical  guidelines  for  performing  such

measurements in order to provide reliable estimates

for resonance frequencies and quality factors.  We

also  experiment the  possibility  to  move  away

microphone from  excitation  at  the  lips,  with  a

cylindrical  waveguide  as  ideal  vocal  tract  and its

line-transmission model. Using a far-field model in

which  pressure  decreases  as  the  inverse  of  the

distance from excitation at the lips, the microphone

could be placed anywhere as soon as the Signal-to-

Noise Ratio is good enough: measurements become

more sensitive to interferences with other acoustics

sources. Modal analysis is performed with a robust

method  using  both  amplitude  and  phase  of

measured  functions.  Resonance  frequencies  and

quality factors estimations at distances up to 30 cm

deviates  by  less  than  0.2% and  10% respectively

from reference measurement at the lips validating

accurate  characterization  with  a  distant

microphone from the lips.

Keywords:  vocal  tract,  resonance,  measurement,

radiation, acoustics

I. INTRODUCTION

Vocal  tract  resonances  are  essentials  for  spoken

communication  and  they  enhance  singing  voice

efficiency  [1].  Their  characterization  has  led  to  the

development  of several  devices  with  a compromise

between intrusiveness and accuracy. Indirect methods

based on formants analyses in the voice signal (such as

linear predictive coding)  evidenced severe limitations

for high pitches or closed vowels. We focus here on a

non-invasive device based on a broadband excitation

signal  at  the  lips,  first  proposed  by Epps [2].  It  has

undergone several developments and variations such as

the use of sine-sweep signals [3], a buzzer excitation

device  [4],  or  the  direct  estimation  of  pressure  and

velocity [5]. Recently the measurement model of this

approach  has  been  clarified,  also  showing  its

limitations [6]. While the measurement setup seems to

be  quite  simple,  accurate  estimate of  resonance

frequencies  and  quality  factors requires  some

precautions.  From  the  hardware  system

implementation  to  the  signal  processing  of  a

measurement and the  estimation of modal parameters,

each step needs precise adjustments. We first address a

full  methodology  and  some  practical  guidelines  for

performing  such  measurements  in  the  best  possible

conditions (Sec. II),  leaving aside for the moment the

question of real-time estimation. Motivated by the high

voice level at the lips that can saturate and damage the

microphone  (physical  clipping),  we  explore  the

possibility  to  separate  pressure  measurement  from

excitation  (traditionally  both  done  at  the  lips),  by

means of experiments and radiation theory (Sec. III).

We  study here  the  unvoiced  case.  All  results  are

expected to remain valid in the voiced case assuming a

perfect separation between the excitation signal and the

voice.

II. METHODS

A. Measurement device and theoretical context

The device consists of a flexible capillary (diameter

4  mm)  connected  to  an  impedance  adapter  on  a

loudspeaker (Beyma CP850Nd) with amplifier (Flying

Mole DAD-M100 proII BB) and sound card (Focusrite

6i6), positioned at the inlet of a vocal tract model (an

ideal  open-closed  cylindrical  waveguide  with  length

15 cm and  diameter  21 mm for  validation  purpose).

The flexible  capillary  is  coated  by  a  thicker  tube in

order to  remove its sides radiation (see Figure 1): the

only  acoustic  source  should  be  the  output  of  the

capillary  at  the  lips  –  otherwise  interferences  may
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biased, quality factor  estimation may suffer  from the

skewness  of  the  amplitude peak  and from the  phase

shift: bandwidth at -3dB of  H(𝜔𝜔) resonances  deviates

from real bandwidth of vocal tract resonances. First the

frequency areas of maxima are delimited (see Figure 3

for the first resonance case). The values of H(𝜔𝜔) in the

considered  frequency  range  are  displayed  on  the

complex  plane  and  fitted  on  a  geometric  circle  (so-

called Kennelly circle). Then fitting the curve of angle

relative to the circle’s center enables the evaluation of

the resonance frequency and of its quality factor [9].

Figure 3 – Definition of first resonance zone and

associated Kennelly circle for numerical model.

III. RESULTS

A. Far-field pressure decrease

Figure 4 displays the RMS pressure value (over ten

periods)  of  recorded  signals  for  the  mid-frequency

2400 Hz with  respect  to  the  distance  from  the

waveguide inlet for open and closed mouth conditions.

Plots are normalized by the reference value at the inlet

(0.4 cm). They are compared to the far-field model.

The sound pressure level decreases  globally as the

inverse  of  the  distance,  equivalent  to  a  far-field

monopolar  radiation  model  on  the  considered

frequency  ranges,  as  soon as distance  is  superior  to

2 cm from the inlet. For other studied frequencies, little

variation is observed: the decrease in pressure remains

proportional to the inverse of distance.

 Figure 4 – Normalized RMS pressure levels at 2.4 kHz

with distance (left) and with inverse of distance (right). 

The  decrease  behavior  is  similar  between closed

and open conditions which indicates that  the method

can  compensate  the  position  of  the  microphone.

Therefore  the  measurement  model  (Eq.  (1))  remains

the same for remote microphones.

B. Far-field modal estimation

Figure 5 displays measurements  made with the 4-

microphones antenna with distances 0.5 (M1), 10 (M2),

20 (M3) and  30 cm (M4).  Modal  estimations

(frequencies  in  Table 1,  quality  factors  in  Table 2)

obtained  from  measurements  are  compared  with the

one at  0.5 cm and with the frequency  response at the

waveguide  inlet  from  transmission  line  model  with

visco-thermal  losses.  Model  data  are  computed  with

the same modal analysis as Sec. II.D.

Figure 5 – Example of H measurements with distance

for  4 microphones and numerical model (dashed-line)

Measurements  at  different  distances  are  very

similar and close to the numerical model. The distance

of the microphone and the decrease in pressure is well

compensated  between  calibration  and  measurement.

Noise appear for far-field positions of microphone due

to a lower Signal-to-Noise Ratio. The measurement at

the lips (M1) has a lower amplitude probably due to the

bias  introduced  by  the  thick  cover  used  for  closed

mouth condition (1 mm thick rigid latex cut to the size

of the cylindrical waveguide diameter).

f (Hz) R1 R2 R3 R4 R5

Model 546.8 1645.4 2746.5 3851.2 4960.7

M1

(std)

543.8

± 0.1

1641.3

± 0.4

2736.9

± 0.6

3846.5

± 1.0

4947.1

± 1.6

M2

(std)

543.9

± 0.1

1641.7

± 0.4

2737.4

± 0.8

3845.6

± 1.6

4951.1

± 2.0

M3

(std)

544.0

± 0.1

1642.1

± 0.5

2737.2

± 1.1

3851.7

± 3.0

4947.5

± 3.3

M4

(std)

543.5

± 0.2

1641.2

± 0.7

2735.1

± 2.0

3847.8

± 3.0

4950.4

± 3.4

Table 1 – Mean estimations of resonance frequencies

(and standard deviation) for 20 measurements (with

new calibration for each one) and numerical model.

occur.  The  loudspeaker  and  impedance  adapter  with

the tube must also be acoustically isolated for the same

reason.

Figure 1 – Photo of excitation at the waveguide inlet.

As  usually  done [1-3,  5,  6],  the  microphone  is

positioned close to the excitation system at the lips. It

records  the  waveguide  (vocal  tract)  responses  to  a

broadband  signal  in  a  calibration  condition  (closed-

mouth) and in a measurement condition (open-mouth).

The pressure measurement model at the lips, valid for

all kinds of excitation signal, has been described in [6].

The  spectrum  in  open-mouth  condition  Pmeas(𝜔)

calibrated  by  closed-mouth  spectrum Pcal(𝜔) gives

access to a frequency response H(𝜔) characterizing the

vocal-tract  acoustics  including  its  radiation

(Equation 1).  The excitation  capillary is small enough

(high impedance) to be assumed independent from the

load (i.e. it provides the same source flow for open or

closed vocal tract).

(1)

with ZVT the vocal tract input impedance seen from the

lips and  ZR the vocal tract radiation impedance.  The

resonances of H(𝜔) are identical to a usual vocal tract

transfer function pressure at the lips over flow at the

glottis (Plips / Uglottis). The lips radiation is included, so

these  resonances  corresponds  to  the  acoustics  of  the

radiating vocal tract.

B. Excitation signal and analysis method

A synchronized  exponential  swept-sine is  used

(frequency  range  0,1-5,5 kHz,  duration  1 s,  with

sinusoidal  fade  in  and  fade  out).  Deconvolution  in

Fourier  domain  method  detailed  in [7]  is  applied,

which  enables  to  properly  separate  non-linear

contributions  of the  excitation  (and  measurement)

chain  from  the  waveguide  linear  impulse  response.

Briefly, each pressure measurement (closed and open

mouth  conditions)  is  convoluted in  Fourier  domain

with  inverse  sweep,  then  the  linear  impulse  is

windowed  in  time  domain.  For  the  cylindrical

waveguide  in  use  here,  the linear  impulse  is  around

120 ms.   A  long-enough  flat-top  window is  used  to

minimize  distortion  of  the  impulse  response.  Finally

the  corrected  frequency  response  H(𝜔) is  calculated

(Eq. (2)) with a regularized (parameter ⇥(𝜔)) spectrum

inversion as discussed in [8].
(2)

Time-domain signals are sampled at fs = 44100 Hz,

Fourier transforms are performed with the power of 2

greater  than  the  length  of  signal  to  optimize

computation  with  zero-padding.  The  final  frequency

resolution  of  H(𝜔) is  less  than  1 Hz.  The  excitation

signal sound pressure level measured with a dBmeter

(Nor131) reaches around 86 dB (LAFmax) at 9 cm from

the source (capillary output and waveguide inlet). All

measurements  were  made  in  the  anechoic  room  of

LMA laboratory.

C. Microphone position testbed

In  order  to  explore  the  possibility  of  placing the

microphone away from the lips, a microphone (GRAS

40PR/PL with conditioner MMF M108) is horizontally

moved  away  between 0.4 cm and 38 cm from  the

waveguide  inlet.  For  each  microphone  position,  two

records are made in 1) open-mouth condition  and 2)

closed-mouth  condition.  Root-Mean  Square value  of

pressure  level  is computed  over short  time windows

(ten periods long) along the sweep, with respect to the

distance.  It  is  compared  with  a  monopolar  far-field

radiation model (RMS decreasing as the inverse of the

distance).

In a second step, a  4-microphones (M1,  M2,  M3,

M4) antenna (at  distance  d = 0.5,  10, 20 and  30 cm)

allows  simultaneous measurements  (see Figure 2) of

the  frequency  response  at  the  waveguide  inlet.

Resonance frequencies and quality factors estimated at

each microphone  distance  from the  vocal  tract  inlet

(0.5 cm reference) were compared with each other, and

with a transmission line numerical model.

Figure 2 – Four microphones (M1, M2, M3, M4)

antenna scheme at distances 0.5, 10, 20 and 30 cm.

D. Modal estimation

We focus on the resonances (amplitude maxima) of

the  calculated  frequency  response  H(𝜔).  The  chosen

method to determine a resonance frequency and quality

factor should be robust to noise and to the proximity of

nearby zeros (see Figure 4). Even if frequency is not

Idealized vocal tract

Coating

Flexible capillary
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biased, quality factor  estimation may suffer  from the

skewness  of  the  amplitude peak  and from the  phase

shift: bandwidth at -3dB of  H(𝜔𝜔) resonances  deviates

from real bandwidth of vocal tract resonances. First the

frequency areas of maxima are delimited (see Figure 3

for the first resonance case). The values of H(𝜔𝜔) in the

considered  frequency  range  are  displayed  on  the

complex  plane  and  fitted  on  a  geometric  circle  (so-

called Kennelly circle). Then fitting the curve of angle

relative to the circle’s center enables the evaluation of

the resonance frequency and of its quality factor [9].

Figure 3 – Definition of first resonance zone and

associated Kennelly circle for numerical model.
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Figure 4 displays the RMS pressure value (over ten

periods)  of  recorded  signals  for  the  mid-frequency

2400 Hz with  respect  to  the  distance  from  the

waveguide inlet for open and closed mouth conditions.

Plots are normalized by the reference value at the inlet

(0.4 cm). They are compared to the far-field model.

The sound pressure level decreases  globally as the

inverse  of  the  distance,  equivalent  to  a  far-field

monopolar  radiation  model  on  the  considered

frequency  ranges,  as  soon as distance  is  superior  to

2 cm from the inlet. For other studied frequencies, little

variation is observed: the decrease in pressure remains

proportional to the inverse of distance.

 Figure 4 – Normalized RMS pressure levels at 2.4 kHz

with distance (left) and with inverse of distance (right). 

The  decrease  behavior  is  similar  between closed

and open conditions which indicates that  the method

can  compensate  the  position  of  the  microphone.

Therefore  the  measurement  model  (Eq.  (1))  remains

the same for remote microphones.

B. Far-field modal estimation

Figure 5 displays measurements  made with the 4-

microphones antenna with distances 0.5 (M1), 10 (M2),

20 (M3) and  30 cm (M4).  Modal  estimations

(frequencies  in  Table 1,  quality  factors  in  Table 2)

obtained  from  measurements  are  compared  with the

one at  0.5 cm and with the frequency  response at the

waveguide  inlet  from  transmission  line  model  with

visco-thermal  losses.  Model  data  are  computed  with

the same modal analysis as Sec. II.D.

Figure 5 – Example of H measurements with distance

for  4 microphones and numerical model (dashed-line)

Measurements  at  different  distances  are  very

similar and close to the numerical model. The distance

of the microphone and the decrease in pressure is well

compensated  between  calibration  and  measurement.

Noise appear for far-field positions of microphone due

to a lower Signal-to-Noise Ratio. The measurement at

the lips (M1) has a lower amplitude probably due to the

bias  introduced  by  the  thick  cover  used  for  closed

mouth condition (1 mm thick rigid latex cut to the size

of the cylindrical waveguide diameter).

f (Hz) R1 R2 R3 R4 R5

Model 546.8 1645.4 2746.5 3851.2 4960.7

M1

(std)

543.8

± 0.1

1641.3

± 0.4

2736.9

± 0.6

3846.5

± 1.0

4947.1

± 1.6

M2

(std)

543.9

± 0.1

1641.7

± 0.4

2737.4

± 0.8

3845.6

± 1.6

4951.1

± 2.0

M3

(std)

544.0

± 0.1

1642.1

± 0.5

2737.2

± 1.1

3851.7

± 3.0

4947.5

± 3.3

M4

(std)

543.5

± 0.2

1641.2

± 0.7

2735.1

± 2.0

3847.8

± 3.0

4950.4

± 3.4

Table 1 – Mean estimations of resonance frequencies

(and standard deviation) for 20 measurements (with

new calibration for each one) and numerical model.
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For  all  studied  distances,  resonance  frequencies

estimates deviate by less than  0.2 % relatively to the

reference  measurement  at  0.5 cm  (M1).  They  are

underestimated  by  less  than  0.6 % relatively  to  the

computational model at the inlet. Standard deviation of

frequency estimates slightly increases with the distance

(microphone  number)  and  with  the  frequency

(resonance number). 

Q R1 R2 R3 R4 R5

Model 59.1 55.6 45.4 39.0 35.0

M1

(std)

46.6

± 0.2

45.5

± 1.2

39.9

± 0.4

32.5

± 1.2

30.8

± 0.4

M2

(std)

46.9

± 0.6

46.2

± 1.2

39.9

± 1.2

31.8

± 1.8

32.0

± 1.3

M3

(std)

47.0

± 0.5

46.8

± 1.1

39.2

± 2.1

32.4

± 3.0

31.9

± 3.4

M4

(std)

47.1

± 1.2

48.7

± 0.8

38.7

± 2.4

36.1

± 3.5

31.9

± 4.5

Table 2 – Mean estimations of resonance quality

factors (and standard deviation) for 20 measurements

(with new calibration for each one) and model

For  all  microphones,  quality  factors  estimates

deviate  by less  than  10 % relatively to the  reference

measurement (M1). They are underestimated compared

with results from the model,  particularly for the first

resonance:  measurement  of  a  low-loss  waveguide

would  require  a  longer  excitation  time  to  obtain  a

better  estimate  of  amplitude  and  quality  factor.  This

should not  be  an  issue  for  the  estimation  of  quality

factors  of  real  vocal  tract  whose  low-frequency

resonances  have  larger  bandwidth [10].  Standard

deviation  increases  with  the  frequency  and  the

distance.

IV. CONCLUSION AND GUIDELINES 

Results  evidence that  the  microphone  can  be

positioned away from the lips. If the study focuses on a

horizontal  motion of the microphone in order to limit

the  different  radiation  patterns  of  frequencies,  the

calibration and measurement are always  performed at

the same microphone position so that radiation pattern

is  compensated.  Therefore the  microphone  could  be

placed  anywhere.  However,  the  transfer  function  is

more sensitive to ambient noise as the distance of the

microphone increases. For accurate measurement, any

other  acoustic  sources  than the  excitation  at  the  lips

should  be  avoided  or  limited.  Interferences  between

different  sources  would appear  as  noise  or  peaks on

measurements.

A microphone  placed  at  30 cm  distance  as

recommended  by  the  Union  of  the  European

Phoniatricians  [11]  for  stand  mounted  microphone

voice  measurements  can  be  used  without  loss  of

precision.  The  device  could  also  be  based  on  head-

mounted  microphone  on  which  an  excitation  system

could be added. Those possibilities are advantageous

for comfort of subjects and to encourage an ecological

vocal gesture during studies.
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Abstract: Background: The goal of our project is to 
develop an objective assessment method for 
dysphagia and aspiration in HNC-patients using 
acoustic features related to voluntary and/or reflex 
cough as biomarkers for dysphagia and/or 
aspiration. This presentation describes the 
development of an acoustic cough analysis method. 
The data collected with a free-standing and a skin-
contact microphone are compared for a population 
of healthy subjects. 
Methods: Twenty-one healthy subjects produced 
five single coughs. A software developed for the 
purposes of this study enables to analyze cough 
signals in terms of spectral and temporal features. 
Cough samples were simultaneously recorded using 
a free-standing microphone and a skin-contact 
microphone. 
Results: Our study presents the descriptive statistics 
of spectral and temporal features as well as the 
correlations observed. Results suggest that the skin-
contact microphone under-reports acoustic energy 
in high-frequency bands, ascribed to turbulence 
noise.  
Keywords: cough, acoustic analysis, free-air 
microphone, skin-contact microphone.  
 

I. INTRODUCTION 
 
Late radiation associated dysphagia (RAD) is defined 
as impaired swallowing efficiency and/or safety 
following (chemo)radiotherapy in head and neck cancer 
(HNC) patients [1]. The two hallmarks of RAD are 
residue (food sticking in the mouth/throat) and 
aspiration (food entering the airways). The latter ideally 
results in a cough reflex protecting the airways and 
lungs. In HNC-patients, the efficacy of this elicited 
cough is often diminished due to changes in the local 
physiology (sensory deterioration). As such, up to 83% 
of HNC-patients are at risk of lung aspirations and 
consequent lung infections, fatal for one third of them 
[2]. Although cough efficacy is considered as a reliable 
predictor of aspiration in the framework of dysphagia, 
cough investigation has been minimal in patients with 
RAD.  

An acoustic cough emission is usually defined as a 
transient signal comprising three sequential phases: a 
burst/release, followed by a “fricated” fragment 
(turbulence noise) and a “voiced” fragment 
(oscillations) [3]. This academic view is inspired by the 
analogy between a cough sound and a glottal stop – a 
consonantal sound used in many spoken languages, 
produced by obstructing airflow in the vocal tract or, 
more precisely, the glottis.  

Because of the transient attributes of the cough 
signal, conventional software for voice and speech 
analysis are not appropriate. Indeed, the assessment of 
voice quality is based on sustained voiced speech 
sounds, selected for reasons of technical feasibility and 
ease of reproducibility of the analysis. 

Also, voice and speech samples are usually 
recorded with validated professional acoustic 
microphones (free-standing microphones or head-
mounted microphones). In practice, however, one 
observes that head-mounted microphones are not suited 
for recording cough signals. The intensity of cough 
signals may be so high that the transducer and/or pre-
amplifier saturate. For this reason, freely placeable 
microphones are more appropriate than head-mounted 
microphones. In addition, a skin-contact microphone is 
the most suitable sensor for recording elicited cough 
sounds because a facemask is necessary for tussigen 
nebulization.  

A free-standing microphone as well as a skin-
contact microphone have therefore been used to record 
voluntary or elicited cough sounds in the framework of 
our study. The recordings obtained with these 
transducers are idiosyncratic and non-interchangeable 
[4].Consequently, it is necessary to take into account 
the specificities of each of these transducers with 
regard to the application.  

The acoustic microphone is placed at a fixed 
distance from the mouth of the subject and is protected 
by a metallic anti-pop screen. The skin-contact 
microphone is attached to the throat skin and records 
laryngeal vibrations directly.  

The sound recorded by a skin-contact microphone 
is muffled because it transits through the tissue of the 
neck and the resonances of the vocal tract do not fully 
contribute to the timbre [5]. The skin-contact 
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microphone has other disadvantages. Its position and 
orientation may influence the recording of the signal 
[6]. Moreover, the recorded signal may be impacted by 
the skin properties or by extra-sounds owing to blood-
flow and heartbeat as well as by tissue or muscle 
movement when the speaker is in motion [5].   

The overall goal of our project is to develop an 
objective assessment method for dysphagia and 
aspiration in HNC-patients using acoustic features 
related to voluntary and/or reflex cough as biomarkers 
for dysphagia and/or aspiration. This presentation 
describes the acoustic cough analysis methods 
developed for this research. The data collected with a 
free-standing and a skin-contact microphone are 
compared for a corpus of healthy subjects. 
 

II. METHODS 
A. Corpus 

 
Twenty-one healthy individuals, including 13 women 
and 8 men, participated in this study. The average age 
of the participants was 33.1 ± 5.09 years (range, 24 to 
53 years). Exclusion criteria were 1) history of head 
and neck cancer; 2) dysphagia; 3) dysphonia (G > 0 on 
GRBAS-I scale); 3) history of smoking for within less 
than one year; 4) significant or chronic respiratory 
disease or illness.  
 
B. Recordings 

 
Participants were seated in an audiometric booth. The 
recordings were simultaneously collected using a skin-
contact microphone and a professional quality acoustic 
free-standing microphone. The skin-contact 
microphone was the Albrecht AE 38 S2, valid and 
reliable for recordings in a natural setting [7]. The free-
standing microphone was the AKG Perception 420 
Omnidirectionnal, fixed to a flex arm fastened to a 
table facing the participants. A metallic anti-pop filter 
was placed in front of the microphone to prevent the 
exhaled air hitting the microphone, but also for easy 
disinfection with wipes. Intensity (in dB) was measured 
with an external sound level meter Bruel & Kjaer 2236 
placed at 40 cm on the right of the mouth of the 
participant, also for reasons of hygiene.  

All participants produced 5 voluntary coughs. Each 
participant was verbally instructed as follows “Take a 
maximal breath and cough as if you have something 
stuck in your throat”.   

As recommended by Union of European 
Phoniatricians’ guidelines, investigators wore a 
protective visor for face and eye protection, a surgical 
facemask, a single use protective gown and a single use 
cap.  A time interval of ten minutes between 
participants was scheduled for purifying and sterilizing 
the room with a Hextio Radic8 device and for cleaning 
all surfaces and equipment.  

Cough samples were recorded with an HP ProBook 
computer (Hew1ett-Packard Company, USA) using the 
computer program PRAAT and the preamplifier 2 
channel interface Presonus Audiobox USB 96 Audio, 
with a sampling frequency of 44.1 kHz.  

Cough samples were analyzed with a software 
developed for the purposes of this study. 
 
C. Segmentation 

 
Cough bouts are segmented by hand into single coughs 
leaving silent intervals before and after. The 
segregation of a single cough from its preceding and 
succeeding silent intervals by hand would be difficult 
because the offset of a single cough is drawn out 
without a well-defined boundary. Segregation from 
silence is therefore carried out automatically via the 
signal contour by assigning to the onset the first 
contour sample and to the offset the last contour sample 
the value of which is larger than -20 dB with regard to 
the signal contour maximum. 

For spectral analyses, the signal contour is 
estimated by smoothing the absolute signal samples via 
a rectangular window the length of which equals the 
sampling frequency in Hz divided by a cutoff 
frequency equal to 50 Hz. 

Before analysis, the segmented cough signals are 
normalized so that the maximum of the absolute value 
is equal to one. 
 
D. Spectral analysis 

 
Cough signals are transient signals, which are therefore 
unsatisfactorily represented by spectrograms. We have 
therefore focused on a smaller number of frequency 
intervals, the energies and frequencies of which are 
reported band by band. 
 The signals are broken up into constituent signals 
via a filter bank that is based on the discrete cosine 
transform (DCT). The frequency boundaries are equal 
to 400 Hz, 800 Hz, 1600 Hz and 3200 Hz. The 
difference between the discrete cosine and discrete 
Fourier transforms is that the former periodically 
extends the analyzed signal by pivoting the signal with 
regard to its onset and offset so that the periodically 
extended signal is even. The juxtaposition of a slow 
and low-amplitude offset with a rapid and high-
amplitude onset is so avoided, as well as the ensuing 
spectral artefacts. The decomposition of the cough 
signal by means of a DCT is exact, that is, the sum of 
the band-filtered signals as well as their signal energies 
is equal to the original cough signal and its energy [8]. 

 The spectral features are the relative signal 
energies in the bands (0Hz, 400Hz), (400Hz, 800Hz), 
(800Hz, 1600Hz), (1600 Hz, 3200Hz) as well as in the 
interval between 3200 Hz and half the sampling 
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microphone has other disadvantages. Its position and 
orientation may influence the recording of the signal 
[6]. Moreover, the recorded signal may be impacted by 
the skin properties or by extra-sounds owing to blood-
flow and heartbeat as well as by tissue or muscle 
movement when the speaker is in motion [5].   

The overall goal of our project is to develop an 
objective assessment method for dysphagia and 
aspiration in HNC-patients using acoustic features 
related to voluntary and/or reflex cough as biomarkers 
for dysphagia and/or aspiration. This presentation 
describes the acoustic cough analysis methods 
developed for this research. The data collected with a 
free-standing and a skin-contact microphone are 
compared for a corpus of healthy subjects. 
 

II. METHODS 
A. Corpus 

 
Twenty-one healthy individuals, including 13 women 
and 8 men, participated in this study. The average age 
of the participants was 33.1 ± 5.09 years (range, 24 to 
53 years). Exclusion criteria were 1) history of head 
and neck cancer; 2) dysphagia; 3) dysphonia (G > 0 on 
GRBAS-I scale); 3) history of smoking for within less 
than one year; 4) significant or chronic respiratory 
disease or illness.  
 
B. Recordings 

 
Participants were seated in an audiometric booth. The 
recordings were simultaneously collected using a skin-
contact microphone and a professional quality acoustic 
free-standing microphone. The skin-contact 
microphone was the Albrecht AE 38 S2, valid and 
reliable for recordings in a natural setting [7]. The free-
standing microphone was the AKG Perception 420 
Omnidirectionnal, fixed to a flex arm fastened to a 
table facing the participants. A metallic anti-pop filter 
was placed in front of the microphone to prevent the 
exhaled air hitting the microphone, but also for easy 
disinfection with wipes. Intensity (in dB) was measured 
with an external sound level meter Bruel & Kjaer 2236 
placed at 40 cm on the right of the mouth of the 
participant, also for reasons of hygiene.  

All participants produced 5 voluntary coughs. Each 
participant was verbally instructed as follows “Take a 
maximal breath and cough as if you have something 
stuck in your throat”.   

As recommended by Union of European 
Phoniatricians’ guidelines, investigators wore a 
protective visor for face and eye protection, a surgical 
facemask, a single use protective gown and a single use 
cap.  A time interval of ten minutes between 
participants was scheduled for purifying and sterilizing 
the room with a Hextio Radic8 device and for cleaning 
all surfaces and equipment.  

Cough samples were recorded with an HP ProBook 
computer (Hew1ett-Packard Company, USA) using the 
computer program PRAAT and the preamplifier 2 
channel interface Presonus Audiobox USB 96 Audio, 
with a sampling frequency of 44.1 kHz.  

Cough samples were analyzed with a software 
developed for the purposes of this study. 
 
C. Segmentation 

 
Cough bouts are segmented by hand into single coughs 
leaving silent intervals before and after. The 
segregation of a single cough from its preceding and 
succeeding silent intervals by hand would be difficult 
because the offset of a single cough is drawn out 
without a well-defined boundary. Segregation from 
silence is therefore carried out automatically via the 
signal contour by assigning to the onset the first 
contour sample and to the offset the last contour sample 
the value of which is larger than -20 dB with regard to 
the signal contour maximum. 

For spectral analyses, the signal contour is 
estimated by smoothing the absolute signal samples via 
a rectangular window the length of which equals the 
sampling frequency in Hz divided by a cutoff 
frequency equal to 50 Hz. 

Before analysis, the segmented cough signals are 
normalized so that the maximum of the absolute value 
is equal to one. 
 
D. Spectral analysis 

 
Cough signals are transient signals, which are therefore 
unsatisfactorily represented by spectrograms. We have 
therefore focused on a smaller number of frequency 
intervals, the energies and frequencies of which are 
reported band by band. 
 The signals are broken up into constituent signals 
via a filter bank that is based on the discrete cosine 
transform (DCT). The frequency boundaries are equal 
to 400 Hz, 800 Hz, 1600 Hz and 3200 Hz. The 
difference between the discrete cosine and discrete 
Fourier transforms is that the former periodically 
extends the analyzed signal by pivoting the signal with 
regard to its onset and offset so that the periodically 
extended signal is even. The juxtaposition of a slow 
and low-amplitude offset with a rapid and high-
amplitude onset is so avoided, as well as the ensuing 
spectral artefacts. The decomposition of the cough 
signal by means of a DCT is exact, that is, the sum of 
the band-filtered signals as well as their signal energies 
is equal to the original cough signal and its energy [8]. 

 The spectral features are the relative signal 
energies in the bands (0Hz, 400Hz), (400Hz, 800Hz), 
(800Hz, 1600Hz), (1600 Hz, 3200Hz) as well as in the 
interval between 3200 Hz and half the sampling 

frequency. The average frequency in each band is 
estimated via the number of zero-crossings. The per-
band frequencies are weighted by the relative band 
energies and summed. The weighted sum is an 
approximation of the spectral centroid that subdivides 
the signal spectrum into two halves that have equal 
energies. 
 
E. Temporal analysis 
 
The temporal analysis involves the evolution with time 
of the cough signal amplitude, the sample entropy as 
well as the kurtosis. Each of these quantities is obtained 
once per analysis frame. The frame length is equal to 
30 ms and the hop ratio is equal to 0.5. The frame-wise 
calculated quantities are then interpolated to obtain the 
contour of each quantity sample-by-sample.  

The amplitude reports the strength of the cough 
transient. The amplitude is estimated by taking the 
square root of the sum of the squared samples divided 
by the number of samples in the analysis frame. 

The sample entropy reports the degree of 
randomness in an analysis frame. The samples are z-
normalized before the entropy is calculated by 
comparing the distance between all sample pairs and all 
sample triplets that is smaller than a threshold. The 
threshold is equal to 0.2 times the standard deviation. 
The sample entropy segregates analysis frames 
according to whether they report turbulence noise or 
locally-periodic oscillations because turbulence noise is 
expected to be less predictable than locally-periodic 
oscillations or a mix thereof [9]. 

The kurtosis reports the impulsive quality of the 
signal samples within an analysis frame. It involves the 
fourth moment of the samples divided by the square of 
the second moment. The kurtosis may be interpreted in 
terms of the peakedness of the histogram of the sample 
values. Sample histograms that are between normal and 
uniform have kurtosis values between three and zero. 
Histograms the peakedness of which is stronger than 
normal have kurtosis values larger than three. Burst-
like onsets are therefore expected to have larger 
kurtosis values than turbulence noise or oscillations 
[10]. 

The shape of the contours of the cough amplitude, 
sample entropy and kurtosis is described by means of 
the first three DCT coefficients. Inspecting the pattern 
of the first three co-sinusoidal basis functions shows 
that the first coefficient is the contour average. The 
second coefficient describes the contour trend. A 
positive coefficient value indicates a trend that is 
decreasing with time. The third coefficient reports the 
contour curvature. A positive coefficient value 
indicates a downward-upward (convex) curvature and 
negative values an upward-downward (concave) 
curvature of the contour with regard to the horizontal.  

III. RESULTS 
 

A. Descriptive statistics 
 
The medians of the acoustic features collected with the 
free-standing (Fmic) and skin-contact microphones 
(SCmic) and a comparison of the medians by means of 
a non-parametric Wilcoxon test are reported in Tables 1 
and 2. The average intensity in dB of the 5 times 21 
cough signals was 97.05 ± 4.69 (median = 97.4).  
 
Table 1: Median cough length, median relative energy 
in each frequency band, median spectral centroid and 
the statistical significance of the difference between 
free-standing and skin-contact microphone. 
 
 Fmic SCmic Wilcoxon 

tests 
Length (sec) 0.387 0.335 p<0.05 
< 400 Hz 0.495 0.488 p=0.61 
400-800Hz 0.103 0.414 p<0.05 
800-1600Hz 0.095 0.071 p<0.05 
1600-3200Hz 0.136 0.007 p<0.05 
>3200Hz  0.084 0.000 p<0.05 
Weighted freq. 
(Hz) 

1245 477 p<0.05 

 
Table 2: Median length, average, trend and curvature of 
the amplitude, sample entropy and kurtosis contours 
and the statistical significance of the difference of the 
medians between free-standing and skin-contact 
microphone.  
 Fmic SCmic Wilcoxon 

tests 
Length (sec) 0.907 0.792 p<0.05 

Amplitude  
Average 0.109 0.117 p<0.05 
Trend 0.034 0.026 p<0.05 

Curvature 0.000 0.019 p<0.05 
Sample entropy  

Average 0.584 0.290 p<0.05 
Trend 0.117 0.005 p<0.05 

Curvature -0.107 -0.060 p<0.05 
Kurtosis  

Average 3.451 3.840 p<0.05 
Trend 0.562 0.474 p=0.121 

Curvature 0.487 0.661 p<0.05 
 

B. Correlations 
 
Spearman correlation coefficients were calculated 
between all temporal and spectral features, considering 
both transducers separately.   
Fmic correlations: Significant correlations were found 
between the average amplitude contour and the relative 
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energy < 400 Hz (0.3), the average sample entropy (-
0.6), and the spectral centroid (-0.4). 
SCmic correlations: the same significant correlations 
were found (but to a different degree) between the 
average amplitude contour and the relative energy < 
400 Hz (0.2), the average sample entropy (-0.3) and the 
spectral centroid (-0.2).  

IV. DISCUSSION

The spectral analysis shows that the energy 
distribution between frequency bands differs for the 
free-air and skin-contact microphones. The latter 
reports less energy in frequency bands > 800 Hz than 
the former. This is confirmed by the spectral centroid,
which is significantly lower for cough samples 
collected with the skin-contact microphone. A possible 
explanation involves the acoustic radiation 
characteristics through the tissues at the neck as well as 
the attenuation of the acoustic propagation through that 
tissue, which weaken the contribution of high-
frequency turbulence noise to cough signals recorded 
via a skin-contact microphone. 

Similarly, the temporal analysis shows significant 
differences between the average sample entropies and 
their trends reported by free-standing and skin-contact 
microphones. The latter report lower average entropy 
values and flatter entropy trends than the former. 
Knowing that turbulence noise boosts entropy values 
compared to locally-periodic vibrations and that skin-
contact microphones de-emphasize the spectral energy 
in high-frequency bands, one may therefore conclude 
that a skin-contact microphone under-reports the 
acoustic energy involved in turbulence noise compared 
to a free-air microphone. 

One other issue that is likely to influence temporal 
features that report the shapes of the amplitude, entropy 
and kurtosis contours of a single cough is 
segmentation. Consistent segmentation is a delicate 
task because single coughs lack a well-defined offset. 
Minor changes in the segmentation criteria, in the 
estimation of the amplitude contour or the use of 
distinct transducers are therefore likely to cause the 
segmented cough lengths to differ, which may result in 
differences in the values of the temporal features. 

Finally, the statistically significant positive 
correlation between the average amplitude contour and 
the relative spectral energy < 400 Hz, as well as the 
negative correlation between the average amplitude 
contour and the average entropy contour as well as 
spectral centroid suggest that the overall size of the 
amplitude contour of the normalized cough signal 
mainly co-evolves with the low-frequency locally-
periodic cough signal oscillations, which are larger than 
the fricative signal fragments. 

V. CONCLUSION

The study presents the development of an acoustic 
cough analysis method. Here, it is used to compare the 
features of single coughs recorded by a free-standing 
and a skin-contact microphone. Results suggest that the 
observed differences are attributable to the under-
emphasis by the skin-contact microphone of high-
frequency bands, which therefore under-reports the 
acoustic energy ascribed to turbulence noise.
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Abstract: At the end of a vocal emission, when the 
voicing is not interrupted by a laryngeal closure, a 
damped oscillatory motion of each vocal fold can be 
observed after the last contact phase of the two fold 
edges on the midline. It can be precisely analyzed 
using a photometric method. Actually, during 
modal phonation, the vocal oscillator mainly 
comprises two components: the vocal folds 
themselves and the vibrating air mass. In order to 
investigate the effect of the vibrating air mass, a 
voicing protocol was elaborated for validly 
measuring and comparing damping characteristics 
in two conditions: at high and at low lung volume, 
ceteris paribus. Glottal area, intraoral pressure, 
EGG and sound were recorded simultaneously. The 
results show that the decay of vocal fold oscillation 
is influenced by the amount of lung air that is set 
into oscillation. A reduction of the air volume leads 
to a significant increase in the rate of decay, thus 
voicing at low lung volume requires more energy, 
which is of importance for voice hygiene. 
 
Keywords: Lung volume, damping, vocal folds, 
photoglottography. fundamental frequency. 

 
I. INTRODUCTION 

 
At the end of a vocal emission, a damped 

oscillatory movement on each vocal fold (VF) can be 
observed after the last contact phase of the two fold 
edges on the midline [1]. The amplitude decrement 
from cycle to cycle reflects the energy input requested 
to maintain a steady state oscillation. A fast repetition 
(3 to 4 s-1) of a vowel followed by an abrupt bilabial 
occlusion (e.g. /ɛpɛpɛpɛpɛpɛp/) at comfortable pitch 
and loudness is a convenient protocol for analyzing 
this. The oscillating system itself consists in two 
components: the two VFs and the air mass of lower 
and upper airways. The size of the vibrating mass of 
the VFs tissue can be roughly estimated on the basis of 
MR-imaging. Thickness and width of each vibrating 
fold can be estimated to 4 and 5 mm respectively. The 
vibrating length, as seen on videolaryngoscopic 
images, is around 16 mm (male subject, modal register, 
comfortable pitch and loudness). So 0,5 g is a 

reasonable upper limit estimate of the total mass of 
vibrating tissue in vivo (2 VF). In a female subject, one 
may expect 0.35 g. A rough assumption is that modal 
speech occurs with an average lung volume slightly 
above the upper limit of the tidal volume. Hence the 
internal air volume set into vibration consists in about 
50% of the vital capacity (i.e. a half of 3000 – 4500 
ml), to which has to be added a probably large part of 
the residual volume (on average 1,1 - 1,2 l) and the 
supraglottal vocal tract (around 75 ml). Globally, the 
weight of the vibrating air can be estimated to around 
2,7 to 3,7 g (1,14 g / l), clearly larger than even the 
high estimate of the VF mass. Varying the air volume 
set into vibration would allow checking its importance 
for the damping characteristics. This is possible by 
comparing two conditions: voicing with respectively 
high and low lung volume while the above-mentioned 
protocol is applied. Our hypothesis is that an increase 
of the air volume (of about 2,5 l) put into vibration by 
the VFs should improve the mechanical quality of the 
global oscillating system, which should be reflected in 
a lower damping when the driving force is abruptly 
suppressed. 

 
II. METHODS 

 
The glottal area was derived from a photometric 

record obtained by transilluminating the trachea. The 
light source for this transillumination was a tungsten 
filament light bulb driven by a constant ripple-free 
current source. The light flux was detected by a 
photovoltaic transducer positioned as dorsally as 
possible in the pharynx (photoglottography) [2]. The 
light signal is the most important one, as it serves to 
compute the damping. The calibration procedure has 
been described previously [3]. The measured glottal 
area at maximal glottal opening can be related to the 
peak of the photodiode current. Since the precise 
position of the photodiode cannot be reproduced from 
record to record, in each record, the amplitude of the 
light signal was normalized and expressed - in the 
damping phase - as a fraction of the amplitude of the 
first ‘free oscillation’ after the last closed plateau. The 
intra-oral pressure was measured by means of a Millar 
Mikro-Tip catheter (Model SPC-751, Millar 
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Instruments, Inc. Houston, USA). The pressure signal 
allows to precisely identify the moment of lip opening 
(pressure drop). When the lips are closing, the intraoral 
pressure increases up to nearly the level of the lung 
pressure, which remains approximately constant. The 
electroglottographic (EGG) signal, used as a reference 
for monitoring the changes in contact surface of the 
VF, was detected using a portable electroglottograph 
(Laryngograph Ltd, London, UK) Model EG90. The 
EGG-signal however fails to show the final phase of 
the damping, since there is no contact between the VF 
during this phase. The last sinusoidal EGG-cycles 
probably correspond to small (reduced amplitude) 
impedance fluctuations at the level of the ventral 
commissure. The start of free oscillations of the VF is 
indicated by a strong reduction in amplitude of the 
EGG-signal. Sounds were detected by a Sennheiser 
MD 421 U microphone at 10 cm of the mouth. 

 
All signals were recorded by means of a 4-channels 

Pico Scope 3403D module (Pico Technology Ltd, St 
Neots, England, UK) driven by the PicoScope 6 
programme, and stored in a computer. 

 
The subject was a healthy trained male vocalist, 

experienced in controlling voicing parameters [1,3]. 
During three sessions, a total of 227 recordings of 
series of short repetitive vocal /pɛp/ emissions were 
achieved with the photoglottograph and pressure 
sensor in situ. The vocalist made series of fast 
repetitions (3 to 4 s-1) of the vowel /ɛ/ (determined by 
mechanical constraints of the experimental procedure) , 
each vocalization being followed by an abrupt bilabial 
occlusion ( /ɛpɛpɛpɛpɛpɛp/) at comfortable pitch and 
loudness (105 – 130 Hz, corresponding to the average 
speaking frequency of the subject, and 63 – 68 dBA at 
10 cm of the lips). 

 
These series of fast repetitions of the vowel /ɛ/ 

were carried out in two lung volume conditions: high 
and low lung volume. Fig. 1 shows a spirographic 
diagram with personalized values for the subject, 
showing the traditional lung volume compartments, 
and the situation of the two zones (of 500 ml each) in 
which the sequences of interrupted vocalizations were 
produced and recorded. The two zones correspond to 
the ‘high’ and ‘low’ lung volume conditions 
respectively. The difference in lung volume between 
the two zones is approximately 2410 ml. 

A total corpus of 105 selected polygraphic 
recordings corresponding to the condition ‘high lung 
volume’ (54) and to the condition ‘low lung volume’ 
(51) was created. An example is given in Fig. 2. 

 Counting the number of free oscillations on the 
glottal area trace started just after the last closed 

plateau. However, identifying this last closed plateau 
requires expanding the time scale. 

 
Fig. 1: Spirographic diagram, with personalized values, 
showing the traditional lung volume compartments, 
and the situation of the two zones (of 500 ml each) 
wherein the sequences of interrupted vocalizations 
were produced and recorded. 
 
Counting was made blindly, i.e. the rater being 
unaware of the condition (high or low lung volume). 

Measurement of amplitude decay was done by first 
identifying - after strong enlargement of the Pico 
picture (vertical expansion) - the successive maximum 
and minimum of each cycle. 

 
III. RESULTS 

 
Fig. 2 shows a global view of a polygraphic 

recording of a single vocalization /pɛp/ in the ‘high 
lung volume’ condition. The /pɛp/ is extracted from a 
/ɛpɛpɛpɛpɛp…/ sequence at a rhythm of three to four 
vocalizations per s. The vowel / ɛ / is determined by 
the constraints of the oral and pharyngeal sensors. F0 is 
around 130 Hz and intensity around 64 dB (at 10 cm). 
Subglottal pressure (estimate) is 4.9 hPa. 

 
Fig. 2: Global view of a polygraphic recording of a 
single vocalization /pɛp/ in the ‘high lung volume’ 
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Instruments, Inc. Houston, USA). The pressure signal 
allows to precisely identify the moment of lip opening 
(pressure drop). When the lips are closing, the intraoral 
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impedance fluctuations at the level of the ventral 
commissure. The start of free oscillations of the VF is 
indicated by a strong reduction in amplitude of the 
EGG-signal. Sounds were detected by a Sennheiser 
MD 421 U microphone at 10 cm of the mouth. 

 
All signals were recorded by means of a 4-channels 

Pico Scope 3403D module (Pico Technology Ltd, St 
Neots, England, UK) driven by the PicoScope 6 
programme, and stored in a computer. 
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achieved with the photoglottograph and pressure 
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produced and recorded. The two zones correspond to 
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respectively. The difference in lung volume between 
the two zones is approximately 2410 ml. 

A total corpus of 105 selected polygraphic 
recordings corresponding to the condition ‘high lung 
volume’ (54) and to the condition ‘low lung volume’ 
(51) was created. An example is given in Fig. 2. 

 Counting the number of free oscillations on the 
glottal area trace started just after the last closed 
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Fig. 1: Spirographic diagram, with personalized values, 
showing the traditional lung volume compartments, 
and the situation of the two zones (of 500 ml each) 
wherein the sequences of interrupted vocalizations 
were produced and recorded. 
 
Counting was made blindly, i.e. the rater being 
unaware of the condition (high or low lung volume). 

Measurement of amplitude decay was done by first 
identifying - after strong enlargement of the Pico 
picture (vertical expansion) - the successive maximum 
and minimum of each cycle. 

 
III. RESULTS 

 
Fig. 2 shows a global view of a polygraphic 

recording of a single vocalization /pɛp/ in the ‘high 
lung volume’ condition. The /pɛp/ is extracted from a 
/ɛpɛpɛpɛpɛp…/ sequence at a rhythm of three to four 
vocalizations per s. The vowel / ɛ / is determined by 
the constraints of the oral and pharyngeal sensors. F0 is 
around 130 Hz and intensity around 64 dB (at 10 cm). 
Subglottal pressure (estimate) is 4.9 hPa. 

 
Fig. 2: Global view of a polygraphic recording of a 
single vocalization /pɛp/ in the ‘high lung volume’ 

condition. The /pɛp/ is extracted from a /ɛpɛpɛpɛpɛp…/ 
sequence at a rhythm of three to four vocalizations per 
s. Fo is around 130 Hz and intensity around 64 dB (10 
cm). Subglottal pressure (estimated) is 4.9 hPa.  

 
Fig. 3 is focusing on the voicing offset in an 

example of the ‘high lung volume’ condition: on the 
glottal area trace, seven free oscillations can be 
identified after the last closed plateau.  

Fig. 3: Example of a voicing offset in the ‘high lung 
volume’ condition. Seven free oscillations can be 
identified on the glottal area trace after the last closed 
plateau. 

 
Average counts (blinded for condition) of the 

numbers of ‘free oscillation’ cycles after the last VF 
contact, were 4,89 +/- 0,79 in the 'high lung volume' 
condition and 3,65 ± 0,72 in the 'low lung volume' 
condition. The difference is highly significant (p < 0. 
0001). This is confirmed by the superimposed 
histograms with Gaussian fits (Fig. 4). 

 
Fig. 4: Histogram of the number of cycles (free 
oscillations) that can be identified after the last closed 
plateau (= last contact between vocal fold edges on the 
midline). Gaussian fits. N = 54 and 51. The average 
number of cycles is highly significantly lower in the 
case of low lung volume (p < .0001). 

 
The cycle by cycle decay of the normalized 

amplitude after the last closed plateau for the two 
conditions is shown in Fig. 5. Cycle # 1 is the first free 
oscillation, defining 100% amplitude. The decay is 
stronger and faster in the ‘low lung volume’ condition. 
The difference in amplitude mainly appears in cycles 
#2 and #3. In cycle #4, the difference is smaller 
although still just significant, but there are only a few 
cases for the ‘low lung volume’ condition. For cycles 
#6 and #7, there are only data for the ‘high lung 
volume’ condition. 

Fig. 5: Comparison of amplitudes between the ‘high 
lung volume’ and the ‘low lung volume’ conditions for 
each successive free oscillation. The amplitude of the 
first identifiable free oscillation is set at 100 % in both 
the ‘high lung volume’ and in the ‘low lung volume’ 
condition (normalization). The difference in amplitude 
mainly appears in cycles #2 and #3. In cycle #4 the 
difference is still just significant, but there are only a 
few cases for the ‘low lung volume’ condition. For 
cycles 6 and 7, there are only data for the ‘high lung 
volume’ condition. 
   

The logarithmic decrement is defined as the natural 
log of the ratio of the amplitudes of any two successive 
positive peaks: (ln [x n / x n+1]). The global average 
logarithmic decrement is 0,72 +/- 0,31 in the ‘high lung 
volume’ condition (n = 212 logarithmic decrements) 
and 0,88 +/- 0,26 in the ‘low lung volume’ condition (n 
= 133 logarithmic decrements). This difference is 
highly significant (p < .001).  
 

IV. DISCUSSION 
 

In phonation physiology, the concept of ‘vocal 
oscillator’ may obviously not be limited to the VF, but 
it includes internal air volume set into motion by the 
lung pressure and into vibration by the VFs. The mass 
of the air appears to be around sevenfold that of the VF 
tissue. During speech and singing, after the subject has 
taken a small or a larger deep breath, this volume 
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progressively declines, and this in turn influences the 
physical properties and the energy required for of the 
voice production. At high lung volume, the elastic 
effect of a larger vibrating air mass reduces the rate of 
decay of the glottal oscillations.

In our experiments, the calculated global 
average logarithmic decrement is 0,72 +/- 0,31 in the 
‘high lung volume’ condition and 0,88 +/- 0,26 in the 
‘low lung volume’ condition. For comparison, the 
logarithmic decrement computed on a graph made by 
Tanabe and Isshiki [4] and based on high speed 
cinematography of an autopsy larynx is clearly higher: 
1,65 (oscillation stops after 2 cycles).

As to clinical significance, Lowell & al. [5]
compared - during teaching-related speaking tasks -
teachers with voice problems (in the absence of 
laryngeal lesions) with ‘healthy’ teachers, and 
observed decreased levels of lung volume initiation 
and termination in the former with respect to the latter. 
Actually, teachers frequently have to speak at 
increased loudness levels while teaching. At higher 
lung volume initiation levels, greater respiratory recoil 
forces are available for expiratory speech.  By starting 
their breath groups at higher levels, teachers with 
healthy voices capitalize on these passive recoil forces. 
Initiating breath groups at a higher volume facilitates 
an increased lung pressure and consequently a louder 
voice. Also, by ending their breath groups at higher 
levels, they avoid the muscle effort required for 
producing speech below the resting respiratory level.

Similarly, Schaeffer & al. [6] compared 
patients with abuse-related dysphonia with a normal 
control group in a reading task of a 60-syllable 
paragraph: significant results indicated that the end-
expiratory lung volume levels of the dysphonic group 
were further below the resting expiratory level than
those of the control group. In a later study, Schaeffer
[7] showed that a significant improvement in speech
breathing data (higher end-expiratory levels) could be
obtained by voice therapy, with a reduction of
perceived dysphonia. The average termination of
speech relative to the resting respiratory level was –
0.224 l before therapy and + 0.063 l after therapy.

Along the same line, Iwarsson & Sundberg
[8], using respiratory inductive plethysmography, 
investigated female voice patients with vocal fold 
nodules, They concluded that “females with vocal 
nodules were shown to inhale more often, and, when 
shouting, initiated phrases at lower lung volume levels 
than females without nodules, thus refraining from 
taking advantage of the increased recoil contributions 

to subglottal pressure associated with high lung 
volumes.”

Our experiments point to an additional 
mechanism to this physiological rationale: speech at 
low lung volume requires significantly more energy for 
voicing due to the enhanced damping of the oscillating 
system.

V. CONCLUSION

With an adequate methodology, it is possible to 
control, to standardize and to quantify the damping 
characteristics of the oscillating system (vocal fold 
tissue and air mass) during a physiological voicing 
offset with abrupt interruption of the airflow. This 
allows investigating specifically the role of lung 
volume. The mechanical quality of the oscillating 
system appears to be, to a non-negligible extent, 
determined by the lung volume that is set into 
oscillation; a reduction of the air volume leads to a 
significant increase in the rate of decay of oscillations, 
resulting in a higher energy demand for voicing.
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progressively declines, and this in turn influences the 
physical properties and the energy required for of the 
voice production. At high lung volume, the elastic 
effect of a larger vibrating air mass reduces the rate of 
decay of the glottal oscillations.

In our experiments, the calculated global 
average logarithmic decrement is 0,72 +/- 0,31 in the 
‘high lung volume’ condition and 0,88 +/- 0,26 in the 
‘low lung volume’ condition. For comparison, the 
logarithmic decrement computed on a graph made by 
Tanabe and Isshiki [4] and based on high speed 
cinematography of an autopsy larynx is clearly higher: 
1,65 (oscillation stops after 2 cycles).

As to clinical significance, Lowell & al. [5]
compared - during teaching-related speaking tasks -
teachers with voice problems (in the absence of 
laryngeal lesions) with ‘healthy’ teachers, and 
observed decreased levels of lung volume initiation 
and termination in the former with respect to the latter. 
Actually, teachers frequently have to speak at 
increased loudness levels while teaching. At higher 
lung volume initiation levels, greater respiratory recoil 
forces are available for expiratory speech.  By starting 
their breath groups at higher levels, teachers with 
healthy voices capitalize on these passive recoil forces. 
Initiating breath groups at a higher volume facilitates 
an increased lung pressure and consequently a louder 
voice. Also, by ending their breath groups at higher 
levels, they avoid the muscle effort required for 
producing speech below the resting respiratory level.

Similarly, Schaeffer & al. [6] compared 
patients with abuse-related dysphonia with a normal 
control group in a reading task of a 60-syllable 
paragraph: significant results indicated that the end-
expiratory lung volume levels of the dysphonic group 
were further below the resting expiratory level than
those of the control group. In a later study, Schaeffer
[7] showed that a significant improvement in speech
breathing data (higher end-expiratory levels) could be
obtained by voice therapy, with a reduction of
perceived dysphonia. The average termination of
speech relative to the resting respiratory level was –
0.224 l before therapy and + 0.063 l after therapy.

Along the same line, Iwarsson & Sundberg
[8], using respiratory inductive plethysmography, 
investigated female voice patients with vocal fold 
nodules, They concluded that “females with vocal 
nodules were shown to inhale more often, and, when 
shouting, initiated phrases at lower lung volume levels 
than females without nodules, thus refraining from 
taking advantage of the increased recoil contributions 

to subglottal pressure associated with high lung 
volumes.”

Our experiments point to an additional 
mechanism to this physiological rationale: speech at 
low lung volume requires significantly more energy for 
voicing due to the enhanced damping of the oscillating 
system.

V. CONCLUSION

With an adequate methodology, it is possible to 
control, to standardize and to quantify the damping 
characteristics of the oscillating system (vocal fold 
tissue and air mass) during a physiological voicing 
offset with abrupt interruption of the airflow. This 
allows investigating specifically the role of lung 
volume. The mechanical quality of the oscillating 
system appears to be, to a non-negligible extent, 
determined by the lung volume that is set into 
oscillation; a reduction of the air volume leads to a 
significant increase in the rate of decay of oscillations, 
resulting in a higher energy demand for voicing.
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Abstract: The estimation of the fundamental 
frequency (F0) is one of the most important 
problems on characterizing (quasi)-periodic signals, 
and is particularly relevant in speech signal 
analysis. Although the concept theoretically is 
straightforward, it becomes complicated in 
practical scenarios. Most F0 estimation algorithms 
make implicit assumptions about the underlying 
stationary properties which may not apply in 
naturally produced signals, and exploring these 
irregularities is particularly important when 
processing pathological voices. This study explores 
the F0 estimation using artificially generated |a| 
vowels by employing exploratory functions 
(kernels) to analyze the repetitive structure found in 
the Auto Correlation Function (ACF). The F0 
contour is then extracted by applying ridge 
detection techniques. The results are defined using; 
Mean Absolute Error (MAE) 2.79 ± 5.72 and Root 
Mean Squared Error 4.003 ± 7.91. 
 
Keywords:  F0 estimation, ridge detection. 

 
I. INTRODUCTION 

Fundamental frequency F0 estimation of a speech 
voiced signal is an important task in Speech Sciences, 
as many specific features of voiced speech rely on its 
accurate estimation [1]. These algorithms are typically 
based on three major components of an F0 estimator: a 
signal conditioning stage, a generator of candidate 
estimates of the true period sought, and a post-
processing stage to select the best candidate of the 
estimation, given a specific criterion (often, there is 
some sort of smoothing embedded within this stage). 
The estimation methods are classified as time-domain 
(classically based on autocorrelation) and frequency-
domain (spectral or cepstral approaches). Along these 
years, multiple algorithms that have been proposed [2] 

The simplest way of defining F0 in a strictly 
periodic signal is to identify a time structure that 
repeats in time (i.e. the period of a signal), select a 
characteristic of the repeating pattern, and measure the 
minimum time delay between the two points where it 
repeats. The problem with defining the presence of a 

periodic signal is that the periodic pattern must be 
sustained for a required duration of time. In periodic 
signals this pattern would stretch infinitely in time, 
whereas in real signals periodicity has to be observed 
for a minimum duration. This causes a compromise 
between time resolution and frequency precision [3]. If 
the window is too small, the F0 estimation might not 
extend long enough and if its too large the variability 
among events is lost and the frequency estimation does 
not become responsive enough. When applying this 
definition to speech it has to be taken into 
consideration accordingly to the underlying biological 
phenomena that amount to its generation. As the 
energy stored in the lungs is released through the vocal 
folds they vibrate generating a pattern, when they are 
open, air escapes and when they are closed the airflow 
is cut and pressure builds up inside the lungs and drops 
down in the larynx, producing a glottal pulse. This 
pattern is released through the oronasal pharyngeal 
cavities, that act as a filter shaping the signal into what 
is recognizable as voice [1]. With this in mind the 
definition of the F0 becomes quite clear. The F0 
pattern is subject to physical laws (inertia and 
elasticity), meaning it pattern cannot abruptly change 
under normal oscillatory conditions, (i.e. if there is no 
damage to the vocal folds or any other pathology [4]). 
Defining the fundamental frequency in a low quality or 
pathologic signal is a tricky task as the definition has to 
encompass the variability that manifests in the irregular 
production. Such an environment where the quality of 
the recordings may not be met is telephonic audio, 
where the devices are not standardized, there are 
external interferences, and the recording instructions 
are not fully understood or followed by participants in 
crowdsourcing database generation.  

The aim of this study is to present a new F0 
estimation algorithm extending the use of standard 
time-series approaches based on the Auto Correlation 
Function (ACF) towards determining more accurately 
the underlying short time variability of the vocal fold 
vibrations and hence robustly estimating F0. 
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II. METHODS

The proposed approach is composed of two steps; 
Kernel decomposition and Ridge detection. The 
estimation is based on the exploration of the Auto 
Correlation Function (ACF), which is a well-
established methodology [5]. If a repetitive pattern is 
present, the ACF shows a repetitive oscillation that 
allows to identify the F0 from the delay between 
successive peaks. The characteristics of this pattern are 
related to a single F0, so a logical step would be to 
compare the ACF with a set of predefined functions 
(kernels) that are constructed to capture specific delays 
in the signal under test. The ridge estimation is based 
on the quasi-stationarity principle of the F0 to make a 
first proposal. This is based on the knowledge that 
abrupt changes of the F0 estimation are unlikely,
considering small time observation segments; this 
means that the true frequency can deviate only within a 
finite range. Therefore the actual F0 value corresponds 
to the ridge traced by the kernel decomposition matrix.

The estimation begins with the well-established 
method using the ACF; 

(1)

with x being the function under exploration and the 
conjugate function delayed k samples. The speech 
signal is split into overlapping windows of 60 ms with 
a stride of 10 ms, resulting in M windows of Nw
samples e.g. for a 1 second signal sampled at 8 KHz 
we would have M=100 and Nw =2646 samples. For
each of these elements the autocorrelation is extracted 
and then stored as the rows in the autocorrelation 
matrix (ACFMϵϵ Mx ). The traditional way of 
estimating F0 using the ACF is to calculate the time 
delay of the second maximum of the auto-correlation 
function with respect to the maximally aligned auto-
correlation, this being the Normalized Correlation 
Function (NCF)[4].

This method works sufficiently well for most signals 
with no imperfections, but as signals increase in 
complexity and randomness, the definition of second 
maxima is not such a clear cut, yielding imprecisions 
on the estimation. An example of this situation is the 
doubling frequency effect due to the insertion of higher 
order vibration modes or closure defects in the vocal 
folds. As the speaker is phonating, the vocal folds 
might close irregularly letting airflow escape, creating 
a pattern in the middle of the glottal signal that causes 
the ACF to present secondary spurious maxima, which 
can lead the estimator to wrongly asses the signal to be
of double the frequency. The proposed method 

expands on this methodology making two assumptions; 
(1), it assumes that there exists a single F0 to begin 
with (the estimation always picks one of the 
exploratory kernels) and secondly, it assumes that the 
fundamental frequency cannot change abruptly, i.e.
there is a frequential range where the possible 
candidates exist. 

Kernels are a set of predefined functions that work
as benchmarks upon which to compare a test signal. 
The properties of the original signal are then inferred 
from the kernel it resembles the most. The structure of 
the kernel allows for a degree of freedom to explore 
the properties of the signal under test, as the functions 
can be designed with the idea that they explore a set of 
characteristics of interest. The proposed setting uses 
vectorial kernels to test the ACF to make an estimation 
of the F0. The simplest kernel function for this task is a 
train of pulses (Kronecker delta functions) with a fixed 
delay between successive peaks; this signal is 
composed of a step value (for simplicity taken as the 
unity), each one separated by a fixed quantity of zeros
as shown in the diagram in Fig.  1. 

(2)

where δ is the Kronecker delta and i denotes the i-th 
kernel.

Fig.  1) Representation of the N-th kernel vector.

With this kernel, the maximum resolution in 
frequency would be one step followed by a zero (i=1); 
this pattern repeats for the duration of the window Nw, 
matching the length of the ACF. This is the maximum 
frequency detected, and corresponds to Fmax=1/2Ts
(Hz), where Ts  is the sampling interval, Fmax
corresponds to the Nyquist limit. On the other end, the 
lowest detectable frequency corresponds to the kernel 
that has a peak in the offset zero position and another 
at the position Nw-1, corresponding to the frequency
Fmin=1/(Ts(Nw-1)) (Hz). Therefore the number of 
kernels that can be defined  ranges from 1 to Nw-1, with 
K ϵ [1, Nw-1]. This has an interesting property, as it
allows to set a frequential search range that doesn’t 
have to cover all of the available frequencies, but one
where its ends can be set within [0, Fs/2].  

Once the kernels are defined, they are then arranged 
in columns forming the kernel matrix Ker ϵ    x K. The 
kernel decomposition matrix D ϵ MxK is the result of 
the product of the ACFM and Ker matrices. Each 

Mx

   x
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of the F0. The simplest kernel function for this task is a 
train of pulses (Kronecker delta functions) with a fixed 
delay between successive peaks; this signal is 
composed of a step value (for simplicity taken as the 
unity), each one separated by a fixed quantity of zeros
as shown in the diagram in Fig.  1. 

(2)

where δ is the Kronecker delta and i denotes the i-th 
kernel.

Fig.  1) Representation of the N-th kernel vector.

With this kernel, the maximum resolution in 
frequency would be one step followed by a zero (i=1); 
this pattern repeats for the duration of the window Nw, 
matching the length of the ACF. This is the maximum 
frequency detected, and corresponds to Fmax=1/2Ts
(Hz), where Ts  is the sampling interval, Fmax
corresponds to the Nyquist limit. On the other end, the 
lowest detectable frequency corresponds to the kernel 
that has a peak in the offset zero position and another 
at the position Nw-1, corresponding to the frequency
Fmin=1/(Ts(Nw-1)) (Hz). Therefore the number of 
kernels that can be defined  ranges from 1 to Nw-1, with 
K ϵ [1, Nw-1]. This has an interesting property, as it
allows to set a frequential search range that doesn’t 
have to cover all of the available frequencies, but one
where its ends can be set within [0, Fs/2].  

Once the kernels are defined, they are then arranged 
in columns forming the kernel matrix Ker ϵ    x K. The 
kernel decomposition matrix D ϵ MxK is the result of 
the product of the ACFM and Ker matrices. Each 

element of matrix D corresponds to the dot product of 
a row of ACFM and a column of Ker. 

D=ACFM·Ker (3)

Therefore the better aligned the non-zero elements 
of the kernel with the ACF pattern maxima the higher 
the product. This acts as an emphasis filter, making the 
ridges of the ACFM sharper creating a greater 
difference between contiguous points on the ACF as 
exemplified in Fig.  2.

Fig.  2) ACFM (left), Kernel decomposition matrix D (right)
and initial F0 estimation profile (red). The columns of each 
matrix correspond to the estimation for individual windows
and by selecting the maxima the F0 profile is estimated.

Under a well-conditioned voice signal, this would 
suffice to estimate the fundamental frequency by 
searching for the element with the highest value per 
column as temporal evolution of the F0 (F0 contour)
can be extracted. The problem is that as can be seen in 
Fig.  2 the ACF may present irregular patterns or other 
phenomena that may cause the estimation to fail. The 
next step in the estimation (post-processing of the 
candidate F0 estimates) is the use of a ridge 
recognition algorithm that tracks the vertical variations 
of the maximum and selects the path along the 
resulting ridge. The algorithm decomposition operates 
on the assumption that abrupt changes are not possible
(as expected e.g. when estimating F0 in sustained 
vowels), and if present they are most likely the result 
of an erroneous estimation rather than because of 
actual oscillations. The function that estimates the 
ridge introduces a penalty to abrupt shifts; this penalty 
ranging from zero to one penalizes changes in 
frequency, limiting the response of the ridge function, 
the closer it is to zero the looser the estimation; 
otherwise, it approaches the straight line that best 
covers the ridge. The estimator finds multiple solutions 
and picks the one with the largest average value. In 
Fig.  3 the estimation can be observed.

In order to contrast the results of the proposed 
algorithm against a well-known F0 estimation 
algorithm was applied, this algorithm is based on the
ACF traditional estimation [6] (normalized 

autocorrelation). To test the proposed method and 
establish a comparison with the mentioned reference, 
the database analyzed was composed of a set of 130 
artificially generated signals using a sophisticated 
mathematical model [7]. The artificial signals 
contained in the database were constructed in order to 
emulate a sustained vowel /a/, with differing degrees of 
pathological effects built into them. Alongside with the 
audio recording, a ground truth for the F0 was 
provided; this allowed to compare all the estimations 
against a benchmark of quality. In order to be directly 
comparable to the results reported in [2] the same 
performance measures to assess errors have been used. 
Specifically, the Mean Absolute Error (MAE) and the 
Root Mean Squared Error (RMSE).

(4)

(5)

where ei and gi are the estimation and the ground truth.

Using Eq. (4) and (5) the multiple estimations for 
each signal are compared to the provided ground truth. 
Then the average errors with their standard deviations 
are extracted and this generates an estimation of how 
well each approach performed.

Fig.  3) Kernel decomposition matrix D (background), initial 
kernel estimation (red) and F0 ridge estimation profile 
(black).

III. RESULTS

For each recording the Kernel, Kernel-Ridge and 
NCF estimations are compared with the provided 
ground truth. The three RMSE scores for each 
recording in the database are presented in Fig.  4. It 
can be observed that on the average the best 
performing approach is the Kernel-Ridge estimation 
and the worst is the NCF algorithm. The results show 
that the NCF was the worst performing estimation for 
112 of the recordings. The simple kernel estimation 
was the worst on 13 recordings and the ridge 
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estimation on 2 of the recordings. Table 1 shows the 
average value of the MAE and RMSE errors and the 
variance of each approach.

Fig.  4) RMSE scores for each estimation; Kernel (red), 
Kernel-Ridge (black) and NCF estimation (blue).

Table 1: summary of the results given as mean ± standard 
deviation.

Algorithm Mean 
MAE(HZ)

Mean 
RMSE(Hz)

NCF 9.11 ± 10.21 17.67 ± 17.46
Kernel 5.67 ± 7.40 11.27 ± 13.25

Kernel-Ridge 2.79 ± 5.72 4.003 ± 7.91

Once the methodology has been shown to have a 
successful performance it is interesting to observe its 
performance on a real signal. The signal that was tested 
was recorded trough a telephonic line, it was selected 
for its low quality and the manifestation of a 
phenomenon of doubling frequency. This process is 
exemplified in Fig.  5.

Fig.  5) Estimation of F0 on a real signal. Kernel-Ridge 
estimation (black), NCF estimation (red), ACFM 
(background). It can be appreciated that the Kernel-Ridge 
estimation provides a more stable and robust estimation than 
the NCF approach.

IV. DISCUSSION

A new F0 estimation algorithm has been introduced
relying on ACF and the introduction of kernel
functions. Results show that the best performing 

approach towards F0 estimation is the Kernel-Ridge: 
the use of kernel exploration and the ridge estimation 
produces the overall more accurate results. It must be 
stated that even though the simple Kernel estimation  
outperforms the NCF estimation it still has a 
substantial amount of variability. This variability is 
caused by the simple composition of kernel function. 
As the kernel is built of deltas the number of non-zero 
points is small. Due to this fact, temporal precision is 
lost and leads to variability in the estimation. For 
future work the kernels should be designed keeping in 
mind this additional degree of freedom.

V. CONCLUSION

The results show that the Kernel-Ridge is a 
competitive approach which outperforms a widely 
established method of estimating the F0 (NCF) using a 
temporal approach. This study introduced a new
methodology that is robust against instability in the F0, 
finding the most likely F0 estimate. 
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Abstract: A specific speech therapy treatment 
program was performed in 113 patients with 
supragastric belching. We retrospectively 
compared the visual analogue scale scores (VAS) 
pre- and post-treatment of 73 included patients and 
found that speech therapy significantly reduces 
physical and psycho-social symptoms of belching.
Keywords: Supragastric belching, impedance 
measurement, inhalation, injection, speech 
therapy.

I. INTRODUCTION

Supragastric belching (SGB) is considered a 
behavioral disorder and thought to be caused by stress
factors in which a person unconsciously inhales or 
injects air into the esophagus, after which the air is 
immediately expelled without reaching the stomach. 
Intra-esophageal impedance measurement can
establish the direction of the air passage through the 
esophagus and therefor differentiate between gastric 
and supragastric belches [1]. A supragastric belch is 
characterized by a rapid increase of impedance (≥ 1000 
Ω) in aboral direction, immediately followed by a
decrease of impedance to normal values in opposite 
direction within a second (Fig. 1). From impedance 
measurement combined with manometry it is known 
that one can perform the esophageal air influx in two
different ways. The most frequent mechanism is 
inhalation, caused by an aboral displacement of the 
diaphragm, followed by a pressure decrease in the 
esophagus and relaxation of the upper esophageal 
sphincter (UES). The air is sucked into the esophagus. 
The other mechanism is injection, caused by an 
increase in pharyngeal pressure that is build up with 
tongue movements and simultaneous UES relaxation.
In this mechanism the air is pushed into the esophagus 
[2,3]. In both mechanisms the sudden closure of the
larynx(glottis) plays an important role [4].

Figure 1. Impedance signal pattern of supragastric 
belching (three times). The ‘V-shaped’ dashed lines 
indicate the direction of air. LES: Lower Esophageal 
Sphincter.

Patients suffering from SGB can have large numbers 
of belches, like hundreds a day, sometimes 
continuously, up to 20 per minute [5].
Excessive belching often turns out to be supragastric 
and leads to great physical and social discomfort. In the 
past, a specific speech therapy program [2] was 
developed to unlearn the supragastric belching 
mechanism.We described the effect of this therapy in 
a previous publication [4].

II. METHODS

To enlarge the previously studied group we 
retrospectively collected 40 additional files of patients 
who were treated from 2017 until June 2021 for SGB
as the main symptom. 
One hundred and thirteen patients were treated by the 
author from 2007 to 2021. Fifty-one patients were 
objectively assessed by impedance measurements in 
the referring hospital clinics, and 62 were clinically 
assessed following criteria described [4]. 
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Belching symptoms were scored pre- and post-
treatment on a six-item visual analogue scale (VAS) of 
100 mm (Table 1) on the severity of symptoms filled 
in by the patient.

Table 1. VAS-Questionnaire
1 How bothering do you experience your 

symptom of excessive belching?
2 In your opinion, how disturbing is your 

excessive belching for others?
3 Can you suppress your belching?

4 Does excessive belching hamper your work 
or activities?

5 Are your social activities hampered by 
excessive belching?

6 Do you experience any level of control over 
your excessive belching?

Speech Therapy consisted of
1. Explanation of the supragastric belching 
mechanism, besides giving attention to the patient’s
own ideas about the belching. 
2. Creating awareness of the preceding acts and 
sensations before belching, and recognition of the 
glottal (laryngeal) closure as part of the inhalation or 
injection mechanism of esophageal air influx. 
3. Exercising a fluent abdominal breathing. Open 
mouth breathing with a finger or a cork between the 
teeth is performed if belching occurs continuously and 
severely.
4. If necessary, exercises to normalize functions of the 
lingual-laryngo-cricopharyngeal complex were done 
(maxilla relaxation, voicing, swallowing) depending 
on the patient’s presentation. 
5. Implementation into daily life, practicing situations 
in which supragastric belching occurs based on 
belching diaries.

Statistics: The treatment effect of the enlarged group 
was evaluated by means of the Wilcoxon Signed 
Rank test. We compared the results of the objectively 
and clinically assessed patients, and the results of the 
previous studied group and the additional group by 
use of the Mann-Whitney U-test. The data are 
presented as median (interquartile range (IQR).

III. RESULTS

Forty patients of the total group of patients were 
excluded because of missing one or two VAS 
questionnaires. Reasons for missing data were 
problems in recollecting the questionnaires (forgot to 
ask, not filled in or not returned, language problems 

misinterpretation of the questionnaire). Of them, 17 
patients achieved good results according to the patient 
reports, and 4 had insufficient or no results. In 16 cases 
there was a premature termination of the treatment
(health issues, movement, job, disappointing results). 
Table 2 shows the reason for exclusion of the 
objectively assessed group and clinically assessed 
group separately. 

Table 2. Diagram of the excluded cases
Treated patients with 
SGB Impedance-
confirmed (N= 51)

Treated SGB patients 
Clinically assessed
(N=62) 

formal termination therapy, 
but no VAS-post
questionnaire
good results (patient 
reports): 7 
insufficient results: 2

formal termination therapy 
but
no VAS-post questionnaire
good results (patient reports) 
:10
insufficient results: 2

premature termination: 5 premature termination: 11

misinterpretation VAS: 3 

Included N=37 Included N=36

The pre- and post-treatment scores of 73 patients (34
male, median age 49 (27-60; range 8-90) (7 children of 
8, 11, 13, 15(3) and 17 years old) were used for 
analysis. Median symptom duration was 24 months (12 
- 39), median therapy duration was 13 weeks (8 – 18,5) 
and the median number of sessions was 9 (6 – 11). 
The Speech Therapy program resulted in a significant 
reduction of the supragastric belching and related 
symptoms on all items of the VAS questionnaire 
(Table 3).

Table 3. Therapy outcome (median, IQR) of belching 
symptoms

The VAS scores decreased after Speech Therapy from 
a total median score (six items) of 395 (296 – 461) pre-
treatment to 101 (30-195) post-treatment (p<0.001)
(Fig. 2.).

items VAS score 
(mm) pre-
treatment

VAS score 
(mm) post-
treatment

‘how bothering’ 88 (78 – 98) 22 (6.5 – 36)
‘disturbing others’ 53 (23 – 84.5) 8 (2 – 26.5)
‘suppress’ 73 (37 – 92.5) 15 (2.5 – 34)
‘work/activities’ 60 (14.5 – 83) 6 (1 – 19.5)
‘social’ 51 (20 – 78) 10 (0 – 28.5)
‘level of control’ 86 (54.5 –94.5) 18 (3 – 36)
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Figure 2. Changes in Total VAS-scores (mm) pre-
and post-treatment

The results showed a significant decrease of the 
symptoms concerning the (physical) belching (items 
1,3 and 6) from a subtotal median of 233 (183-269) to 
58 (15-110) (p<0.001). Furthermore, for the items 
concerning the social impact (items 2, 4 and 5) from a 
subtotal median of 164 (107-217) to 32 (5-69) 
(p<0.001). In 84% Speech Therapy had a positive 
effect of which 55 patients had a sufficient (> 180 mm 
total VAS change) or major improvement (> 360 mm 
total VAS change). Twenty patients ended the therapy 
completely symptom-free. The total VAS score
changes did not differ significantly between the 
patients with objectively assessed SGB and with 
clinically assessed SGB (p=0.573). Age (p=0.778),
gender, therapy duration (p=0.687) and number of 
sessions (p=0.833) did not significantly differ between 
objectively and clinically assessed patients. A 
significant difference (p = 0.033) in symptom duration
was found between the impedance confirmed (Mdn = 
36 months and the clinically assessed groups (Mdn = 
18 months). Also, a significant difference (p=0.026) 
was found in number of sessions between the 
previously studied group (Mdn = 10 sessions) and the 
additional group (Mdn = 7 sessions).

IV. DISCUSSION

Supragastric belching is a disorder that can have 
serious consequences for the physical well-being of the 
patient and his/her quality of life [6]. The therapy of 
choice is a special program of Speech Therapy [4] or a 
specific Cognitive Behavioral Therapy [7] that have 

proven to be effective. In this study we enlarged our 
previously described group of patients who were 
treated with Speech Therapy with attention to 
cognitive aspects and fluent abdominal breathing. The 
aim of therapy is to prevent air inhalation and air 
injection into the esophagus. Continuous quiet 
(pulmonary) breathing makes inhalation and injection 
difficult. Patients with SGB almost always have a high 
thoracic breathing pattern with many breath stops. 
Restoring abdominal breathing through an open glottis 
is therefore the most important physical intervention of 
therapy. Comparable to our previous study the 
treatment resulted overall in improvement of the 
excessive belching symptoms. In several patients the 
improvement was impressive and was achieved 
quickly, sometimes in two or three sessions. In others 
it took (much) more time and effort to change the 
belching behavior. Probably the capability to 
recognize physical sensations, stress, and the influence 
of stress on patient’s breathing pattern play important 
roles. We found a remarkably longer symptom 
duration of 36 months in the impedance-confirmed 
group in comparison to 18 months of the clinically 
assessed group. A possible explanation could be that 
the patients who finally get an impedance 
measurement, already underwent a long period of 
medical investigations such as gastroscopy to rule out 
abnormalities. We notice in our practice that the 
diagnosis SGB is often made late. Earlier recognition 
will be beneficial to the patient. The additional group 
had lower number of sessions than the earlier described 
group. This could point to less severe cases, practical 
circumstances (large geographic distances) or maybe 
to the advancing experience of the therapist. The 
considerable number of excluded patients might have 
influenced the therapy outcome. Closer analysis of 
these cases in which therapy was not successful (both 
excluded and included patients) points to difficulties in 
accepting and adherence to the explanation of SGB and 
therapy means. Also, these cases show more complex 
representations of symptoms (co-morbidity) and more
psychological problems. A limitation of this study is 
that this is a retrospective and open label study in
which the treatments were done by the same therapist. 
Another limitation is that the belching and related 
symptoms were not assessed objectively after 
treatment, but only evaluated by VAS. Because the 
most important thing in therapy practice is to resolve
the problem, it can be difficult to motivate the patient 
for a second measurement, especially if the complaints 
have disappeared. A less invasive way to objectively 
diagnose and quantify supragastric belches would be 
very useful.
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V. CONCLUSION

A specific program of Speech Therapy intervention 
reduces symptoms of supragastric belching.
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Abstract: Contrary to normal speech, whispered 
speech is produced without the contribution of the 
vocal folds. Therefore, its acoustic projection is 
weak, its intelligibility is easily hampered by 
concurrent sounds and noise, and the speaker-
specific sound signature is essentially lost. This has 
motivated the development of an assistive 
technology aiming at reconstructing normal speech 
from whispered speech, in real-time, by carefully 
implanting synthetic voicing on the latter. The 
success of this approach depends on the phonemic 
durations in both normal and whispered speech 
realizations by the same speaker. In this paper, we 
focus on European Portuguese stop consonants and 
fricatives. A European Portuguese database has 
been built that contains isolated words and 
sentences, uttered both in normal and whispered 
speech, by female and male speakers. A study of the 
duration of stop and fricative consonants was 
carried out to assess if there exist statistically 
significant differences between normal and 
whispered speech both in isolated word and 
sentence contexts. Results show that despite a few 
non-representative exceptions, in most cases of 
interest, differences are not statistically significant. 
This confirms that when reconstructing Portuguese 
voiced sounds from whispered speech the algorithm 
operation is not required to enforce any special 
duration compensation strategy. 
 

Keywords:  Stop consonants, fricative consonants, 
closure duration, whispered speech 

 
I. INTRODUCTION 

Speech communication is the most important 
modality of human social and professional interaction 
[1, 2]. In normal speech, most sounds involve vocal 
fold vibration, but when a health condition affects the 
vocal folds, as in certain cases of laryngectomy, then 
the associated speech is known as whispered speech. 
Whispered speech is problematic because its acoustic 
projection is weak, its intelligibility is strongly affected 
by concurrent sounds and noise and, although short-
distance voice communication is still possible, most of 

the sound signature of a specific speaker is lost. This 
causes communication difficulties, which has a 
negative impact in professional and social life. This 
motivated the development of an assistive technology 
(DyNaVoiceR, www.dynavoicer.com) whose objective 
is to reconstruct natural speech sounds from whispered 
speech, in real-time, to allow effective and comfortable 
communication by patients while using their speech 
production system seamlessly. The assistive 
technology that we are developing [3,4,5,6] takes the 
input whispered speech as a baseline signal, identifies 
those regions in the signal that would be voiced in 
natural speech, and implants, in these regions, 
synthetic voicing creating a replacement for the 
missing vocal folds contribution. This replacement is 
carefully shaped in frequency and time such as to 
enhance the linguistic content of the resulting synthetic 
speech, to improve voice projection, and to convey 
elements of the sound signature of a given speaker. 
The success of this approach depends on the phonemic 
durations in both natural speech and whispered speech 
realizations by the same speaker, so that a realistic 
reconstruction of the former can be done by implanting 
synthetic voicing on the latter. In this paper, we focus 
on European Portuguese (EP) stop consonants and 
fricatives. 

Duration studies for fricatives in American English, 
as reported in [7], and based on listening tests with 12 
subjects, concluded that the minimum frication 
duration required for correct identification depends on 
the particular fricative, ranging from approximately 30 
to 50 ms. The author also notes that, unsurprisingly, 
identification improves as the duration of the frication 
noise increases. Previous studies [8] have also looked 
at the relative importance of the transitions and the 
frication duration on the perception of the voiceless 
fricatives /f/ (as in <face>), /s/ (as in <soap>), and /S/ 
(as in <shame>). The authors note that transition phase 
spectral characteristics dominate over frication noise 
duration in terms of fricative identification in several 
of the tested scenarios. Jesus and Jackson [9] examined 
the phonetic detail of voiced and voiceless fricatives. 
In that study, duration statistics were derived from the 
voicing and frication labels to distinguish between 
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voiceless and voiced fricatives in British English and 
EP. They concluded that, in normal speech, clusters for 
voiceless and voiced fricatives are centered at 115 ms 
and 50 ms, respectively. In a cross-linguistic 
(Portuguese, Italian and German) devoicing study, 
Pape and Jesus [10] included stops and fricatives in 
four vowel contexts and two-word positions and 
computed the devoicing of the time-varying patterns 
throughout the stop and fricative duration. They 
showed that consonant durations are very similar 
across languages and that considerably longer 
durations are prevalent for the voiceless consonants 
when compared to their voiced counterparts. For EP, 
durations of approximately 100 ms were identified for 
voiced stop consonants, while the voiceless group 
presented durations of approximately 150 ms. The 
above studies, as well as other research results in the 
literature, consider voiced speech only (i.e., normal 
speech). In this paper, we focus on a comparison of 
durational patterns for stops and fricatives between 
normal and whispered speech. Therefore, an EP 
database has been created for the DyNaVoiceR project 
that contains isolated words and sentences uttered in 
both modes: normal and whispered speech. A study of 
the stop and fricative consonants was carried out to 
analyze their duration and to assess whether or not 
there exist statistically significant differences between 
normal and whispered speech, both in isolated word 
and sentence contexts, for female and male speakers. 

 
 

II. METHODS 
 

Thirty volunteer speakers (15 females and 15 
males) were recruited using convenience sampling in 
the districts of Aveiro and Coimbra, in Portugal, and a 
database containing whispered and normal speech 
material was recorded for the DyNaVoiceR project. 
Recording and manual phonetic annotation tasks for 
the entire database were performed at the University of 
Aveiro. The recordings took place in a sound booth 
with 45 dB sound reduction and using a Sennheiser Ear 
Set 1 microphone. The sampling frequency was 48 kHz 
and the sample resolution 16 bits. The database 
includes 28 isolated words and 6 sentences, among 
other tasks. Each task was repeated 3 times both in 
normal speech, and whispered speech modes, by each 
speaker. 

In this paper, we use an underscore W to identify 
the whispered version of each task (e.g., <nucaW> 
represents the whispered version of the Portuguese 
word <nuca>). The analyses conducted in this study 
were performed using MATLAB R2016b 64-bit. 

In our study, we include both voiceless /f, s, S/ and 
voiced /v, z, Z/ fricatives, and voiceless /p, t, k/ and 
voiced /b, d, g/ stops. 

All stop consonants and fricatives produced in 
isolated words and sentences contexts have been 
analyzed regardless of their syllable and sentence 
position. However, for closure duration analysis, only 
voiceless stop consonants in intervocalic contexts were 
considered. It should be noted that the number of 
samples (i.e., the number of instances in the database) 
per consonant is not always the same because in the 
manual annotation process it was detected that the 
participants did not always produce the correct stop 
and fricative consonants. Only correct and clearly 
identifiable stop and fricative consonants were used in 
the study. For this same reason, the sample number 
may also differ between female and male speakers.  

Durational patterns of fricative and stop consonants 
of normal and whispered speech were carefully 
analyzed. In particular, a detailed statistical analysis of 
the results was performed focusing on 95% confidence 
intervals around the means, and on the statistically 
significant differences between those means. 
 
 

III. RESULTS 
 

This section presents an analysis of the closure and 
total duration of stop consonants, and the total duration 
of fricatives via box-plots, as well as statistical 
inference results regarding normal and whispered 
speech. The intervocalic stop consonants’ duration 
labelling was performed manually using the waveform 
and corresponding spectrogram concerning the second 
repetition of each word in our database. We carried out 
a statistical hypothesis Wilcoxon signed-rank test with 
5% significance level in order to draw statistical 
inferences from normal/whispered speech recordings. 

Figure 1 shows the particular closure duration 
distribution for the words containing stop consonants, 
both in normal and whispered speech modes, and based 
on the recordings of 15 male participants. Each box-
plot reflects 15 data points, one for each of the 
participants. The symbol ‘+’ represents outliers, the 
symbol ‘x’ represents the average value, and the 
horizontal line corresponds to the median value. 

An analysis of the overall closure duration results, 
for both male and female speakers, shows that, except 
for the words <nuca> and <ripa> produced by female 
speakers, the average whispered speech closure 
duration is slightly longer than the normal speech 
average closure duration. However, none of the p-
values are below the level of significance of 5% 
(p>0.2185 and p>0.2747 in the case of female and 
male speakers, respectively), which indicates that there 
are no statistically significant closure duration 
differences between normal and whispered speech for 
the 6 words analyzed in this study. This is expected, as 
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the mean closure duration differences are rather small 
between normal and whispered speech realizations. 

 
Figure 1: Closure duration of each word containing a stop 

consonant, produced by male speakers, for both normal and 
whispered speech modes. 

 
A similar analysis of the stop consonants total 

duration was also carried out, as illustrated in Figure 2. 
 

 
Figure 2: Duration of stop consonants in isolated words, 

produced by male participants, for both normal and whispered 
speech scenarios. 

 

It can be observed that, in most cases, the average 
total duration of whispered stop consonants tends to be 
slightly longer than the corresponding duration in 
normal speech. However, in general, the differences 
are small and not statistically significant, with all 
p>0.07 in the case of isolated words, similarly to the 
sentences results with only one significant difference 
p=0.0187 for the stop consonant pair [g]-[gW]. In the 
case of female speakers, the average whispered stop 
consonants total duration is also slightly longer than 
that of the voiced counterparts. Albeit the pair [d]-[dW] 
in isolated words showing a statistically significant 
difference (p=0.0053), this is not relevant because none 

of the differences in the case of sentences has been 
found to be statistically significant (all p>0.1137). 

A similar duration analysis was carried out for 
fricative consonants with the similar goal to ascertain if 
there exist statistically significant differences between 
normal speech and whispered speech, both in words 
and sentences contexts, for both female and male 
speakers. 

As an illustrative example, Figure 3 shows the 
distribution of the duration of each fricative in isolated 
words regarding male participants. Differences in the 
mean duration results in the case of words and 
sentences contexts are minor, and mixed, without a 
clear trend of a tendency for whispered fricatives to be 
longer or shorter than normal speech fricatives. With 
respect to sentences, none of the differences were 
found to be statistically significant (all p>0.66), 
however, with respect to words, 5 in 6 cases show p-
values less than the level of significance (p<0.044), 
which means that the average duration of fricatives in 
isolated words tends to differ significantly. However, 
isolated words are not as representative of normal 
speech as sentences are. 

In the case of female speakers, similar conclusions 
were reached concerning the isolated words tests. 
However, in the case of the sentence tests, 2 out of 6 
cases were found to exhibit statistically significant 
differences (p<0.026) between the average duration of 
fricatives, specifically in the case of the fricative pairs 
[S]-[SW], and [z]-[zW]. 

 

 
Figure 3: Duration of fricative consonants in isolated words, 

produced by male participants for both normal and whispered speech 
scenarios. 

 
IV. DISCUSSION 

 
The paper discusses two sets of results: those 

regarding intervocalic stop consonants (including 
closure duration and total duration) and those regarding 
voiced and voiceless fricatives. Results show that in 
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both stops and fricatives, while in some non-
representative cases statistically significant differences 
can be found, in most cases of interest, especially 
regarding sentence contexts, differences were not 
found to be statistically significant. This important 
outcome confirms that when reconstructing “on the 
fly” Portuguese voiced sounds from whispered speech, 
in real-time, in addition to a careful phoneme-oriented 
segmentation, the algorithm operation does not need to 
adopt any special compensation strategy in the 
whispered speech to normal speech conversion process 
and regarding the duration of fricatives or stop 
consonants. 
 

V. CONCLUSION 
 

While most stop and fricative duration studies 
available in the literature consider voiced speech only 
(i.e., normal speech), in this paper we focused on a 
comparison of durational patterns between normal and 
whispered speech, using male and female recordings. 

The first conclusion that can be drawn from our 
work is that the voiceless stop consonants average 
closure duration tends to be slightly longer in 
whispered speech than in normal speech. Despite a few 
non-representative exceptions, a statistical analysis 
comparing whispered speech and normal speech shows 
that there are no consistent statistically significant 
differences between the two speech modes. 

Regarding stop consonants total duration, in the case 
of male speakers, no statistically significant differences 
were found between whispered and normal speech 
realization in word contexts, and only one statistically 
significant difference was found in sentence contexts. 
Regarding female speakers, the opposite was verified.  

Therefore, in general, it can be concluded that 
regarding the average closure duration and the average 
total duration of the stop consonants analyzed in this 
paper, there is a tendency for the whispered speech 
realizations to be slightly longer than in normal speech, 
however, differences are rather small and negligible. 

Regarding fricatives, considering the results of both 
male and female speakers, it was observed that the 
average duration of fricatives in isolated words tend to 
differ significantly although not in a consistent manner. 
In sentence contexts, which are more representative of 
normal speech, fricative duration differences are not 
statistically significant in the case of male speakers, 
and, in the case of female speakers, in only 2 (out of 6) 
cases differences were found to be significant. 

As a summary, representative and systematic 
statistically significant stop and fricative duration 
differences between whisper and normal speech 
realizations have not been found. This important 
outcome confirms the real-time operation feasibility of 
the DyNaVoiceR assistive technology converting 

Portuguese whispered speech into naturally sounding 
synthetic speech. This is because in its “on the fly” 
operation, the algorithm does not need to implement 
any stop/fricative consonants duration compensation. 
The linguistic implications of this decision will be fully 
assessed as the DyNaVoiceR algorithm approaches the 
final stages of development, in the near future. 
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Abstract:  
Background: Speech intelligibility alteration is a 
frequent consequence of oral/oropharyngeal cancer. 
The development of automatic speech recognition 
(ASR) systems could overcome the limitations of 
perceptual speech assessment.  
Objective: To predict speech intelligibility after 
treatment of oral or oropharyngeal cancer using 
scores from an ASR system. 
Methods: Spontaneous speech of patients was 
recorded during a semi-structured interview. Six 
experts evaluated the subjects' intelligibility 
perceptually. An ASR system (TDNNf-HMM) 
trained on healthy adult speech and adapted to 
phoneme recognition was also used. Automatic 
scores were computed: phonemic scores, confidence 
scores. LASSO regression was used to select the 
parameters from the ASR system that best predicted 
intelligibility. 
Results: Spontaneous speech of 25 patients was 
recorded. LASSO regression led to retain 3 
parameters: number of sonants recognized per 
second, proportion of occlusives, and average 
confidence score of fricatives. These three 
parameters present a strong correlation (rs=0.91) 
with the perceptual score (expert panel). This 
automatically predicted score is stable and reliable 
(5-block cross-validation: rs= 0.90). 
Conclusion: The use of ASR systems in the 
measurement of intelligibility in ENT oncology is 
promising. An optimization of these systems for 
pathological speech would open new perspectives for 
the determination of fine low-level speech deficits to 
adapt therapeutic objectives. 
Keywords:  Speech, Automatic analysis, Oncology 

I. INTRODUCTION

Oral or oropharyngeal cancer alter speech abilities 
[1], in particular speech intelligibility. Intelligibility can 
be defined as the degree of accuracy with which the 
acoustic speech signal produced by a speaker is decoded 

by a listener in terms of “low-level” units (i.e., 
phonemes, phoneme groups, or syllables) [2]. 

Speech disorders are one indicator of intelligibility, 
and are mainly measured perceptually in clinical 
assessment [3]. Therapists quantify intelligibility using 
a variety of measurement tools, such as visual analog 
scales, Likert scale measures, or by measuring an error 
rate after transcription [2]. However, this standard 
perceptual evaluation has many limitations, particularly 
concerning its reliability. This measure is indeed judge-
dependent, due to expertise effects or differences in 
internal referents [4]. Intra-individual variability effects 
are also involved: the same judge may assign different 
scores depending on the assessment context, the mental 
availability or habituation to pathological speech [5]. 

To overcome these biases, new tools for automatic 
instrumental speech assessment are being developed. 
They aim at extracting from the speech signal 
parameters for characterizing impairments [6]. These 
automatic and acoustic tools measure the quality of 
acoustic-phonetic decoding in a controlled speech 
context, such as text reading [7]. But few are applicable 
to spontaneous speech, due to a lack of a reference to 
which to compare the patient's speech – automatic 
alignment requiring prior manual transcription is too 
constraining to be applicable. Yet, this production 
context is the closest to the daily speech production [8] 
and needs to be investigated. 

The objective is to predict speech intelligibility after 
treatment of oral or oropharyngeal cancer using scores 
from an automatic speech recognition system. 

II. METHODS

This study is a cross-sectional observational study. 

The study protocol was approved by the Committee 
for the Protection of Persons (CPP: Ouest IV, 
19/02/2020, reference 11/20_3) within the framework 
of the ANR RUGBI project (https://www.irit.fr/
rugbi, grant ANR-18-CE45-0008). 
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A. Participants 
 
Patients coming for consultation or hospitalization 

in an ENT-oriented rehabilitation service or in an ENT 
consultation were included. Inclusion criteria were: 
being of legal age (at least 18 years old) and having been 
treated for oral or oropharyngeal cancer (surgical 
treatment and/or radiotherapy and/or chemotherapy, all 
tumors sizes) for at least six months (chronic and stable 
nature of the disorder). Exclusion criteria were: 
fatigable patients, associated pathology potentially 
responsible for speech or fluency disorders (e.g.,  
stuttering, speech disorder from neurologic disease 
 

B. Speech recordings 
 

All subjects were recorded in a non-anechoic room, 
to be as close as possible to the usual clinical 
evaluations. No external or internal noise (such as air 
conditioning or ventilation. was to be perceptible in 
order not to disturb the quality of the recording. The 
speech samples were recorded on a ZOOM H4N Pro 
digital recorder (48 kHz sampling rate, 16-bit resolution, 
mono). The headset microphone (Thomann T.Bone HC 
444 TWS) was placed 6 cm from the subject's mouth, 
positioned frontally below the level of the lower lip and 
at the level of the right labial commissure. For 
processing, the audio files were resampled to 16 kHz. 
The use of a Voice Activity Detector (WebRTC-VAD: 
https://github.com/wiseman/py-webrtcvad) was then 
used to isolate the subject's speech segments, excluding 
the examiner's speech segments. 

To get a sample of spontaneous speech, the subjects 
were recorded during a semi-structured interview.  
 

C. Speech analysis 
 

A panel of expert listeners experienced in the 
evaluation of speech disorders was recruited to obtain a 
reference measure of intelligibility: one phoniatric 
physician and five speech therapists practicing in an 
ENT/oncology department. 

The experts had to listen to the recording of the 
interview and to quantify the intelligibility on a scale 
from 0 (unintelligible) to 10 (totally intelligible). The 
baseline perceptual intelligibility score was the average 
of the scores given by the 6 judges. 
 

The subjects’ speech segments – determined by the 
Voice Activity Detector – were given as input to a 
TDNNf-HMM (factorized Time-Delay Neural Network 
- Hidden Markov Model [9]) ASR system. The model 
used in this study [10] was developed using the Kaldi 
toolkit [11] and adapted for phoneme recognition 
(Phone Error Rate=23.5% on a typical adult corpus 
[10]). The system was trained using the Common Voice 

online database: in French, the training corpus includes 
148.9 hours of read text recordings, by 1,276 speakers. 
For decoding, in each 25 ms frame (with a 10 ms step), 
the phone closest to the acoustic features carried by the 
signal will be retained and associated with the 
corresponding phoneme (among 33 French phonemes). 
A confidence score is also associated to each recognized 
phoneme using a Minimum Bayes Risk method [12]. 
WIP (Word Insertion Penalty) and LMWT (Language 
Model Weights) have been set to their minimum value 
(WIP=0; LMWT=7) to obtain a raw output. 

For each subject, 16 scores were calculated based on 
the system outputs (see details in Table 1). 
 

D. Statistical analysis 
 
The analyses were carried out using Stata 16.1 

software (StataCorp. 2019. Stata Statistical Software: 
Release 16. College Station, TX: StataCorp LLC.). 

Due to the size of the study (n<30), the statistical 
tests used were nonparametric. In all analyses, a level of 
significance at 5% was chosen. For descriptive analysis, 
perceptual intelligibility and automatic scores were 
described by mean and median as indicators of central 
tendency, and by standard deviation, interquartile range, 
minimum and maximum values as indicators of 
dispersion. Correlations between intelligibility and 
automatic scores were analyzed using Spearman's 
correlation coefficients. Finally, the predictive process 
of automatic parameter selection was performed using 
LASSO regression (penalized regression). 

 
III. RESULTS 

 
A. Participants 
 

Twenty-five patients were included (median age 67 
years, IQR 12; 15 males, 10 females; oral cavity 14, 
oropharynx 10, both locations 1). 57.9% of patients 
were treated for a large tumor (T3 or T4). Surgical 
treatment was performed in 88% of cases (radiotherapy: 
96%, chemotherapy: 60%, surgery and radiotherapy: 
84%). The median time since the end of treatment was 
40 months (range: 6-564 months). 

 
B. Perceptual assessment of intelligibility (reference 
score) 

 
Mean intelligibility was 6.87 (median: 7.17, range: 

1.17-10). Inter-judge agreement was strong among the 6 
expert judges: ICC=0.82 [0.72, 0.91].  
 
C. Parameters from the ASR system: automatic scores 

 
The 22 automatic scores were extracted for each 

subject (Table 1).  
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Table 1: Details of scores for the 22 automatic 
parameters from the ASR system
Parameter Mean SD Me-

dian IQR Min. 
value

Max. 
value

Total of 
different 
phonemes 
recognized 
(difphon)

4.55 1.56 4.78 2.40 1.12 7.49

Number of phonemes recognized per second
Total 
phonemes 
(sumphons)

29.20 5.57 32.00 3.00 5.00 32.00

Consonants 
(csns) 2.23 0.89 2.34 1.27 0.17 4.05

Occlusives 
(occs) 0.58 0.41 0.56 0.62 0.00 1.51

Fricatives 
(fris) 0.80 0.29 0.85 0.31 0.00 1.15

Sonants 
(sonants) 0.96 0.38 1.00 0.48 0.17 1.62

Nonsonants 
(nonsonants) 1.38 0.60 1.33 0.76 0.00 2.61

Vowels 
(vows) 2.22 0.65 2.33 1.06 0.96 3.32

Semi-
consonants 
(semicsns)

0.11 0.08 0.11 0.11 0.00 0.36

Proportion of phonemes recognized among consonants
Occlusives 
(propocc) 0.23 0.12 0.27 0.20 0.00 0.37

Fricatives 
(propfri) 0.36 0.14 0.34 0.16 0.00 0.78

Sonants 
(propsonant) 0.46 0.14 0.42 0.11 0.23 1.00

Nonsonants 
(propnsonant) 0.59 0.14 0.62 0.13 0.00 0.78

Proportion of phonemes recognized among vowels
Nasal vowels 
(propvnasal) 0.18 0.10 0.17 0.09 0.05 0.44

Proportion of phonemes recognized among all phonemes
Vowels 
(propvow) 0.51 0.09 0.49 0.04 0.43 0.85

Nasal 
phonemes 
(propnasal)

0.19 0.06 0.19 0.06 0.06 0.37

Confidence scores
Overall 
(conf) 0.84 0.02 0.84 0.03 0.78 0.89

Consonants 
(confc) 0.87 0.04 0.88 0.03 0.76 0.93

Occlusives 
(confo) 0.87 0.07 0.90 0.09 0.72 0.95

Fricatives 
(conff) 0.88 0.04 0.88 0.05 0.79 0.93

Vowels 
(confv) 0.80 0.03 0.80 0.02 0.77 0.91

Semiconso-
nants (confs) 0.76 0.04 0.76 0.04 0.65 0.84

D. Parameters selection

Spearman’s correlation coefficients are given as 
absolute values. Eight parameters (36%) show a high 
correlation with the baseline intelligibility score 

(rs≥0.70). Seven parameters (32%) showed moderate 
correlation (0.50≥rs>0.70). Details are shown in Fig. 1.

Fig. 1: Spearman’s correlation coefficients between 
perceptual intelligibility and the 22 automatic scores 
(light grey: positive correlation coefficients, dark grey:
negative ones).

Among the 22 automatic parameters, the LASSO 
regression allowed to select four parameters: the 
proportion of occlusives among consonants (propocc), 
the number of sonants per second (sonants), the average 
confidence score on fricatives (conff) and the number of 
occlusives per second (occs). An analysis of 
multicollinearity led to remove of the ‘occs’ parameter 
(variance inflation factor = 7.17). The regression 
performed on the three remaining parameters explained 
82.4% of the variance in intelligibility (R2), for a root 
mean squared error of 1.21. The predicted intelligibility 
is calculated as follows (1): 

            intelligibility = -0.073 + 4.982*sonants +      (1)
6.188*propocc + 0.851*conff

The correlation between the perceptual intelligibility 
and the intelligibility predicted by the automatic 
parameters is rs=0.91 (p<0.001) (Fig. 2).

Fig. 2: Scatter plot between perceptual intelligibility and 
intelligibility by the three retained parameters

Cross-validation shows a strong correlation between 
the reference score and (i) intelligibility predicted by 5-
block cross-validation (rs=0.90, p<0.001), (ii) 
intelligibility predicted by leave-one-out cross-
validation (rs=0.90, p<0.001).
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IV. DISCUSSION 
 

Intelligibility can be effectively predicted using 
three parameters from an ASR analysis of 
oral/oropharyngeal cancer speech. However, the results 
of this study can be considered preliminary due to the 
small sample size of subjects (n=25). The increase of the 
sample size would allow to conclude more strongly 
about the generalization and stability of these results. 

The ASR system used is trained on typical (i.e., non-
pathological) speech. Indeed, we wanted to measure a 
gap between healthy and pathological speech by 
targeting indicators of speech intelligibility. But one can 
wonder if training the system on pathological speech 
would allow to obtain more adapted acoustic models. In 
that case, if the acoustic models determined are more 
efficient (with a low Phone Error Rate in particular), the 
automatic scores calculated on the system outputs could 
perhaps allow to highlight finer deficits. Large corpora 
are necessary to train acoustic models that are relatively 
more stable given the pathological character of the 
speech. As no large French cancer speech corpus exists 
to date, transfer learning techniques can be used to adapt 
typical speech models to new corpora on relatively few 
data [13]. Specifically, it would be possible to adapt the 
current speech recognition system on other unused 
speech tasks in our corpus, such as sentences or text 
reading and pseudoword repetitions. Optimizing the 
quality of speech recognition could also involve the use 
of promising new ASR systems: the Listen, Attend and 
Spell (LAS) architectures [14], or Transformers [15]. 
These systems have been adapted to non-typical speech 
by Gelin [10], in this case children's speech. Their 
adaptation to oncologic speech would be relevant to 
study their performance. 

ASR systems have multiple advantages in clinical 
evaluation: they are applicable to spontaneous speech, 
the scores are reliable, the required equipment is 
inexpensive, and the evaluation is fast. Thus, it remains 
relevant to explore the contributions of ASR for 
pathological speech analysis.  
 

V. CONCLUSION 
 

The use of ASR systems to assess intelligibility in 
ENT oncology is promising. An increase in sample size 
and analyses on optimization of these systems for 
pathological speech would open new perspectives for 
the determination of low-level speech deficits to adapt 
therapeutic objectives. 
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Abstract: In this study, we present a preliminary 
analysis of the relationship between the linguistic 
profile of a text and the voice properties of the 
reader aiming to improve the speech-based emotion 
recognition systems. To this aim, we recorded the 
speech signals from a group of 32 healthy volunteers 
reading aloud neutral and affective texts and used 
the BioVoice toolbox to compute some of the main 
speech features. The selected texts were analyzed to 
quantify their lexical, morpho-syntactic, and 
syntactic content. Correlation and Support Vector 
Regressor analyses between linguistic and speech 
features have shown a significant modulation of 
some voice acoustic properties performed by the 
linguistic structure of the text. Particularly, a 
significant effect was shown on some specific speech 
features often used for the assessment of human 
emotional state (e.g., F0). This suggests that the 
lexical, morpho-syntactic, and syntactic properties 
could play an important role in the emotional 
dynamics of a person. 
Keywords:  Speech analysis, linguistic profile, 
emotions, Support Vector Regressor 

I. INTRODUCTION 

Human speech is the result of fine control of up to 
eighty muscles from respiratory, laryngeal, pharyngeal, 
palatal, and orofacial groups [1]. Such control is a 
complex process that involves both somatic and 
autonomic nervous systems (ANS) activity. This latter 
is the main responsible for the regulation of bodily 
functions and is the primary mechanism of emotional 
regulation [2]. Alterations in the respiratory activity 
induced by the ANS manifest changes in the emotional 
state of the speaker by influencing the voice spectrum 
characteristics such as the fundamental frequency (F0 - 
the frequency of vibration of the vocal folds), and its 
formants (F1, F2, F3 - resonance frequencies of the 
vocal tract) [3]. Hence, speech processing represents 
one of the most promising tools in the affective 
computing field for a non-invasive assessment of the 

speaker’s emotional state [4]. Indeed, voice signal 
analysis has been successfully used to explore several 
psychological dimensions of the speaker: emotion [5], 
mood [6], stress [7, 8], and personality [9] have been 
widely studied. To effectively characterize the affective 
prosody, several previous studies have developed and 
applied analytic methods to measure changes in pitch, 
loudness, speech rate, and pause [10]. However, the use 
of these features to infer the emotional state of a 
speaker remains an extremely complex task. One 
important and still little studied source of complexity 
could be the interaction between the speaker’s hidden 
emotional state and the linguistic and semantic 
properties of what the speaker is saying. The 
combination of such linguistic and speech information 
in computational models could improve the accuracy of 
inferring the speaker’s emotional state. Indeed, a text is 
characterized by many levels of information (linguistic, 
lexical, stylistic). By annotating these levels, it is 
possible to extract many features modeling the lexical, 
grammatical, and semantic phenomena to construct a 
linguistic profile that characterizes language variations 
within and across texts [11]. The linguistic profile has 
been used for different applications, such as registry 
and genre var ia t ion [12] , or the s tudy of 
psycholinguistic phenomena. In [13], the authors have 
shown that linguistic features can be effectively used to 
predict the human perception of sentence complexity, 
intended as processing difficulty of the language. 
Linguistic aspects and their effect on human processing 
effort and perception of complexity were studied also in 
[14], where the authors demonstrate that linguistic 
aspects from context play an important role in the 
perception of complexity and cognitive processing 
effort. Recently, Singh et al. [15] have proposed a deep 
learning hierarchical model for emotion recognition, 
combining text analysis computed by ELMo v2 with 
prosody, voice quality, and spectral features. However, 
formal modeling of the relationship between prosodic 
and linguistic features has not been investigated yet. In 
this preliminary study, we aim at studying whether the 
acoustic features, commonly used to characterize 
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speech production prosody, are significantly influenced 
by the linguistic structure of the pronounced text. To 
this aim, we analyzed speech signals and linguistic 
profiles of texts with different levels of arousal and 
valence. We apply correlation and regression methods 
to understand how the linguistic profile and structure of 
the texts interact with the speech production of the same 
texts. 

II. METHODS 

A group of 33 healthy volunteers was enrolled in the 
study (17 females), aged between 26.6 and 30.0. None 
of them suffered from heart diseases, mental disorders, 
or phobias. Each participant gave their written informed 
consent, and the study was approved by the Ethical 
Committee of the University of Pisa. We selected four 
texts, two describing different medieval tortures and 
two describing text types and writing styles. Based on 
the topics covered, two texts were classified as high 
arousal and negative valence, whereas the other two 
were neutral. Moreover, before starting the experiment, 
a group of 10 subjects, other than those enrolled in this 
study, evaluated the texts in terms of arousal and value, 
confirming the arousal and valence levels supposed 
apriori based on the reading topic. Each participant was 
asked to read aloud one neutral and one affective text, 
randomly chosen [16]. All texts have similar lengths to 
make the duration of the reading similar among 
subjects. The speech signal and other physiological 
signals such as electrocardiogram and electrodermal 
activity (not considered in this study) were recorded 
during the reading task. 

A. Linguistic analysis 

The texts were divided into sentences, using the full 
stop as a splitting criterion, i.e., identifying a sentence 
as the part of text between two full stops. After the 
splitting, neutral texts contained a total of 25 sentences, 
with an average sentence length of 28 tokens; affective 
texts contained a total of 40 sentences, with an average 
sentence length of 21 tokens. Each sentence was 
analyzed from a linguistic point of view and 
represented as a vector of ∼140 features, a subset of the 
ones described in [11] that model a wide range of 
properties extracted from different levels of linguistic 
annotation. The features capture on one hand complex 
in fo rma t ion l ike the syn tac t i c phenomena 
(subordination, structure, and length of dependency 
relations, structure of the verbal predicates) or morpho-
syntactic phenomena (distribution of grammatical 
categories across the text, aspects about the verb 
conjugation), on the other hand, they capture raw 
properties, like the length of the text and its components 
(sentences and words). The features can be grouped 
based on the linguistic aspects they describe and are 
further discussed below. 

(1) Raw Text Properties. Features on the length of 
the text and of the sentences and the words that are in it; 
(2) Lexical Variety. Features on how varied the 
vocabulary of a text is, determined as the percentage of 
diverse and nonrepeated words over the total number of 
words; (3) Morpho-syntactic information. Features 
on: (i) the distribution in the text of grammatical 
categories (e.g., adjectives, nouns, determiners, 
pronouns); (ii) the ratio of content words (nouns, verbs, 
adjectives, and adverbs) over the total number of words 
in a text; (iii) the inflectional morphology, i.e., the 
distribution, for verbs and auxiliaries, of a set of 
inflectional features (e.g., mood, tense); (4) Verbal 
Predicate Structure. Features on: (i) the distribution of 
verbal heads, i.e., the average number of propositions 
(main or subordinate) co-occurring in a sentence; (ii) 
the distribution of verbal roots, i.e., the percentage of 
verbal roots out of the total of sentence roots; (iii) verb 
arity, i.e., the average number of instantiated 
dependency links sharing the same verbal head; (5) 
Global and local parsed tree structures. Features on: 
(i) the average depth of the syntactic tree, i.e., the 
average of the longest dependency link in a sentence. 
(ii) the average number of tokens per clause, where the 
number of clauses is the ratio between the number of 
tokens in a sentence and the number of verbal or 
copular heads; (iii) length of dependency links, i.e., the 
number of words occurring between the syntactic head 
and its dependent; (iv) the average depth of complement 
chains (a list of consecutive complements); (v) the order 
of the subject and the object in a sentence; (6) 
Syntactic relations. Features on the percentage 
distribution of 37 universal dependency relations; (7) 
Subordination phenomena. Features on: (i) the 
distribution of main clauses vs. subordinate clauses; (ii) 
the distribution of subordinates in post-verbal and 
preverbal position; (iii) the average number of 
subordinates recursively embedded in the top 
subordinate clause. 

B. Speech signal processing 

To analyze the speech time series and extract from each 
sentence acoustic parameters, we used the BioVoice 
toolbox [17]. The toolbox detected first only voiced 
parts of each segment. Then, F0, F1, F2, and F3 were 
calculated. In each voiced frame, F0 is estimated with a 
two-step procedure: first, Simple Inverse Filter 
Tracking (SIFT) was applied to signal time windows of 
fixed length related to the F0 range; secondly, F0 is 
adaptively estimated on signal frames of variable length 
inversely proportional to F0, through the Average 
Magnitude Difference Function (AMDF) within the 
range provided by the SIFT [18]. To extract formants 
values, Autoregressive Power Spectral Density (AR 
PSD) was considered. Furthermore, in each sentence, 
the total time duration of reading, the overall voiced 
duration, and the average voice duration were extracted. 
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To analyze the speech time series and extract from each 
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toolbox [17]. The toolbox detected first only voiced 
parts of each segment. Then, F0, F1, F2, and F3 were 
calculated. In each voiced frame, F0 is estimated with a 
two-step procedure: first, Simple Inverse Filter 
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PSD) was considered. Furthermore, in each sentence, 
the total time duration of reading, the overall voiced 
duration, and the average voice duration were extracted. 

C. Statistical analysis and modeling of the features

Before running the analyses, we scaled the frequency 
features of the voice in each sentence, as they are 
subject-dependent. For each subject and each frequency 

feature (F0, F1, F2, and F3), we computed , as 

 where represents the frequency 
feature of interest (in neutral or emotional test in each 

sentence) and  the mean of the frequency of the 
corresponding neutral texts, computed for all time 
duration. As a first analysis, we examined the 
relationship between linguistic features and speech 
features. In this way we could understand which 
linguistic aspects of the text are most related to speech 
production, discovering the underlying interaction 
between linguistic structure and speech. To do so, we 
correlated each linguistic feature with every speech one, 
using Spearman’s correlation coefficient. We selected 
all pairwise correlations that had a correlation 
coefficient different from zero and a p-value < 0.05. 
Afterward, we tested the predictive strength of the 
linguistic profile. We implemented a regression model 
to predict acoustic parameters, using as input to the 
model the linguistic features. We employed a Support 
Vector Regressor (SVR) implemented with a Radial 
Basis Function (RBF) kernel and standard parameters. 
To account for within-subject repetitions, we used 
leave-one-out cross-validation, training the model on all 
subjects minus one, and testing on the left-out subject. 
The baseline was calculated by running the model with 
only the length of sentences as input feature.

III. RESULTS

Table I shows a summarized representation of the 
correlation results between speech frequency features 
and linguistic features. Linguistic features are grouped 
according to their function and the linguistic aspect they 
describe. We report the percentage of subjects for which 
the features in the group were significantly correlated 
with acoustic features; when two percentages are 
presented, they indicate the minimum and the 
maximum number of subjects for which the different 
linguistic features of the group were significant. 
Overall, linguistic features within the same group were 
significant for a similar or the same number of subjects. 
As expected, acoustic features that reflect the length of 
the sentences (Mean and Signal Duration) were always 
correlated with linguistic features that encode aspects of 
sentence length, for most subjects. We found significant 
correlations for a high number of subjects for F0 and F3 
and many linguistic aspects, while F1 and F2 were the 
least correlated with linguistic features. The highest 
correlations were found with features regarding 
subordination phenomena and the structure of the 
parsed tree, especially for F3, with up to 70% of 
subjects showing a significant correlation. Most 

linguistic features that show significant correlations are 
related to different aspects of language complexity, such 
as the length of sentences, syntactic structures (e.g., 
longer dependency links), or the verbal morphology 
(e.g., a past verbal tense may be perceived as more 
complex than the present tense). In Table II, we report 
the results for the prediction of the acoustic features 
using the SVR model. 

To evaluate the goodness of the model, we correlated 
the model’s predictions with the actual values of the 
features that we predicted, calculating the mean 
Spearman’s correlation and its variance over all 
subjects. Percentages show the number of subjects for 
which the predictions were significantly correlated. Our 
predicting model always performed better than the 
baseline. The robustness of the model is confirmed by 
the low variance, indicating that the acoustic values 
predicted are consistent among the different subjects. 
The prediction of mean and signal duration was 
significant for almost every subject. This was expected, 
as these features are directly linked to the length of the 
sentences, a feature that the model could see in input. 
The predictions of F1 and F2 were significant for many 
subjects (>60%). Contrary to what was seen previously 
in the correlation analysis, where F0 and F3 were 
obtained significant results for a high number of 
subjects, when predicting them with the SVR their 
predictions are significant for a low number of 
subjects. 

IV. Discussion and conclusion

In this preliminary study, we combine the analysis of 
the linguistic profile of neutral and emotional texts with 
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the speech analysis of the reader. We assumed that the 
speech signal reflected the emotional state induced by 
the task and assessed by the SAM. Correlation and 
regression methods were used to understand how the 
linguistic profile and structure of the texts interact with 
speech production. We found a statistically significant 
relationship between some of the linguistic properties of 
the text, regarding their syntactic structure, 
subordination phenomena within the texts and the 
verbal predicate structure, and the speech features that 
describes some prosodic aspects of speech often related 
to the human emotional state (e.g., F0, F3). This could 
suggest a double possible interpretation: on the one 
hand, it could suggest that the linguistic structure of the 
pronounced sentence may be a confounding factor that 
masks the actual contribution of prosodic features in the 
estimation of the emotional state. On the other hand, the 
linguistic structure itself could have a direct influence 
on the emotional state of the subject. This last 
hypothesis has already been supported by some studies 
that have combined the features derived from voice 
processing with some linguistic features to feed 
classifiers for the recognition of the emotional state [15, 
19]. However, in these studies, the encoding of the text 
considers the lexical and contextual aspects of language 
but does not consider other important features 
considered in our study such as morpho-syntactic or 
syntactic ones. Indeed, these features could have a 
strong impact on the emotional state of an individual, 
because they are related to a variety of psycholinguistic 
phenomena and could affect the cognitive load and 
processing difficulty of the language user. Future 
studies will investigate the selected linguistic features to 
estimate their actual effect on emotional state 
prediction. Moreover, we will consider other 
physiological parameters such as electrocardiogram and 
electrodermal activity recorded during the reading task 
to evaluate their correlation with voice and linguistic 
parameters in affective reading. 
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NEUROLOGICAL DISORDERS





 
Abstract: Autism Spectrum Disorders (ASD) are a 
group of disorders of neurobiological origin that 
affect the development of the person, producing 
alterations in their cognitive process, and in the way 
they relate to their environment. The diagnosis lies 
in assessments based on observable behaviors. 
There is an intensive research to find markers 
related with biochemical and clinical data, some 
studies relying on markers found in voice acoustics. 
Most of these studies are based on the analysis of 
prosody. Our work follows a different approach 
and focuses on the analysis of the glottal source 
tremor parameters that are present also in the 
phonation of people suffering from neurological 
diseases such as Parkinson's Disease, among others. 
This work presents a prospective study of the 
physiological, neurological, flutter and other 
tremors in the voice of a man and a woman with 
autism and intellectual disability through a 
longitudinal study over a period of 2 years. 
Keywords:  Autism, Intellectual Disability, Tremor 
in voice, Biomarkers 

 
I. INTRODUCTION 

 
The Fifth Edition of Diagnostic and Statistical 

Manual of Mental Disorders [1] from the American 
Psychological Association encloses various subtypes of 
pervasive developmental disorders into one category 
named as Autism Spectrum Disorder (ASD). ASD is a 
neurobiological disorder that affects social interaction, 
communication, creativity and imagination of 
individuals who suffer from it. The severity level of 
ASD is qualified according to the indicators: 
intellectual disability (verbal and nonverbal), language 
alterations (isolated words, sentences, fluent speech), 
medical and genetic markers and other neurological 
indicators (mental and behavioral disorders, 
depression, tics, self-aggressions, sleep and feeding 
alterations, etc.). An individual to be diagnosed of 

Intellectual Disability must have an IQ score near to or 
below 70, and other clinical features, as well as 
significant impairments in the skills needed to live in 
an independent and responsible manner, compared to 
other same-age individuals [1]. 

ASD affects approximately to 2% of children in the 
United States [2] and around 1% of children in Europe 
and the 33% of them suffering also from intellectual 
disability. ASD appears to affect men 3 to 4 times 
more than women [3]. The exact causes that may 
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Some authors highlight a certain parallelism between 
the cognitive features characteristic of ASD and 
cognitive aging processes in the general population [4], 
which points to early cognitive aging in autism [5]. 
One of the greatest difficulties in diagnosing ASD or 
early aging in these individuals is the lack of biometric 
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based on the study of prosody from the production of 
spontaneous or elicited speech, mainly analyzing the 
tone, the volume, the duration of the phrases and the 
silences, and the quality of the voice (jitter, shimmer, 
harmonic to noise ratio, etc.). Most of the studies are 
based on groups, whose individuals present 
heterogeneity in their clinical characteristics and are 
affected with different degrees of severity, but all of 
them have developed functional spoken language.  

Our work follows a different approach and focuses 
on the analysis of the glottal source tremor parameters 
that are present also in the phonation of people 
suffering from neurological diseases such as 
Pakinson’s Disease, among others [7]. This work 
presents a prospective study of voice tremor as a 
marker in people with autism and intellectual disability 
through a longitudinal follow-up during a period of 
time of 2 years.  

II. METHODS 

In the following subsections we will describe the 
characteristics of the participants, how the voice 
recording was performed, the signal analysis, and the 
tools used to obtain the results shown. 

A. Participants 

We will present a female and a male case from all 
the participants in our research. The severity of the 
participants' symptoms has been evaluated with the 
CARS [8] and DEX [9] tests. CARS test (Childhood 
Autism Rating Scale) is used to identify the severity of 
characteristic symptoms of ASD. And DEX 
(Dysfunction Executive) aims to assess executive 
dysfunction in daily life. The female case F-ARG 
19740123, is 46 years old and, according to the CARS 
(41) and DEX (51) coefficients, presents severe 
symptoms of autism and a significant dis-executive 
impairment. The male case M-RTC19811108, is 40 
years old and as the female case also  presents severe 
symptoms of autism and a significant dis-executive 
impairment (CARS = 41,  DEX = 44). They are native 
Spanish speakers, although they have severe 
difficulties in maintaining reciprocal social interaction 
through speech and make it impossible to analyze their 
prosody but they have the ability to repeat sounds 
following the instructions of their caregivers. The 
participants are dependents and are assisted by the 
Nuevo Horizonte Association. This research study has 
been approved by that institution with the authorization 
of the participants' tutors. 

B. Data and parameters 

The participants were asked to utter a sustained [a:] 
as long as possible. The key point in obtaining the 
recordings was the presence of their caretaker, who 
gave them instructions on how to proceed. All 

participants collaborated very well and made an effort 
to perform the exercise according to the instructions 
given, but the main difficulty in the recordings was 
obtaining samples of [a:] longer than 2 sec. The voices 
were recorded in a comfortable and quiet room and in a 
very relaxed atmosphere. The recording sessions with 
each participant have a maximum duration of 5 
minutes, after this time they show signs of stress and 
fatigue.  

ASD people does not easily endure to wear any 
external measurement device, they tend to remove and 
threw them away. So, we have chosen a recording 
system being the less intrusive to them. The recordings 
were made with the wireless cardiod 
microphone/transmitter Sennheiser SK 300 G2A, 
located 15 cm far from the mouth, a receptor 
Sennheiser EM 300 G2 and the Adobe Audition 
Software to manage data acquisition. Data was 
sampled at 44.1 kHz with 16-bit resolution in 
uncompressed vaw format. Recording sessions 
contained caregivers’ speech, very short vowels, noise, 
screaming, cluttered signals, etc. In these recordings, 
the participant's clean vowels are identified, those that 
have a minimum duration of 500 ms are selected and 
each of them is saved in separate files. 

The first recordings of this study date back to July 
2019, and the following session took place in January 
2020. The initial idea for this work was to carry out a 
longitudinal study with 6-month separate samples, but 
data collection had to be interrupted due to the covid-
19 pandemic. Data acquisition could be continued in 
March 2021, having carried out one recording session 
per month until August 2021. 

Parameter extraction is performed on a 400 ms 
fragment of the vowel under study. The selected 
fragment is the one with the greatest phonation 
stability, that is, less distortion in frequency and 
amplitude (jitter, shimmer). The parameters evaluated 
are physiological, neurological and flutter tremor. The 
physiological tremor lower band is limited to 2.5 Hz, 
due to the use of 400 ms windows in the calculations. 
Tremors above the flutter frequency band have been 
included in a parameter called Global tremor. The 
results are obtained using the BioMet®Phon tool [10]. 

III. RESULTS 

The results were obtained from voice samples taken 
on 2019/07/23, 2020/01/29, 2021/03/26, 2021/04/23, 
2021/05/28 and 2021/06/25, and they were compared 
with a normative database [10]. The normative 
parameter database contains the results of the voices of 
50 women and 50 men who do not have any voice 
pathology or neurological alteration.  
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The results from the participants in the different 
recording sessions are shown below. In each of the 
sessions the number of vowels analyzed was variable, 
since the number of valid vowels found from the 
original recordings is not always the same. The p-value 
of each set of tremors is calculated to check how 
aligned the result is with the normative reference 
population, under the null hypothesis of equal means. 
The results are classified as Normative (N) if their p-
value is >0.05, that is, the calculated parameters do not 
support the rejection of the null hypothesis with the 
distribution where no voice disorders or neurological 
alterations have been observed. If the value of p is 
<0.05, two cases are distinguished, for parameters that 
are located well above the maximum normative value, 
they are classified as hyper-normative (H+), and if they 
are below the minimum normative value as hypo-
normative (H-). And finally, to compare the variation 
of the results among the different days, the parameters 
that exceed a threshold value, established at 3 times the 
normalized normative value of each parameter, are 
indicated. 

A. Female F-ARG19740123 

Table 1 summarizes the number of vowels analyzed 
each day, and the type of the results according to the p-
value, and Table 2 highlights the parameters that are 
above the threshold of three times the normalized 
value. 

In the first of the sessions (2019/07/11), only three 
vowels with a valid duration could be extracted to 
calculate the tremor parameters, And only the 
neurological tremor passes the established threshold, as 
it can be seen in Table 2. The next sampling session 
took place 6 months later (2020/01/29) and all the 
parameter results are outside the limits of the norm, 
and all the tremors pass the threshold. The mobility 
restrictions of people in Spain, due to the pandemic, 
forced the interruption of voice recordings for one year 
and two months, beginning to be retaken again on 
2021/03/26. Five vowels from that session were 
studied, resulting in three sets of parameters close to 
the norm, and two outside it with opposite behaviors, 
only the flutter tremor passed the threshold. The rest of 
the voice samples analyzed are more recent and have 
been taken with a time difference of one month. In the 
results of 2021/04/23, there are two normative patterns 
(N), two hyper-normative (H+) and one hypo-
normative pattern (H-). All tremors are over the  
threshold. The data from 2021/05/28 generate results 
where most of the parameters are within the norm (4 
out of 5), and none of the parameters pass the 
threshold. In the last analyzed data from the session at 
2021/06/25, most of the results are outside the norm, 

and all the tremors exceed the threshold. In the last two 
cases, H- type results are not observed. 

 
Table 1. Results for female F-ARG19740123 
DATE N of vowels (H+) (H-) N 

2019/07/11 3  1 1  1 
2020/01/29 4 2 2 - 
2021/03/26 5 1 1 3 
2021/04/23 5 2 1 2 
2021/05/28 5 1 - 4 
2021/06/25 10 6 - 4 

  
Table 2. Tremors above the threshold  

for female F-ARG19740123 
DATE Physio. Neuro. Flutter Global 

2019/07/11  ✓  ✓ 
2020/01/29 ✓ ✓ ✓ ✓ 
2021/03/26   ✓  
2021/04/23 ✓ ✓ ✓ ✓ 
2021/05/28     
2021/06/25 ✓ ✓ ✓ ✓ 
 

B. Male M-RTC19811108 

The results obtained for the male participant are 
displayed in the same way as for the female ones, and 
the voice data has also been recorded on the same days 
as hers.  

Globally analyzing the results of Table 3, which 
summarizes the number of vowels analyzed and their 
associated performance, the scarce presence of H- 
patterns is observed, and the H+ patterns dominate on 
all the days studied, with the sole exception of 
2021/05/28 in which there is a greater number of 
patterns adjusted to the norm. It can be observed in 
Table 4 that  the tremors exceed the pre-set threshold, 
with the exception of the flutter and global tremors in 
the first two days and in the day 2021/05/28 that 
presents a greater number of normal patterns. 

Table 3. Results for male M-RTC19811108 
DATE N of vowels (H+) (H-) N 

2019/07/11 3 2 -  1 
2020/01/29 2 1 1 - 
2021/03/26 7 5 - 2 
2021/04/23 11 7 1 3 
2021/05/28 5 1 - 4 
2021/06/25 8 6 - 2 
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Table 4. Tremors above the threshold   
for male M-RTC19811108 

DATE Physio. Neuro. Flutter Global 
2019/07/11 ✓ ✓   
2020/01/29 ✓ ✓   
2021/03/26 ✓ ✓ ✓ ✓ 
2021/04/23 ✓ ✓ ✓ ✓ 
2021/05/28     
2021/06/25 ✓ ✓ ✓ ✓ 

 

IV. DISCUSSION 

The data acquisition process was not easy due to 
the particularities presented by the group of people 
studied. This affects the accuracy of the results, which 
is not uniform because they are based on a different 
number of samples per day. Both the female and male 
participants studied presented similar degrees of autism 
and executive dysfunction. Both generated normative, 
hypo-normative and hyper-normative tremor results the 
same day, which are compatible with phonations 
corresponding to people older than their age. It is also 
observed that, when the number of patterns of the 
results outside the norm ((H +) + (H-)) is greater than 
the number of patterns in the norm, all the tremor 
parameters take high values, since they exceed the 
fixed threshold.  

V. CONCLUSION 

In order to make a uniform interpretation of the 
results, it is necessary to establish a recording protocol 
that enables the intake of a minimum number of valid 
vowels per day and per person. The tremor parameters, 
in a simple first analysis such as the one that has been 
carried out, seem to be valid markers to study these 
persons presenting very limited verbal communication. 
Joint studies of these parameters and the comorbidities 
associated with ASDs could allow us to understand 
some of the behaviors of these patients. 
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Abstract: In this research, we examined how a 
model that implements speech-based severity 
prediction of a given disorder performs in the case 
of subjects who do not suffer from that specific 
disorder but another speech-affecting disorder. 
Recent research claims that speech can be a 
promising biomarker in support of diagnosis for 
many diseases. Such tools are likely to appear in 
medical practice in the near future. However, most 
research only examines how accurately it is possible 
to distinguish between healthy and diseased 
individuals, so it is difficult to estimate how the 
models created in this way perform for other 
unknown speech affecting diseases. In the present 
research, three regression models using the Support 
Vector Regression machine learning method 
specific to a particular disease/disorder were 
created (depression, Parkinson’s disease, and 
dysphonia) and examined how they perform for the 
other two disease/disorder types. Based on the 
results, it can be stated that disease-specific models 
can be used with limited success in supporting 
general diagnostics, so in the case of tools that can 
be applied in practice, the outlined problem is 
waiting to be solved. 
Keywords:  depression, Parkinson’s disease, 
dysphonia, speech processing, regression 

 
I. INTRODUCTION 

 
Speech may be an appropriate biomarker for many 

diseases/disorders for which, there is no rapid, non-
invasive diagnostic method. An important area of 
research today is the development of systems to 
support speech-based diagnostic tools, and based on 
the results so far, it is possible to recognize depression 
[1], [2], Parkinson's disease [1], schizophrenia [2], 
amyotrophic lateral sclerosis [3], and other dysphonic 
disorders [1], etc. Most often, recognition of a specific 
disorder is examined among healthy samples [2], [3], 
in fewer cases, the possibility of distinguishing several 
disorders at the same time is considered [1]. However, 
it is not clear how a model trained to recognize severity 

of a particular diseases/disorders performs on other 
unknown speech affecting disorders. 

For most of the diseases studied, several speech 
features have been successfully demonstrated, which 
alters significantly with the effect of a given disease 
[2], [4], [5], [6]. However, a problem is that typically 
no speech feature alone has adequate specificity and 
sensitivity, so we are only able to create high-precision 
models using machine learning methods. Nonetheless, 
it is not possible to extract knowledge from such 
models that would make it easy to estimate how a 
particular model performs in case of unknown speech 
altering diseases. Another problem is the lack of a 
uniform protocol for what speech patterns should be 
used to create models, which can further complicate 
the assessment of the overall diagnostic capability of a 
given model. 

Therefore, in the present research, we examine how 
disease-specific models (depression, Parkinson’s 
disease, dysphonia) perform for other 
diseases/disorders using the same types of speech 
patterns. In this way, we want to estimate how difficult 
the problem outlined above can be. 
 

II. METHODS 
 
A. Database 
 

Three speech databases were used in this study 
containing Hungarian read speech samples of healthy 
subjects and subjects suffering from depression 
(Hungarian Depressed Speech Database - HDSD), 
Parkinson’s disease (Hungarian Parkinson’s Speech 
Database - HPSD) and dysphonic speech (Hungarian 
Voice Disorder Speech Database - HVSD) [1]. In each 
database, each person read the same tale of about 1 
minute in length and the severity of the given disorder 
was recorded for each subject in each database. 

Beck Depression Inventory-II (BDI) [7] was used 
for depression severity description. The scale 
distinguishes 4 categories, 0-13 healthy, 14-19 mild 
depression, 20-28 moderate depression, and 29-63 
major depression. In the database, the mean and 
standard deviation of the BDI score of depressed 
individuals was 27.08 (± 8.6), while that of healthy 
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controls was 4.47 (± 3.7). The HDSD database 
contains speech samples from 131 depressed and 107 
healthy individuals, with a mean and standard 
deviation of the age of the individuals: 41.8 (+ -15.9) 
years. The age distributions of depressed and healthy 
individuals were similar. 

Hoehn and Yahr (HY) scale [8] was used for 
Parkinson’s disease severity estimation. The scale 
ranges from 0 to 4, with 0 being the healthy condition 
and 4 being the most severe. In the database, the mean 
and standard deviation of the HY score of Parkinson’s 
diseased individuals was 2.62 (± 1.0), while the HY 
score of healthy controls was always 0. The HPSD 
database contains speech samples from 79 Parkinson-
diseased and 32 healthy individuals, with a mean and 
standard deviation of the age: 64.8 (+ -9.2) years. The 
age distributions of Parkinson’s diseased and healthy 
individuals were similar. 

RBH scale [9] was used for dysphonia. The scale 
ranges from 0 to 3, with 0 being the healthy condition 
and 3 being the most severe. In the database, the mean 
and standard deviation of the RBH score of dysphonic 
speech disordered individuals was 1.83 (± 0.8), while 
the RBH score of healthy controls was always 0. The 
HVSD database contains speech samples from 245 
patients with voice disorders and 193 healthy 
individuals, with a mean and standard deviation of the 
age: 51.2 (+ -13.4) years. The age distributions of 
dysphonic disordered and healthy individuals were 
similar. 

 
B. Feature Extraction 

 
The calculation of several acoustic-phonetic features 

requires that speech patterns be segmented at the 
phoneme level. Segmentation was performed by a 
forced alignment method [10]. A total of 70 features 
were extracted from a speech sample. 

The following features were calculated: articulation 
rate; mean, range, standard deviation, and quantiles 
(1%, 5%, 10%, 25%); of intensity; mean, range, 
standard deviation, slope and quantiles (1%, 5%, 10%, 
25%) of f0; the mean and standard deviation of the 
formant frequencies (F1 and F2) and their bandwidths 
(B1 and B2) calculated from the whole recording and 
only from the vowel E; mean and standard deviation of 
harmonicity to noise ratio (HNR), jitter, shimmer 
calculated from the whole recording and only from the 
vowel E, mean of 12 MFCC coefficients calculated 
from the whole recording and only from the vowel E, 
ratio of transients (RoT) [11], pause ratio and soft 
phonation index (SPI) [12]. 

 
 

C. Training and Testing 
 
Three different regression models (depression 

model, Parkinson’s model and dysphonic model) were 
trained for each disorder, the training was performed 
using epsilon Support Vector Regression [13]. The 
LibSVM implementation [14] was used. We optimized 
the input feature vector (using fast forward selection), 
the kernel and hyper parameters (using grid search) for 
each model using leave-one-out cross validation 
(LOOCV). In case of feature selection, a maximum of 
20 features were specified as the stopping criterion. 
Linear and rbf kernels were tested, the cost and gamma 
(in case of rbf kernel) hyperparameters were tested 
between 2-10 and 210. 

Then, each optimized model was tested on the 
samples from the other two database/disorder types and 
compared their severity scores with the original ones. 

 
III. RESULTS 

 
In Table 1, the self-evaluation of the optimized 

models with LOOCV is marked in italics, and these 
values are in the diagonal. We have marked in bold if 
the mean predicted score of the given group of the 
given database fell into the non-healthy category. 
From the Table 1, it can be observed that the mean 
estimated value of each healthy control group falls into 
the healthy category based on each model, however, 
the mean score of the HPSD control group predicted by 
the depression model is close to the border of mild 
depression (BDI = 14). A possible reason for this may 
be that the average age of the individuals in the group 
was over 60. 
 
Table 1. The average prediction results of the three 
optimized models (depression, Parkinson and 
dysphonic) on the three databases examined (HVSD, 
HDSD, HPSD) 

 Predicted Scores 
RBH BDI HY 

HVSD Dysphonic 1.49 
(±0.8) 

9.4 
(±3.6) 

0.73 
(±0.6) 

 Healthy 
Control 

0.29 
(±0.3) 

10.7 
(±4.5) 

0.70 
(±0.6) 

HDSD Depressed 0.35 
(±0.3) 

22.3 
(±7.0) 

1.42 
(±0.6) 

 Healthy 
Control 

0.28 
(±0.3) 

9.0 
(±0.7) 

0.88 
(±0.7) 

HPSD Parkinson's 
diseased 

0.64 
(±0.5) 

17.9 
(±3.1) 

2.20 
(±0.8) 

 Healthy 
Control 

0.66 
(±0.2) 

13.2 
(±3.9) 

0.72 
(±0.7) 
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It can also be observed that in the case of depressed 
samples the model indicated on average mild 
Parkinson's disease, and in the case of patients with 
Parkinson's disease the average estimated value falls 
into the category of mild depression. Individuals with 
depression and Parkinson's disease were on average in 
the healthy category based on the dysphonic model, 
while individuals with dysphonia also fell into the 
healthy category on average based on both depression 
and Parkinson's models. 
 

IV. DISCUSSION 
 

Based on the results, it can be stated that subjects 
with dysphonic speech can be considered healthy 
according to both models that predict the severity of 
depression and the severity of Parkinson’s disease. 
Their mean severity scores did not show a significant 
difference compared to the healthy group. Subjects 
with Parkinson’s disease scored significantly higher on 
the depression scale and were rated as mildly 
depressed on average. The same can be said for 
subjects with depression, they scored significantly 
higher on the Parkinson’s scale and were rated by the 
model as mild severity on the Hoehn and Yahr scale on 
average. It is important to note that although 
depression is a common accompanying symptom of 
Parkinson’s disease, the subjects studied did not suffer 
from depression, and it can be stated with certainty that 
individuals with depression did not have Parkinson’s 
disease either. Presumably, both depression and 
Parkinson’s disease altered some of speech parameters 
used for the models in a similar way. 

It is important to note that while the age of the 
subjects in the depressed (HDSD) and dysphonic 
(HVSD) databases was similar, the mean age in the 
Parkinson’s disease database (HPSD) was considered 
to be significantly higher. This difference apparently 
caused a significant difference only in the case of the 
depression model, since in this case the average 
estimated value of healthy individuals was close to the 
limit of mild depression. This may be due to the fact 
that in the case of the elderly there is a decline in the 
speech rate, a narrowing of the dynamics of speech, 
which are typical features of the speech of depressed 
persons. 
 

V. CONCLUSION 
 

In the present research, we examined how models 
based on speech signal processing trained to predict 
specific diseases/disorders (depression, Parkinson’s 
disease, and dysphonia) perform in case of other 
speech-altering diseases/disorders. The opportunity to 
conduct the study was provided by the fact that we had 
three databases (HDSD for depression, HVSD for 

dysphonia and HPSD for Parkinson’s disease) 
containing speech samples from the same text that are 
read by individuals with a particular disease/disorder 
and healthy controls. 

Three models were trained based on the three 
databases using the Support Vector Regression 
machine learning method. Each model was evaluated 
on the database used to create it using LOOCV, as well 
as on the other two databases. During the evaluation, 
we compared the predicted average scores of the 
healthy and non-healthy groups based on the scale used 
by the model. 

Analyzing the results, we found that depressed 
individuals were predicted as mildly Parkinson’s on 
average, while Parkinson’s individuals were predicted 
as mildly depressed on average. In contrast, individuals 
with dysphonia did not show an average higher score 
for depressed or Parkinson’s models, and the 
dysphonic model correctly estimated individuals with 
depression and Parkinson’s disease to be non-
dysphonic on average. 

Another interesting fact was that for elderly controls 
in the Parkinson's Database (HPSD), the depression 
model estimated higher scores, although their mean 
values remained correctly below the border of mild 
depression. 

Based on the research, it can be concluded that in the 
case of a system that can be used in practice, an 
important requirement may be not only to be able to 
distinguish between healthy and specific disorder / 
disorder group, but it is also necessary to know the 
error habits of a given model in the case of disorders 
affect speech and unknown to the given model. This 
phenomenon must be solved in some form. 
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Abstract: In this paper, we propose to use
specific speech tasks, along with speech pro-
cessing and machine learning methods, to
support clinical decision in mental health.
Specifically, we will focus on classification of
relevant Attention Deficit Hyperactivity Dis-
order (ADHD) subtypes. Both supervised
and unsupervised classifiers will be explored.
Speech features will be derived from Verbal
fluency tests (VFT). The results show good
performances of the supervised approach,
highlighting the fact that significant informa-
tion is carried by the speech signal. On the
other side, unsupervised classifier results are
not in a good agreement with clinician scor-
ing. The results are discussed in the light
of possible benefits of developing both ap-
proaches within clinical research.
Keywords: speech analysis, Attention Deficit
Hyperactivity Disorder, Verbal fluency tests,
SVM-RFE, k-means

I. Introduction

The use of speech analysis to support clinical
decision is gaining an increasing interest. Since the
development of approaches to speech and voice anal-
ysis for the evaluation of the emotional and mood
state of the speaker[1, 2], applications in mental
health research have been proposed [2, 3, 4].
This study focuses on the design of a tool to aid
clinicians in the diagnosis and monitoring Atten-
tion Deficit Hyperactivity Disorder (ADHD), based
on speech analysis and machine learning methods.
This tool could help identifying necessary interven-

tions or modulating therapy. ADHD is a develop-
mental and neurological disorder that persists into
adulthood for the majority of cases. Three types
of ADHD can be identified: predominantly inatten-
tive, predominantly hyperactive-impulsive and com-
bined type. Inattentive subjects have trouble focus-
ing their attention and concentrating. They may
not listen well to directions and miss important de-
tails, they seem absent-minded and lose track of
their things. Hyperactive subjects are fidgety, rest-
less and easily bored. They are constantly in mo-
tion, have difficulty performing quiet activities and
they often interrupt conversations or others’ activ-
ities. Individuals with combined-type ADHD dis-
play a mixture of all the symptoms outlined above.
These deficits in social interactions present a central
problem causing social, occupational and emotional
disadvantages [5]. Symptoms of ADHD are treated
with pharmacological treatments combined with be-
havioural interventions. The greatest difficulty for
clinicians is to identify the ADHD subtypes, given
that ADHD is often comorbid with other disorders,
such as bipolar disorder. The combined form in par-
ticular shares a number of symptoms with bipolar
disorder, e.g., mood dysregulation. This makes the
differential diagnosis in clinical settings particularly
difficult [6]. The identification of ADHD subtypes
has important consequences for care due to the dif-
ferent treatment options that can be used according
to the clinical presentation of patients.
The analysis of the voice turns out to be an excellent
tool to measure he mood dysregulation characteris-
tic of ADHD. Several studies have been performed
using voice features to characterize subjects suffer-

FUP Best Practice in Scholarly Publishing (DOI 10.36253/fup_best_practice)
Claudia Manfredi (edited by), Models and Analysis of Vocal Emissions for Biomedical Applications : 12th International Workshop, December, 14-16, 2021, 
© 2021 Author(s), content CC BY 4.0 International, metadata CC0 1.0 Universal, published by Firenze University Press (www.fupress.com), ISSN 2704-
5846 (online), ISBN 978-88-5518-449-6 (PDF), DOI 10.36253/978-88-5518-449-6

https://fupress.com/fup-best-practice-in-scholarly-publishing
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/publicdomain/zero/1.0/legalcode
https://doi.org/10.36253/978-88-5518-449-6


ing from depression and bipolar disorders [1, 7].
However, very few studies have investigated the util-
ity of voice features for the classification of ADHD
subtypes. This is an important first step before
checking whether and how voice features could aid
the differential diagnosis of ADHD relative to bipo-
lar disorder in clinical settings.
The present study aims at exploring whether speech
features can be used to classify ADHD. Starting
from speech signals recorded during verbal fluency
tests (VFT), speech features were extracted and
used to train two classifiers. Both unsupervised
and supervised classifiers are proposed. While the
former is trained using clinical labels by the physi-
cians, the latter aims at highlighting possible patient
grouping from speech without any a-priori informa-
tion. Both approaches could support physicians in
formulating a diagnosis and monitor patient status,
also when the subject is not hospitalized.

II. Methods

Fifty-five ADHD patients (29 females, age 18
- 57 years, M= 34.94, SD= 11.11), were recruited
from inpatient and outpatient psychiatry clinics at
the University Hospital of Strasbourg. This study
was approved by the Regional Ethics Committee of
Eastern France. ADHD diagnosis was established
by psychiatrists based on the DIVA 2.0 [8]. The
diagnosis was retained if patients present at least 5
inattentive and/or 5 hyperactive symptoms. Among
our group, 13 patients were classified as inattentive,
only one as hyperactive and 39 were classified as
combined.
Voice signals were recorded during verbal fluency
tests (VFT) in a quite and low reverberation room
using Audacity software (fs=44100 Hz, 24 bit reso-
lution PCM). An high quality microphone was con-
nected to a laptop and kept approximately 60 cm
away from the subject. In VFT, patients were in-
structed to produce words according to specified
rules, such as phonemic or semantic criteria, through
the continuous association of words following a cue
word or simply free word generation in absence of a
specified criterion. 260 audio signals were obtained
in total belonging to 55 different subjects.
Once all the tasks were recorded prosodic features
and spectral features were extracted and investi-
gated. Prosodic features describe how it changes
shape during vocalization, such as the speed at
which the vocal cords move, called the fundamen-
tal frequency (F0), and the energy of the voice..
Features extraction was performed with BioVoice,
a multi-purpose software tool developed under
Matlab® at the Biomedical Engineering Lab,

Firenze University [9]. BioVoice first implements
the selection of voiced/unvoiced (V/UV) audio seg-
ments and then all the features of interests are ex-
tracted from each voiced segment. In the time do-
main, the number and length of voiced segments,
the number and length of pause segments, percent-
age of voiced segments and other information are
extracted. Speech fundamental frequency (F0), for-
mant frequencies (F1, F2, F3), noise level (Normal-
ized Noise Energy) and jitter were estimated. More-
over, statistical descriptor of F0 and first three for-
mants such as mean, median, standard deviation,
maximum and minimum values were estimated.
A second set of features describing the prosodic be-
haviour in each word were estimated. Specifically,
this set of features describe the F0 contour using
an approach borrowed by Taylor’s tilt intonational
model [2, 10]. The F0 contour was estimated using
the Camacho’s SWIPE’ algorithm [11]. Spectral fea-
tures related to the Long Term Average Spectrum,
LTAS, were also estimated [12].
Subsequently two classifiers have been trained using
the above mentioned features, to distinguish sub-
jects belonging to the two groups. Specifically, both
a supervised and unsupervised approach have been
tested. While in the supervised approach the classi-
fication by the clinicians was used to train the classi-
fier, in the unsupervised approach the clinical labels
were only used a-posteriori to assess the classifier
agreement with the physician scoring. As a super-
vised approach, a Support Vector Machine exploit-
ing Recursive Features Selection (SVM-RFE) has
been used. SVM-RFE is an algorithm that com-
bines SVMs with a backward variable selection. It
selects the most accurate features subset that gives
the best classification of the subjects in terms of ac-
curacy [13]. For the evaluation of the algorithm, the
leave-one-subject-out (LOSO) cross validation was
used, for nearly unbiased estimation of the out-of-
sample error.
The second approach was an unsupervised classifier
performed using K-means clustering. First dimen-
sionality reduction was performed using PCA. The
percentage of total variance explained was used to
find the number of components required to explain
at least 70% variability. After dimensionality reduc-
tion step, K-means clustering was carried out.
Without exploiting a-priori knowledge, the K-
means clustering performs a partition of the dataset
into k predefined distinct non-overlapping sub-
groups in which each observation belongs to only
one group. The criterion is based on a squared eu-
clidean distance. The efficiency of the algorithm was
verified by comparing the labels found with the la-
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ing from depression and bipolar disorders [1, 7].
However, very few studies have investigated the util-
ity of voice features for the classification of ADHD
subtypes. This is an important first step before
checking whether and how voice features could aid
the differential diagnosis of ADHD relative to bipo-
lar disorder in clinical settings.
The present study aims at exploring whether speech
features can be used to classify ADHD. Starting
from speech signals recorded during verbal fluency
tests (VFT), speech features were extracted and
used to train two classifiers. Both unsupervised
and supervised classifiers are proposed. While the
former is trained using clinical labels by the physi-
cians, the latter aims at highlighting possible patient
grouping from speech without any a-priori informa-
tion. Both approaches could support physicians in
formulating a diagnosis and monitor patient status,
also when the subject is not hospitalized.

II. Methods

Fifty-five ADHD patients (29 females, age 18
- 57 years, M= 34.94, SD= 11.11), were recruited
from inpatient and outpatient psychiatry clinics at
the University Hospital of Strasbourg. This study
was approved by the Regional Ethics Committee of
Eastern France. ADHD diagnosis was established
by psychiatrists based on the DIVA 2.0 [8]. The
diagnosis was retained if patients present at least 5
inattentive and/or 5 hyperactive symptoms. Among
our group, 13 patients were classified as inattentive,
only one as hyperactive and 39 were classified as
combined.
Voice signals were recorded during verbal fluency
tests (VFT) in a quite and low reverberation room
using Audacity software (fs=44100 Hz, 24 bit reso-
lution PCM). An high quality microphone was con-
nected to a laptop and kept approximately 60 cm
away from the subject. In VFT, patients were in-
structed to produce words according to specified
rules, such as phonemic or semantic criteria, through
the continuous association of words following a cue
word or simply free word generation in absence of a
specified criterion. 260 audio signals were obtained
in total belonging to 55 different subjects.
Once all the tasks were recorded prosodic features
and spectral features were extracted and investi-
gated. Prosodic features describe how it changes
shape during vocalization, such as the speed at
which the vocal cords move, called the fundamen-
tal frequency (F0), and the energy of the voice..
Features extraction was performed with BioVoice,
a multi-purpose software tool developed under
Matlab® at the Biomedical Engineering Lab,

Firenze University [9]. BioVoice first implements
the selection of voiced/unvoiced (V/UV) audio seg-
ments and then all the features of interests are ex-
tracted from each voiced segment. In the time do-
main, the number and length of voiced segments,
the number and length of pause segments, percent-
age of voiced segments and other information are
extracted. Speech fundamental frequency (F0), for-
mant frequencies (F1, F2, F3), noise level (Normal-
ized Noise Energy) and jitter were estimated. More-
over, statistical descriptor of F0 and first three for-
mants such as mean, median, standard deviation,
maximum and minimum values were estimated.
A second set of features describing the prosodic be-
haviour in each word were estimated. Specifically,
this set of features describe the F0 contour using
an approach borrowed by Taylor’s tilt intonational
model [2, 10]. The F0 contour was estimated using
the Camacho’s SWIPE’ algorithm [11]. Spectral fea-
tures related to the Long Term Average Spectrum,
LTAS, were also estimated [12].
Subsequently two classifiers have been trained using
the above mentioned features, to distinguish sub-
jects belonging to the two groups. Specifically, both
a supervised and unsupervised approach have been
tested. While in the supervised approach the classi-
fication by the clinicians was used to train the classi-
fier, in the unsupervised approach the clinical labels
were only used a-posteriori to assess the classifier
agreement with the physician scoring. As a super-
vised approach, a Support Vector Machine exploit-
ing Recursive Features Selection (SVM-RFE) has
been used. SVM-RFE is an algorithm that com-
bines SVMs with a backward variable selection. It
selects the most accurate features subset that gives
the best classification of the subjects in terms of ac-
curacy [13]. For the evaluation of the algorithm, the
leave-one-subject-out (LOSO) cross validation was
used, for nearly unbiased estimation of the out-of-
sample error.
The second approach was an unsupervised classifier
performed using K-means clustering. First dimen-
sionality reduction was performed using PCA. The
percentage of total variance explained was used to
find the number of components required to explain
at least 70% variability. After dimensionality reduc-
tion step, K-means clustering was carried out.
Without exploiting a-priori knowledge, the K-
means clustering performs a partition of the dataset
into k predefined distinct non-overlapping sub-
groups in which each observation belongs to only
one group. The criterion is based on a squared eu-
clidean distance. The efficiency of the algorithm was
verified by comparing the labels found with the la-

bels provided by the clinicians. The comparison was
made by constructing the confusion matrix and sum-
marised by classification accuracy measures such as
accuracy, F1 score and Matthews correlation coef-
ficient (MCC). Both supervised and unsupervised
method have been applied in order to classify two
classes in the ADHD group, namely inattentive and
combined patients.

III. Results

A. Unsupervised classifier results
Results in terms of confusion matrix and statis-

tical parameters of the results are shown in Table I
and Table V respectively. Inattentive patients were
correctly classified in 10 cases and misclassified in
3. Combined patients were classified in agreement
with clinicians diagnosis in 17 cases out of 32. The
resulting accuracy and F1 score were respectively
0.60 and 0.53, and the MCC was 0.27.

TABLE I: Confusion Matrix from the unsupervised classifier re-
sults

Predicted
Inattentive Combined Total

Actual Inattentive 10 3 13
Combined 15 17 32

Total 25 20 45

TABLE II: Unsupervised classifier performance scores.

Accuracy F1score MCC Recall Precision

60% 52.63% 27.41% 76.92% 53.13%

B. Supervised classifier results
The highest accuracy, of about 89%, was

achieved with a set of 9 features. Specifically, three
Tilt-related features, namely derpos, derneg and
Tilt, three features describing LTAS shape, namely
LTASratiomax, LTASratiomedian, slope, and three
features from BioVoice, namely Maximum Pause
Duration (PauseDurationmax), F2max,T0 F0min.
Fig. 1 shows the accuracy trend of the SVM-RFE
learning algorithm as a function of selected features,
which increase in number at each step (according to
the RFE algorithm ranking), while in Table III are
shown the accuracy values with the various subsets
of features. An accuracy of 80% is achieved with
the first 5 features. The maximum is reached with
a number of features equal to 9.

Results in terms of confusion matrix are shown in
Table IV. Among the inattentive patients, a correct
classification was achieved in 9 out of 13 patients.
Combined presentation of ADHD was correctly clas-
sified in 31 cases and misclassified in 1.
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Figure 1: Accuracy trend of the SVM-RFE algorithm as a func-
tion of selected features. Inattentive and combined ADHD.

TABLE III: Accuracy values for each subset of features for su-
pervised classifier.

Features subset Accuracy %

derpos 33.33
derpos, PauseDurmax 48.89
derpos, PauseDurmax, derneg 51.11
derpos, PauseDurmax, derneg, Tilt 73.33
derpos, PauseDurmax, derneg, Tilt, F2max 80
derpos, PauseDurmax, derneg, Tilt, F2max, LTASratiomax 82.22
derpos, PauseDurmax, derneg, Tilt, F2max, LTASratiomax, LTASratiomed 80
derpos, PauseDurmax, derneg, Tilt, F2max, LTASratiomax, LTASratiomed, slope 82.22
derpos, PauseDurmax, derneg, Tilt, F2max, LTASratiomax, LTASratiomed, slope, T0 F0min 88.89

TABLE IV: Confusion Matrix from the supervised classifier re-
sults.

Predicted
Inattentive Combined Total

Actual Inattentive 9 4 13
Combined 1 31 32

Total 10 35 45

TABLE V: Supervised classifier performance scores.

Accuracy F1score MCC Recall Precision

88.89% 78.26% 72.1% 69.23% 90%

IV. Discussion

The results obtained with the supervised classi-
fier indicate that speech signals acquired from VFT
contain relevant information about ADHD type.
Unsupervised classifier results are not in agreement
with clinical scoring. In both cases, larger classifi-
cation error occurred for the combined class. This
result is in agreement with the clinician’s difficulty
in recognizing mixed symptoms.
Given the low number of samples and the high num-
ber of features, risk of overfitting was faced in the su-
pervised model. For this reason, SVM with a proper
recursive feature elimination scheme was adopted.
Specifically, RFE reduces the problem dimension-
ality by selecting the features which maximize the
accuracy, thus mitigating the risk of overfitting [13].
The analysis of classification accuracy, as a function
of number of feature, indicates that a lower number
of features could be selected to further reduce the
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overfitting risk.
Although promising, the results have been found on
a low number of subjects, so we have to stress that
caution must be taken in generalizing our findings.
We believe that the development of both supervised
and unsupervised approaches for the classification
of ADHD could lead to an improvement of infor-
mation for the clinicians. The good results by us-
ing the supervised classifier seem to indicate that
this approach could be used to aid clinician diagno-
sis. However, supervised classifiers exploit the di-
agnosis by the physician even if diagnosis might be
also prone to classification error. Unsupervised ap-
proaches could be less biased by the a-priori infor-
mation by the clinician. Nonetheless, they should
be feed by a proper selection of features, possibly
obtained using an experimental paradigm able to
highlight the differences among the patients. For
this reason, physicians should be deeply involved in
the critical analysis of automatic or semi-automatic
methods results. This could allow identifying pos-
sible specific clinical characteristics or pushing the
researcher to further explore the speech features of
the subjects that were classified both in agreement
and disagreement with the clinicians.

V. Conclusion

In this work, a classification of ADHD patients
has been carried out exploiting speech signals ac-
quired using VFT. The goal was to identify inatten-
tive and combined subtypes, since the latter need
different clinical treatment. The supervised ap-
proach allowed to obtain good classification results
and a showed a greater ability to classify patients
according to clinician diagnosis with respect to the
unsupervised classifier. Studies with larger samples
are needed to further investigate the relationship be-
tween speech features and classification results in
ADHD and to mitigate a possible risk of overfit-
ting. Future developments will concern the criti-
cal discussion of classification performances of both
approaches with the clinicians and the the possible
added value of unsupervised learning machine clas-
sification. Finally, it could be particularly relevant
to determine whether voice features acquired with
VFT could aid the distinction between ADHD, es-
pecially the combined subtype, and bipolar disorder.
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a low number of subjects, so we have to stress that
caution must be taken in generalizing our findings.
We believe that the development of both supervised
and unsupervised approaches for the classification
of ADHD could lead to an improvement of infor-
mation for the clinicians. The good results by us-
ing the supervised classifier seem to indicate that
this approach could be used to aid clinician diagno-
sis. However, supervised classifiers exploit the di-
agnosis by the physician even if diagnosis might be
also prone to classification error. Unsupervised ap-
proaches could be less biased by the a-priori infor-
mation by the clinician. Nonetheless, they should
be feed by a proper selection of features, possibly
obtained using an experimental paradigm able to
highlight the differences among the patients. For
this reason, physicians should be deeply involved in
the critical analysis of automatic or semi-automatic
methods results. This could allow identifying pos-
sible specific clinical characteristics or pushing the
researcher to further explore the speech features of
the subjects that were classified both in agreement
and disagreement with the clinicians.

V. Conclusion

In this work, a classification of ADHD patients
has been carried out exploiting speech signals ac-
quired using VFT. The goal was to identify inatten-
tive and combined subtypes, since the latter need
different clinical treatment. The supervised ap-
proach allowed to obtain good classification results
and a showed a greater ability to classify patients
according to clinician diagnosis with respect to the
unsupervised classifier. Studies with larger samples
are needed to further investigate the relationship be-
tween speech features and classification results in
ADHD and to mitigate a possible risk of overfit-
ting. Future developments will concern the criti-
cal discussion of classification performances of both
approaches with the clinicians and the the possible
added value of unsupervised learning machine clas-
sification. Finally, it could be particularly relevant
to determine whether voice features acquired with
VFT could aid the distinction between ADHD, es-
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Abstract:  
Neurogenic speech disorders like apraxia of speech 
or dysarthria show various symptoms in speech and 
vocalizations. Many of these symptoms can be 
simulated using a neural model of speech production 
which includes components for linguistic planning, 
motor planning, motor programming, and articula-
tory execution. The execution module (articulatory-
acoustic synthesizer) comprises a supra-laryngeal, 
laryngeal, and sub-laryngeal part and generates 
normal as well as disordered vocal fold and 
articulator movements and it generates normal as 
well as disordered phonation and speech signals. 

The concept of gestures as target-directed 
articulator movements (gestures) is of central impor-
tance in our approach. In this paper we concentrate 
on the simulation of dyscoordinating and of over- 
and undershooting articulatory and phonatory 
gestures. The resulting simulated acoustic signals 
will be compared to natural acoustic signals of 
normal and disordered speech and vocalizations.     

Keywords:  Neurogenic speech disorders, speech 
gestures, coordination of gestures, articulatory 
overshoot, articulatory undershoot 
 

I. INTRODUCTION 
 
Apraxia of speech is defined as a deficit in planning of 
speech while dysarthia is defined as a deficit in motor 
programming and neuromuscular execution [1]. Both 
types of speech disorders affect the control of the supra-
laryngeal as well as for the laryngeal and sub-laryngeal 
domain (articulation, phonation, respiration) and these 
speech disorders affect the segmental level, i.e., lead to 
distortions of speech sounds, as well as to a distortion of 
intonation and of syllabic stress patterns. Deficits in 
speech motor (apraxia of speech) result in deficits in 
temporal coordination of gestures within and between 
all three domains (articulation, phonation, respiration) 
as well as in deficits in correct implementation of the 
movement target for each single gesture. Planning 
deficits are mainly due to neural dysfunctions in 
premotor areas and motor cortex. Deficits in speech 
motor programming and execution (dysarthria) affect 

the realization of each gesture by distortions in gesture 
control and in gesture execution. That leads to imprecise 
realizations of gestures with respect to gesture duration 
but mainly with respect to target reaching. Program-
ming, execution, and control deficits are mainly due to 
neural dysfunctions in motor neurons, basal ganglia, 
and/or cerebellum.  

In this paper we will concentrate on selected 
symptoms of different speech disorders. Patients suffe-
ring from apraxia of speech (planning deficits resulting 
from dysfunctions at different cortical locations) show 
symptoms like groping, speech sound distortions, 
articulation errors in producing complex syllables, slow 
speech rate, and syllable segregation [1]. In case of 
dysarthria, we need to separate different subtypes [2, 3]. 
Patients suffering from ataxic dysartria (control deficits 
resulting from cerebellar dysfunctions) show slow and 
irregular articulatory movement rates and high varia-
bility in syllable intensity level. Patient suffering from 
flaccid dysarthria (lower motor neuron damage) show 
symptoms like breathy voice, short phrases, increased 
nasal resonance resulting from imperfect closure of the 
velopharyngeal port and imprecise articulation. Spastic 
dysarthria (bilateral damage of upper motor neurons) 
leads to symptoms like strained voice and slow articu-
lation resulting from too high muscle tonus. Hypokinetic 
dysarthria (control deficit resulting from basal ganglia 
dysfunctions) leads to low movement amplitudes while 
hyperkinetic dysarthria (same) leads to involuntary 
strong and imprecise movements, which not necessarily 
result from high articulatory effort.  
 The concept of speech gestures [4, 5] allows to 
explain the speech and voicing symptoms mentioned 
above by checking the temporal coordination of gestures 
within a syllable as well as by introducing the idea of 
gesture target overshoot and gesture target undershoot. 
Gestures can be defined for the supra-laryngeal system 
(vocalic gestures, consonantal gestures, and velopha-
ryngeal gestures, Kröger & Birkholz 2007, p. 181ff) as 
well as for the laryngeal and sub-laryngeal system. In 
case of the laryngeal (glottal) system we can differen-
tiate glottal gestures controlling vocal fold tension and 
glottal gestures controlling the positioning of the 
arytenoids. The later are glottal opening gestures for 
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producing unvoiced speech sounds, glottal closing 
gestures for producing phonation, and glottal tight 
closing gestures for producing glottal stop sounds 
(ibid.). In the case of the sub-laryngeal system,
pulmonary gestures can be defined. The goal of these 
gestures is to control subglottal pressure as well as the 
time span for which a certain degree of subglottal 
pressure can be hold and for which a certain amount of 
airflow can be guaranteed to enable phonation as well as 
secondary sound source excitation. 

Gestures always define target-directed articulator 
movements. The goal of each gesture is to reach an 
acoustically or perceptually relevant target state. In case 
of articulatory gestures, the target defines a spatial 
positioning of articulators within the vocal tract, e.g., for 
reaching vocalic tract shapes or for reaching conso-
nantal constrictions or closures. In the case of glottal 
gestures, a target is defined as the positioning of the 
vocal folds or as a certain degree of vocal fold tension. 
In the case of pulmonary gestures, a target is defined 
dynamically as the dynamic change in lung volume 
which leads to the generation of a specific level of 
subglottal pressure.

II. METHODS

A. Description of the model 
The model comprises a neural control component and 
an articulatory-acoustic model (Fig. 1). A compete 
linguistic description of the utterance, i.e., a narrow 
phonological transcription (linguistic input) is trans-
formed into a gesture score (motor plan). The specifi-
cation of the gesture score, i.e., the temporal coordi-
nation of all gestures of an utterance is called motor 
planning which takes place in the premotor area of the 
brain. The specification of each gesture with respect to 
the resulting neuromuscular activity is called motor 
programming and leads to a specific neural activation 
pattern for each syllable at the level of the primary motor 
cortex. The execution of gestures or motor programs is 
performed by the neuromuscular units of all articulators
which lead to defined articulator movements for all
articulators of all model components, i.e., for the move-
ments controlling the pulmonary system (lung volume), 
for the movements controlling the vocal fold positio-
ning, and for the movements controlling the lower jaw, 
tongue body, tongue tip, velum, and lips. A more de-
tailed discussion concerning the separation of motor 
planning, motor programming and execution can be 
found in [1].   

Movements of many articulators directly result from 
neuromuscular activations generated by the neural 
control component. But in the case of the vocal folds the 
control component only determines the (rest-)posi-
tioning of the folds for phonation or for producing 
voiceless sounds, while the vocal fold vibration patterns
is initiated and controlled by aerodynamic states. The 

same holds for vocal tract articulators like lips, tongue 
tip and uvula in case of trills (/B/, /r/, and /R/). 

While the brain locations for planning and activating 
motor programs are cortical, and while the execution of 
motor programs is mainly done via a direct feedforward 
motor neuron pathway, somatosensory feedback sig-
nals, i.e., tactile and proprioceptive signals are pro-
cessed by the basal ganglia-thalamus complex as well as 
by the cerebellum for controlling and for eventually 
correcting motor programs and for altering motor pro-
grams and motor plans in case of articulatory distortions 
or in case of changes in the production system due to 
aging or disorders (feedback processing pathway in Fig. 
1 and see [1]). 

Figure 1: The production model

The articulatory-acoustic model comprises a pulmonary 
model for generating subglottal pressure and airflow, a 
self-oscillating vocal fold model for generating vocal 
fold oscillations for phonation and a vocal tract model 
for generating vocal tract shapes as function of time. The 
acoustic glottal source signal in modified in the vocal 
tract and is radiated it from the lips and nostrils [6, 7]. 

  The motor plan of an utterance is specified as 
gesture score. A gesture score for the utterance or word 
(example: [pani]) is given in Fig. 2. The gestures are 
ordered in six tiers and the gesture targets are named for 
each gesture: (i) the targets of vocalic gestures describes 
the global form of the vocal tract (global tract form ges-
tures: low tongue body -> /a/; high front location of 
tongue body -> /i/; high back location of tongue body    
-> /u/; the labial part of vocalic gestures, i.e., rounded or 
spread lips, is not displayed in Fig. 2); (ii) the targets of 
consonantal gestures describe the formation of a local 
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constriction or closure within the vocal tract (local tract 
constriction gestures: labial closing gestures  -> /b/, /p/, 
/m/; apical closing gestures -> /d/, /t/, /n/, velar closing 
gestures -> /g/, /k/, /N/; apical near closing gestures -> 
/s/, /z/, etc.; see [4]).  

Figure 2: Gesture score of [pani]

(iii) velopharyngeal opening vs. closing gestures realize 
nasal vs. oral speech sounds (tight velopharyngeal 
closure in case of obstruents, i.e., in case of plosives and 
fricatives for guaranteeing a pressure built-up in the oral 
cavity during oral closure); (iv) glottal opening vs. 
closing gestures realize voiceless vs. voiced sounds 
(tight glottal closure to produce a glottal stop); (v) the 
target of a vocal fold tension gesture defines a F0-target 
within the intonation contour of an utterance (targets: 
low, medium, high tension of vocal folds); (vi) the target 
of a pulmonary gesture is holding a specific level of 
subglottal pressure over the whole time interval of an 
utterance (targets: low, medium, high in order to realize 
a soft, normal, or loud voice).

The light blue bars (including the dark blue portions) 
in Fig. 2 indicate the duration of activation for each 
gesture. The light blue time interval marks the move-
ment phase of a gesture, while the dark blue time inter-
val marks the period in which the gesture reached its 
target (target phase). In the case of vocalic tract-shaping 
gestures the movement phase is mainly hidden behind a 
local consonantal tract constriction. In the case of conso-
nantal tract constriction gestures the movement phase 
occurs within the target phases of vowels and thus 
allows the perception of place of articulation by the 
appearance of audible formant transitions. 

The gesture targets define (i) the main characteristics 
of the speech sounds like vocalic formant pattern 
(vocalic gestures), manner and place of articulation 
(consonantal gestures), nasal or oral realization of a 
speech sound  (velopharyngeal gestures), voiced or un-
voiced realization of a speech sound (glottal gestures), 
or they define (ii) important supraglottal features of an 
utterance like current F0-level (vocal fold tension 
gesture), current loudness or stress level (pulmonary 
gesture). 

A normal realization, an undershot, overshoot, and 
a corrected overshoot realization of a gesture is shown 

in Fig. 3. Target over- or undershoot can be defined if 
gesture targets have spatial dimensions (vocalic tract 
shapes, consonantal closures or constrictions, degree of 
opening of velopharyngeal port or of glottal con-
striction) or if targets are defined in the acoustic or aero-
dynamic domain as frequency value or as pressure level. 
Target overshoot can be corrected during gesture 
execution by reversing the movement direction at a 
certain point in time (Fig. 3, bottom). In case of under-
shoot the duration of gesture activation interval (of 
gesture movement phase) needs to be extended or the 
articulator velocity must be increased (not shown in Fig. 
2). 

Figure 3: normal gesture, undershoot gesture,
and corrected overshoot gesture

B. Simulation experiments 
Five types of simulation experiment are executed: Simu-
lation of undershoot and overshoot in case of (i) phona-
tory gestures (glottal and/or pulmonary gestures), (ii) 
vocalic gestures, (iii) consonantal gestures, and (iv) 
velopharyngeal gestures. Simulation of dyscoordination 
for (v) glottal relative to consonantal gestures. 

III. RESULTS

Qualitative results for over- and undershoot of single 
gestures as generated by our simulation model are listed 
here for different types of gestures: (i) Glottal gestures: 
Undershoot and overshoot in glottal adduction (rest 
position of vocal folds for phonation is too wide or too 
narrow) was studied in the context of simple vocalic 
syllables like a sustained [a::]. Undershoot (rest position 
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is too wide) perceptually leads to breathy voice quality. 
Overshoot in glottal adduction (vocal folds are strongly 
adducted; high medial compression) leads to harsh and 
strained voice quality and phonation may stop. Thus, 
overshoot in glottal adduction gestures forces the model 
to overshoot the pulmonary gesture (increase subglottal 
pressure) in order to maintain phonation. (ii) Vocalic 
gestures: Undershoot and overshoot was studied in 
babbling sequences like [bababa], and [sasasa]. Under-
shoot results perceptually in a too central schwa-like 
vowel quality. Speech sounds effortless and under-
articulated. In contrast, overshoot in our model leads to 
static and less coarticulated speech but all vowels sound 
clearly articulated. (iii) Consonantal gestures: Under-
shoot and overshoot was studied in the same babbling 
sequeunces (see above). Undershoot leads to short and 
imprecise productions of consonants. In few cases no 
closure or constriction is produced and the consonant is 
acoustically not present. Overshoot leads to very long 
constrictions or closures. Speech now sounds over-
articulated. (iv) Velopharyngeal gestures: Undershoot 
and overshoot was studied in the same babbling phrases 
(see above). Undershoot perceptually leads to nasalized 
speech. Plosives and fricatives are acoustically less 
present, because the pressure built-up in the oral cavity 
is imperfect. 
 One experiment was conducted to study (v) dys-
coordination of consonantal and phonatory gestures in 
the case of the syllable [ba]. In normal speech a phona-
tory gesture (glottal closing gesture) reaches its target 
region synchronously with the vowel (see syllable [pa] 
in Fig. 2: the target phase of the phonatory gesture (clos 
phon) starts after consonantal release of [p]). But in the 
case of a preceding voiced consonant (e.g., [ba]), the 
phonatory gesture reaches its target region earlier: 
normally during consonantal closure. If the glottal 
gesture in coordination with a pulmonary gesture now is 
shifted to even more earlier points in time, we get an 
inadequate pre-phonation effect, which can be trans-
cribed as [@ba].      
 

IV. DISCUSSION AND CONCLUSIONS 
 
A first qualitative auditory evaluation of synthesized 
samples of over- and undershoot for different types of 
gestures as well as of temporal dyscoordination of 
articulatory and phonatory gestures allows an associ-
ation of some of these mechanisms with types of neuro-
genic speech disorders. (i) Pre-phonation resulting from 
dysfunctions in temporal coordination of articulatory 
and phonatory gestures occurs in apraxia of speech. (ii) 
Undershoot of gestures leading to soft speech, monoto-
nous intonation, and reduced intelligibility of speech 
sounds occur in hypokinetic speech. (iii) It is difficult to 
associate overshoot phenomena synthesized in our 
model with hyperkinetic speech samples. More research 

is needed here. (iv) It is difficult to associate under- or 
overshoot phenomena with ataxic dysarthria. Complex 
syllables often are suppressed (produced fast and 
slurred) in natural data while simple syllables are 
articulated in a normal way. That results from articu-
latory reorganization affecting the whole motor plan of 
a syllable. (v) The same applies to spastic dysarthria. If 
a gesture target cannot be reached in its normal time 
interval because movements are too slow, reorgani-
zation of the motor plan takes place and lead to an 
increase in duration of the movement phase of gestures 
and subsequently to an increase in syllable durations. 
(vi) In contrast, in case of flaccid dysarthria the patient 
does not try to reach targets because of his experience 
about his motor constraints (his inabilities in target 
reaching). The patient stays with gesture undershoot.   

While this preliminary study shows the capability of 
our model in explaining some basic types of articulatory 
and phonatory settings occurring in different types of 
neurogenic speech disorders, a more detailed evaluation 
of the generated speech samples is needed for a more 
detailed comparison with natural speech samples.  
 

REFERENCES 
 
[1] A. van der Merwe, A., “New perspectives on speech 
motor planning and programming in the context of the 
four- level model and its implications for understanding 
the pathophysiology underlying apraxia of speech and 
other motor speech disorders,” Aphasiology, vol. 35, pp. 
397-423, 2021.  
[2] R.D. Kent, J.F. Kent, J.R. Duffy, J.E. Thomas, G. 
Weismer, and S. Stuntebeck, “Ataxic Dysartria,” J. 
Speech Lang. Hear. Res., vol. 43, pp. 1275-1289, 2000. 
[3] F.L. Darley, A.E. Aronson, and J.R. Brown, 
“Differential diagnostic patterns of dysarthria,” J. 
Speech Hear. Res., vol. 12, pp. 246-269, 1969. 
[4] B.J. Kröger, and P. Birkholz, “A gesture-based 
concept for speech movement control in articulatory 
speech synthesis,” in Verbal and Nonverbal Communi-
cation Behaviours LNAI 4775, A. Esposito, M. Faun-
dez-Zanuy, E. Keller, and M. Marinaro Eds. Berlin, 
Heidelberg: Springer, 2007, pp. 174-189. 
[5] C.P. Browman, and L. Goldstein, “Articulatory pho-
nology: An overview,” Phonetica, vol. 49, pp. 155-180, 
1992. 
[6] B.J. Kröger, T. Bekolay, and C. Eliasmith, “Mode-
ling speech production using the Neural Engineering 
Framework,” Proceedings of CogInfoCom 2014 Vetri 
sul Mare, Italy, 2014, pp. 203-208.  
[7] B.J. Kröger, “On the production mechanisms of the 
singer’s formant,” Proceedings of the 23rd Internatio-
nal Congress on Acoustics Aachen, Germany, 2019, pp. 
4568-4575.  

82



 
Abstract: Acoustical analysis is widely used in the 
diagnosis of speech disorders related to several 
pathologies and helps in defining the severity of 
their clinical pictures. Recently it was proved that 
some genetic syndromes may have a specific 
language phenotype. In this work we apply 
acoustical analysis to the discrimination between 
four genetic syndromes: Down, Noonan, Costello 
and Smith-Magenis. The analysis is performed with 
Praat and BioVoice tools. Several estimated 
acoustical features are applied as input to machine-
learning models. Though preliminary, the results 
are encouraging: the acoustical analysis of the 
sustained vowel /a/ give an average accuracy > 50% 
with both tools. Our findings confirm that for some 
syndromes a specific “vocal phenotype” exists that 
might support the clinician in highlighting 
syndrome’s characteristics not yet studied. 
Keywords: Language Phenotype, BioVoice, Praat, 
Genetic Syndrome, Costello Syndrome, Noonan 
Syndrome, Smith Magenis Syndrome, Down 
Syndrome. 

 
I. INTRODUCTION 

 
Genetic syndromes have been extensively studied 

for a better definition of their clinical manifestation, 
natural history and etiopathogenetic mechanisms. 
Nevertheless, some relevant but still unexplored 
aspects of these multisystemic conditions are not yet 
fully exploited, one of them being the characterization 
of vocal production. Genetic factors play a pivotal role 
not only in the determination of distinct phenotypes 
and neurobehavioral profiles, but also in establishing 
voice patterns with recognizable sound characteristics. 
Therefore, perceptual and acoustical analysis of voice 
could be helpful for the evaluation of specific voice 
characteristics as a non-invasive approach to the 
assessment of genetic syndromes [1]. More than 240 
genetic syndromes have distinctive abnormalities of 

voice quality, significant enough to be considered as 
diagnostic indicators [2]. For some genetic syndromes 
the existence of a specific language phenotype 
obtained by acoustical analysis was already discussed 
in the literature. For example, young subjects affected 
by Down Syndrome may have differences concerning 
tremor, biomechanical behaviour and vibration of the 
vocal folds as compared to normative subjects [3]. For 
the Smith-Magenis Syndrome, acoustical and 
biomechanical analysis was recently performed to 
detect possible differences between pathological 
subjects and control groups [4]. Also, for the Cornelia 
de Lange Syndrome, anomalies in speech such as high 
levels of speech impairment were found [5]. For the 
Noonan Syndrome some preliminary evaluation was 
made with acoustical and biomechanical analysis to 
explore different aspects of the syndrome [6]. These 
findings might contribute to the differential diagnosis 
between Noonan Syndrome and some RASopathies [7] 
that share several aspects with them, such as the 
Costello Syndrome [8]. Indeed the Costello Syndrome 
may have specific acoustical characteristics due to the 
craniofacial anomalies often related to this syndrome 
that could alter the process of phonation and 
articulation [9]. Finally, acoustical analysis could be 
helpful for an early intervention in patients with speech 
impairments, to improve their communication skills 
and reduce speech deficits [10]. Based on the above 
mentioned evidences, some genetic abnormalities of a 
recognizable phenotype are expected to determine a 
specific vocal phenotype. Therefore, vocal 
characterization could represent a useful tool in the 
diagnostic process and in defining the severity of some 
clinical pictures [4]. 

To this aim, machine-learning methods and 
supervised classifiers are applied here to acoustical 
parameters estimated with two analysis tools: Praat and 
BioVoice [13, 14]. Being based on non-invasive and 
easily administered tests, this approach could be 
helpful for obtaining additional features useful for 
diagnosis and for the automatic classification of 
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different syndromes. The paper is organized as 
follows: in Section II the dataset and machine-learning 
experiment are described. In Section III the main 
results obtained are presented. Section IV is devoted to 
the discussion of results, limits and possible future 
developments. Conclusions are reported in Section V. 
 

II. MATERIAL AND METHODS 
 

Data were collected at the Università Cattolica del 
Sacro Cuore, (Roma), Faculty of Medicine and 
Surgery. Machine-learning methods are applied to 
several acoustical parameters estimated from the vocal 
emissions of a set of 72 subjects (36 male and 36 
female, age range 4-33 years, mean 14±7 years), 
affected by 5 different genetic syndromes. Specifically, 
the dataset consists of: 22 subjects with Down 
syndrome (DS); 17 with Noonan syndrome (NS); 19 
with Costello Syndrome (CS); 10 with Smith-Magenis 
syndrome (SMS) and 4 with Cornelia de Lange 
syndrome (CdLS). However, the CdLS syndrome was 
excluded from the analysis due to the small number of 
subjects in this class. The vocal samples come from a 
previous study based on the SIFEL protocol [11], [12]. 
After a training phase of the subject, the recorded 
audio files consist of the vowel /a/ sustained for at least 
4 seconds. Recordings were obtained using a portable 
DAT (Digital Audio Tape) in a controlled environment 
(environmental noise < 40dB), with the microphone set 
at 15 centimetres from the subject’s lips and with an 
angle of 45°. The sampling rate was 44100 Hz. 
Moreover, in the same sessions, the Italian word 
/aiuole/ (flower beds) as well as the vowels /i/, /u/ /o/ 
and /e/ were recorded. However, in this work we did 
not perform the acoustical analysis of these data with 
BioVoice, because some of them were corrupted or no 
more available. Only the acoustical analysis previously 
performed by Praat [11, 13] was available. The quasi-
stationary central part of each sustained vowel (about 
3s of duration) was manually extracted by an expert, 
disregarding onset and offset [11]. 

For the acoustical analysis and classification we 
considered here both the previously collected dataset of 
parameters estimated with Praat and new estimates 
obtained with the BioVoice tool [14, 15]. Only the 
sustained vowel /a/ was considered. With Praat, the 
following 34 acoustical parameters were taken into 
account: mean, standard error, coefficient of variation, 
maximum and minimum of the fundamental frequency 
F0; Jitter (local, absolute, Relative Average 
Perturbation, DDP and PPQ5, where PPQ is Period 
Perturbation Quotient); Shimmer (%, dB, APQ3, 
APQ5, APQ11, DDA, where APQ is the Amplitude 
Perturbation Quotient); mean Noise to Harmonic Ratio 
(NHR); mean Harmonic to Noise Ratio (HNR); the 
first four formants (F1, F2, F3 and F4); four clinical 
features: gender, age, weight and body mass index. 

With BioVoice we extracted 24 acoustical features. 
Analysis is performed distinguishing between infants 
(<14 years) and adults [14] and in the case of adults 
between male and female. The 24 acoustical 
parameters from BioVoice are: maximum, minimum, 
mean, median and standard deviation for F0 and 
formants F1, F2 and F3; T0min and T0max for F0; jitter; 
Normalized Noise Energy (NNE). As before, the four 
clinical features: gender, age, weight and body mass 
index (BMI) were also included. In a first step, we 
compared the acoustical parameters in common 
between BioVoice and Praat.  Then, we used those 
parameters considering separately each syndrome 
subgroup. All features except gender (0=male, 
1=female) were normalized to zero mean and unit 
variance and the corresponding feature matrix was 
applied as input to the following supervised classifiers: 
k-nearest neighbours (KNN), support vector machine 
(SVM) and ensemble methods (we considered 
RUSBoost, AdaBoost and Random Forest). These 
methods are implemented under MATLAB 2020b 
computing environment [16]. K-fold cross validation 
(k=5) and Bayesian Optimization were applied for the 
selection of the hyper-parameters of the models. The 
optimization was performed considering the highest 
global Accuracy as validation metric (i.e. the average 
Accuracy between the four classes). To improve the 
classifier’s performance the ReliefF algorithm [16] was 
used as feature selection method. During the model 
selection process we also varied the number of input 
features for the classifiers. All the experiments were 
repeated 5 times, to take into account possible 
variations of the performance due to the random 
selection of the subjects during cross-validation. We 
did not find significant differences in the performances 
(<5% Accuracy). Finally, we performed the same 
experiment on the Praat dataset, considering also 
features from the vowels /a/, /i/ and /u/. In this case the 
features given by the formant ratios between vowels 
were added (e.g., F1[a]/F1[u]) [13]. As said before, this 
analysis could not be performed with BioVoice due to 
missing data. 

 
III. RESULTS 

 
Table 1 shows the comparison between Praat and 

BioVoice concerning the vowel /a/. We used a two-
sample t-test with level of significance α=0.05. We 
checked the hypothesis of normality by Shapiro-Wilk 
Test (level of significance α=0.05). Table 2 shows the 
True Positive Rate (TPR) and the False Negative Rate 
(FNR) for the four genetic syndromes. 

With BioVoice the 10 features obtained for the best 
model were: T0maxF0 /a/, gender, age, median F3 /a/, 
BMI, min F1 /a/, T0minF0 /a/, min F0, jitter and weight. 
The best model for BioVoice was a KNN with a 
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different syndromes. The paper is organized as 
follows: in Section II the dataset and machine-learning 
experiment are described. In Section III the main 
results obtained are presented. Section IV is devoted to 
the discussion of results, limits and possible future 
developments. Conclusions are reported in Section V. 
 

II. MATERIAL AND METHODS 
 

Data were collected at the Università Cattolica del 
Sacro Cuore, (Roma), Faculty of Medicine and 
Surgery. Machine-learning methods are applied to 
several acoustical parameters estimated from the vocal 
emissions of a set of 72 subjects (36 male and 36 
female, age range 4-33 years, mean 14±7 years), 
affected by 5 different genetic syndromes. Specifically, 
the dataset consists of: 22 subjects with Down 
syndrome (DS); 17 with Noonan syndrome (NS); 19 
with Costello Syndrome (CS); 10 with Smith-Magenis 
syndrome (SMS) and 4 with Cornelia de Lange 
syndrome (CdLS). However, the CdLS syndrome was 
excluded from the analysis due to the small number of 
subjects in this class. The vocal samples come from a 
previous study based on the SIFEL protocol [11], [12]. 
After a training phase of the subject, the recorded 
audio files consist of the vowel /a/ sustained for at least 
4 seconds. Recordings were obtained using a portable 
DAT (Digital Audio Tape) in a controlled environment 
(environmental noise < 40dB), with the microphone set 
at 15 centimetres from the subject’s lips and with an 
angle of 45°. The sampling rate was 44100 Hz. 
Moreover, in the same sessions, the Italian word 
/aiuole/ (flower beds) as well as the vowels /i/, /u/ /o/ 
and /e/ were recorded. However, in this work we did 
not perform the acoustical analysis of these data with 
BioVoice, because some of them were corrupted or no 
more available. Only the acoustical analysis previously 
performed by Praat [11, 13] was available. The quasi-
stationary central part of each sustained vowel (about 
3s of duration) was manually extracted by an expert, 
disregarding onset and offset [11]. 

For the acoustical analysis and classification we 
considered here both the previously collected dataset of 
parameters estimated with Praat and new estimates 
obtained with the BioVoice tool [14, 15]. Only the 
sustained vowel /a/ was considered. With Praat, the 
following 34 acoustical parameters were taken into 
account: mean, standard error, coefficient of variation, 
maximum and minimum of the fundamental frequency 
F0; Jitter (local, absolute, Relative Average 
Perturbation, DDP and PPQ5, where PPQ is Period 
Perturbation Quotient); Shimmer (%, dB, APQ3, 
APQ5, APQ11, DDA, where APQ is the Amplitude 
Perturbation Quotient); mean Noise to Harmonic Ratio 
(NHR); mean Harmonic to Noise Ratio (HNR); the 
first four formants (F1, F2, F3 and F4); four clinical 
features: gender, age, weight and body mass index. 

With BioVoice we extracted 24 acoustical features. 
Analysis is performed distinguishing between infants 
(<14 years) and adults [14] and in the case of adults 
between male and female. The 24 acoustical 
parameters from BioVoice are: maximum, minimum, 
mean, median and standard deviation for F0 and 
formants F1, F2 and F3; T0min and T0max for F0; jitter; 
Normalized Noise Energy (NNE). As before, the four 
clinical features: gender, age, weight and body mass 
index (BMI) were also included. In a first step, we 
compared the acoustical parameters in common 
between BioVoice and Praat.  Then, we used those 
parameters considering separately each syndrome 
subgroup. All features except gender (0=male, 
1=female) were normalized to zero mean and unit 
variance and the corresponding feature matrix was 
applied as input to the following supervised classifiers: 
k-nearest neighbours (KNN), support vector machine 
(SVM) and ensemble methods (we considered 
RUSBoost, AdaBoost and Random Forest). These 
methods are implemented under MATLAB 2020b 
computing environment [16]. K-fold cross validation 
(k=5) and Bayesian Optimization were applied for the 
selection of the hyper-parameters of the models. The 
optimization was performed considering the highest 
global Accuracy as validation metric (i.e. the average 
Accuracy between the four classes). To improve the 
classifier’s performance the ReliefF algorithm [16] was 
used as feature selection method. During the model 
selection process we also varied the number of input 
features for the classifiers. All the experiments were 
repeated 5 times, to take into account possible 
variations of the performance due to the random 
selection of the subjects during cross-validation. We 
did not find significant differences in the performances 
(<5% Accuracy). Finally, we performed the same 
experiment on the Praat dataset, considering also 
features from the vowels /a/, /i/ and /u/. In this case the 
features given by the formant ratios between vowels 
were added (e.g., F1[a]/F1[u]) [13]. As said before, this 
analysis could not be performed with BioVoice due to 
missing data. 

 
III. RESULTS 

 
Table 1 shows the comparison between Praat and 

BioVoice concerning the vowel /a/. We used a two-
sample t-test with level of significance α=0.05. We 
checked the hypothesis of normality by Shapiro-Wilk 
Test (level of significance α=0.05). Table 2 shows the 
True Positive Rate (TPR) and the False Negative Rate 
(FNR) for the four genetic syndromes. 

With BioVoice the 10 features obtained for the best 
model were: T0maxF0 /a/, gender, age, median F3 /a/, 
BMI, min F1 /a/, T0minF0 /a/, min F0, jitter and weight. 
The best model for BioVoice was a KNN with a 

Global Accuracy of 53.1%. Instead with Praat the best 
model was made of 15 features: gender, mean F1 /a/, 
age, mean F2 /a/, BMI, max F0 /a/, min F0 /a/, weight, 
mean F0 /a/. median F0 /a/, Shimmer /a/ APQ11, 
Shimmer /a/ APQ5, Shimmer local /a/, mean F4 /a/, 
Shimmer /a/ DDA. The best model with Praat was a 
KNN with 52.9% of Global Accuracy. 

The features used after the selection process are 
listed in descending order according to their relevance. 

 
Table 1 – Vowel /a/ - Comparison between BioVoice 
and Praat on the 4 syndromes. Statistically significant 

differences are highlighted in bold. 

 Syndrome 
(p-value) 

Feature DS NS CS SMS 
Median F0 /a/ 0.91 0.74 0.99 0.77 
Mean F0 /a/ 0.80 0.80 0.95 0.66 
Min F0 /a/ 0.01 0.05 p<0.01 0.13 
Max F0 /a/ p<0.01 0.44 0.02 0,16 
Mean F1 /a/ 0.55 0.43 0.92 0.56 
Mean F2 /a/ p<0.01 p<0.01 0.03 0.11 
Mean F3 /a/ p<0.01 0.12 0.23 p<0.01 

 
Table 2 – Vowel /a/ - Comparison between BioVoice 

and Praat - Results of k-fold cross validation. 
Genetic  

Syndrome 
BioVoice Praat 

TPR FNR TPR FNR 
DS 61.9% 38.1% 63.6% 36.4% 
NS 26.7% 73.3% 17.6% 82.4% 
CS 68.4% 31.6% 73.7% 26.3% 
SMS 55.6% 44.4% 40.0% 60.0% 

 
Table 3 shows the results obtained for the four 

genetic syndromes considering all the available Praat 
features for vowels /a/, /u/ and /i/.  

 
Table 3 - Vowels /a/, /i/ and /u/ - KNN’s Multiclass 

confusion matrix with Praat parameters. Main 
diagonal: TPR for each class. Other values: FNR for a 

single class. 
 Predicted Class 
True Class DS NS CS SMS 
DS 68.2% 13.6% 18.2% 0% 
NS 17.6% 64.7% 17.6% 0% 
CS 31.6% 5.3% 63.2% 0% 
SMS 20.0% 10.0% 10.0% 60.0% 

 
The best model was a KNN with Global accuracy 

64.7%. In this case, the following 15 features were 
selected: mean F1 /a/, age, gender, formant ratio 
F1[a]/F1[u], max F0 /a/, mean F2 /a/, Shimmer APQ11 
/a/, mean F0 /a/, median F0 /a/, min F0 /a/, Shimmer /a/ 

(dB), BMI, Shimmer APQ5 /a/, weight, Shimmer /a/ 
(local). 

 
IV. DISCUSSION  

 
This work presents preliminary results concerning 

the discrimination among some genetic syndromes: 
Down Syndrome, Noonan Syndrome, Costello 
Syndrome and Smith-Magenis Syndrome. The analysis 
was performed with acoustical parameters estimated on 
the sustained vowel /a/ with BioVoice and Praat and 
applying machine-learning models. The aim of this 
work was the definition of a proper language 
phenotype able to distinguish the genetic syndromes 
considered. The results shown in Table 2 and 3 
confirm a possible relationship between genetic 
syndromes and their specific acoustical characteristics. 
The results obtained with BioVoice and Praat are 
comparable. Statistical analysis highlights some 
differences between the two tools as far as the 
estimation of formants F2 and F3 for some syndromes 
is concerned (Table 1, p-values <0.05). This might be 
related to different techniques for formants estimation 
implemented in the two tools, as discussed in [14]. 
Moreover, differences between BioVoice and Praat 
exist concerning F0 max and min. This could be due to 
different ranges for F0 estimation defined by the two 
software tools. We remark that with BioVoice the 
selection of the frequency range for adults (male or 
female), infants and newborns is automatically made 
by BioVoice, while Praat requires some skill of the 
user to manually set the best frequency range. 
However, the results shown in Table 2 are preliminary, 
suggesting that the analysis of the vowel /a/ alone 
might not be enough for defining a vocal phenotype 
(TPRs<50%). This is confirmed in Table 3, where the 
acoustical analysis of vowels /i/ and /u/ performed with 
Praat was added for all the syndromes, giving 
Accuracy>50%. In particular, the formant ratio 
F1[a]/F1[u] was classified as one of the most relevant 
features by the ReliefF algorithm. This result suggests 
that a multi-vowel analysis might add more 
information than a single vowel analysis and should be 
preferred for the characterization of these genetic 
syndromes. Our results also confirm evidences 
previously found for some genetic syndromes. Indeed, 
for DS, NS and SMS acoustical analysis was already 
proved useful to find differences between pathological 
and control groups [3, 4, 6]. Table 3 also shows that 
SMS has the lowest false negative rate (0%), 
confirming that acoustical analysis can provide 
characteristics strictly related to the pathology [4]. Our 
results suggest that acoustical analysis could be useful 
also for CS. Indeed, as shown in Table 3, the false 
negative rates between CS and NS were 5.3% and 
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17.6% respectively, thus acoustical analysis might be 
useful to discriminate between these two syndromes. 

Our results are preliminary and further study is 
required to confirm them. First, the number of subjects 
was poor, thus more cases must be recruited especially 
for SMS and CdLS. Moreover, we did not perform a 
comparison between pathological subjects and control 
cases. This will be done in future work, also taking into 
account previous studies that already presented such 
differences for some genetic syndromes [3,4,6]. 
Considering the promising results obtained, further 
studies will be made to investigate if some of the 
acoustical features could be specific of a single genetic 
syndrome. The acoustical analysis of vowels /i/ and /u/ 
made with the Praat dataset was found useful, therefore 
we are planning to perform the same analysis with 
BioVoice on the same recordings, when available, 
and/or new ones. Another limit of the work presented 
here is the wide age range of the subjects, also due to 
the low number of cases in some syndromes (e.g. 
CdLS or SMS). If other subjects will be available, a 
more detailed analysis at different age ranges will be 
made. If successful, acoustical analysis may be 
included in the process of differential diagnosis as a 
completely non-invasive approach to detect specific 
acoustical characteristics related to speech or 
phonation impairment for several genetic syndromes, 
along with e.g. the analysis of facial characteristics and 
expressions [17]. 

 
V. CONCLUSIONS 

 
The work presented here is a first step towards the 

analysis and disentangle of the complex mosaics 
behind the detection of “voice” phenotypes related to 
some genetic syndromes. Preliminary results suggest 
that acoustical parameters and supervised classifiers 
might provide additional information about genetic 
syndromes through the characterization of voice. 
Future work will be devoted to the definition of a 
protocol for data recording and will concern a larger 
number of subjects and syndromes, as well as different 
supervised classifiers and feature selection approaches. 
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Abstract: Laryngeal high-speed videoendoscopy has 
been recognized as a valuable modality for scientific 
investigations of vocal fold vibrations. Its 
advantages over standard clinical stroboscopic 
imaging include its ability to provide detailed 
insights into divergences from the cyclicity of the 
vocal fold vibrations, which are characteristic for a 
significant subset of dysphonic voices. However, 
laryngeal high-speed videoendoscopy is not well 
established in the clinical care of disordered voices, 
partly because the interpretation of vibration 
patterns goes beyond the established clinical 
knowledge acquired from stroboscopic videos. A 
particular gap of knowledge exists in the 
understanding of how kinematic vocal fold 
parameters relate to patterns of vocal fold 
vibration, and how irregularities look like in high-
speed videos. We aim at exploring these aspects 
using a computer model that takes kinematic 
parameters as inputs and synthesizes high-speed 
videos. The presented videos show zipper-like vocal 
fold vibrations, pressed phonation, voice onset, 
constant and time-varying left-right and anterior-
posterior phase differences, and left-right frequency 
differences (diplophonia). 
Keywords: Laryngeal high-speed videos, dysphonia, 
voice quality characterization 

 
I. INTRODUCTION 

 
Vocal fold (VF) vibration kinematics reflect vocal 

health status and are a key element connecting voice 
physiology with voice acoustics and perception. The 
clinical standard for visualizing kinematics of VF 
vibrations is laryngeal stroboscopy, while laryngeal 
high-speed videolaryngoscopy is more frequently used 
in detailed scientific research on VF vibrations. 

A recently proposed kinematic model for 
synthesizing single-line kymograms has used sinusoids 

for a number of surface points of the VFs’ frontal cross 
section [1]. Sinusoids were combined for lateral and 
vertical movement, which enabled a circular motion in 
the frontal plane as well as the simulation of the 
mucosal waves that travel upwards on the medial VF 
surfaces and continue laterally on the top VF surfaces. 
The kymogram synthesizer was generalized in the past 
to be capable of simulating time-constant left-to-right 
phase differences, and it was validated by fitting 
simulated to clinical kymograms [2]. 

We propose synthesizing laryngeal high-speed 
videos (LHSVs) by stacking a number of artificial 
kymograms obtained with a further advancement of the 
synthesizer proposed earlier [1]. We use kymograms 
that are sampled at 256 equidistant sagittal positions. 
The synthesizer is advanced here to be capable of more 
general left-right differences. We also propose a few 
rules regarding the variation of kinematic parameters 
across sagittal positions, to simulate anterior-posterior 
differences. Most notably, we control the vibration at a 
few spatially separated supporting points (left, right, 
and anteriorly, midsagittal, posteriorly), while ensuring 
spatial continuity of the parameters along the sagittal 
axis during interpolation. As a result, provided control 
parameters help developing an intuition about their 
relation to the VF vibration patterns. In addition, these 
parameters enable the generation of different VF 
vibration patterns including transients, e.g., voice onset 
and offset, as well as anterior-posterior and left-right 
vibration asymmetry in amplitude, frequency, and 
phase. 
 

II. METHODS 
 

First, the model for generating single-line 
kymograms proposed earlier is described concisely. 
More detailed explanations regarding newly proposed 
left-right differences are also given. Second, we extend 
the model to enable the generation of artificial LHSVs 
by stacking a number of single-line kymograms. We 
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enable anterior-posterior differences of kinematic 
parameters such that the model is capable of producing 
a few qualitative key features that are observed in 
LHSVs of normophonia and dysphonia. 

A. Kinematic model for single-line kymograms

Figure 1 illustrates the reference geometry of the 
VFs, the VF vibration, and the model of local 
illumination introduced in [1]. The reference 
geometry of the VF surfaces through a frontal
cross section is initialized according to the M5 model 
[3]. The reference geometry is the VFs’ 
contours at zero amplitude of vibration, i.e., the pre-
phonatory shape also referred to as the ‘previbratory
position’. The M5 parameter that we vary in this study 
is the glottal halfwidth wh, which reflects the adductory 
adjustment of the vocal folds. To simulate vibrations, 
surface points of the VFs are moved circularly. The 
vibration amplitudes, i.e., the circles’ radii, are 
imposed on the lower and the upper margin separately. 
At the bottom VF surface, the amplitudes of the points 
below the upheaval point Z are set to 0. At the top 
surface, the amplitude decays gradually towards 
lateral, resulting in damping of the outward travelling 
mucosal waves. Phase differences between individual 
surface points are imposed in order to simulate the 
mucosal waves, i.e., surface waves that start at the 
subglottal upheaval point Z and travel via the medial 
surface to the top surface, and laterally from there. 

Figure 1: Contours of the vocal folds in a frontal 
cross section.

Kymographic images are obtained from vibrating 
VF contours using a local illumination model based on 
diffuse reflection as proposed in [1]. In particular, the 
light intensity across the VF surfaces is proportional to 

the distance to the light source, as well as the slope of 
the surface, i.e., its declination with regard to the 
direction of light incidence.

The kinematic VF parameters are allowed to be 
different for the left and the right VF. First, to simulate 
diplophonia, i.e., biphonation in which the left and the 
right VFs vibrate at different rates, we use different 
vibration frequencies for the left and the right VF. 
Typically, due to coupling via the common airstream 
through the glottis as well as collision, the frequencies 
are small integer multiples of a common cycle 
frequency, e.g., 3/4, or 4/5 [4].

Second, we distinguish between constant and time-
varying phase differences. To simulate a time-constant 
delay of one VF with regard to the other, a time-
constant left-right phase difference is imposed as 
proposed in [2]. This results in paramedian collision of 
the vocal folds, i.e., collision occurring at the right or 
the left of the midline. To simulate irregular VF 
vibration, a time-variant left-right phase difference is 
imposed. The phase difference is allowed to vary from 
one pulse to the next. The variation is imposed by 
randomly shifting times of individual pulses, as 
proposed in [5]. Time shifts are white Gaussian 
random numbers, which differ between the left and the 
right VFs. This results in a phase distortion and a jitter 
that differs between the two VFs.

B. Combining single-line kymograms to synthetic
laryngoscopic videos

For each artificial LHSV, 256 kymograms generated 
at equidistant sagittal positions are stacked. The first 
kymogram is located at the anterior end of the VFs, 
i.e., the anterior commissure, and the last one at the
posterior end, i.e., at the vocal processes. The length of
the VFs is 15 mm in all presented simulations.
Variation of kinematic parameters across sagittal
positions is described as follows.

The posterior glottal halfwidth wh
post controls the 

opening of the reference glottal opening at the 
posterior end of the VFs. At the anterior end, the 
glottal halfwidth is negative to compensate for the 
upper margin radius of the M5 model, which makes the 
top surface of the VFs plain where the VFs are 
connected. At sagittal positions in between the anterior 
and the posterior ends, the glottal halfwidth is linearly 
interpolated.

Vibration amplitudes A are controlled separately for
the midsagittal position and posterior end, while they 
are 0 at the anterior end. The vibration amplitude is 
assumed to be maximal at the midsagittal position, and 
smaller at the posterior end. 

An anterior-posterior phase difference Φs enables the 
generation of waves that travel in a sagittal direction. 
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Kymographic images are obtained from vibrating 
VF contours using a local illumination model based on 
diffuse reflection as proposed in [1]. In particular, the 
light intensity across the VF surfaces is proportional to 

the distance to the light source, as well as the slope of 
the surface, i.e., its declination with regard to the 
direction of light incidence.

The kinematic VF parameters are allowed to be 
different for the left and the right VF. First, to simulate 
diplophonia, i.e., biphonation in which the left and the 
right VFs vibrate at different rates, we use different 
vibration frequencies for the left and the right VF. 
Typically, due to coupling via the common airstream 
through the glottis as well as collision, the frequencies 
are small integer multiples of a common cycle 
frequency, e.g., 3/4, or 4/5 [4].

Second, we distinguish between constant and time-
varying phase differences. To simulate a time-constant 
delay of one VF with regard to the other, a time-
constant left-right phase difference is imposed as 
proposed in [2]. This results in paramedian collision of 
the vocal folds, i.e., collision occurring at the right or 
the left of the midline. To simulate irregular VF 
vibration, a time-variant left-right phase difference is 
imposed. The phase difference is allowed to vary from 
one pulse to the next. The variation is imposed by 
randomly shifting times of individual pulses, as 
proposed in [5]. Time shifts are white Gaussian 
random numbers, which differ between the left and the 
right VFs. This results in a phase distortion and a jitter 
that differs between the two VFs.

B. Combining single-line kymograms to synthetic
laryngoscopic videos

For each artificial LHSV, 256 kymograms generated 
at equidistant sagittal positions are stacked. The first 
kymogram is located at the anterior end of the VFs, 
i.e., the anterior commissure, and the last one at the
posterior end, i.e., at the vocal processes. The length of
the VFs is 15 mm in all presented simulations.
Variation of kinematic parameters across sagittal
positions is described as follows.

The posterior glottal halfwidth wh
post controls the 

opening of the reference glottal opening at the 
posterior end of the VFs. At the anterior end, the 
glottal halfwidth is negative to compensate for the 
upper margin radius of the M5 model, which makes the 
top surface of the VFs plain where the VFs are 
connected. At sagittal positions in between the anterior 
and the posterior ends, the glottal halfwidth is linearly 
interpolated.

Vibration amplitudes A are controlled separately for
the midsagittal position and posterior end, while they 
are 0 at the anterior end. The vibration amplitude is 
assumed to be maximal at the midsagittal position, and 
smaller at the posterior end. 

An anterior-posterior phase difference Φs enables the 
generation of waves that travel in a sagittal direction. 

We distinguish between constant and time-varying 
sagittal phase differences, as is done for the left-right 
phase differences. 

Time-constant sagittal phase differences were 
already simulated in the past using delay lines [6]. 
Time-varying phase differences enable the simulation 
of irregular VF vibrations. The phase difference is 
allowed to vary from one glottal pulse to the next, 
resulting in a jitter that is different across sagittal 
positions. 

 
III. RESULTS 

 
Figure 2 shows two video frames of zipper-like VF 

vibrations and selected control parameters (amplitudes 
and halfwidth) across sagittal positions. Frames are 
shown for times of maximal and minimal opening. 
Zipper-like vibrations come with a chink that is caused 
by a large posterior halfwidth wh

post. The most anterior 
point of collision C moves back and forth cyclically, 
like the zipper of a jacket. Also shown are midsagittal 
and posterior amplitudes of the upper and lower 
margins (Au

mid, Al
mid, Apost). 

 
Figure 2: Zipper-like vocal fold vibration. 
 

Figure 3 illustrates a video of pressed phonation, 
which arises from small halfwidths and large 
amplitudes. The frames show maximal opening (left), 
maximal closure (right), and a frame in between 
(middle). Mucosal waves that travel laterally are 
visible. 
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Figure 4 shows selected control parameters and a 
kymogram of a breathy voice onset. The glottal 
halfwidth decreases over time while the vibration 
amplitudes increase smoothly. The upper plot indicates 
the increase of the posterior halfwidth wh

post+ 

approaching 0, and an amplitude factor A* 
approaching 1. 
 

 

 
Figure 4: Breathy voice onset. 
 

Figure 5 illustrates time-constant left-right phase 
difference. The video frames show maximal lateral 
deflections of the left and the right vocal folds, and a 
frame in between. The phonovibrogram is also shown. 
 

 

 
Figure 5: Time-constant left-right phase difference. 
 

Figure 6 illustrates time-varying left-right phase 
difference. The phase distortion of the left and the right 
VF are reported individually (top, ΦL

dist, ΦR
dist). In 

times during which the distortion of the left VF is 
larger, the left VF’s vibration is delayed, and vice versa 
(L: late, E: early). 
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Figure 7 illustrates time-constant anterior-posterior 
phase difference. Three subsequent frames of the open 
phase are shown. The anterior vibration is delayed with 
regard to the posterior vibration, resulting in a wave 
travelling anteriorly. 

 
Figure 7: Time-constant anterior-posterior phase 
differences. 
 

Figure 8 illustrates time-varying anterior-posterior 
phase differences. Shown are the time-varying phase 
distortion for the posterior and anterior end (ΦP

dist, 
ΦA

dist), a multi-line kymogram, and a phonovibrogram. 
Vertical lines in the kymograms indicate times of 
maximal midsagittal deflection. Anterior and posterior 
maxima are early (E), late (L), or in time (I), which 
may switch from one pulse to the next. 
 

 

 
Figure 8: Time-varying anterior-posterior phase 
differences. 
 
 
 
 
 
 

IV. DISCUSSION AND CONCLUSION 
 

A kinematic model of VF vibrations is combined 
with a model of light reflection, enabling the creation 
of artificial LHSVs. The model of light reflection and 
the kinematic model for one frontal cross section 
proposed in the past is extended to reflect sagittal 
differences. Artificial LHSVs are generated by 
stacking several individual kymograms obtained at 
equidistant sagittal positions. Informal comparisons 
with clinical LHSVs appear to be promising, given that 
the vibration patterns observed in the artificial videos 
look visually similar to patterns seen in clinical videos. 
Formal comparisons with natural data are subject to 
future research. 
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Abstract: This work is aimed at confirming the 
validity of some of the indicators used to estimate 
the vocal effort of professional singers and at testing 
new parameters in the perspective to provide new 
aids to that workers who have voice as their main 
working tool. In particular, a specific software was 
developed for the analysis of wave files obtained 
from the subjects examined using vocal samples 
from opera-musical workers. Vocal effort of six 
professional singers of an Opera Institution has 
been first evaluated by means of the methodology of 
the APM (Ambulatory Phonation Monitor) 
commercial system. The comparison between this 
method, based on the measure of the acceleration of 
the laryngeal tissues, and a method based on the 
analysis of the energy content of the harmonic 
components of the speech signal permitted a 
validation of the latter. 
Two different indexes were analyzed, the SPR 
(Singer Power ratio) and a new proposed indexed 
based on the analysis of the pitch.  
Keywords :  lyric singers, vocal effort, pitch, vibrato. 
 

I. INTRODUCTION 
 
Professional singers are a category of workers   
exposed to a high risk of developing professional 
disorders linked to the so-called vocal effort (VE) due 
to the prolonged use of their phonatory apparatus. The 
stress of their vocal tract is constantly exposed to 
during performances can produce long-term effects 
ranging from voice quality degradation to severe 
laryngeal diseases. There are many scientific studies 
that analyze vocal fatigue in singers and actors 
similarly to what has already been seen in other 
categories of workers exposed to vocal effort such as 
teachers [1-3]. The study on the vocal effort of teachers 
focused on the analysis of the fundamental frequency 
(f0) or pitch, the duration of phonation and the average 
sound pressure level emitted at a certain distance 
during daily work [4]. 

Afterwards, to evaluate the vocal effort of the singers, 
other parameters were introduced such as the variation 
of f0 (such as "vibrato" analysis), its standard deviation, 
the so-called SPR or Singing Power Ratio and others 
[5-7]. These parameters, obtained with particular 
methods of analysis of vocal emission, were then 
correlated with the psychophysical evaluation reported 
subjectively by the subjects themselves [8-10]. 
At present, one of the most interesting parameters well 
correlated to the laryngeal stress is the so called vocal 
effort dose. This parameter is mainly quantified by 
three different components [11, 12]: the time dose, or 
the percentage of phonation time,  the cycle dose and 
the distance dose. In particular, the time dose 
represents the total time the vocal cords vibrated 
during the total time of the speech that was recorded. 
The percentage of phonation time is the ratio, 
expressed as a percentage, between the phonation time 
and the total recording time. 
The main methodology for evaluating VE by means of 
vocal effort dose is based on the use of particular 
dosimeters (such as APM, Ambulatory Phonation 
Monitor) capable of directly recording the energy 
dissipated by the phonatory apparatus in terms of 
acceleration of the larynx tissues through a system 
based on an accelerometric measurement that allows to 
reconstruct those parameters that quantify the vocal 
effort 
Our aim is to make a comparison between the VE, 
evaluated by means of APM commercial system, and a 
method based on the analysis of the energy content of 
the harmonic components of the speech signal 
permitting a validation of the latter. This work is 
necessarily linked to a previous one [13] in which 
some of the authors had already examined similar 
parameters such as f0, f0 vibrato and the SPR, obtaining 
some first indications on the goodness of these 
indicators. Due to the few subjects making up the 
sample under examination, this work is a preliminary 
study waiting to be able to perform better statistics 
based on new and larger samples of subjects. 
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II. METHODS 
 
Vocal effort of six professional singers of an Italian 
Opera Institution, the Teatro Regio in Turin, has been 
evaluated by means of the methodology of the APM 
commercial system. In particular the instrument used 
for the vocal effort measurements consisted of two 
complete Ambulatory Phonation Monitors model APM 
3200 (Kay PENTAX), both equipped with model 3200 
Ambulatory Phonation Monitor Version 1.4 software 
required for carrying out the measurement 
configuration, calibration, download and offline 
analysis of the data stored by the device. 
 The APM consists of a data-logging unit, battery 
powered and wearable in a pouch, connected by cable 
to an accelerometer (BU7135 Knowles Corporation) 
embedded in a silicone base. Each of the APMs is 
equipped with a microphone complete with a table 
base, necessary in the calibration phase, and the RS232 
/ USB connection cable for communication between 
the APM and the PC. The data-logging unit is able to 
acquire a time history of the phonation parameters, 
SAL (skin acceleration level) and fundamental speech 
frequency (f0) with a time interval of 50 ms. By means 
of a previous calibration, carried out by the subject on 
whom the measurement is made, the measured SAL 
values are correlated to the level of the vocal sound 
emission SPL (sound pressure level). The 
accelerometer is placed on subject’s neck and 
connected with the portable device as shown in Fig. 1. 
 

                        
 
Fig. 1 Positioning of the accelerometer and dimensions of the 
data logger of the APM. 
 
In order to correlate the accelerometric measure of 
SAL to SPL and, so, reconstruct vocal effort index, a 
calibration procedure was  performed before the 
measurement. During this phase, the singer was  
positioned in such a way as to have his mouth in line 
with the calibration microphone, at a distance of about 
15 cm from it, using the appropriate spacer. 
Afterwards, to further correlate APM VE values and 
the parameters under examination, we proceeded in the 
following way: the same singers to whom the APM 

dosimeter was applied were asked to perform some 
simple vocal exercises consisting of emitting short 
sentences, containing phonemes. These “vocalizes” 
were recorded before and after the vocal effort of the 
subject and were also analyzed using two different 
software. One is the free open source Praat software, 
used to extract the pitch trend or f0 time history of the 
vowel ‘a’ emitted by the subject. The second is a 
virtual instrument developed in the LabView platform. 
With the use of this last virtual instrument it was 
possible to analyze the temporal trend of the pitch 
extracted previously with Praat. With this analysis one 
of the parameters was obtained, that is the total 
harmonic distortion (THD) of pitch trend, which 
reflects the greater or less precision of the so-called 
"vibrato" performed by the singer [14]. The precision 
in the emission of the vibrato is a parameter that is 
believed to reflect the strain of the singer's voice and, 
therefore, could represent an index of his vocal effort.  
With the same LabView virtual instrument, a particular 
harmonic analysis of the recorded vocal signal was 
carried out from which the SPR parameter was 
obtained. Here we have preferred to adopt the 
definition used by Omori et al. [15] according to which 
the SPR is given by the difference in dB between the 
highest harmonic present in the range between 2-4 kHz 
and that between the range 0-2 kHz, but, as in our 
previous work [13], we extended these range to 0-2.5 
kHz and 2.5-6 kHz. 
 

III. RESULTS AND DISCUSSION 
 
The measurements made with the APM on the six 
subjects after the speech activity of a normal working 
day gave the results reported in Table I. 
Alongside the singer's types are: the estimated average 
sound pressure level, referred to 15 cm from the mouth 
(SPL15 cm [dB]), the A-weighted equivalent continuous 
sound level at a distance of 1 m from the mouth 
referred to the entire measurement time (LAeq 1m 
[dB(A)]) and, in the last column, the degree of effort as 
established by the standard UNI EN ISO 9921.  
 
       Table I: Vocal Effort indexes obtained with the APM. 
 

Voice SPL15 

cm [dB] 
LAeq 1m 
[dB(A)] 

Degree of effort 
according to 
UNI EN ISO 
9921 

Soprano 1  75.3 61.3 normal 
Soprano 2 70.3 55.9 relaxed 
Mezzo 
Soprano 

83.3 73.4 strong 

Tenor 70.7 66.4 elevated 
Alto 71.8 74.2 strong 
Baritone 74.,6 74.4 strong 
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These indexes were related to the value of the SPR 
parameter described above and obtained by the 
LabView software following the analysis of the “wav” 
files of the vocalizations of the vowel ‘a’ carried out by 
the singers before and after the aforementioned singing 
activity. A similar correlation was made after the 
analysis carried out on the pitch files extracted with the 
Praat program providing the additional parameter 
under consideration, namely the TDH of the trend over 
time of f0. All these results are reported in Table II. 
 
  Table II: Comparison between APM indexes and SPR and 
THD parameters. 
Voice Degree 

of effort 
index  

SPR 
pre 
[dB] 

SPR 
post 
[dB] 

THD 
pre 
% 

THD 
post 
% 

Soprano 
1 

normal -29.8 -29.5 44.1 134.0 

Soprano 
2 

relaxed -25.2 -25.5 33.7 22.6 

Mezzo 
soprano 

strong -17.1 -17.4 31.2 42.1 

Tenor elev. -23.7 -16.5 8.4*                       95.6 

Alto strong -25.1 -28.8 58.4 124.0 

Baritone strong -20.7 -30.0 107.4 63.2 

 
It can be basically  noted that in  absence of effort, that 
is with a relaxed or normal voice index, the value of 
SPR does not change, while, in the presence of effort 
with a strong or high voice index, the parameter, 
except for one case, increases in absolute value, as 
expected. As regards the SPR parameter, we note a 
trend that substantially confirms what has already been 
deduced in an our previous work [13], although a 
slightly different definition of the same parameter  was 
used  in other papers [15-19]. Although the statistical 
significance was not achieved, it can be seen in Fig.2 
that the differences in SPR between pre and post 
exposure to vocal effort tend to be much larger, in 
absolute value when the effort is intense. 

 
 
         Fig.2 Boxplot representing the SPR difference      
         

     
 
Fig.3 Frame of temporal trend of the pitch showing an 
excellent emission of "vibrato". 
 
The behavior of the THD is much more difficult to be 
interpreted. This occurrence is probably due to the non-
homogeneity of the vibrato emission mechanism used 
by the singers, as discussed later. It is interesting to 
note that in the case of the lowest THD value (Tenor) 
there is in correspondence an excellent vibrato 
emission, as shown in Fig. 3. 
As regards the pitch TDH parameter , we have seen 
that this parameter has the right trend with the vocal 
effort when there is a sustained and stable emission of 
the vibrato itself. 
Unfortunately, as we did not explicitly requested the 
singers to emit the vocal sung using vibrato, the result 
of this analysis is strongly influenced by this 
circumstance.  
At the time of recording these vocalizations, we had 
not yet focused on the analysis of this new parameter, 
but we were based on a protocol used in a similar 
previous study [13]. We are planning to focus, in a 
future study, on a more accurate analysis of the vibrato, 
emitted  with adequate  vocalizations. 
In fact, it is noted that where the vibrato is clearly  
present, the parameter under investigation follows the 
expected trend as function of the vocal effort index, i.e. 
a degradation of the "purity" of the vibrato, increasing 
with the effort, can be observed, which translates into 
an increase of the THD parameter of the pitch.  

 
V. CONCLUSION.  

 
The comparison between the vocal effort, evaluated by 
means of a method based on the measure of the 
acceleration of the laryngeal tissues, implemented on 
the APM commercial system, and a method based on 
the analysis of the energy content of the harmonic 
components of the speech signal is likely to permit a 
validation of the latter. Two different indexes were 
analyzed, the SPR and a new proposed index based on 
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the analysis of the pitch (THD of f0). The first seems to 
follow the indication given by the accelerometric 
method, although, due the scarcity of the sample 
observed, the statistical significance was not achieved. 
The second parameter, although it is in principle 
promising, did not give good correlation with the APM 
parameters. This occurrence is probably due to the 
non-homogeneity of the vibrato emission as discussed. 
On the other hand, the energy content of the harmonic 
components of the speech signal is a simple analysis 
that could be implemented also on a smart phone that 
would permit speech signal recording of the subject 
under test.  This procedure could permit an auto 
evaluation of the vocal effort level during the routine 
performance at workplace, making this method very 
simple to use in remote measurement campaigns that 
are essential in this period of covid-19 pandemic. 
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the analysis of the pitch (THD of f0). The first seems to 
follow the indication given by the accelerometric 
method, although, due the scarcity of the sample 
observed, the statistical significance was not achieved. 
The second parameter, although it is in principle 
promising, did not give good correlation with the APM 
parameters. This occurrence is probably due to the 
non-homogeneity of the vibrato emission as discussed. 
On the other hand, the energy content of the harmonic 
components of the speech signal is a simple analysis 
that could be implemented also on a smart phone that 
would permit speech signal recording of the subject 
under test.  This procedure could permit an auto 
evaluation of the vocal effort level during the routine 
performance at workplace, making this method very 
simple to use in remote measurement campaigns that 
are essential in this period of covid-19 pandemic. 
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Abstract: Vertical left-right level difference due to 
angular asymmetry characterises unilateral vocal 
fold paralysis. High-speed image sequences of three 
distinct auto-oscillating silicone vocal folds replicas 
are analysed simultaneously in both space and time 
with a dynamic vibration mode decomposition 
while imposing different degrees of angular 
asymmetry. From the modes eigenvalue spectra, it 
is found for all three replicas that the degree of 
angular asymmetry affects the decay of vibration 
modes. More in particular, for the assessed vocal 
fold replicas, increased mode decay is observed 
when the replica contains a stiff epithelium-like 
surface layer whereas it decreases otherwise. 
Spatial mode patterns near the glottal aperture 
reflect the mode order along the posterior-anterior 
direction and the imposed angular asymmetry 
reduces the spatial mode extent near the tilted vocal 
fold edge. Consequently, the quantified dynamic 
vibration mode properties, including the ones 
observed for higher order modes, are of potential 
interest for clinical studies involving high-speed 
vocal folds auto-oscillation imaging.  
Keywords:  High-speed vibration imaging, dynamic 
vibration mode analysis, mechanical vocal fold 
replica, vertical positioning asymmetry 

 
I. INTRODUCTION 

 
Unilateral vocal fold paralysis (UVFP) is a common 

vocal fold (VF) pathology characterised by an air 
escape due to left-right VF asymmetries of the VF’s 
shape, tension or/and positioning. The glottic 
insufficiency associated with UVFP is reported to lead 
to dysphonia as air leakage is often associated with 
breathy voice or vocal fatigue.   

In recent work [1,2], three molded deformable multi-
layer silicone VF replicas (two-layer M5, three-layer 
MRI and four-layer EPI) with different degree of 
complexity were used to study the effect of vertical 
tilting of a single VF on their auto-oscillation. 
Concretely, the right VF was kept in place whereas the 
posterior edge of the left VF was tilted in the medio-
sagittal plane towards the superior direction.  The 

resulting vertical tilting is parameterised by angular 
asymmetry angle . Imposing angular asymmetry in 
the range from 0° up to 25° results in a vertical level 
difference up to a few millimeters as observed in 
patients suffering from UVFP.  Imposed vertical tilting 
of a single VF causes left-right VF positioning 
asymmetry whereas left-right VF tension and shape 
symmetry are maintained.  The use of three different 
VF replicas allowed to consider the impact of tilting 
for replicas with different shape and multi-layer 
composition as outlined in [1,2].   

Analysis of the upstream pressure [1] showed a 
decrease of the oscillation frequency and an increase of 
the oscillation onset threshold pressure with increasing 

 was observed. The gradual loss of VF’s contact with 
, inducing increased glottal air leakage, was pointed 

out to catalyse these tendencies.  
High-speed (HS) imaging of the vibrating VF’s for 

different  was considered in [2]. Local image 
features, exploiting HS videokymographic (VK) line-
scans, were quantified during steady state oscillation. 
Left-right vibration asymmetry parameters showed that 
the normal VF entrains the movement of the tilted VF. 
This left-right vibration asymmetry caused the mucosal 
wave velocity in the tilted VF to be lower than the one 
in the normal VF.   

In this work, it is sought to further investigate 
sustained steady state VF vibration without (  = 0°) 
and with (  > 0°) angular asymmetry by analysing 
high-speed (HS) image sequences of the vibrating 
VF’s. Instead of focusing on local spatial features or 
line scans as in previous work [2], it is sought to assess 
simultaneously temporal as well as spatial information 
of the global VF’s auto-oscillation. A dynamic 
vibration mode decomposition (DMD) of the observed 
vibration snapshots is applied as other VF vibration 
mode decomposition methods such as the empirical 
eigenfunction analysis do not inform on the temporal 
mode dynamics. This allows to evaluate how the effect 
of angular asymmetry affects the spatial and temporal 
vibration mode features.  
 

II. EXPERIMENTAL & ANALYSIS METHODS 
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The experimental setup and flow supply used to 
generate the FS interaction underlying the VF auto-
oscillation is similar to the one described in [1,2]. The 
pressure difference driving the VF’s auto-oscillation
corresponds to the measured upstream pressure.  All 
experiments are performed with a mean upstream 
pressure set just (< 50 Pa) above the oscillation onset.  
Angular asymmetry degrees are set to 0°, 4°, 10° and 
20° for all replicas. For the M5 VF replica also 16° is 
considered.  The upstream pressure varies between 400 
Pa and 1500 Pa depending on the asymmetry degree as 
well as on the VF replica and the oscillation frequency 
ranges from 93 Hz up to 144 Hz.   As detailed in [2] a 
single HS camera (frame rate 4 kHz) is placed in the 
medio-frontal plane in order to acquire instantaneous 
images of the vibrating VF’s. In this plane, three 
viewing angles are considered non-simultaneously 
resulting in top, diagonal and level views.  Acquired
instantaneous images are two-dimensional grayscale 
intensity matrices whose dimension is set by the 
camera resolution of 240 px 320 px.  

For each assessed condition, 1 second or 4000 
subsequent snapshots of steady-state auto-oscillation 
are analysed. A DMD analysis is applied to each image 
sequence rearranged in the system matrix X [3].  DMD
results in a temporal and spatial decomposition of the 
global VF auto-oscillation assuming a locally linear 
system dynamics s(t) with time t.  The system 
dynamics is then obtained from the eigenvectors and 
eigenvalues of the system matrix which is matrix 
notation becomes

with a diagonal matrix whose entries are the 
eigenvalues, is a matrix whose columns are the 
eigenvectors and is a column vector of the 
coefficients of the first image in the eigenvector basis.
The sought spatial analysis of the global auto-
oscillation is provided by the DMD modes given by the 
eigenvectors. The sought temporal analysis is provided 
by the corresponding eigenvalues.  For each spatial 
mode, its mode frequency is obtained from the 
imaginary part of the eigenvalue whereas its 
growth rate is determined from the real part of the 
eigenvalue , which is smaller or equal to zero for 
stable modes. The DMD eigenvalue spectrum is thus 
obtained by plotting for each mode its frequency as a 
function of its growth rate.  The amplitude of each 
mode is given by the associated coefficient in .  

III. VIBRATION ANALYSIS RESULTS

A. Temporal DMD mode analysis: eigenvalue spectra

DMD eigenvalue spectra of stable vibration modes 
for top views of all three replicas and different 
asymmetry angles are plotted in Fig. 1.

Fig. 1: DMD eigenvalue for top views and different
asymmetry angles (symbols) for: a) M5, b) MRI and c) 

EPI.  Filed symbols indicate dominating modes with 
oscillation frequency up to 750 Hz.

All spectral branches originate with a non-oscillation 
mean flow mode (j=1) associated with the zero 
eigenvalue at the origin. This non-oscillation mode 
expresses the influence of the mean flow along the 
inferior-superior direction on the VF’s vibration 
pattern. Stable branches with least decay are identified 
as main spectral branches. Dominating oscillation 
modes (j = 2...6) on the main spectral branches with 
frequencies up to 750 Hz are indicated with filled 
symbols. Both the non-oscillation mode and most 
dominating oscillation modes decay slowly as their real 
parts approximate zero. The real part of the eigenvalue 
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decreases as the mode frequency increases, typically 
above 750 Hz for the main spectral branches, so that 
these modes decay mode rapidly and hence contribute 
less to observed temporal vibration patterns. It is noted 
that primary oscillation (PO mode, mode j = 2) 
frequencies obtained from the DMD eigenvalue spectra 
matches with previous reported values in [1,2].  
Despite these similar tendencies for all VF replicas, 
Fig. 1 shows that the type/structure of VF replica 
affects the influence of angular asymmetry angle on the 
eigenvalue spectra.  This is most obvious for the M5 
replica compared to the MRI and EPI replicas.  

Increasing the angular asymmetry from 0° to 4°
either decreases (MRI/EPI) or increases (M5) the 
decay of high frequency modes. Therefore, in terms of 
the number of non-decaying stable oscillation modes, 
introducing a slight angular asymmetry either enriches 
(MRI/EPI) or strips (M5) the vibration pattern. Further 
increasing the angular asymmetry angle above 4°
reveals the opposite tendency as mode decay either 
decreases (M5) or increases (MRI/EPI). So that in 
terms of the number of non-decaying stable oscillation 
modes, the vibration pattern either enriches (M5) or 
recedes (MRI/EPI). Given the geometry and multi-
layer composition of the used VF replicas, it is 
suggested that observed eigenvalue spectral differences 
are due to the presence (MRI/EPI) or absence (M5) of 
a surface layer representing the epithelium.  

As perfect angular symmetry (0°) is unlikely to 
occur in real life, the found robustness of the MRI/EPI 
VF replica to small angular asymmetries (4° in Fig. 1) 
supports the hypothesis that adding an epithelium-like 
layer alters silicone VF replicas from a vibratory point 
of view. In addition, it provides evidence of the 
importance of this layer for normal VF vibration. 
Larger angular asymmetries (> 4° in Fig. 1) mimic 
pathological VF vibration as all replicas become prone 
to glottal air leakage due to vertical level difference. 
Increased mode decay, only observed for the MRI/EPI 
replica and not for the M5 replica, is consistent with 
impaired oscillation and reduced vibration quality 
associated with glottal insuciency reported for human 
speakers. Thus, it is hypothesized that from a vibration 
point of view the presence of an epithelium-like layer 
results in more reasonable vibration patterns. From Fig. 
1 is seen that the effect of angular	 asymmetry on 
mode decay is most obvious for higher frequency 
modes (typically > 750 Hz). Therefore, it might be of 
interest to investigate higher frequency vibration 
modes as potential clinical markers for voice pathology 
studies such as UVFP. 

The described changes in mode decay rate with 
angular asymmetry can be partly explained by changes 
in structural damping. Structural damping is likely to 
increase (or decrease) as the duration of vocal fold 
contact along the inferior-superior direction inside each 
glottal cycle increases (or decreases). This duration 
was quantified for the assessed VF replicas in [2]. It 
follows that structural damping either increases 
(MRI/EPI) or decreases (M5) for angular asymmetry 
larger than 4° as vocal fold contact was found to 
increase (MRI/EPI) or decrease (M5).

B. Spatial DMD mode analysis

Modes j, indicated by filled symbols, are arranged 
(j = 1 . . . 6) according to increasing frequency.

Examples of non-oscillation or mean flow modes, 
corresponding to the zero eigenvalue at the origin of 
the eigenvalue spectra (mode j = 1), depend on the 
imposed asymmetry angle as the resulting glottal air 
leakage affects the mean glottal flow. Non-oscillation 
mode amplitudes b1 are plotted in Fig. 2. Amplitudes 
are normalised by the amplitude of the PO mode (j = 2) 
associated with the lowest stable oscillation frequency
denoted as b2,0°. All values exceed unity so that the 
mean flow mode dominates the eigenvalue spectra for 
all assessed configurations. View angles other than top 
view (diagonal or level) allow to observe phenomena 
along the medio-sagittal plane, and hence along the 
main flow direction in the inferior-superior direction, 
more directly resulting in larger mean flow amplitudes.  

Fig. 2: Normalised non-oscillation mode (j=1)
amplitude magnitude: a) top view ( =0°), b) 

diagonal ( =45°) view.

Mean flow mode amplitudes (j=1, Fig. 2), in 
particular for diagonal and level views, are most 
pronounced for the M5 replica, which quantifies the 
the large displacement in the flow direction 
experimentally observed for the M5 replica.

Normalised amplitudes of five oscillation modes (j 
= 2…6) for the MRI and EPI replicas from top and 
diagonal view angles are plotted in Fig. 3. The PO 
mode, whose frequency corresponds to the 
fundamental frequency characterising voiced speech 
utterances, has the largest amplitude for each angular 
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asymmetry angle. The plots confirm the decrease of the 
PO mode frequency with increasing angular
asymmetry angle reported in [1,2]. Higher order post-
PO modes obtained for j = 3 . . . 6, exhibit oscillation 
frequencies near the harmonics of the PO mode 
frequency f2 for all angular asymmetry angles as fj/f2 ~
j-1 holds. As for the mean flow mode, non-top view 
angles result in larger mode amplitudes as mode 
patterns develop along both the horizontal transverse 
and medio-sagittal plane.  Overall mode amplitudes 
decrease with mode order j regardless of view angle or 
angular asymmetry angle.  

Spatial oscillation mode patterns of the MRI replica
(top and diagonal views) are illustrated in Fig. 4.  
Increasing mode order (j) changes the spatial mode 
with respect to its extent and with respect to the node 
pattern. In the vicinity of the glottal aperture (within 
the frames in Fig. 4) typical higher order mode patterns 
are observed as the number of nodes increases with j. 
For small angular asymmetry angles (4°) mode patterns 
develop similarly along the posterior-anterior direction 
and occupy both VF surfaces as tilting does not alters 
the elasticity of each VF. For large angular asymmetry 
angles (20°) spatial modes modes reflects the loss of 
full VF contact along the posterior-anterior direction.  
It is observed that a surface region extending from the 
posterior edge of the tilted VF is no longer part of the 
spatial mode pattern and that the area of the excluded 
surface region increases with j. Near the glottal 
aperture the spatial mode pattern for large asymmetry 
angles depends on the used view angle.  For top view,
the loss of VF contact limits the node pattern. For 
diagonal view, the node pattern becomes more 
apparent as the tilted VF is observed more directly.

Fig. 3: Normalised oscillation mode amplitude
(j=2…6) for top ( =0°) and diagonal ( =45°)

views for MRI and EPI replicas.

Fig. 4: Spatial oscillation mode patterns scaled 
between 0 (white, invariant) and 1 (black, most 

variant) for the MRI replica and asymmetry angles 4° 
and 20° for top ( =0°) and diagonal ( =45°) 

views.  The glottal aperture is framed. Posterior side of 
the left VF is tilted as indicated ( ) for j=6.

V. CONCLUSION

Dynamic vibration mode decomposition in space and 
time of HS images of auto-oscillating silicone vocal 
folds replicas without and with vertical tilting is 
assessed. Results encourage to further investigate the 
potential interest of DMD mode properties, and in 
particular higher order vibration modes, as potential 
clinical HS image markers, e.g. for UVFP. 
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Abstract: The mechanical properties of two types of 
deformable mechanical vocal folds replicas are 
considered.  On one hand, the linear elasticity of
multi-layered silicone vocal fold replicas with 
constant elasticity is considered. On the other hand, 
the mechanical properties of pressurised latex tube 
replicas with variable elasticity are assessed. In 
order to quantify the elasticity of these VF’s and 
their influence on the fluid-structure interaction 
underlying sustained auto-oscillation, experimental 
as well as model results are presented.  This way 
this work contributes to customised VF replicas 
with predicted and quantified elasticity. 
Keywords:  Deformable mechanical vocal folds 
replicas, Young’s modulus estimation, Small strain 
range, Fluid-structure interaction

I. INTRODUCTION

For human speech sound production, and 
particularly for phonation or voiced sound production, 
the presence of two apposed vocal folds (VF) within 
the larynx, illustrated in Fig. 1, is crucial.  Indeed, the 
fluid-structure interaction between airflow coming 
from the lungs and the deformable VF tissues on each 
side of the glottal constriction can result in sustained 
VF auto-oscillation which is the major sound source 
for voiced speech sounds. As a consequence, structural 
properties of healthy as well as pathological VF’s
influence the fluid-structure interaction and therefore 
the voiced sound source and potentially the quality of 
voiced speech sounds.  

Physical studies of the fluid-structure interaction 
underlying the VF auto-oscillation have a long 
tradition relying on simplifications of the anatomical 
VF structure as this approach enhances the 
reproducibility, quantifiability, controllability and 
hence interpretability of experimental results. 

In this work, the elasticity of two types of 
deformable vocal folds replicas is considered. A first 
type of deformable VF approximations focuses on 
maintaining, up to some degree, the anatomical multi-
layered structure so that each layer has an appropriate,
but constant elasticity.   These replicas are obtained as

an overlap of molding layers composed of different 
silicone mixtures.  This way the influence of the degree 
of anatomical realism without or with structural 
abnormalities on the elasticity can be considered.  A 
second type of deformable VF approximations focuses 
on the elasticity regulating function within a human VF 
rather than on its anatomy.  In this case, each VF is 
mimicked as a pressurised latex tube for which the 
pressure can be varied.  As such, the elasticity of each 
VF can be varied and imposed.  Normal and 
pathological conditions can be considered.

In order to quantify the elasticity of these 
mechanical VF’s replicas and its influence on the fluid-
structure interaction underlying sustained auto-
oscillation, experimental as well as model results are 
presented.  It is sought to quantify their elasticity and 
in turn to contribute to its predictability. In this work 
the linear elasticity is focused on, which is expressed 
with the effective Young’s modulus (EYM) of the 
composite-like vocal folds structure.

Fig. 1: Illustration of the larynx for VF auto-
oscillation and multi-layer structural representation.

II. DEFORMABLE REPLICAS

A. Silicone VF replicas: M5, MRI and EPI 

Silicone VF replicas mimic the multi-layer (ML)
(micro-)anatomical VF structure to some extent as an 
overlap of silicone molding layers with constant 
elasticity following the methodology outlined in [1]
and the references therein. Three molded ML silicone 
VF replicas (M5, MRI and EPI) are shown in Fig. 2 for 
which layer thickness lt and overall dimensions Lx and 
Lz are indicated.   The M5 replica is a two-layer (2L)
reference model following the body-cover theory of 
phonation representing thus the vocalis muscle and 
superficial layer.  The MRI replica has a three-layer 
(3L) structure by adding a thin epithelium-like three-
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layer (3L) structure by adding a thin epithelium-like to 
the 2L-M5 structure.  The EPI replica is a four-layer
(4L) structure obtained by inserting a soft ligament-like 
deep layer between the muscle and superficial layer of 
the 3L-MRI replica.  Each VF is mounted on a stiff 
backing layer and replicas have constant elasticity.

Fig. 2: Coronal section (mm) of a molded silicone 
multi-layer VF replicas (right VF) and its schematic 

representation (left VF): a) M5, b) MRI, c) EPI.

B. PLT VF replica 
   A VF replica with variable elasticity is obtained by 
representing each VF as a pressurised latex tube (PLT)
[2]. Each VF consists of a latex tube enveloping a 
hollow rigid metal support as depicted in Fig. 3.  The 
latex tube is pressurized (PLT) by filling it with 
distilled water by means of a water column.  The 
elasticity of the PLT replica depends on the imposed 
PPLT and thus on the height of the water column.  In 
this work, PPLT is varied between 450 Pa and 6500 Pa 
(with steps of at most 500 Pa), corresponding to a 
water column range of about 60 cmH2O. The PLT VF 
is positioned in a rigid frame, the same way as during 
fluid-structure interaction experiments [2], allowing 
simultaneous observation in the sagittal plane (side 
view) and the transverse plane (top view).

Fig. 3: Overview (mm) pressurized latex tube (PLT): 
a) single VF, b) spatial VF and camera positioning.

II. EYM ESTIMATION: SILICONE COMPOSITES
A. Six specimens from three silicone VF replicas

Bone-shaped ML silicone specimens [2] with 
serially stacked layers are designed in order to 
approximate the ML composition of the three silicone 
replicas.  Each specimen has a test section of length 80 
mm in between two clamping ends.  The number of 
layers n, the layer composition, the layer order and 
layer lengths differ in the same way as between 

silicone replicas.  Specimens are designed as 2L (IIM5, 
n=2), 3L (IIIMRI, n=3) and 4L (IVEPI, n=4) composites 
for which the layer lengths li match either the layer 
thickness ratio lt/Lx or the layer volume ratio V/VVF.  As 
shown in Fig. 4, two different specimens are molded 
based on the composition of each replica.

Fig. 4: Serial stacked specimens based on M5, MRI
and EPI replicas with layer lengths li (mm): muscle-

Mu, ligament-Li, superficial-Su, epithelium-Ep.

B. Uni-axial stress tests and EYM estimation

The effective Young’s modulus Eeff of the molded
silicone ML specimen is experimentally estimated 
from uni-axial stress tests by means of precision 
loading [1].  Briefly, the force-elongation relationship 
along the force direction is measured on vertically 
placed specimens by fixing the upper clamping end 
and adding a known weight m to the lower clamping 
end.  The weight is gradually incremented.  The load 
force for added mass m is given as its product with the 
gravitational constant. The specimen’s elongation is 
deduced from geometrical measurements (between 44 
and 198 mm) on each layer as a function of weight
increment: length and midway area perpendicular to 
the force direction.  The elongation is then the sum of 
the elongations of each layer, the cross-sectional area 
of the specimen is obtained as the weighted arithmetic 
mean of midway areas. Measured force-elongation 
and area-elongation data are illustrated in Fig. 5a and 
Fig. 5b for the M5-based specimens.  The true stress is 
then given as the ratio between the force and 
instantaneous area whereas the true strain is obtained 
as the natural logarithm of the ratio between the 
instantaneous length and original specimen length. The 
EYM corresponds to the slope of a linear fit to the 
elastic (small strain up to 0.32) region in which the 
stress is proportional to the strain as plotted in Fig. 5c.

Fig. 5: Uni-axial stress tests for M5-based specimens: 
a) force-elongation, b) area-elongation, c) stress-strain 
curves with linear fit (small strain range up to 0.32).
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Fig. 5: PLT images and edge detection for several PPLT.

Fig. 6: Characteristic lengths of PLT replica from 
imaging as a function of PPLT for different y/Ly
intervals (symbols): a,b) local and c,d) mean.

Fig. 7: Image-based stress-strain curves for the PLT 
replica for different y/Ly intervals (symbols).

B. Modelled EYM for serial stacked specimen
       For n serial stacked layers, the stress in the 
equivalent homogeneous composite and the stress in 
each layer is constant (Reuss hypothesis) [1].  The 
effective Young’s modulus is then modelled as the 
harmonic mean of the layers Young’s moduli weighted
by their lengths.  This model was validated in [1] for 
2L and 3L silicone specimens for which the layers 
Young’s moduli varies between about 2 kPa up to 65 
kPa corresponding to the range of interest for silicone 
VF replicas.  It is noted that model outcome is not 
affected by the stacking order of the layers within the 
specimens.  

II. EYM ESTIMATION: PLT VF REPLICA
Increasing (or decreasing) the internal water pressure 
PPLT expands (or shrinks) the PLT replica radially to 
the posterior-anterior axis. As the PLT can be 
considered as an inhomogeneous material consisting of 
both latex and water, the relationship between PPLT and 
the deformation is governed by a EYM.  This EYM is 
estimated from steady state images taken as a function 
of PPLT.  For each PPLT a top and side view image is 
taken (see Fig. 3b). Characteristic lengths Lx(y) (top 
view) and Lz(y) (side view) are obtained as the 
distances between the replica’s edges as illustrated in 
Fig. 5. Extracted edges and subsequent local 
characteristic lengths as a function of y/Ly (Ly=42 mm)
are plotted in Fig. 6a (top view) and Fig 6b (side view).  
Mean characteristic lengths for different y/Ly ranges 
(overall, short 4 mm intervals) are plotted in Fig. 6c 
(top view) and Fig. 6d (side view).  Mean values agree 
to within 0.25 mm with respect to the overall mean and 
to less than 0.1 mm between the 4 mm intervals. The 
stress-strain curves shown in Fig. 7 are then calculated 
in the same way as explained for the silicone 
specimens. It follows that the EYM corresponds again
to the slope of a linear fit to the elastic (small strain)
region in which the stress is proportional to the strain.

III. RESULTS

A. YEM of replica-based silicone specimen
Measured (filled symbols) EYM and modelled 

(empty symbols) EYM for the six silicone VF replica-
based specimens are plotted in Fig. 8.  For MRI and 
EPI based specimen, measured EYM are close to their 
overall mean of 5.7 kPa as the standard deviation of 
0.4 kPa as well as the maximum difference of 0.8 kPa 
is small (less than 15%).  It follows that imposing 
either the thickness ratio (subscript L) or the volume 
ratio (subscript V) does not significantly affect 
measured EYM for MRI-based or EPI-based 
specimens.  Measured EYM for M5-based specimens 
exceed values found for MRI or EPI based specimens 
with 1.0 kPa (volume ratio) or 2.3 kPa (length ratio), so 
that the imposed ratio affects EYM for M5-based 
specimens.  

The impact (M5-based, EPI-based) or lack thereof 
(MRI-based) of the imposed ratio (thickness L or 
volume V) on modelled EYM is understood as the 
harmonic mean depends on the layer lengths and the 
layers Young's moduli.  For all replicas, the muscle 
layer has a larger Young’s modulus than the superficial 
layer so that shortening the muscle layer, 
corresponding to imposing the volume ratio instead of 
the thickness ratio, results in smaller EYM predictions.  
The decrease is significant for M5-based (3.4 kPa) and 
EPI-based (4.7 kPa) replicas.  For MRI-based 

 107



specimens the decrease is not significant (0.1 kPa) as 
the muscle layer is shortened with less than 15\% (or 
less than 5.6 mm) and in addition Young’s moduli of 
the muscle (4.0 kPa) and superficial (2.2 kPa) layer are 
of the same order of magnitude, which is not the case 
for the M5-based or EPI-based replicas.

The difference between modelled and measured 
EYM for all six specimens varies between -2.5 kPa and 
2.8 kPa resulting in an overall model accuracy of -0.5 ±
2.1 kPa (mean and standard deviation). Modelled EYM
exhibit some of the tendencies described for measured 
values.  Indeed, both measured and modelled EYM for 
M5-based specimens are greater values associated with 
MRI-based specimens. Furthermore, the imposed ratio 
(L or V) affects M5-based specimens more than MRI-
based specimens. For the EPI-based replica, measured 
EYM are in between the range associated with the 
model.  Given the direction of the VF oscillation (Fig. 
1), values of specimen for the length ratio is respected 
are probably more pertinent.

Fig. 8: Measured (filled) and modelled (empty) EYM 
for specimens respecting either the thickness (L) or 

volume (V) ratio of silicone VF replicas.

B. YEM of PLT VF replica
The effective Young’s moduli estimated from top and 
side view imaging for the overall and several 4 mm 
ranges of y/Ly intervals are plotted in Fig. 9.  For each 
viewing angle values obtained for increasing internal 
pressure PPLT as well as for decreasing internal 
pressure PPLT are considered.  As all PPLT result in a 
small strain (less than 0.15) deformation, the EYM is 
obtained from a linear fit to the complete strain range.  
From Fig. 9 is seen that EYM estimates for different 4
mm y/Ly intervals match for both the EYM obtained for 
side as well as top viewing.  Nevertheless, side EYM 
exceed values associated with top value with about 6 
MPa. Considering the whole y/Ly range stresses this 
directional difference as it either decreases (to view) or 
increases (side view) estimated EYM values with about 
3 MPa up to 7 MPa.  Given the pressure force direction 
and the movement associated with the oscillation (Fig. 
1), values obtained from the top view images are
probalby most pertinent.  EYM associated with the 

PLT replica (between 40 MPa up to 57 MPa) are 
significantly (factor 104) greater than values for the 
silicone based specimens (between 2 kPa up to 10 
kPa).

Fig. 9: Measured EYM for the PLT replica from top 
view and side view images for different y/Ly intervals 
(symbols) when either increasing (upward arrow) or 

decreasing (downward arrow) PPLT.

V. CONCLUSION

Effective Young’s moduli for silicone specimens 
representing silicone VF replicas are measured.  For 
silicone specimens measured and modelled values
agree, so that the model can be used as a predictor.  
Effective Young’s moduli of the PLT VF replica are 
measured as well. In future, the pertinence of found 
values with respect to mechanical properties and   
oscillation properties need to be considered.  
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Abstract: 
Coughing offers a risk for voice problems by 
increasing vocal loading. This study estimates 
loading by measuring glottal area variation from 
high speed images and subglottic pressure from oral 
pressure Poral. Phonation on [o:] and coughing at the 
same Poral (6 Pa) and SPL (93 dB6cm) were compared 
from one healthy male. In coughing, the glottal 
width (GW) at the middle of vocal folds (VFs) was 
25% larger. GW measured at VF processes was 
almost unchanged. Maximum glottal opening 
velocity dGW/dt was nearly 40% higher, maximum 
glottal declination rate (MWDR) was up to 3 times 
higher, and MWDR at vocal processes was 13% 
higher. The acceleration and deceleration values 
for VFs were 40% and 47% higher, 
respectively. Fo in the last part of coughing 
decreased from f0=222 Hz to 77 Hz at phonation 
offset. In [o:] f0 was 116 Hz. Closed quotient 
CQ≅0.50 in coughing was close to CQ=0.47 in 
vowel. Vibration frequency of the false vocal folds 
(FVFs) registered in the first, rough part of 
coughing, was 293 Hz. Peak-to-peak value of 
Poral increased 5.4 times in coughing. During 
vibration of FVFs in coughing, mean Poral increased 
from 6 Pa to 70 Pa and Poral p-t-p increased 2.45
times.
Keywords: Glottal area, EGG, oral air pressure, 
laryngeal movement, coughing therapy

I. INTRODUCTION

Throat clearing and coughing are known to be 
related to voice problems, and recent studies also 
support this [1]. Coughing involves a tight glottal 
closure, high subglottic pressure (Psub), abrupt glottal 
opening and high transglottic airflow [2]. 

Ross et. al. [3] in 1955 studied the changes of 
intrapleural air pressure and of airflow at the mouth 
during coughing and found the pressures up to 18.7 
kPa, and flow rates of expired air up to 6.5 L/s. 
Because he also found the lumen contraction of the 

trachea during coughs, he estimated maximal airflow 
velocity in trachea up to unbelievable 280 m/s. Later, 
in 1975 Evans & Jaeger [4] measured airflow rates at 
the mouth during coughing and forced expirations in 
10 subjects and found out mean values 8.8 L/s in both 
cases. 

These pressure and flow values found in coughing 
are about one order higher than the maximal values 
found in human voicing. According to [5], the mean 
Psub for normal vowel phonation is in the range of 400-
2600 Pa (or up to max. 5 kPa), and the mean volume 
flow rate is in the range 0.07-0.3 L/s in normal vowel 
phonation in speech mode and up to 0.845 L/s in 
pathological cases [6]. Therefore, in coughing there is 
an explosive increase of flow between the vocal folds
when the glottis opens. 

In addition to such extremely high VF loading 
during the abrupt opening of the glottis in coughing, an 
increase of impact stress and acceleration and 
deceleration related strain on the tissue is also expected 
during phonation part of coughing. Additionally, in 
video material it is possible to see vigorous movements 
in all laryngeal structures during throat clearing and 
coughing. This may cause shear stress in soft tissues 
and trauma also on the cartilages, e.g. leading to the 
development of contact granulomas at the arytenoid 
region [7]. 

This pilot study compares coughing and phonation 
in terms of glottal width variation and movements of 
the laryngeal structures. The results may shed further 
light on the loading mechanisms in coughing.

II. METHODS

High-speed laryngoscopic data were obtained from
one normophonic male participant with a healthy 
larynx. He phonated on vowel [o:] and produced 
coughs. KayPentax Color High-Speed Video System 
(model 9710¸ KayPentax, NJ) with spatial resolution of 
512x512 pixels was used. The sampling frequency was 
set to 2,000 fps. A rigid scope was inserted through a 
hole in a T- shaped (2 cm in diameter) mouthpiece into 
the pharynx. Oral air pressure (Poral) was registered in 
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the mouthpiece, through which the endoscope was 
inserted into the pharynx. A Glottal Enterprises 
manometer and a PT75 transducer were used (Glottal 
Enterprises, Syracuse, NY). The acoustic signal was 
recorded using an AKG (Type C477; AKG Acoustics, 
Vienna, Austria) head-mounted microphone at 6cm 
from the corner of the participant's mouth. The 
mouthpiece both enabled air pressure registration and 
helped to fix the endoscope position. Simultaneous 
recordings of the electroglottograph (EGG) and 
acoustic and oral pressure signals were made with 
Computerized Speech Laboratory (CSL; KayPentax, 
NJ). 

For the present study, the glottal width variation was 
derived from the images at the membranous and 
cartilaginous parts of the glottis. Maximum amplitude 
of both glottal widths’ variation (GW) was measured. 
Maximum glottal opening and closing declination rates 
(MWDR) were obtained from the first time derivative 
of GW, and acceleration and deceleration values from 
the 2nd derivative. Similarly, the strong vibrations of 
the false vocal folds (FVFs) were also quantified.

Fig. 1 Measurement set-up.

III. RESULTS

A coughing sample of 0.755 s total duration was 
analyzed, see Fig. 2. The first part of expiration, 0.263 
s of duration, was characterized by a slow squeezing of 
FVFs and VFs processes during inspiration followed 
by fast and rough changes of all the laryngeal 
structures. During sudden expulsion of air only 
vibrations of FVFs were possible to evaluate, because 
the VFs were partially hidden, and their vibrations 
were too fast related to the sampling frequency of the 
HS camera. In the 2nd part of expiration of the length 
0.132 s, a slow variation of laryngeal opening and 
closing was seen up to the time 0.395 s, where the 3rd

part of coughing started by a second rough expiration 
phase characterized by a transient-like phonation up to 
phonation offset and final glottal opening.

Fig. 2 Variation of distances between FVFs, VFs
processes and the glottal width (GW) measured at the 
middle of the vocal folds, obtained from HS images the 
during analyzed coughing sample.

Fig. 3 shows in detail the vibration (GW(t) and the 
time derivative dGW/dt) of the FVFs in the first part
of the coughing sample, together with the synchronized 
audio (Mic), Poral and EGG signals. Similarly, Fig. 4
shows GW(t) and dGW/dt of the VFs measured during 
the 2nd and 3rd parts of the coughing sample. For 
comparison, Fig. 5 shows the results measured for 
‘ordinary’ phonation on vowel [o:].

Fig. 3 First part of the analyzed coughing sample, 
where GW and dGW are shown for false VFs. EGG 
may reflect vibration of FVFs, or synchronous 
vibration of FVFs and VFs.

Table 1 compares data on maximal amplitudes of 
VFs vibrations obtained from the middle of the VFs 
and demonstrated in Fig. 2 for coughing and in Fig. 5 
for the vowel phonation. All values are substantially 
higher for coughing. The closed quotient CQ was 0.47 
for phonation, and in coughing it first increased from 
0.43 to 0.50 and then back down to 0.32 in the end of 
the last part of the sample. Fundamental phonation 
frequency for vowel was f0=115.6 Hz, and during 
coughing it decreased from f0=222 Hz at the beginning 
of VFs vibration to only f0=77 Hz at the phonation 
offset. Normalized amplitude quotient

               NAQ = f0 (maximum GW/MWDR) 
was 0.260 for phonation and during coughing it 
increased from 0.158 to 0.267.
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The FVFs vibrated at the frequency 292.7 Hz,
averaged from six periods of the GW(t) waveform,
while the VFs vibration was not possible to identify in 
the HS video. Also from the EGG signal in the first
part of the coughing process (see Fig. 3) it was possible 
to calculate the average value 292.0 Hz for the 
frequency of VFs vibration that started with the 
frequency ca 333 Hz, and decreased to 233 Hz after 8 
periods.

Fig. 4 Second and third part of the coughing sample, 
where GW and dGW are shown for VF processes.

Fig. 5 – Samples of analyzed signals for vowel 
phonation, where GW and dGW are shown for VFs.

Table 2 compares data on maximal amplitudes of 
glottis oscillations measured at the VFs processes. The 
differences between cough and vowel phonation are 
much smaller at the VFs processes compared to the 
values found in the VFs middle. Some values measured 
in coughing were even smaller than in phonation,
especially the maximal speed of the glottis opening 
dGW and its maximal acceleration ACC. This 
observed phenomenon probably results from a larger 

total moving mass because laryngeal structures joint to 
the VFs processes moved simultaneously with them.

Table 1. Maximal values of the normalized glottal 
width GW, first derivatives of GW specifying maximal 
speeds of glottis opening dGW=dGW(t)/dt and closing 
(MWDR), acceleration ACC=d2GW(t)/dt2 and
deceleration DCC measured at the middle of the VFs;
Δ is the difference between cough and vowel.

GW
[1]

dGW
[1/s]

MWDR
[1/s]

ACC 
[1/s2]

DCC 
[1/s2]

vowel 0.300 346.8 133.4 6.40E5 7.2E5
cough 0.374 483.6 403.0 8.95E5 10.6E5
Δ [%] +24.7 +39.5 +302.1 +39.8 +47.2

Table 2. Maximal values of the normalized glottal 
width GW, first derivatives of GW specifying maximal 
speeds of glottis opening dGW=dGW(t)/dt and closing 
(MWDR), acceleration ACC=d2GW(t)/dt2 and 
deceleration DCC measured at the VFs processes; Δ is 
the difference between cough and vowel.

GW
[1]

dGW
[1/s]

MWDR
[1/s]

ACC 
[1/s2]

DCC 
[1/s2]

vowel 0.263 320.1 213.4 6.67E5 6.40E5
cough 0.282 276.3 241.8 4.84E5 6.91E5
Δ [%] +7.2 -13.7 +13.3 -0.27 +8.0

Table 3 compares audio and pressure data obtained 
from the waveforms shown in Figs. 2-4 for coughing 
and in Fig. 5 for vowel phonation. The highest values 
of SPL, obtained with external microphone (100 dB)
and from Poral (140 dB), and the highest peak-to-peak 
values of P p-t-p (1065 Pa) were measured in the third 
part of the coughing sample. The highest Poral (70 Pa) 
was found in the time interval where the false VFs 
were vibrating. All these values are much higher than 
the data measured for vowel phonation.

Table 3. Results of audio (acoustic peak-to-peak 
pressure Pmic,ptp and SPLmic) and oral pressure (mean 
Poral , maxima of peak-to-peak Poral,ptp and SPLPoral)
signal measurements in three parts of the coughing 
sample.

Pmic,ptp
[Pa]

SPLmic
[dB]

Poral
[Pa]

Poral,ptp
[Pa]

SPLPoral
[dB]

vowel 3 93 6 196 129
cough 1 7 96 70 481 136
cough 2 3 86 11 60 114
cough 3 10 100 6 1065 140

*Data evaluated only in the time interval of false VFs vibration.

IV. DISCUSSION

Figs. 2 - 4 show that the cough example studied here 
fully corresponds to the typical coughing process 
published for the voluntary coughing sounds in healthy 
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subjects, see Yanagihara et all. [8] and Korpáš et all. 
[9]. The typical sound record consists of three parts. 
The expulsive phase of cough starts in the moment of 
glottal opening when the first burst of sound emerges. 
This is followed by a noisy interval which corresponds 
to steady-state flow with the glottis wide open. The 
glottis narrows at the end of the expulsive phase which 
generates the second burst of the sound.

The results show clearly that even in this type of 
relatively soft coughing – or rather throat clearing - 
(with similar Poral and SPL as in ordinary phonation), 
the estimated vocal loading must be much higher, as 
both glottal vibration amplitude, and opening and 
closing rates increased substantially compared to 
ordinary phonation, particularly the glottal closing rate. 
This increases impact stress and acceleration and 
deceleration related stresses [10, 11]. Fast (3 times 
higher than fo) vibrations of the FVFs were also 
observed, and the vocal processes and other laryngeal 
structures vibrated as well. The closing rate of the 
vocal processes increased over 10% which fits with the 
finding that chronic coughing increases the risk of
contact granulomas at the arytenoid region [7]. 

It would be tempting to compare the results with 
those obtained for loud and strained phonation [e.g. 12]
but differences in the research methodology make the 
comparison difficult. However, according to [12] the 
glottal area declination rate increased in average 69.6% 
from typical voice loudness to loud, while in the 
present study the change from habitual vowel
phonation to throat clearing was 302.1%.

On the other hand, the fact that in the present study a 
mouthpiece was used gives opportunity for an 
interesting speculation. According to the participant's 
comments (and those of other participants not studied 
here), it was difficult to produce forceful coughing 
with the mouthpiece. It is thus plausible that by 
offering some flow resistance the mouthpiece raised 
Poral which is prone to reduce transglottic pressure and 
glottal closing speed from what it would be without the 
flow resistance [13]. It remains to be studied, whether 
this kind of a method could be exploited to reduce 
vocal fold loading in patients suffering from chronic 
coughing.

V. CONCLUSION

This preliminary data show measurable 
characteristics that enable estimation of coughing 
related vocal loading. The substantial increase of 
maximum glottal width declination rate during 
coughing compared to ordinary phonation implicates 
much higher vocal folds loading, although in this study 
a mouthpiece was used and this damped coughing 
somewhat. Our next study will concern coughing 
without the mouthpiece to investigate the usability of a 
mouthpiece as a potential device to reduce vocal 

loading in chronic coughing. A higher image rate is 
also warranted for a more detailed image analysis.
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Abstract: Humming beatboxing is a technique used
by beatboxers to give the impression of producing
multiple sounds synchronously. How this is achieved
and what the differences are with regular beatboxing
remains mostly unexplored from a scientific stand-
point. Four beatboxers were recorded. Electromag-
netic articulography was combined with acoustic,
electroglottographic, and breathing measurements.
The articulatory and breathing behaviors of three
boxemes (kick, hi-hat, rimshot) were compared be-
tween a regular and a humming realization. When
produced as regular beatboxing, the trajectories of
the tongue were consistent with a glottalic initiation
mechanism and breathing behavior was related to the
acoustic outcome. In contrast, for humming sounds
the breathing behavior was dissociated from articula-
tion and acoustic outcome, suggesting that the initia-
tion mechanism took place within the oral cavity and
the more posterior portion of the vocal tract did not
participate in the production of those sounds. Articu-
latory trajectories were consistent with a closure held
at the posterior region of the oral cavity. This sug-
gests that in the humming technique the vocal tract is
divided into two sections: the oral cavity functions
on its own to produce the rhythmic line, while the
melodic line is produced in the laryngeal or pharyn-
geal spaces and propagates through the nasal cavities.
Keywords: Human beatboxing, humming beatboxing,
humming

I. INTRODUCTION

Human beatboxing (HBB) is an emerging and rapidly
evolving vocal art that relies on the human vocal in-
strument to produce all kinds of sounds for the pur-
pose of music making. The core of HBB is instru-

mental mimicry: typically, the first sounds a beatboxer
learns are those that reproduce the drum set sounds, i.e.
kick, hi-hat, snare/rimshot, cymbal. More experienced
beatboxers, however, can be considered as multivocal-
ists, as they exploit a wide variety of vocal techniques
such as rapping, singing, overtone singing, scratching,
etc. depending on the style of music they want to pro-
duce. In particular, the humming technique can be used
to give the impression of multiple sound sources within
the same beatboxer: a rhythmic line and a melodic line
can be produced simultaneously. This technique is well
known by beatboxers and is generally resumed as the
technique that allows a beatboxer to produce multiple
sounds at the same time using the air present in the
mouth to produce the rhythm, and the voice to produce
the melody. However, how this is achieved remains
mostly unexplored from a scientific standpoint. This
study focuses on three categories of drum sounds (kick,
hi-hat, rimshot) produced as regular HBB sounds or in
the humming technique. Some studies have shown that
regular kick, hi-hat, and rimshot are generally produced
via a piston-like action of the closed glottis [3, 6, 1], i.e.
using a glottalic initiation mechanism [4]. The only pub-
lished study so far that directly investigates humming
boxemes (i.e. HBB sounds) has shown that the hum-
ming versions of these three boxemes are produced via a
pushing or pulling action of the tongue [5], i.e. using a
velaric initiation mechanism [4]. The present study aims
at elucidating the similarities and differences in terms of
breathing strategy and articulatory mechanism between
regular and humming kick, hi-hat, and rimshot as well as
giving some insights on how the vocal tract is configured
when producing different sounds simultaneously.

FUP Best Practice in Scholarly Publishing (DOI 10.36253/fup_best_practice)
Claudia Manfredi (edited by), Models and Analysis of Vocal Emissions for Biomedical Applications : 12th International Workshop, December, 14-16, 2021, 
© 2021 Author(s), content CC BY 4.0 International, metadata CC0 1.0 Universal, published by Firenze University Press (www.fupress.com), ISSN 2704-
5846 (online), ISBN 978-88-5518-449-6 (PDF), DOI 10.36253/978-88-5518-449-6

https://fupress.com/fup-best-practice-in-scholarly-publishing
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/publicdomain/zero/1.0/legalcode
https://doi.org/10.36253/978-88-5518-449-6


II. METHODS

Four male French speaking beatboxers (S02-S05)
were recorded, three professionals and one amateur,
aged 20 to 38 years. The recordings took place in
the semi-anechoic room of GIPSA-lab in Grenoble, a
place of biomedical research authorized by the ARS
Auvergne-Rhône-Alpes. Electromagnetic articulogra-
phy (EMA WAVE, NDI, Canada) and respiratory induc-
tance plethysmography (RIP, ETISENSE, France) were
combined with electroglottographic, acoustic and video
recordings. Audio and EGG signals were sampled at
20 kHz, RIP and EMA signals at 200 Hz.

The three boxemes kick (P), hi-hat (t), rimshot (K)
were produced 12 times each in a row. Each repetition
was preceded by [sasEl@] (English translation: “this is
the”). Each boxeme sequence was produced in regular
HBB, then in the humming technique. Further, the beat,
i.e. a musical phrase, PtKtPtKt was repeated 10 times
as regular HBB, and 10 times as humming HBB. The
data recorded by the different systems were all synchro-
nized together. The audio recordings were manually seg-
mented and annotated using Praat software [2]. Spatial
trajectories of 9 coils placed on five flesh points of the
tongue (apex/blade, middle, right, left and dorsum) and
four flesh points of the lips (upper and lower, median and
lateral) were extracted from the EMA recordings. Mean
trajectories and variance were computed using the com-
mercial software package MATLAB.

III. RESULTS

The three professional beatboxers (S03, S04, S05)
produced two versions of the humming boxemes: one
was only a sequence of drum sounds, i.e. the rhyth-
mic line (RL), the other was a superposition of drum
sounds (RL) and a hummed melodic line (ML). The
presence of vocal-fold vibration is attested by the EGG
signal in Fig. 2. However, one beatboxer alternated
vocal-fold vibration and glottal stops when producing
his ML. The amateur beatboxer (S02) gave only one
version of humming boxemes as post-voiced boxemes:
no vocal-fold vibration occurred synchronously to the
drum-sound production, but was present right after. No
vocal-fold vibration was detected during regular HBB
production.

Breathing strategies varied among beatboxers and
stimuli. Shorter tasks such as boxeme repetition held
the most variability. However, a typical pattern emerged
during humming RL tasks: an increase in thoracic and
abdominal circumferences before the initiation of the
beat was followed by an alternation of decrease and in-
crease during the beat. Fig. 2 shows that this alterna-
tion can be similar to breathing behavior at rest, but was
not related to the acoustic outcome. When voicing was
added during humming RL+ML executions, the evolu-
tion of thoracic and abdominal circumferences was sim-

ilar to speech: an increase before vocal-fold vibration
initiation attested of air intake, followed by a regular de-
crease during voicing.

Figure 1: Distribution of a) sound duration (in ms) and
b) sound intensity (in dB) for each boxeme produced by
each beatboxer (S02-S05) as regular HBB (Reg), hum-
ming (RL), and voiced humming (RLML).

Regular HBB production showed the most varied
breathing strategies among beatboxers, especially for
shorter tasks (boxemes repetition). Longer tasks, more
similar to real-life HBB, attested of a typical behavior:
a tendency towards stabilization of thoracic (and possi-
bly abdominal) circumference during the beat execution,
with small local variations in correspondence with each
boxeme acoustic production. In the case illustrated in
Fig. 2, the more prominent local variations occurred in
correspondence with K and indicated a rapid increase
in thoracic circumference suggesting a small inhalation
during the boxeme production.

Articulatory behavior was quite consistent among the
four beatboxers for the realization of P and t, whereas K
showed more variability. Fig. 3 illustrates mean trajecto-
ries and acoustic outcomes for S04. P was always pro-
duced as a bilabial occlusive. However, the tongue was
particularly active in the realization of the three variants
(Regular, humming RL, and humming RL+ML). As for
the two humming versions, the articulatory data show
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Figure 1: Distribution of a) sound duration (in ms) and
b) sound intensity (in dB) for each boxeme produced by
each beatboxer (S02-S05) as regular HBB (Reg), hum-
ming (RL), and voiced humming (RLML).

Regular HBB production showed the most varied
breathing strategies among beatboxers, especially for
shorter tasks (boxemes repetition). Longer tasks, more
similar to real-life HBB, attested of a typical behavior:
a tendency towards stabilization of thoracic (and possi-
bly abdominal) circumference during the beat execution,
with small local variations in correspondence with each
boxeme acoustic production. In the case illustrated in
Fig. 2, the more prominent local variations occurred in
correspondence with K and indicated a rapid increase
in thoracic circumference suggesting a small inhalation
during the boxeme production.

Articulatory behavior was quite consistent among the
four beatboxers for the realization of P and t, whereas K
showed more variability. Fig. 3 illustrates mean trajecto-
ries and acoustic outcomes for S04. P was always pro-
duced as a bilabial occlusive. However, the tongue was
particularly active in the realization of the three variants
(Regular, humming RL, and humming RL+ML). As for
the two humming versions, the articulatory data show

that the superposition of the ML, in this case the vocal-
fold vibration, to the RL did not impact the lingual or
labial movements. The tongue was raised high against
the palate in the back of the oral cavity and was pushed
forward right before and during the occlusion release and
the acoustic realization. Breathing data showed no rela-
tion between breathing and acoustic production of P. In
the case of the regular P, the tongue assumed a lower
position in the oral cavity and underwent an upward dis-
placement that began before the occlusion release and
ended after the cessation of the sound. Breathing data
showed local decrease in thoracic circumference around
sound production, suggesting the use of an egressive
airstream. This resulted in slightly shorter and softer
humming sounds compared to their regular equivalents
(Fig. 1). t was always produced as an alveolar occlu-
sive. Two main articulatory strategies were observed for
the humming versions. One strategy consisted in hold-
ing the tongue against the palate and then suddenly pro-
ducing a rapid downward movement, especially in the
middle region, during which the occlusion was released
and the sound took place. The other (shown in Fig. 3)
was via occlusion of the vocal tract in the anterior and
posterior region of the oral cavity, creating an air pocket
between the middle region of the tongue and the palate
and subsequently compressing the trapped air via a push-
ing action of the middle section of the tongue, releasing
the anterior occlusion and producing the sound. In both
articulations the tongue assumed a high position, espe-
cially in the back region of the oral cavity. The breathing
data showed no relation with sound production. Regu-
lar t was achieved with a lower position of the tongue.
Only the more anterior part of the tongue made contact
with the palate during the occlusion phase. At occlu-
sion release, the anterior portion of the tongue was low-
ered and at the same time the posterior portion of the
tongue underwent an upward movement. Breathing data
showed local decrease in thoracic circumference, sug-
gesting the use of an egressive airstream. The humming
versions of t generally were longer and softer than the
regular t. K was achieved using the most different ar-
ticulatory strategies among the beatboxers. For the most
part, the humming versions were realized pushing the
tongue against the palate and then pulling it down in
a rapid motion, while the more anterior region of the
tongue was kept in contact with the palate (Fig. 3) and
the occlusion was released on one side of the tongue. In
the humming PtKt task, one beatboxer also produced K
as a bilabial occlusive, where the pressure buildup was
achieved via compression of the cheeks. Again, no re-
lation emerged between breath and acoustic realization.
Regular K was realized in two different ways. An occlu-
sion was created in the back region of the tongue against
the palate, then released via a rapid downward motion of

the tongue (Fig. 3). In the regular PtKt task, two beat-
boxers used a different articulatory behavior with a dif-
ferent acoustic outcome: the tongue was kept in contact
with the palate during the occlusion phase, then the oc-
clusion was released in the back region of the tongue,
while the front portion of the tongue was kept in contact
with the palate. Breathing data showed a local increase
in thoracic circumference, suggesting the use of an in-
gressive airstream. Once again, humming boxemes re-
sulted as softer and generally slightly shorter than their
regular equivalent.

Figure 2: Breathing, audio, and EGG signals of S04 pro-
ducing the beat PtKt. y-axes are arbitrary scales.
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Figure 3: Articulatory trajectories of tongue and lip coils in the mid-sagittal plane during regular beatboxing and hum-
ming without (RL) or with (RL+ML) melodic line, for singer S04. For each sequence, audio signal of a representative
token is plotted. Solid line: palate contour

IV. DISCUSSION

Beatboxers naturally produced two humming versions
of P, t, and K: one was the RL without ML, the other
both RL and ML. We found that the term “humming
HBB” does not imply the presence of a ML, but rather
the choice of a particular articulatory strategy for the
RL that is restrained to the oral cavity. This study
showed that, while for regular P, t, and K breathing
and articulatory behavior are related, with a likely glot-
talic or pulmonic initiation mechanism in most cases, the
humming equivalents systematically switch to a velaric
(mostly lingual) egressive or ingressive initiation mech-
anism. This bares two main consequences: on the one
hand, humming boxemes are generally less intense than
regular HBB boxemes; on the other hand, the use of an
oral airstream to produce the RL allows for the disso-
ciation of breathing and articulation. The high position
of the back of the tongue divides the vocal tract into two
functional sections that can produce two different sounds
at the same time.

V. CONCLUSION

In humming HBB, the synchronous production of a
rhythmic line and a melodic line is achieved by isolating
the oral cavity from the rest of the vocal tract. The oral
cavity functions on its own to produce the rhythmic line.
Humming kick P, hi-hat t, and rimshot K are produced
via velaric initiation mechanisms.

This leaves the upstream part of the vocal tract (laryn-
geal and pharyngeal spaces) available for breathing or
producing the melodic line. In the latter case, the hum-

ming sound source generated by vocal-fold vibration is
propagated into the nasal cavities. This is a skilful and
original use of the vocal tract, regularly performed by
beatboxers.
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RL that is restrained to the oral cavity. This study
showed that, while for regular P, t, and K breathing
and articulatory behavior are related, with a likely glot-
talic or pulmonic initiation mechanism in most cases, the
humming equivalents systematically switch to a velaric
(mostly lingual) egressive or ingressive initiation mech-
anism. This bares two main consequences: on the one
hand, humming boxemes are generally less intense than
regular HBB boxemes; on the other hand, the use of an
oral airstream to produce the RL allows for the disso-
ciation of breathing and articulation. The high position
of the back of the tongue divides the vocal tract into two
functional sections that can produce two different sounds
at the same time.

V. CONCLUSION

In humming HBB, the synchronous production of a
rhythmic line and a melodic line is achieved by isolating
the oral cavity from the rest of the vocal tract. The oral
cavity functions on its own to produce the rhythmic line.
Humming kick P, hi-hat t, and rimshot K are produced
via velaric initiation mechanisms.

This leaves the upstream part of the vocal tract (laryn-
geal and pharyngeal spaces) available for breathing or
producing the melodic line. In the latter case, the hum-

ming sound source generated by vocal-fold vibration is
propagated into the nasal cavities. This is a skilful and
original use of the vocal tract, regularly performed by
beatboxers.
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Abstract: This study presents a vocal analysis 
prototype tool for the quantification of the nasality 
characteristic in singing. The tool is part of a larger, 
under development, software suite for the singing 
voice, which is aimed towards the analysis of both 
qualitative and quantitative vocal characteristics 
from specific audio samples. The tool examines the 
nasality characteristic by assessing formant central 
frequencies and bandwidths. In order to determine 
the most relevant acoustic parameters to be 
extracted and analysed by the tool, a case study 
experiment was conducted on two professional 
singers, singing in various degrees of willingly nasal 
voice. The audio samples recorded through this 
process were submitted to perceptual evaluation 
and acoustic analysis. Statistic analysis of the 
results demonstrate higher correlation coefficients 
between the nasality rating and the second formant 
frequency, followed by the first formant bandwidth. 
This prototype version relies on a regression model 
based on the above statistics. 
 
Keywords:  Singing voice; Nasality; Data 
processing;  Formants; Voice Quality 

 
I. INTRODUCTION 

 
Research on pitch accuracy and timbral analysis of 

the human voice has led to the development of a 
plethora of digital vocal analyzers [1, 2]. However, the 
variety of educational tools pertaining to the qualitative 
characteristics of the singing voice seems to be limited 
[3]. Our current bibliographic research revealed that 
this shortage seems to extend to software for singing 
voice qualitative analysis as a whole. 

The present work introduces a vocal analysis tool 
targeted towards quantifying the nasality of the singing 
voice by assessing data from input audio samples of 
the user’s voice. This could be an important 
contribution, as nasality is an important vocal factor in 
the evaluation of the overall voice quality, but also a 
determining factor for the stylistic authenticity of 
distinct vocal genres, sub-genres, schools of singing, 
vocal techniques, interpretational approaches and 
trends. This tool is part of a toolset under development 

that evaluates various characteristics of the singing 
voice, aiming to assist in a more spherical singing 
voice quality appraisal, including quantitative features 
(such as tonal accuracy, rhythmic consistency, and 
range) and qualitative characteristics. 

Nasality is a perceptual characteristic of the voice, 
pertinent to the nasal tract [4], as a part of the vocal 
tract vocal ‘filter’. The nasal tract is a complex res-
onator and has acoustic properties that have been 
extensively studied in the literature [5, 4]. Nasal tract 
resonance is associated with a reduction of the ampli-
tude and a widening of the first formant’s bandwidth 
[5]. There are also reports [4, 5, 6, 7] linking nasality 
with the first and second formant values and 
amplitudes, spectral tilt and cepstral peak prominence. 

Dickson noted as early as 1962 [6] the variability in 
nasality acoustic features between experiment partici-
pants. This report was corroborated by more recent 
studies that resulted in similar conclusions [8]. 
Analogous findings have also been published on the 
nasality characteristic psychoacoustic domain, as 
Rusko [9] studied the perception of nasality in the 
human voice and musical instruments to conclude that, 
in parallel to spectral properties, nasality depends on 
the "similarity of dynamic changes to their aesthetic 
templates in speech, and of the formant structure to 
that of the vowels" [9]. 

Regarding the nasality in speech, Chen [10] 
attempted an objective quantification of vowel 
nasalization degree, through measurements on the 
acoustic signal, normalizing the parameters by 
adjusting for the influence of the vowel formant 
frequencies. Krol et al. [11] presented the preliminary 
results of a study analyzing the spatial distribution of 
energy in the acoustic field, using a multi-channel 
recorder, while Styler [7] reported findings pointing to 
both a spectral tilt, and a tilt of the first formant 
bandwidth, as nasality features for the English and 
French language. The latter [7] also proposed the A1-
P0 acoustic parameter (i.e. "the amplitude of the first 
formant and the amplitude P0 of a nasal peak at low 
frequencies" [10]) as the most reliable indicator for use 
in nasality quantification and  highlights the significant 
measurement values variability across speakers. 
Attuluri and Pushpavathi [12] found the "one third 
octave spectra analysis" to be an effective 
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hypernasality detection method for patients with a 
congenital disorder. 

In 2007, Sundberg et al. [5] performed a study 
involving a CAT scan imaging of a singer’s vocal tract 
and nasal cavity system, to determine the sound 
transfer characteristics of this model by means of sine-
tone sweep measurements. Although this work focused 
on a single subject, the results were in agreement with 
pertinent, more recent studies. Specifically, for vowels 
employing the velopharyngeal opening (VPO) [8], 
there have been reports of: a) a widening of the first 
formant bandwidth [7], b) a decrease in the first 
formant’s amplitude [13, 14, 15, 10, 16], and c) a 
strength enhancement of the spectrum partials near 3 
kHz [16]. 

Gill et al. [8] concluded that a wide VPO is 
associated with a weaker fundamental and a lower 
level of the highest long-term average spectra (LTAS) 
peak below 1 kHz and a boost of otherwise low levels 
in the 24 kHz range. Vampola et al. [16] created a 
three-dimensional finite element model of the vocal 
tract for one female subject, for two vowels, proposing 
frequency bands for the four lowest nasal resonances 
and concluding in "more dominant acoustic energy" 
[16] in the region of formants F3–F5 due to nasality. 
Santoni et al. [17] investigated the effect of altered 
auditory feedback on the control of oral-nasal balance 
in song, showing lower nasalance scores in response to 
both increased and decreased nasal signal level 
feedback for the participants. Havel et al. [4] studied 
the sine-sweep response of 3-D models and concluded 
to a dip in the transfer function at the main resonance 
of the nasal tract with the VPO. 
 

II. METHODS 
 
For the detection of the nasality characteristic in 

audio samples the authors extended their previously 
developed Formant Range Profile (FRP) tool that 
analyzed the first two formants of the singing voice 
[18]. The prototype presented herein uses acoustic 
parameters pertinent solely to the voice formants. 
These parameters were selected through a case study 
experiment as the ones most correlated to vocal 
nasality, and a linear regression model was developed 
to utilize them for the estimation of a quantitative voice 
nasality factor. 

Audio samples were recorded in a studio booth, by 
two professional singers with many years of operatic 
training, following a specified protocol. The protocol 
consisted of vocal trials on the non-nasal vowel "a" in 
order to control for the inherit nasality of certain 
consonants and vowels. Trials involved singing vowels 
on a) a constant frequency, and b) on two-octave 
ascending and descending glissandos and arpeggios. 
Singers performed these trials in three distinct 
experimental conditions [5], i.e. opting to use vocal 
sounds which they perceived as (i) nasal, (ii) non-nasal 

and (iii) progressively changing from nasal to non-
nasal and back. 

Participants 1 and 2 (P1, P2) performed the trials in 
5min 42s, and 6min 32sec time, respectively. Record-
ing was exported into 44.1KHz/16bit mono .wav files 
using the open software Audacity. File preparation was 
conducted by removing silent intervals and oral trial 
descriptions. These files were subsequently segmented 
into 228 2-second consecutively numbered .wav files. 

The above 228 samples were evaluated perceptually 
by the same two experiment participants, utilizing their 
expertise as singing teachers. Evaluation was per-
formed aurally on a 9-point scale, from 0 (non-nasal) 
to 4 (extremely nasal), including 0.5 step ratings. Files 
were presented to the two judges in distinctively ran-
domized orders and with the use of closed type head-
phones. Evaluation means for each sample had thus 
discreet values ranging from 0 to 5 with a 0.25 step. 

Aiming towards a more homogeneous class 
separation of the dataset, and due to the perceptual 
ratings of two judges resulting to a 0.25 step nasality 
ratings, samples were classified into five classes with 
an experiment-specific approach. The first and the fifth 
class included 3 rating values each (0, 0.25, 05 and 3.5, 
3.75, 4 respectively), leaving the rest with 4 rating 
values each (< 0.75, <= 1.6, <= 2.4, <= 3.2 <= 4). 

For each audio sample, the average of the first four 
formant frequency values (F1, F2, F3, F4) and 
bandwidth values (F1BW, F2BW, F3BW, F4BW) were 
extracted. The values were computed using python 
programming language and the python library 
parselmouth, which uses the Praat’s software 
functions. In addition, the Pearson’s correlation 
coefficients and the P-factors of those features, 
between the perceptual nasality ratings, were extracted. 

 
III. RESULTS 

 
The regression lines between nasality perceptual 

ratings (NR) and the features F1BW, F2BW, F3BW, F4BW, 
F0, F1, F2, F3, F4, are shown in Figure 1 (i-ix), 
respectively. Table 1 shows the average values of the 
acoustic parameters in correspondence with the five-
class nasality perceptual ratings. Table 2 shows the 
Pearson’s correlation coefficients along with the P-
factors. We observe that, as the perceptual nasality 
rating increases, the F1BW, F1 and F2 are increasing as 
well, while the F3 is decreasing. 

The above results demonstrate higher correlation 
coefficients between the nasality rating and the second 
formant frequency (r = 0.5769, P-factor = 0.0000), 
followed by the first formant bandwidth (r = 0.4767, P-
factor = 0.0000). The experimental protocol of this 
study included singing phonation in a variety of dis-
tinct pitches and on vocal glissandos. Therefore, in or-
der to control for possible fundamental frequency (F0) 
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effect on nasality assessment, the Pearson’s correlation 
coefficient between the perceptual nasality ratings and 
F0 was extracted. F0 proved to be a non-statistically 
significant factor for vocal nasality, with a correlation 
coefficient equal to 0.1081 and a P-factor of 0.1035. 

Based on the above observations, the statistically 
significant factors F1, F2, F3, F1BW and F3BW were 
selected, yielding, using linear regression, a correlation 
coefficient of 0.8112 with P-factor equal to 0.0000. 
 

IV. DISCUSSION 
 
Our results confirm nasalization of the singing voice 

to be a feature that appears identifiable through 
acoustic analysis of audio samples. The studied 
features included the frequency and bandwidth of the 
first four formants and the results are in accordance 
with the literature. More specifically, the analysis 
conducted confirms the increase of the first formant 
bandwidth in nasal phonation, demonstrating the 
highest correlation coefficient among the examined 
formant bandwidths. 

The FRP tool was extended using stepwise 
regression, to extract the aforementioned features and 
enriched to output a diagram visualizing an overall 
nasality evaluation of the audio input samples. The 
proposed tool can be used either (a) independently, 
assisting singing students identify the nasalization of 
their voice, become familiar with the vocal tract 
modifications, and gain control of the articulatory 
mechanism and VPO use in singing, or (b) as part of 
the under development comprehensive voice quality 
assessment toolset. This toolset is a part of the 
"Assistance for students in Singing and Music 
Aesthetics" (ASMA) project, involving the authors of 
the present work, which aims towards the amelioration 
of the vocal and music education process in Greek 
primary education, by providing comprehensive infor-
mation, training and teaching guidelines, as well as 
suitable tools, to the elementary school music teachers. 

Future work on this project includes an extension of 
our tool using more acoustic parameters, enhancement 
of the existing model using a large scale dataset with 
participant groups of distinct vocal proficiency levels, 
as well as the development of a multivariate model 
predicting the nasality rate of the singing voice, using 
neural networks. 
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Table 1, Average values of the formant bandwidths (F1BW - F4BW) and 
formant central frequencies (F1-F4) in correspondence with the five-class 
nasality perceptual ratings (NR).

Table 2, The Pearson correlation 
coefficients and the P-factors between the 
NR and the studied acoustic parameters.

Fig. 1, Regression lines (i-ix) between the nasality perceptual ratings and the features F1BW, F2BW, F3BW, F4BW, F0, F1, F2, F3, 
F4, respectively.
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Abstract: According to the aesthetics of classical 
singing style, vocalists should “cover” the vowels at 
pitches in the so-called passaggio region. Some 
authors [1][2] have recently claimed that 
“covering” is primarily an acoustic illusion when 
the vocalist tries to avoid the reflexive wider
opening of the mouth and raising of the larynx as 
the pitch ascends to the passaggio. If the singer 
keeps the vocal tract resonance frequencies or 
formants (R) invariant, the voice timbre seems 
“open” if at least two harmonics locate lower than 
the R1, and “covered” if this concerns only the 
fundamental. The purpose of this study was to 
check these assumptions by the use of perception 
tests. In the case of all the vowels investigated, 
except /i/, there was a statistically significant 
tendency to rate the timbre of sounds as more 
“covered” when the pitch was higher, and more 
“open” when the pitch was lower, without the 
expected abrupt changes at those pitches where the 
H2 passed the R1. Rather than depending on the H2 
crossing the R1, the change in perceived timbre 
with pitch may be related to the expectations the fo

creates on the apparent characteristics of the 
singer, including the values of formant frequencies.
Keywords: Voice covering, formants, harmonics, 
timbre, pitch

I. INTRODUCTION

A “covered” (Italian coperto, German gedeckt)
voice is a quality that is typically pursued in classical 
singing style (especially in the male voice in its 
passaggio region) in order to avoid a strident, shrill, 
screeching sound similar to yelling that is sometimes 
also called “open” or “white” timbre [3]. The aesthetics 
of “covering” the voice when singing in the passaggio
region probably emerged in the 1840s. There are 
various opinions as to how the voice “covering” should 
be accomplished. Manuel Garcia, a world-famous 
voice teacher of that period, claimed that to “cover” the 
voice, the singer has to keep the larynx in a low 
position [4]. This suggestion contradicted the common 
practice of opera singers of those times who typically 
let the larynx rise with pitch [5]. Also, in untrained 

singers, the larynx usually rises as the pitch ascends 
[6].

Miller [3] and Appleman [4] relate “covering” to 
vowel modification, which should typically be in the 
direction of a back vowel and a wider mouth opening 
with ascending pitch. Sundberg [7] claims that to 
“cover” the voice the first resonance of the vocal tract 
(R1) of the vowels with high R1 such as /a/ and /ae/, 
and the second resonance of the vocal tract (R2) of the 
vowels with low R2 such as /i/ should be lowered. This 
is possible by reducing the mouth opening (which 
however, contradicts the aforementioned suggestions 
of Miller and Appleman) and widening the pharynx 
(ibid.). 

Miller and Schutte [8] state that the essence of 
voice “covering” is the position of R1 in relation to the 
second harmonics of the voice spectrum (H2): we 
perceive that the voice is “covered” if the R1 is located 
below the H2. Their statement was based on the results 
of a case study where the first author of the paper was 
trying to sing vowels with “open”, “standard” and 
“exaggeratedly covered” timbres. 

“Open”/“white” or “yell” timbre, which is the 
opposite of “covered”/“closed” timbre, may be related 
to the articulatory formant tracking where the singer 
tunes R1 to the H2—a strategy which people often 
instinctively tend to apply to increase the loudness of 
the voice [1][9]. Although classically trained singers
tend to avoid “yell” or “open” timbre, for many 
commercial styles such as pop, jazz, belting or folk it is 
a legitimate quality, as in such styles naturalness is 
typically sought, and “yell” is a natural, speech-like 
way similar to how people use their voice in emotional 
situations. 

Miller [1] and Bozeman [2] claim that the 
“covered” timbre is perhaps, at least partly, an acoustic 
illusion which emerges when the singer intentionally 
resists the temptation to track the H2 by the R1 at the 
passaggio. In order to achieve this, when reaching the 
pitches where H2 rises above the typical R1 for the 
corresponding vowel, the singer has to let the H2 pass 
(turn over) the R1 (by avoiding doing anything with 
the articulatory organs). 

In the case of another strategy often used 
spontaneously—“hoot” [1] or “whoop” [9]—the R1 is 
tuned to the H1. As H2 = 2H1, the “hoot”/“whoop” is 
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possible at about one octave higher than “yell”, and its 
addressing is not the focus of this paper.  

To summarise: several authors such as Bozeman 
[2][9] and Miller [1] claim that when R1 is located 
below the H2, the timbre of the sung vowel seems 
“covered” or “closed” (according to Miller, this mainly 
concerns male voice singing in the passaggio region) 
and timbre feels “open” when the R1 is located at or 
above at least two spectral harmonics. However, the 
systematic investigation using statistical tools and 
perception tests with a wider range of participants to 
prove such claims would appear to be lacking. This 
study is an attempt to fill this gap. 
 

II. METHODS 
 

We used perception tests in which we played 
singing-voice-like synthesized stimuli to a group of 
experts and asked them to rate the timbre of each 
stimulus on the scale “open” – “covered”/“closed”.  

 
Stimuli: Using the program Madde 3.0.0.2 we 

synthesized nine series of short (about 2 sec) auditory 
stimuli. The 5 vowels (/a/, /e/, /i/, /o/, /u/) × 2 voice 
categories (bass, soprano) paradigm was used to create 
the series. Each series consisted of 11 to 20 pitches of 
the chromatic scale depending on the vowel and the 
voice category used in each specific series. The pitch 
ranges were chosen to include the region where we 
expected to meet an abrupt change in the experts' 
ratings from “open” to “covered” because of the H2 
turning over the R1 (i.e., the stimuli where H2 = R1 
and thereabouts). For all the stimuli included in the 
same series, we kept the frequencies and bandwidths of 
the VT resonances and other parameters that it is 
possible to specify in the Madde program (with the 
exception of the fundamental frequency, fo) invariant. 

The values of the VT resonance frequencies used as 
the input parameters for the synthesis by Madde were 
estimates of the VT resonance frequencies of the voice 
spectrum of two real singers (a soprano and a bass) 
singing the same vowels at the lower end of their 
comfortable voice range. The measurements were 
made using the software Praat 6.1.08. 

 
Experts: Altogether we had 44 experts, whom we 

contacted either in person or by distributing the 
internet links to the tests online. For sharing the links, 
we used the personal Facebook contacts and the 
postings to the Acoustic Vocal Pedagogy Group. In the 
online tests we asked the participants to deliver some 

information about their background. The reported ages 
were between 21 and 67 years (45 years on average). 
All the participants were or had been professional 
singers or were still voice students at the tertiary level 
of music education (10 people); 18 were also active as 
voice teachers (including nine professors at academic 
institutions). Most of the experts had a background in 
the classical style. The reported countries of origin 
included Estonia, the USA, the Netherlands, Finland, 
Latvia and Argentina. 

 
Tasks: In the tests, the experts had to give their 

responses on a 5-point Lickert scale where the rating 
“1” corresponded to the most “open” and “5” to the 
most “covered/closed” timbre, with the midpoint at the 
rating “3”. The tests were administered via the online 
platform PsyToolkit [10][11].  

The participants were also asked to give comments 
on the thoughts that running the experiments may have 
created. As not all the participants had enough time to 
complete all nine tests, the number of participants who 
completed each test was different, and remained 
between 28 and 44. 

The participant could run the test on any convenient 
device such as desktop, laptop, tablet or mobile (they 
were asked to give information about their equipment 
in a special box on the screen). They were asked to use 
earphones if they did the tests on a mobile so as to 
ensure the sound quality. The experts chose the order 
and the time they did the tests themselves.  

 
III. RESULTS 

 
In the panels of Figure 1, we see that (1) in all tests, 

except the female /i/, the linear trendline is rising with 
pitch indicating that the experts tended to rate the 
timbre as more “covered” at higher pitches, and as 
more “open” at lower pitches; (2) no one of the graphs 
showed the hypothesized abrupt changes around the 
region where the H2 passes over the R1 (H2 = R1).  

 
Inter-individual differences: While 42% of the 

trendlines rose by at least one grade-point with one-
octave pitch ascent, in the case of 13% of the 
trendlines, the tendency was opposite to the general 
trend—at higher pitches, the timbre was rated as more 
open compared to the low-pitch notes. Moreover, 45% 
of the trendlines lacked a clear trend, or it was quite 
weak. 
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possible at about one octave higher than “yell”, and its 
addressing is not the focus of this paper.  

To summarise: several authors such as Bozeman 
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created. As not all the participants had enough time to 
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were asked to give information about their equipment 
in a special box on the screen). They were asked to use 
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ensure the sound quality. The experts chose the order 
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In the panels of Figure 1, we see that (1) in all tests, 

except the female /i/, the linear trendline is rising with 
pitch indicating that the experts tended to rate the 
timbre as more “covered” at higher pitches, and as 
more “open” at lower pitches; (2) no one of the graphs 
showed the hypothesized abrupt changes around the 
region where the H2 passes over the R1 (H2 = R1).  

 
Inter-individual differences: While 42% of the 

trendlines rose by at least one grade-point with one-
octave pitch ascent, in the case of 13% of the 
trendlines, the tendency was opposite to the general 
trend—at higher pitches, the timbre was rated as more 
open compared to the low-pitch notes. Moreover, 45% 
of the trendlines lacked a clear trend, or it was quite 
weak. 

  Figure 1. Average ratings with standard deviation whiskers to the timbre of stimuli on the scale “open” – 
“covered”. Each panel corresponds to a separate test. The horizontal axes show the chromatic scale steps. Empty ring 
markers indicate pitches at which H2 crosses over the R1, dark enlarged markers indicate pitches at which H1 
crosses the R1. The difference in ratings to the stimuli at pitches marked with diamonds at the beginning and with 
squares at the end of the corresponding pitch scale is statistically significant according to the PostHoc tests of 
ANOVA. Also, the linear trendlines of the curves with the corresponding formulas and correlations are presented. 
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IV. DISCUSSION 
 

Although our perception tests showed a statistically 
significant tendency of voice specialists to perceive the 
timbre of sung vowels with invariant VT resonance 
frequencies as more “open” at low pitches and as more 
“covered”/“closed” at high pitches, this tendency was 
often small or absent; moreover, contrary to our 
hypothesis, such timbral change seems not to be related 
to the specific pitch at which the H2 turns over the R1 
(i.e., where H2 = R1) as the change from the “open” to 
the “covered/closed” timbre with rising pitch was 
expressed by a smooth statistical trend and not by an 
abrupt jump or change. Such finding compelled us to 
seek alternatives to the explanation that was used to 
describe the phenomenon by Miller and Schutte [8] 
and by Bozeman [2][9]. The results of our study 
concur with the findings of Traunmüller [12], who 
found that the decisive factor which defines how 
“open” the timbre of the vowel seems to the listeners is 
the tonal distance between the R1 and the fundamental 
component of the spectrum (fo = H1). 

Another possible hypothesis suggests that the fo's 
impact on the perceived “openness” of the vowel could 
be related to the expectations the fo may create in 
listeners with regard to the frequencies of the VT 
resonances (vowel formants) [13]. In general, shorter 
people typically have somewhat higher vocal tract 
resonances than taller people since their vocal tracts 
tend to be physically smaller, and they produce a 
higher fo with their voice in common situations like 
speaking as their vocal folds tend to be shorter.  

Therefore, when we hear a human voice with a 
high pitch, we subconsciously expect that the timbre of 
such a voice also has formants at somewhat higher 
frequencies than a voice with a lower fo. We may 
speculate that in the case of our tests the subconscious 
expectations of the experts on the formant frequencies 
matched quite well the actual acoustical parameters of 
our stimuli at the low end of the pitch scales used in 
our tests (the values of the VT resonance frequencies 
used to synthesize our stimuli corresponded to the 
values produced by a real bass and soprano). This was 
probably less so at high pitches, which might enforce 
the impression of voice “covering”. 
 

V. CONCLUSIONS 
 

Pitch is able affect the perceived timbre of the voice 
on the scale “open” – “covered”/“closed”. However, 
the content of the corresponding terminology may be 
understood even in opposite ways by different users, 
for quite a number of whom the terms do not appear to 
have a consistent meaning. The specific acoustic 
condition H2 = R1 seems not to play a substantial role 
in changing the perception from one timbral category 
to the other. 
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Abstract: Recent research into different folk vocal 
styles has been conducted by examining the acoustic 
parameters of the singing voice [1] [2] [3] [4]. On the 
Greek island of Crete, the acoustical parameters of a 
song are “strongly” depended upon the origin of the 
singer, due to the peculiar pronunciation which each 
Cretan region adopts. The most known non-dance 
folk songs in Crete are “Rizitika” songs. (plural of 
“Rizitiko” song). Although Rizitiko has a distant 
chronological root (root in Greek means Riza which 
is etymologically related to Rizitiko) is a living 
culture, a dynamic legacy and heritage that is spread 
all over Crete and mainly at the western and central 
regions of the island.   
 
In this paper, we research thoroughly and present 
the formant characteristics of the Cretan Rizitiko 
singing style sung by sixteen (16) men.  Specifically, 
we demonstrate (via illustrative panel) the formant 
tuning of two (2) singers whose origin belongs to 
different Cretan region. Also, we compare the vocal 
acoustical differences of formant frequencies 
between all participating singers for one singing 
diphone (“ki”) and for one singing vowel (“a”) 
 
Keywords:  Rizitiko, Formant Tuning, Formant   
                   Frequency                          
 

I. INTRODUCTION 
 
Folk music is synonymous with traditional music. The 
island of Crete is a geographical part of Greece that still 
supports and embellishes its traditional identity [5]. 
Tradition, from the Latin verb tradire (to deliver) can be 
delivered (among other elements) through song, music 
and dance. These three are “strong” elements of the 
Cretan tradition [6]. The traditional music of a region 
can often be divided into dance and non- dance music. 

The most known non-dance folk songs in Crete are 
Rizitika (solemn slow songs, possibly of Byzantine 
origin) [7]. Rizitika songs are strong and a dynamic 
symbol of Cretan identity. There is a significant 
difference in pronunciation between the Prefectures of 
Crete, as each Cretan region adopts a characteristic 
pronunciation. This characteristic pronunciation 
becomes more noticeable with the use of velar 
consonants (such as k/x/g) which is followed by anterior 
vowel (i/e/ou) [8]. Particularly, the case of Diphones 
(consonant with a following vowel) meets the most 
characteristic element of the Cretan pronunciation that 
is not eliminated [9]. The question that arises is whether 
this characteristic pronunciation has an impact on the 
singer's voice. By this we mean, how this feature 
(pronunciation) is captured and imprinted during the 
performance of the modern Cretan singing voice, the 
existence (or not) of Formant Tuning along with the 
classification and distribution of formant frequencies by 
region under consideration. 

   
II. METHODS 

 
Sixteen (16) singers were recorded from four different 
regions. Specifically, these were three (3) Cretan 
regions Chania (or as pronounced Xania) Rethymnon 
and Heraklion. In these Cretan Counties the Rizitiko is 
found especially in the province of Xania [10]. The 
fourth region was Athens which is non-Cretan. The 
reason of recording two non-Cretan singers was to find 
how their singing (the acoustical and musical 
parameters) differentiates compared to Cretan singers 
and what is the “role” of the origin and how it functions 
to the “interpretation” of Rizitiko.  
From Xania four (4) singers recorded as well as from the 
region of Heraklion. From Rethymnon six (6) singers 
recorded and from Athens two (2). All studio recordings 
were made in the same acoustic environment, in order 
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to achieve the correct comparison of the acoustic 
measurements that would follow. The equipment used 
was state of the art and it was identical to all recordings.   
 
The equipment consisted of a condenser microphone 
with omnidirectional polar pattern (Earthworks Audio 
M30) with direct response across the frequency 
spectrum, keeping the same “working distance” (the 
distance between the singer and the microphone) which 
was thirteen centimeters (13 cm) for each session. 
The microphone was connected to the low-noise 
preamplifier (Avalon M5 Pure Class A). Similar to 
previous studies [11] electrodes were placed to all 
singers during recordings. These were placed externally 
on the neck of the singers at the height of the thyroid 
cartilage to detect impedance changes of the vocal cords 
and were connected to the Electroglottograph Console 
(Kay Pentax Model 6103). The signal of the 
electroglottography (EGG) was stored as a “mono” 
signal to the digital recorder (Tascam X-48MKII hard-
disk recorder). The digital recorder (using 44.1Khz 
sampling rate/16-bit resolution) was in connection with 
the mixing console (Audient ASP 8024) in order to have 
during playback the two signals (microphone and 
electroglottography). All recordings accomplished at 
the Studio of the Department of Music Technology and 
Acoustics, Rethymnon- Crete. 
 
The whole recording process was identical for all 
participating singers. All singers were exclusively male. 
This was due to the fact that Rizitika songs always 
performed by male voices, in contrast to other vocal 
styles dominated by female voices [12]. The method 
included the following procedure: 
 
Firstly, all singers (after they understood the procedure 
that would follow) filled in a questionnaire regarding 
their origin, where they grew up, age, musical studies, 
years of experience as performers and their discography, 
if they are smokers etc. After filling the questionnaire: 
•  It was found with the use of piano the singer’s   
       voice extend (registro) in order to be categorized  
       the voice of all singers (tenor) 
• Note selection of the Rizitiko by the singers 
• All singers performed the same Rizitiko song “Se 
      Psilo Vouno”  
• The singers performed a major scale for all Greek  
      vowels (a/e/i/o/ou) for both ascending and      
      descending form (musical scale)  
• After completing the recordings, the pre-selected   
      Cretan characteristic singing diphones, all   
      performed vowels, as well as the recitation of the  
      lyrics of the performed Rizitiko song, isolated  
in order to proceed data mining (using Praat software 
program).  
       

Praat software program developed by Paul Boersma and 
David Weenick from the Institute of Phonetic Sciences 
of the University of Amsterdam. 
Most of our measurements used in our analysis were 
acquired using the PRAAT software, as it is a valuable 
and flexible software tool in the field of phonetics and 
voice analysis [13]. This program can handle large audio 
files and extract measurements of the vocal parameters 
using its built- in function.   
  
Mostly intensity, pitch and formant analysis were used 
in our measurements, as mentioned. More specifically, 
for the functions of pitch and formant analysis, PRAAT 
uses an algorithm that performs an acoustic periodicity 
detection trough a precise autocorrelation method and 
also, it can capture a value every 6.25 millisecond, 
giving the average value for the formant frequency we 
aim to find, respectively.   
       

III. RESULTS 
 

Formant frequencies initially differ depending on age 
and gender, as the anatomical features of the vocal tract 
(length) depend on the above two factors. That is why 
all singers had the same gender (male) and similar age 
range (32 to 43 years old).  
 
Each of the preferred resonating frequencies of the 
vocal tract is known as a formant. In the vocal tract the 
five (5) lowest formant frequencies (usually referred to 
as F1 for the first, F2 for the second etc.) play a role in 
shaping the spectrum of the voice and the timbre of the 
voice (sound color). 
 
Formant frequencies differ from the vowel that is 
pronounced each time, since the position and the shape 
of the tongue, the lips, the soft palate, the jaw, is on the 
substance, the articulatory movements of the face. The 
formant frequencies depend on the articulatory 
movements. 
 
 The position of the articulators affects only the first two 
formants (henceforth F1, F2) so the quality or 
recognizability of the vowel depends on the first two 
formants [14]. F1 is more susceptible to the changes of 
the jaw [14] [15]. Specifically, as long as the jaw opens, 
it increases the frequency of the first Formant and vice 
versa. F2 is more susceptible to the changes of the 
tongue [14]. When the tongue compresses the upper part 
of the vocal tract, it occurs a frequency increment of the 
second formant, or if we simplify it, F2 is mostly 
determined by the frontness/backness of the tongue 
body.  
 
“Fig. 1, 2” show the average value of F1 and F2 for the 
vowel “A” and the diphone “KI” respectively. It appears 
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that singers whose origin is from Rethymnon, compared 
to other regions, use a smaller opened jaw position 
resulting to a low F1 value (below 500 hz at the diphone
and well below 600 hz at the examined vowel). It can be 
easily ascertained that Rethymnon singers, have the 
lower F1 value for both vowel and diphone. Singers 
from Athens have obviously significantly higher F1 
value for the vowel “A” something that is interpreted in 
a larger jaw opening compared to all Cretan singers. 
Vowel “A” is an “open” vowel and emphatically 
characterizes the opening of the jaw.

At “Fig. 1, 2” we can see as well that singers from 
Heraklion, Chania (or Xania) and Athens show 
interesting similarity to F1 value at diphone “KI”. 
Comparing Cretan regions only, we see that Heraklion 
provided a higher F2 value at vowel “A” whilst, Chania 
at diphone “KI”. The latter, is due to the fact perhaps 
that at the region of Chania this characteristic diphone 
[8] [9] (“ki”) pronounced more “strongly” and has 
greater intensity.

Fig. 1 Vowel “A”. On the vertical axis: the average values of 
F1, F2 sorted by region with intense and pale color 
respectively. On the horizontal axis: the frequencies (hz) 

Fig. 2 Diphone “KI”. On the vertical axis: the average values 
of F1, F2 sorted by region with intense and pale color 
respectively. On the horizontal axis: the frequencies (hz) 

Having mined the values of the first two formants for all 
singers, our main objective was to investigate whether 
Rizitiko singers apply formant tuning. Formant tuning 
suggests that a singer increases Sound Pressure Level 
(SPL) without expense of vocal effort by adjusting his 
lower formant frequencies to coincide with partials 

(harmonic frequencies) in order to gain SPL. By doing 
this, a singer exposes his voice and can be heard with 
less vocal effort in large auditoria [15] [16] [17]. In
many cases, singers can adjust the articulation of the 
vocal tract (formant tuning) in order to enhance and gain 
acoustic output [17]. Sometimes, singers tune their two 
lowest formant frequencies (F1, F2) to coincide
harmonic partials in order to increase the audibility of 
the voice [18].

Earlier literature in formant tuning, considered that in 
order to be occurred formant tuning F1 and F2 must be
tuned to a partial, either F1 is tuned to the fundamental 
frequency (f0) or F1 is tuned to the vicinity of a partial.
In the latter, previous studies considered that vicinity 
between F1 or F2 is either over a semitone (100 cents) 
of a partial, or under (below) a semitone of a partial. [19] 
[13].

In the present study we consider formant tuning occurs 
if the F1 and F2 has maximum one semitone distance
(above or below) a partial, or F1/F2 is tuned exactly at a 
partial. “Fig. 3, 4” represent a typical formant tuning 
phenomenon for two Cretan singers (from Rethymnon 
and Chania respectively) performing a major scale 
(ascending/descending form) singing vowel “A”.

Rethymno singer at “Fig. 3” produces formant tuning 
since F1 (lower curve) is in most cases aligned with the 
third harmonic (H3). More specifically, at dominant, 
submediant and supertonic F1 is tuned exactly on H3. 
F2 (upper curve) formant tuning extends from H4 to H8.

F1 (lower curve) of the singer from Chania at “Fig. 4” 
is in almost complete alignment with the partials 
(harmonics). In fact, his F1 “follows” the performing 
note along the third harmonic (H3). At his F2 (upper 
curve) we observe evidence of formant tuning as well.   

Fig. 3 Singer from Rethymno performing a major scale singing 
vowel “A”. The continuous and dashed lines represent the
ascending and descending form respectively. The oblique 
dashed lines are the partials (harmonics). Lower and Upper 
curve represent F1 and F2 respectively. 
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Fig. 4 Singer from Chania performing a major scale singing 
vowel “A”. The continuous and dashed lines represent the
ascending and descending form respectively. The oblique 
dashed lines are the partials (harmonics). Lower and Upper 
curve represent F1 and F2 respectively

IV. DISCUSSION

In order to find evidences of formant tuning in modern 
Cretan singing and the classification and distribution of 
formant frequencies by Cretan region under 
consideration, we presented primarily our formant 
analysis and the results of our measurements. Despite 
the fact that this technique (formant tuning) more 
frequently appears among opera singers, none of the 
recorded Rizitiko singer has undergone operatic 
training. More vowels and diphones will be analyzed 
soon, to draw “solid” conclusions.

V. CONCLUSION

Our main goal was to find evidences of formant tuning 
in Cretan Rizitiko singing. The results revealed that 
formant tuning occurs in the modern Cretan singing 
voice, as in other non-operatic vocal styles [13] [20] 
[21]. All participating fourteen (14) Cretan singers, 
performed at vowel “A” the ascending/descending 
scale, with strong elements of formant tuning. In many 
cases of Cretan singers, F1 was tuned to H4, H3 and 
even at H2. At these harmonics, formant tuning 
becomes more noticeable as an increase of SPL is 
observed. Moreover, it has become clear from our 
measurements so far, that Rethymno singers use a 
smaller opened jaw position. The latter is reinforced by 
the fact, that Vowel “A” is an “open” vowel and 
emphatically characterizes the opening of the jaw.
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Abstract: Laryngeal dimensions and glottal and 
acoustic parameters were measured in a single 
female subject who performed 7 out of 13 voice 
figures and 6 qualities from Estill Voice Training 
(EVT). High speed videolaryngoscopy and acoustic 
analysis showed that the influence of voice figures 
and qualities on vocal fold oscillations was 
significant. Factor analysis identified the glottal 
behavior in open and closing quotients and glottal 
stiffness as significant factors, which mainly 
describe body cover control figures. The second 
type of interpretable factor of vocal fold oscillation 
was related to the speed quotient; therefore changes 
in the degree of adduction as well as acoustic 
interaction between the vocal folds and the 
supraglottal vocal tract could be assumed. With the 
exception of the second formant, which was related 
to the vertical position of the larynx and tongue, 
changes in acoustic features were mainly 
manifested in the total SPL. This was primarily 
influenced by the level of the first harmonic 
component and secondly by the energy in the 2 - 4 
kHz bandwidth. 
Keywords:  Singing, Estill voice model, Estill voice 
training, glottal vibrational parametrization, 
acoustic parameters, Glottis Analysis Toolbox 

 
I. INTRODUCTION 

 
Estill Voice Training (EVT) is a program for 

developing special vocal skills [1]. Experimental 
studies suggested that EVT is potentially an effective 
educational system for developing and controlling 
distinct voice qualities in contemporary commercial 
singing [2]. EVT teaches six vocal qualities that differ 
in the level of aryepiglottic narrowing and the 
occurrence of the singer’s formant [3]. An emphasis on 
body-cover figures helps students to develop the ability 
to discriminate among slack, thick, thin and stiff vocal 
conditions. These conditions can be objectively 
identified using SPL, subglottal pressure, glottal 
airflow and perturbation measures; however, contact 
quotient (CQ) values from electroglottography (EGG) 
have not been shown to be able to distinguish among 

voice conditions [4]. The aim of this work is to 
describe how acoustic, laryngoscopic, and vibrational 
parameters of the voice change across 7 different 
figures and 6 voice qualities (i.e. conditions) within the 
EVT system.  
 

II. METHODS 
 

A single female subject (45 y.o.) with a Certificate 
of Figure Proficiency in EVT participated in the study. 
Synchronized acoustic and EGG signals 
(Laryngograph D200) were measured together with 
high-speed videolaryngoscopy (HSV, Phantom V611 
VisionResearch) using a 90° rigid laryngoscope 
(Olympus) at 6000 fps. The subject performed 7 out of 
13 Estill figures (the list is given in the caption of Fig. 
1) in two pitches, C4 and A4. Prior to HSV analysis, 
the antero-posterior axis of the glottis was aligned in 
the vertical direction and normalized to the width of 
the epiglottis. Subsequent measurements of the antero-
posterior glottal length (AP) and false vocal fold (FVF) 
width were measured from the middle parts of 166ms 
length excerpts. Subsets of the HSV files were 
analyzed using the Glottis Analysis Toolbox (GAT, 
University Hospital Erlangen, Erlangen, Germany). 
The acoustical parameters (frequencies and amplitudes 
of the first three formants, SPL @30 cm, the level of 
the first harmonic, the level difference between the first 
and the second harmonics, and the singing power ratio) 
were calculated from a synchronously recorded sound 
signal. 

A factor analysis (varimax normalized, 
STATISTICA 6.0) was used to find the main 
components of variability in the glottal area waveform 
and acoustical parameters separately. The factor 
analysis was done with all utterances where the glottal 
area and other glottal parameters could be calculated. 
Slack body cover utterances in both pitches produced 
unreliable glottal parameters and therefore were 
excluded from further analysis. In addition to this, 
utterances where the visibility of the full vocal fold 
length or width (e.g. antero-posterior compression and 
FVF constriction) were impaired were also excluded, 
as they affected the glottal analysis. 
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The goal of the factor analysis was to identify if 
glottal and acoustical parameterization had similar 
factorial trends in both pitches and if they were 
characterized by similar singing conditions. 

 
III. RESULTS 

 
The first 2 graphs in Fig. 1 (left) show the ratio of 

the length of the glottis to the width of the gap between 
the false vocal folds relative to the width of the 
epiglottis for C4 and A4. In both pitches, the longest 
glottal length was found for stiff body cover and low 
tongue position, while belt, speech and twang showed 
the shortest glottal length. Wide FVF was measured 
for opera, low tongue and thyroid tilt, while narrow 
FVF were found for belting, thick body cover and 
cricoid tilt.  

The correlation coefficients between laryngeal 
dimensions and measured glottal and acoustic 
parameters are depicted in Tab. 1 and Tab. 2, 
respectively. Most glottal parameters correlated with 
the length of glottis in C4, while in A4 they correlated 

mainly with FVF width and the ratio between glottal 
length and FVF width.  

The results of the factor analysis of glottal 
parameters are depicted in Tab. 1 (Factor and Corr. 
columns). At both pitches, glottal parameters could be 
divided into 5 factors that described 82.1% (for C4) 
and 87.4% (for A4) of the variability.  

The main components found for both pitches 
included: open, closing, rate and amplitude quotients, 
glottal area index and stiffness. In addition to this, for 
C4, the Maximum-Area-Declination-Rate was included 
in the main component, while shimmer and plateau 
quotient were part of the main factor for A4. The 
second components in both pitches were related to the 
time periodicity, jitter and HNR, and for C4, there was 
also the influence of the plateau quotient. The third 
factor in C4 and the fifth in A4 were related to the 
speed and the asymmetry quotients, respectively. In C4 
the third factor was additionally influenced by 
waveform and amplitude symmetry indexes. The third 
factor in A4 was related to waveform and phase 
asymmetry indices and contour angles symmetry [CP]. 

 

 
Fig. 1 Distribution of utterances according to laryngeal dimensions (left column) and most relevant glottal 

(middle column) and acoustic factors (right column) for C4 (upper row) (left column) and A4 (bottom row). 
Abbreviation of vocal figures: False voc. folds (F): constrict [Fc], mid [Fm], retracted  [Fr];  Body cover contr. 

(B): slack [Bsl], thick [Btk], thin [Btn], stiff [Bsf]; Thyroid cart. contr. (Th): vertical  [Thv],  tilt [Tht]; 
Cricoid cart. contr. (Cr): vertical  [Crv],  tilt [Crt]; Ary-epiglotic sphincter (AE): wide [AEw], narrow 

[AEn]; Laryngeal vert. pos. (L): low [Ll], mid [Lm], high [Lh]; Tongue pos. (To): low [Tol], mid [Tom], high 
[Toh]) and six voice qualities: speech [spe], falsetto [fal], sob [sob], opera [ope], oral twang [twa], belt [bel] 
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the length of the glottis to the width of the gap between 
the false vocal folds relative to the width of the 
epiglottis for C4 and A4. In both pitches, the longest 
glottal length was found for stiff body cover and low 
tongue position, while belt, speech and twang showed 
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time periodicity, jitter and HNR, and for C4, there was 
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factor in C4 and the fifth in A4 were related to the 
speed and the asymmetry quotients, respectively. In C4 
the third factor was additionally influenced by 
waveform and amplitude symmetry indexes. The third 
factor in A4 was related to waveform and phase 
asymmetry indices and contour angles symmetry [CP]. 

 

 
Fig. 1 Distribution of utterances according to laryngeal dimensions (left column) and most relevant glottal 

(middle column) and acoustic factors (right column) for C4 (upper row) (left column) and A4 (bottom row). 
Abbreviation of vocal figures: False voc. folds (F): constrict [Fc], mid [Fm], retracted  [Fr];  Body cover contr. 

(B): slack [Bsl], thick [Btk], thin [Btn], stiff [Bsf]; Thyroid cart. contr. (Th): vertical  [Thv],  tilt [Tht]; 
Cricoid cart. contr. (Cr): vertical  [Crv],  tilt [Crt]; Ary-epiglotic sphincter (AE): wide [AEw], narrow 

[AEn]; Laryngeal vert. pos. (L): low [Ll], mid [Lm], high [Lh]; Tongue pos. (To): low [Tol], mid [Tom], high 
[Toh]) and six voice qualities: speech [spe], falsetto [fal], sob [sob], opera [ope], oral twang [twa], belt [bel] 

 

Tab. 1 Factor loadings of Glottis analysis toolbox parameters and correlation with vocal fold dimensions for 
C4 and A4 pitch respectively 

Pitch C4 A4 

Parameter / Factor Factor Corr. AP 
length 

FVF 
width 

FVF/ 
AP Factor Corr AP 

length 
FVF 

width 
FVF/ 
AP 

Open-Quotient(OQ) 1 -0.8 0.53*     1 0.93   0.61• 0.41* 
Closing-Quotient(ClQ) 1 -0.79 0.71•     1 0.86   0.68• 0.5• 
Amplitude-Quotient 1 -0.8 0.63•     1 0.78   0.75• 0.58• 
Rate-Quotient(RQ) 1 0.74 -0.65•     1 -0.89   -0.73• -0.52• 
Stiffness 1 0.79 -0.45*     1 -0.92   -0.8• -0.54• 
Glottal-Area-Index(AC/OQ) 1 0.84 -0.55•     1 -0.95   -0.66• -0.44* 

Maximum-Area-Declination-Rate 1 0.81 -0.43*     6         

Shim(%) NaN         1 -0.87   -0.67• -0.58• 
Time-Periodicity 2 0.96       2 0.94       
HNR(dB) 2 0.83       2 0.71   0.43*   
Jitt(%) 2 -0.96       2 -0.94       
Plateau-Quotient(PQ) 2 0.82 0.6•     1 -0.87       
Speed-Quotient(SQ) 3 -0.87 -0.67•     4 -0.92   -0.5* -0.46* 
Asymmetrie-Quotient 3 -0.84 -0.67•     4 -0.93   -0.46* -0.44* 
Waveform-Symmetry-Index 3 0.75       3 -0.86       
Amplitude-Symmetry-Index 3 0.86 0.59•     NaN     0.69• 0.49* 
Phase-Asymmetry-Index NaN         3 0.78       
ContourAngles-Symmetry*[CP]           3 0.71     -0.42* 
Peak-Closing-Velocity 4 0.9   0.76• 0.45* NaN     0.77• 0.52• 
Peak-Acceleration 4 0.89   0.78• 0.44* NaN     0.78• 0.53• 
Amplitude-Length-Ratio 4 0.93   0.61• 0.57• NaN     0.76• 0.58• 
Amplitude-Periodicity 5 -0.7       1 0.87   0.66• 0.58• 

mean-WMC NaN         5 -0.85       

 
Tab. 2 Factor loadings of acoustic parameters and correlation with vocal fold dimensions for C4 and A4 pitch 

respectively 
Pitch C4 A4 

Par Fac
t. Corr. AP length FVF width FVF/ AP Fact Corr. AP length FVF width FVF/ AP 

F1 1 0.9 -0.48* -0.53*   5 -0.84       
F2 5 0.92   -0.65• -0.47* 2 -0.87       

F3 Na
N     -0.73• -0.65• 2 -0.72       

A1 1 -0.82 0.51* 0.55•   1 0.84   0.67• 0.6• 
A2 3 0.97       3 -0.95       
A3 4 0.94 -0.56•     NaN         
SPL 2 0.84 -0.55•   0.46* 4 0.96     0.44* 
SPR 4 0.81 -0.62• -0.55•   1 -0.94   -0.57• -0.52• 
L(f0) 2 0.96     0.67• 4 0.93   0.49* 0.54• 
L(f0)-L(2f0) 1 -0.93 0.51* 0.68•   NaN     0.56• 0.63• 

 
 

The fourth factor in C4 included the peak closing 
velocity, the peak acceleration and the amplitude-
length ratio, while in A4, significant value was 
achieved with the mean-WMC parameter alone. 

Score coefficients of interpretable factors according 
to glottal parametrization are depicted in Fig. 1 (middle 
column). In the first component in both pitches, stiff 
and falsetto were in opposition to thick and belt 
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conditions. The second factor revealed no clear 
relations among conditions. The third components in 
C4 and the fifth in A4 revealed low larynx to be in 
opposition to the falsetto condition.  

The acoustic parameters could be divided into 5 
factors for both pitches (C4 and A4, see Tab. 2), these 
factors describe 92.3% and 88.2% of the variability for 
C4 and A4 pitches, respectively, but their distribution 
varied according to pitch. The second factor in C4 and 
the fourth factor in A4 included SPL and level of the 
first harmonic (Lf0). The distribution of utterances 
along those factors (see Fig. 1, right column) clearly 
differentiated the stiff from the opera configurations. 
The fourth factor in C4 and the first in A4 included the 
Singing power ratio parameter which separated 
falsetto and sob qualities from the thick condition. 
Factors containing the second formant position (F2) 
(the fifth in C4 and the second in A4) were found to be 
related to the vertical position of the tongue and 
larynx.  
 

IV. DISCUSSION AND CONCLUSION 
 

In this study, false vocal folds constriction was found 
to affect the type of vocal fold vibration (similar to [5]) 
and to produce apperiodic glottal behavior. Laryngeal 
dimensions showed that the length of the glottis was 
systematically affected by most glottal parameters in 
the lower pitch (C4), while in the higher pitch (A4) 
they were affected mainly by FVF width. This finding 
supports the assumption that the length-to-width ratio 
of the glottis depends on the vocal register [6]. 

Glottal and acoustic parameterization showed similar 
significant and interpretable factors in both pitches. 
The most important GAT factor consistently included 
parameters associated with open and closing quotients 
and stiffness. These can be linked to their respective 
laryngeal mechanisms [7] and level of adduction [8], 
differentiating falsetto from thick conditions. From the 
EVT [1] point of view, this factor describes the best 
body cover control figure. In the acoustical 
parametrization, SPR was found to be an important 
factor, probably due to an enhancement in the 2 - 4 
kHz spectral band [9]. Stiff vs. opera conditions were 
found to be at the opposite extremes of the total 
acoustical energy and therefore, can be assumed to be 
related to glottal adduction and the presence of glottal 
insufficiency.  

A factor containing speed quotient consistently 
differentiated falsetto (low speed quotient) from low 
laryngeal position (high speed quotient) in both 
pitches, which suggests higher levels of adduction with 
a lower larynx position. The difference in speed 
quotient found between falsetto and low laryngeal 
position could have also been caused by supraglottal 
acoustic interaction [10]. 

Finally, the vertical position of the tongue and larynx 
had a systematic effect on F2, however no systematic 
effects in glottal parameters were found for both 
pitches. 

The results from this case study confirm that similar 
fundamental acoustic and glottal factors occur for the 
two different pitches tested (C4 and A4). Therefore, it 
can be assumed that the glottal factors open and speed 
quotients as well as the acoustic factors of total energy 
(SPL) and singing power ratio are some of the 
underlying elements that form the EVT figures and 
voice qualities. Further studies with multiple expert 
subjects are needed in order to confirm the preliminary 
findings from this study. 
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along those factors (see Fig. 1, right column) clearly 
differentiated the stiff from the opera configurations. 
The fourth factor in C4 and the first in A4 included the 
Singing power ratio parameter which separated 
falsetto and sob qualities from the thick condition. 
Factors containing the second formant position (F2) 
(the fifth in C4 and the second in A4) were found to be 
related to the vertical position of the tongue and 
larynx.  
 

IV. DISCUSSION AND CONCLUSION 
 

In this study, false vocal folds constriction was found 
to affect the type of vocal fold vibration (similar to [5]) 
and to produce apperiodic glottal behavior. Laryngeal 
dimensions showed that the length of the glottis was 
systematically affected by most glottal parameters in 
the lower pitch (C4), while in the higher pitch (A4) 
they were affected mainly by FVF width. This finding 
supports the assumption that the length-to-width ratio 
of the glottis depends on the vocal register [6]. 

Glottal and acoustic parameterization showed similar 
significant and interpretable factors in both pitches. 
The most important GAT factor consistently included 
parameters associated with open and closing quotients 
and stiffness. These can be linked to their respective 
laryngeal mechanisms [7] and level of adduction [8], 
differentiating falsetto from thick conditions. From the 
EVT [1] point of view, this factor describes the best 
body cover control figure. In the acoustical 
parametrization, SPR was found to be an important 
factor, probably due to an enhancement in the 2 - 4 
kHz spectral band [9]. Stiff vs. opera conditions were 
found to be at the opposite extremes of the total 
acoustical energy and therefore, can be assumed to be 
related to glottal adduction and the presence of glottal 
insufficiency.  

A factor containing speed quotient consistently 
differentiated falsetto (low speed quotient) from low 
laryngeal position (high speed quotient) in both 
pitches, which suggests higher levels of adduction with 
a lower larynx position. The difference in speed 
quotient found between falsetto and low laryngeal 
position could have also been caused by supraglottal 
acoustic interaction [10]. 

Finally, the vertical position of the tongue and larynx 
had a systematic effect on F2, however no systematic 
effects in glottal parameters were found for both 
pitches. 

The results from this case study confirm that similar 
fundamental acoustic and glottal factors occur for the 
two different pitches tested (C4 and A4). Therefore, it 
can be assumed that the glottal factors open and speed 
quotients as well as the acoustic factors of total energy 
(SPL) and singing power ratio are some of the 
underlying elements that form the EVT figures and 
voice qualities. Further studies with multiple expert 
subjects are needed in order to confirm the preliminary 
findings from this study. 
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Abstract: Vibratory positive expiratory pressure 
devices (PEP) are now considered a suitable resource 
for voice therapy. PEP devices produce large low 
frequency intraoral pressure modulations in the vocal 
tract that influences glottal behaviour. In this study, 
the impact of phonation into an Acapella Choice device 
(a type of PEP) on glottal behaviour was assessed. 
Phonation was produced by 2 males and 1 female 
participant whilst audio, EGG, pressure, flow and 
high-speed videoendoscopic data were collected. The 
results showed a systematic effect on glottal behaviour 
with changes in pressure caused by the Acapella 
device. When Acapella pressure was maximum, vocal 
fold vibration was hindered (lower: EGG amplitude, 
airflow, contact quotient (CQ), fundamental frequency 
(fo) and glottal area (GA)) as Acapella pressure 
reduced the opposite trend was observed. This 
systematic change in the supraglottic pressure 
modulates the behaviour of the vocal folds between 
what seems to be hindered and aided vibration. This 
behaviour confirms a mechanistic impact of the 
Acapella device on the phonatory apparatus that can 
be used for specific voice therapy purposes. 

I. INTRODUCTION

Voice therapy using semi-occluded vocal tract 
exercises (SOVTE) has received increasing adoption 
worldwide. More recently, the use of vibratory positive 
expiratory pressure (PEP) devices has been incorporated 
into the array of tools used as SOVTEs [1-4]. PEP devices 
are composed of a mouthpiece connected to a tube with an 
oscillatory valve at its distal end. Some devices such as the 
Flutter or Shaker use a plastic cone containing a metal 
sphere that is displaced by the airflow whilst the Acapella 
Choice device (henceforth Acapella) is composed of a 
tube with a distal oscillatory arm that closes and opens 
with airflow (Fig. 1). Although originally designed to 
mobilise secretion from the lungs in conditions such as 
cystic fibrosis and neurogenic diseases, the shaking 
mechanism of PEP devices can be used to produce a 
massage-like effect in the laryngeal muscles, 
consequently counteracting harmful effects of tension in 
the phonatory apparatus. PEP devices share some of their 
properties with tube phonation (another category of 

SOVTE), as both cause an artificial lengthening of the 
vocal tract increasing its impedance in relation to that of 
the vocal folds whilst allowing continuous airflow [5]. In 
specific, they increase positive (inertive) reactance close 
to the fundamental frequency (fo), consequently 
increasing intraoral acoustic pressure leading to greater 
vocal economy [6].  

In addition to changing the overall configuration of the 
vocal tract, PEP devices also affect the pressure-flow 
profiles in the vocal tract by the addition of a second 
vibratory valve at its distal end (e.g., rocker arm in the 
Acapella - Fig. 1). Changes in pressure and flow are 
modulated by the amplitude and frequency of the rocker 
arm opening and shutting mechanism. In this regard, PEP 
devices also behave like water resistance therapy (WRT) 
as both techniques involve the modulation of pressure and 
flow in the vocal tract by changes in the configuration of 
the distal end of the tube (rocker arm and water bubbling 
for Acapella and WRT respectively). In the case of WRT, 
pressure and flow modulation is controlled by the 
frequency, size, shape, and vibration regime of the water 
bubbles [7]. For tubes, as well as for PEP devices, the 
pressure values are largely determined by flow rate [3,8], 
this contrasts with WRT where pressure values are 
predominantly determined by the height of the water 
column above the submerged distal end of the tube [8]. 

In addition to the changes in the pressure-flow profiles 
caused by the PEP device, the vibration pattern of the 
vocal folds can also be affected using SOVTEs. In 
specific, previous studies have shown changes in contact 
quotient (CQ) values during SOVTEs. Most studies found 
CQ to increase with WRT [9,10,11] with fewer studies 
showing no clear trends in CQ [12,13]. Furthermore, it has 
been shown that exercises with two sources of vibration 
tend to produce larger ranges of CQ values than exercises 
with a single source of vibration in the vocal tract [14].  

Even though PEP devices share common characteristics 
with tube phonation and WRT, their impact on the 
vibratory pattern of the vocal folds during exercises has 
not been described. PEP devices, specifically the 
Acapella, has been shown to produce large and systematic 
changes in pressure values [3] and therefore can be 
expected to produce observable changes in the vocal fold 
vibratory pattern. The aims of this study are to describe 
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the influence of the Acapella on the glottis and its effect 
on the vibration pattern of the vocal folds.  

II. METHODS 

 
Fig 1. Acapella Choice (Taken from Saccente et al, 

2020[3]) 
 

Three subjects with no known laryngeal pathologies 
participated in the study, two males and one female. The 
Acapella Choice (Acapella Choice, Smiths Medical ASD, 
Inc, Rockland, Massachusetts) was used in this study as it 
was shown to produce large mechanistic changes in 
intraoral pressure [3]. In addition to this, due to the 
Acapella’s mechanism, its pressure-flow values are less 
likely to be affected by changes in the angle between the 
device and the floor which can occur with other PEP 
devices [4]. 
 

 
Fig 2. Data collection setup. For clarity, the T-shaped 
mouthpiece is shown vertically, however during the 
experiment, the flow meter and tested devices were kept 
horizontally. 
 

The high-speed videoendoscopy (HSV) was recorded at 
6000 fps using a VisionResearch Phantom V611 
(VisionResearch Phantom, New Jersey, USA) with an 
Olympus CLV-S45 (300W) light source (Olympus 
Corporation, Tokyo, Japan). Half a second segments were 
recorded for each utterance at a stable part of phonation. 
Pressure was measured using a digital manometer 
Honeywell ASDXAVX001PD2A3 (Honeywell 
International Inc, North Carolina, USA). A 10 cm long 
measuring probe was placed at the T-shaped mouthpiece 
junction (Fig. 2). Airflow was measured using a Sensirion 
SFM3000 digital flow meter (Sensirion AG, Staga, 
Switzerland) placed between the mouthpiece and the 
Acapella. Pressure and airflow measurements were 
recorded at 2 kHz and resample to 48 kHz using Octave 
([GNU Octave] version 6.1.0, 
www.gnu.org/software/octave/index). The rigid 
endoscope was placed across the straight portion of the T-

shaped mouthpiece and sealed at the distal end to avoid air 
leakage (fig 2). The pressure probe was placed through a 
small hole at the outside part of the perpendicular joint in 
the T-shaped tube. Vaseline was applied to all joints to 
avoid air leakage. Glottal area waveform (GAW) signals 
were obtained using the Glottal Analysis Tools 2020 
software (GAT) (University Hospital Erlangen, Erlangen, 
Germany). The GAW was resampled to 48kHz using 
Octave. Electroglottography (EGG) signal was also 
recorded using a Laryngograph A-100 device 
(Laryngograph, Wallington, UK). Acoustic data was 
obtained using a Sennheiser ME 62 microphone 
(Sennheiser, Wedemark, Germany) placed at 5 
centimetres from the distal end of the Acapella. EGG and 
Audio signals were recorded synchronously (48 kHz, 24-
bit). The audio signal was also used for annotation during 
the experiment. Data was collected in a sound treated 
room.  

Each subject was asked to align the centre of the 
endoscopic viewing field with the larynx to provide a view 
of the entire extent of the glottis. The /i/ vowel was used 
as a target, however distortions in its sound qualities were 
allowed due to the presence of the endoscope. The 
subjects were asked to sustain phonation at E3 for males 
and E4 for the female at habitual loudness for at least 4 
seconds.  

III. RESULTS AND DISCUSSION 

 
Fig. 3 and 4 shows synchronous EGG, VKG, glottal 

area, pressure, and airflow data for the Acapella for one 
male subject (M1) and the female (F1) subject 
respectively. Three components of pressure and flow data 
are shown in the graphs and related to a) glottal = the high 
frequency modulation by the glottal cycle, b) Acapella = 
low frequency modulation by the Acapella, and c) DC = 
static elements used to pressurise the Acapella and vocal 
tract prior to oscillation. As the data for all three subjects 
showed similar patterns, M2 date is not available in this 
study.  

From the data, it can be observed that when the pressure 
produced by the Acapella (pressureAcapella) increases, CQ 
and amplitude of the EGG signal (EGGenvelope) decrease. 
These reduced values for CQ and EGGenvelope are likely 
caused by a larger supraglottic pressure which increases 
the intraglottic pressure (assuming that the subglottic 
pressure remains somewhat constant) consequently 
hindering the contact between the vocal folds. In addition 
to this, the peak-to-peak amplitude of pressure modulation 
by the glottal cycle (pressureglottal) also reduces. As the 
pressureAcapella drops towards minimum values, the 
opposite trend is observed for CQ, EGG amplitude and 
peak-to-peak amplitude of the pressureglottal. This suggests 
that the ability of the vocal folds to modulate pressure 
values is affected by changes in the pressureAcapella. When 
the pressureAcapella is maximum, lower extreme values in 
pressureglottal modulation are seen, when pressureAcapella 
drops the peak-to-peak amplitude of the pressureglottal 
increases.
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Fig 3. Data for a male participant (M1) producing an E3 at a habitual level. From top to bottom are EGG and CQ, VKG, 

glottal area, pressure, and airflow. All data presented is shown for 0.15 seconds duration. 
 

The impact of pressureAcapella oscillation on the vocal 
fold vibratory behaviour is also seen in the 
videokymogram (VKG) (clearer for M1) and glottal area 
signals. During high pressureAcapella values the contact 
between vocal folds (clearer seen in the CQ values) and 
maximum GA (peak values) are reduced. The opposite 
trend is found when pressureAcapella reduces towards 
minimum. Limitations in achieving the same glottal 
opening (max GA values) during maximum and minimum 
pressureAcapella conditions, shows an inability of the vocal 
folds to achieve maximum lateral displacement when 
pressureAcapella is large. It is worth noting that even when 
pressureAcapella reaches minimum values, the vocal tract is 
still pressurized by the static pressure (DC element). 
Unsurprisingly, when pressureAcapella increases, the fo of 

the glottal cycle also reduces because of the stronger 
opposition to vocal fold vibration. Possibly this is likely 
caused by the increased intraglottal pressure. However, 
the lower fo values may also be caused by the positive 
pressure above the level of the glottis which slows down 
the upstream flow from the lungs. This effect can be 
expected at instances when pressureAcapella is increasing 
and the Acapella flow signal (flowAcapella) is decreasing 
causing the flow modulation by the glottis (flowGlottal) to 
reach close to zero values.  

Although consistent across all 3 subjects, the described 
glottal behaviour associated with changes in 
pressureAcapella seem to be affected by pitch and/or gender 
as data from male subjects showed clearer trends (as 
described in this study) than for the female subject.

 
Fig 4. Data for a female participant (F1) producing an E4 at a habitual level. From top to bottom are EGG and CQ, 

VKG, glottal area, pressure, and airflow. All data presented is shown for 0.15 seconds duration. 
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IV. CONCLUSION 
 

In this study, the impact of Acapella on glottal 
behaviour was investigated. As pressureAcapella increases, 
the vibration of the vocal fold’s decreases, showing lower 
fo, less contact and amplitude of vibration of the vocal 
folds. When pressureAcapella reduces, the opposite trend is 
observed where vocal fold vibration seems to be more 
effective in modulating pressureglottal and flowglottal values. 
This systematic change in pressureAcapella seems to 
alternate the behaviour of the vocal folds between 
hindered and unhindered vibration. This information can 
be used to clarify the understanding of vocal fold vibration 
patterns under changeable loading conditions during 
phonation into PEP devices. It also confirms a mechanistic 
impact of the Acapella device on the phonatory apparatus 
that can be used when considering specific voice therapy 
outcomes. 
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Abstract: Digital tools based on automatic
speech recognition (ASR) could be a useful
support for teachers in assessing the read-
ing skills of the students. We focus on the
evaluation of the decoding accuracy of chil-
dren with grade level ranging from the 3rd

to the 6th performing a reading aloud task
on a narrative text displayed on an ordinary
tablet using the ReadLet platform. On the
basis of previously collected data, we built a
gold dataset with sentences characterised by
the audio data, the original text to be read,
and the text actually spoken by the child. By
using the open-source Kaldi toolkit an ASR
system based on the GMM-HMM model was
trained on the training portion of the gold
dataset. The accuracy of the ASR system
was calculated as the ability to correctly de-
code the test audio data with respect to the
annotated text, and the decoding accuracy
of the children was estimated by measuring
the gap between the results obtained with the
annotated text and the original text. A con-
sistent trend with increasing grade level was
found in terms of word correctness, substitu-
tions and insertions, while the trained model
appears to be significantly able to evaluate
the children decoding accuracy.
Keywords: speech recognition, decoding
accuracy, reading aloud, voice parameters,
Kaldi, GMM-HMM acoustic model

I. Introduction

Reading and understanding a written text are
among the most relevant skills in everyone’s life [1].
Whether it is to study, to read for personal pleasure,

to obtain information, to use instructions, to find
communications or updates, we are faced with the
need to access the content of a written text. The
results of the OECD-PISA 2018 international sur-
vey is the most recent in which reading skills were
the main area of investigation, and return an un-
comfortable international picture, from which Italy
does not differ [2]. The assessment of reading skills
is achievable by the educational institutions, and the
combination of NLP and ICT technology can sub-
stantially help the teachers in this task [3].

The process of decoding and understanding dur-
ing reading were considered by the American Psy-
chiatric Association 2013 as two independent pro-
cesses, however able to influence each other [4]. The
assessment of such processes in ecological conditions
on primary school children is the objective of the
AEREST protocol [5], which is implemented into
the ReadLet platform [6] so that, by using an ordi-
nary tablet, the reading efficiency is automatically
evaluated as the integration of the ability to decode
and understand a text.

II. Materials and methods

The AEREST protocol provides for the adminis-
tration of narrative-descriptive texts in three decod-
ing modalities: silent reading, reading aloud, and
listening. The decoding step is followed by a ques-
tionnaire to evaluate the comprehension of the text
just read. By using an ordinary tablet, ReadLet
takes care of recording the speech produced by the
child, keeps track of child’s finger movement on the
screen and, finally, stores the answers given to the
comprehension questionnaire. All acquired data are
aligned over time. Three contributions are calcu-
lated to evaluate the reading efficiency of the child:
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i) the decoding speed, ii) the correctness of the read-
ing and iii) the understanding of the text. Points
i) and iii) are already fully automated within the
ReadLet platform and in this article we focus on
point ii), with the aim of creating a tool that is
able to automatically draw the decoding accuracy
in terms of correct words, deletions, substitutions
and self-corrections.

As part of the AEREST project in 2019, we cre-
ated a gold dataset starting from the data acquired
using from 419 children with a grade level between
the third and the sixth. The overall database in-
cludes 419 reading-aloud trials and a total of 13118
sentences. To create the gold dataset, a first step
involved the selection of the trials in which the child
marked the text with the finger for at least 70%
of the text length. Since the speech and the fin-
ger tracking data were simultaneously recorded dur-
ing the trial and subsequently aligned over time, we
relied on the finger tracking data to automatically
split the audio data into sentences. The audio seg-
mentation was then refined manually by means of
an ad-hoc audio editing tool and, additionally, the
annotation was augmented by taking into account
the text actually spoken by the child compared to
the original sentence.

From ReadLet we obtained a gold dataset com-
posed by 873 sentences characterized as i) the audio
data (i.e. the speech of the child), ii) the original
sentence (i.e. the text that should have been pro-
nounced by the child), and iii) the annotated sen-
tence (i.e. the transcription of the actual speech of
the child).

The ReadLet dataset was integrated with the
CLIPS dataset, 16120 recordings about 8 hours
and 30 minute from 250 adult subjects [7]. Once
the total dataset was obtained, training and test-
ing of an ASR system based on the GMM-HMM
model [8] was performed using the open-source
Kaldi toolkit [9]. The GMM-HMM model is com-
posed by 15019 gaussians and it has been trained
with the Speaker Adaptive Training (SAT) algo-
rithm [10]. The feature vector was projected by Lin-
ear Discriminant Analysis criterion and transformed
by Maximum Likelihood Linear Transformation [11]
(LDA + MLLT + SAT). The final vector consisted
of 40 features. MFCC features were extracted from
the audio data and the decoding was performed on
the fully expanded decoding graph (HCLG) that
represents the language-model, pronunciation dic-
tionary (lexicon), context-dependency, and HMM
structure. Both mono-phone and tri-phone model
were run and, since the latter outperformed the
mono-phone model, we will focus on the tri-phone

model only.
Finally the training set was obtained by all

CLIPS recordings plus the 60% of the gold dataset,
while the test set was built with the remaining 40%
of the gold dataset. The random selection of the
training and testing datasets was repeated 5 times
and the results were averaged accordingly.

We trained the ASR system by feeding the model
with the audio data and the annotated sentences be-
longing to the training dataset. During testing, we
fed the model with the testing audio data and we
compared the ASR transcriptions with two kind of
references: i) the annotated sentences and ii) the
original sentences.

III. Results

The predictions of the model run on the test au-
dio data were compared to the target text. The
accuracy of the ASR was first measured by Word
Error Rate (WER) which is computed as the overall
number of predicted words not matching the target
text, divided by the number of total words. The
preliminary results of the model show a mean WER
equal to 10.95% (std=2.00%). Going more in deep,
for each grade level the accuracy was evaluated as
i) the average number of words per sentence cor-
rectly recognised by the model (correctness), ii) the
average number of words per sentence substituted
into the target text (substitutions), iii) the average
number of words per sentence removed from the tar-
get text (deletions), and iv) the average number of
words per sentence added to the target text (inser-
tions). By using the annotated sentences as the tar-
get text we obtained the results shown in Fig. 1.
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i) the decoding speed, ii) the correctness of the read-
ing and iii) the understanding of the text. Points
i) and iii) are already fully automated within the
ReadLet platform and in this article we focus on
point ii), with the aim of creating a tool that is
able to automatically draw the decoding accuracy
in terms of correct words, deletions, substitutions
and self-corrections.

As part of the AEREST project in 2019, we cre-
ated a gold dataset starting from the data acquired
using from 419 children with a grade level between
the third and the sixth. The overall database in-
cludes 419 reading-aloud trials and a total of 13118
sentences. To create the gold dataset, a first step
involved the selection of the trials in which the child
marked the text with the finger for at least 70%
of the text length. Since the speech and the fin-
ger tracking data were simultaneously recorded dur-
ing the trial and subsequently aligned over time, we
relied on the finger tracking data to automatically
split the audio data into sentences. The audio seg-
mentation was then refined manually by means of
an ad-hoc audio editing tool and, additionally, the
annotation was augmented by taking into account
the text actually spoken by the child compared to
the original sentence.

From ReadLet we obtained a gold dataset com-
posed by 873 sentences characterized as i) the audio
data (i.e. the speech of the child), ii) the original
sentence (i.e. the text that should have been pro-
nounced by the child), and iii) the annotated sen-
tence (i.e. the transcription of the actual speech of
the child).

The ReadLet dataset was integrated with the
CLIPS dataset, 16120 recordings about 8 hours
and 30 minute from 250 adult subjects [7]. Once
the total dataset was obtained, training and test-
ing of an ASR system based on the GMM-HMM
model [8] was performed using the open-source
Kaldi toolkit [9]. The GMM-HMM model is com-
posed by 15019 gaussians and it has been trained
with the Speaker Adaptive Training (SAT) algo-
rithm [10]. The feature vector was projected by Lin-
ear Discriminant Analysis criterion and transformed
by Maximum Likelihood Linear Transformation [11]
(LDA + MLLT + SAT). The final vector consisted
of 40 features. MFCC features were extracted from
the audio data and the decoding was performed on
the fully expanded decoding graph (HCLG) that
represents the language-model, pronunciation dic-
tionary (lexicon), context-dependency, and HMM
structure. Both mono-phone and tri-phone model
were run and, since the latter outperformed the
mono-phone model, we will focus on the tri-phone

model only.
Finally the training set was obtained by all

CLIPS recordings plus the 60% of the gold dataset,
while the test set was built with the remaining 40%
of the gold dataset. The random selection of the
training and testing datasets was repeated 5 times
and the results were averaged accordingly.

We trained the ASR system by feeding the model
with the audio data and the annotated sentences be-
longing to the training dataset. During testing, we
fed the model with the testing audio data and we
compared the ASR transcriptions with two kind of
references: i) the annotated sentences and ii) the
original sentences.

III. Results

The predictions of the model run on the test au-
dio data were compared to the target text. The
accuracy of the ASR was first measured by Word
Error Rate (WER) which is computed as the overall
number of predicted words not matching the target
text, divided by the number of total words. The
preliminary results of the model show a mean WER
equal to 10.95% (std=2.00%). Going more in deep,
for each grade level the accuracy was evaluated as
i) the average number of words per sentence cor-
rectly recognised by the model (correctness), ii) the
average number of words per sentence substituted
into the target text (substitutions), iii) the average
number of words per sentence removed from the tar-
get text (deletions), and iv) the average number of
words per sentence added to the target text (inser-
tions). By using the annotated sentences as the tar-
get text we obtained the results shown in Fig. 1.
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Figure 1: Accuracy of ASR system fed with the
test audio data and using the annotated sentences
as the target text. For each grade level, the aver-
age number of correct/substituted/deleted/inserted
words per sentence is shown.

The model accuracy was also calculated on the
same test audio data using the original sentences
as the target text. The difference of the correctness
obtained using the two target texts (i.e. the correct-
ness on the annotated text minus the correctness on
the original text) is shown in Fig. 2. While the cor-
rectness of the model on the annotated text should
tell us about the accuracy of the ASR system itself,
the difference of such correctness with the one ob-
tained on the original sentences should tell us about
the performance of the children.
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Figure 2: Children decoding accuracy estimated by
the ASR system, expressed as the average number
of misspelled words per sentence and calculated as
the difference between the ASR correctness on the
annotated sentences (Fig. 1 top-left) and the ASR
correctness on the original sentences.

Finally, we evaluated the normalised edit dis-
tance between the annotated and the original sen-
tences to obtain the reference correctness baseline
for comparing the correctness estimated by the ASR
system (see Fig. 3).
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Figure 3: Children decoding accuracy used as ref-
erence, calculated as the normalised edit distance
between the annotated sentences and the original
sentences in the test set.

To validate the results provided by the ASR sys-
tem about the performance of the children in cor-
rectly decoding the text during the reading aloud
task, we calculated the Spearman rank correlation
between the data shown in Fig. 2 and in Fig. 3. For
each grade level, the correlation value along with the
statistical significance is shown in Table 1.

grade level r p-value
4 0.63 <10-3

5 0.50 <10-5

6 0.66 <10-10

Table 1: Spearman rank correlation between the
children accuracy in decoding estimated by the ASR
shown in Fig. 2 and the decoding accuracy calcu-
lated on the basis on the manually annotated sen-
tences shown in Fig. 3. For each grade level the
correlation value is shown together with its statisti-
cal significance.

IV. Discussion

As it can noticed in Fig. 1, the accuracy of the
ASR model in terms of correctness is around 50%
on 3rd graders, while the accuracy grows to 90% on
6th graders. The trend of substitution and insertion
statistics goes in the same direction, showing that
the more the reader is skilled, the more the model is
able to predict the annotated text which, by defini-
tion, should reflect the audio data. Anyway a num-
ber of factors (e.g. the limited dataset, the poor
annotation, the noisy audio, the poor fluency of the
reader among all) may prevent the model to gain
the 100% accuracy. For grade levels where the ac-
curacy of the model is above 75% (i.e.. grade level
ranging from 4 to 6) we show in Fig. 2 the eval-
uation of the accuracy of the children by by mea-
suring the gap between the correctness obtained on
the annotated sentences (i.e. the upper limit the
ASR system can reach) and the correctness on the
original sentences. Such gap, which decreases along
with the grade level, appears to be highly and sig-
nificantly correlated (see Table 1) with the reference
error shown in Fig. 3, being the latter calculated
independently on the basis of the edit distance be-
tween the annotated sentences and the original sen-
tences.
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V. Conclusion

The preliminary ASR system seems to be able to
estimate the decoding accuracy of the children and
to approximate the reference accuracy calculated on
the gold dataset (see Fig. 2 and 3). Nonetheless,
the accuracy of the ASR system itself is still poor,
especially for young readers (see correctness on 3rd

graders in top-left pane of Fig. 1). The improve-
ment of the quality of the sentence annotation to-
gether with the creation of a larger gold dataset will
help to fill such gap.

Moreover, the next objective consists in estimat-
ing, precisely for the words to which the model as-
sociates a high level of uncertainty, the sequence of
phonemes actually pronounced by the child. This
will allow for the automation of the procedure for
evaluating the correctness of the decoding of the
reading aloud trials. This procedure, for each of
the 419 reading trials, was performed manually and
these data will constitute a useful benchmark for the
automatic analysis system.

A detailed analysis of decoding errors, with par-
ticular attention to those words to which the model
associates a high level of uncertainty, will be inte-
grated into the ReadLet platform to support profes-
sionals to assess the level of reading skills reached
by the child, and decide which intervention pro-
grammes and measures are most appropriate.
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Abstract: At present in Mexico there are still living 68 
indigenous peoples, each one speaking their own 
native language, which are organized into 11 linguistic 
families and are derived in 364 dialect variants, it is 
estimated that there are approximately 12 million 
people still speaking these languages in the Mexican 
territory[1]. The indigenous population of the 
Guerrero State is mainly made up of four ethnic 
groups, Amuzgo (ñomndaa), Mixtec (na savi), 
Tlapaneco (Me'phaa) and Nahuatl (Mexican from 
Guerrero). It is of our interest to analyze and study for 
the first time the crying of babies from some of the 
original ethnic peoples of the Sierra of the State of 
Guerrero in order to qualitatively characterize them. 
Among the qualitative characteristics [3] to be 
extracted are the melody type, shifts, glides, noise 
concentration, fundamental frequency, intensity, etc. 
For this research, recordings were directly made by 
doctors and nurses in babies less than 6 months of age. 
The infant crying signal recordings were then 
processed and analyzed to extract the relevant 
information that allows us later to identify any 
potential evidence of neurological diseases in 
newborns, through the use of relevant features 
extraction and selection techniques, pattern 
recognition and classification [4]. 
In this article we describe, besides some basic 
information about the ethnic groups, how the samples 
were collected, the databases used, the qualitative 
feature extraction process, the knowledge based 
inference system used, some obtained results as well as 
a brief analysis of them.  
Keywords: Cry Analysis, Pattern Recognition, 
Classification. 

I. INTRODUCTION

The state of Guerrero in Mexico has 7 regions; 
Acapulco, Centro, Norte, Costa Chica, Costa Grande, 
Tierra Caliente and La Montaña,  where a high 
percentage of indigenous population is concentrated. 
The four analyzed languages are spoken in different 
municipalties where the concentration is as follows: 
The highest percentage of Nahuatl language speakers 
is in Ahuacuotzingo, Cualác, Chilapa, Olinalá and 
Zitlala. Chilapa, Ahuacuotzingo and Tlapa where 

Nahuatl speakers are about 75% of the population. 
Speakers of Tlapaneco and Mixteco languages 
predominate  in more than 40 percent of the population 
of the municipalities of Alpoyeca, Atlixtac, 
Copanatoyac and Xalpatláhuac. On the other hand, 
most of the Amuzgos are located in the municipality of 
Xochistlahuaca, also having a presence in 
Tlacoachistlahuaca and Ometepec, as well as other 
towns on the Costa Chica of the State. 

Mixtec is characterized by a strong nasal tendency, 
which accounts for the large number of nasal and 
prenasalized phonemes in its phonological repertoire 
[6], it is heard fast, loud and clear. While Tlapaneco is 
a highly accentuated language. the variation between 
the tones is important for its translation, it is a language 
that is heard in principle like the Chinese language. 
Amuzgo consists of 14 consonant segments of the 
basic forms, divided into 11 consonants, one semi-
vowel and two slips. The Amuzgo, Mixtec, and 
Tlapaneco languages are tonal languages that belong to 
the Ottomangue group. As for the vulnerability and 
fragility sides of these peoples, according to data from 
the National Council for the Evaluation of Social 
Development policy (CONEVAL) in Mexico: 

• About 66% of the population suffers from food
poverty 

• 72% do not have the resources to access health
and education services 

• 40% of people over 15 years of age are illiterate
and 85% did not complete basic education 

• 85% do not have their own equity
• Two of the 10 municipalities with the highest

extreme poverty in the country are located there, 
Cochoapa el Grande, with the first place and 
Metlatónoc, in the tenth. 

All these disadvantageous living conditions, along 
with a congenital endogenous malnutrition, are directly 
reflected in newly born babies´ health. Theoretically, 
this weak health influences the acoustic characteristics 
of the infant cry signal. Our qualitative infant cry 
signal analysis is directed to help identify pathological 
trends in newly born babies from the studied ethnical 
groups as early as possible, through the use of easy to 
use affordable high technology tools. 

QUALITATIVE CHARACTERIZATION AND ANALYSIS OF CRYING 
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With this idea as a target, we consider it important 
to provide technological tools to medical specialists 
who provide care to this special population in an 
ancestral state of vulnerability. These tools are directed
to support their clinical diagnosis under language 
barriers with their patients. In particular, our proposed 
tool seeks to identify pathologies by performing 
qualitative analysis over the infant crying wave which 
essentially consists in the observation of the 
fundamental frequency (F0) changes as a function of 
time. The qualitative features to identify represent the 
shapes that F0 takes and are called melodic forms. The 
melodic form can be usually ascending, descending, 
ascending-descending, descending-ascending, flat and 
without melodic form, shifts and glides.

By means of the fundamental frequency values 
extracted from the crying units, the presence of the 
qualitative characteristics: shift, glide and noise 
concentrations could be determined automatically. 
Shifts are defined as an increase or decrease in the 
fundamental frequency of at least 100 Hz and less than 
600 Hz, with a minimum duration of 0.1 sec [10], there 
may be more than one in the same crying unit, on the 
other hand Glides, They are defined by an increase or 
decrease of at least 600Hz, with a minimum duration 
of 0.1 sec [10] and in the same way there can be 
varying units in the same crying unit.

In general, pathological crying is associated with 
the following characteristics:

• Extreme or unstable values in the Pitch (F0)
• Poor cry quality
• Melody type usually is descending, descending-

ascending or flat.
• Sometimes it is impossible to detect the type of 

melody, occurring shifts, biphonations and glides.
According to the characteristics and definitions of 

pathological crying mentioned above, as well as 
considering the opinion of expert doctors, the 
following knowledge based rule could be established: 
if a cry has a descending, descending-ascending 
melody type, or without melodic form, in addition to 
having shifts, and glides in more than 70% of the total 
crying, is considered as: crying with a tendency to 
pathological.

In the present work, a program was implemented 
for, in the first instance, to extract crying units from the 
recordings made by doctors and nurses, to identify the 
qualitative characteristics. These features are grouped 
as pathological and non-pathological, along with the 
total and percentages of shifts and glides, as proposed 
in [7]. Taking this information as an instance of the 
inference rule allows to determine the type of crying of 
the baby.

II. METHODOLOGY

The sample capture process was carried out in two 
ways, the first with the support of specialist doctors 

and nurses in the areas of nurseries, primary care and 
intensive care, at the Hospital del Niño y la Madre 
Indígena Guerrerense located in the city of 
Chilpancingo, Capital of the State of Guerrero, as well 
such as the General Hospital of Tlapa, located in the 
heart of the high mountain of the state. The second way 
is an non-hospital capture carried out in the homes of 
some babies with parents Nahuatl speakers. The 
captures were made from mobile devices, all the cries 
were stored in WAV format, with mono digital 
streams. A capture time limit was not determined and 
they were stored in a database with a consecutive as 
well as a type of language, as well as a number to 
know if it was a first or second time capture.

Some capture incidents collected from support 
personnel, worth to be known are; some babies in cribs 
spent whole days without crying. They stayed in 
hospitals if the mothers had problems during 
childbirth, so in some cases they did not present any 
ailment. The audios of the recordings were affected by 
the noises generated in the hospital environment, for 
example footsteps from other personnel, respirator 
alerts, and ambient sounds. Additionally, it was agreed
that all samples were taken from spontaneous cries. In 
order to record the samples in a uniform way, training 
was provided to the collaborators, who had to observe
the following protocol:

• Babies sampled must be at least 2 days old and 
not exceed 6 months.

• Place the recording device at least 15 cm away 
from the baby's mouth.

• Capture in site the following data; date of birth, 
medical diagnosis, ethnic group, capture number, 
municipality and locality.

An interface was also developed in Matlab® (fig. 
1), which allows the manipulation of samples and 
facilitates their processing to extract the qualitative
characteristics of all the instances in a database and 
provides a .csv document as an output. In the first stage
the folder containing the files with .wav extension, 
which contain the raw samples of the babies' cries, are 
processed to form the form the cry units. The software 
eliminates noise and obtains the fundamental 
frequency of each unit to proceed to the identification 
and addition of melodic forms, as well as shifts and 
glides.

Fig 1. Developed Interface

Clicking NEXT shows the results in a table that can 
later be downloaded in csv format with the diagnoses 
automatically predicted.

Fig 1.
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III. RESULTS 
 

In Table 1, the sampled babies (Px) are listed, as 
well as the ethnic group to which they belong; Amuzgo 
(Am), Náhuatl (Nh), Mixteco (Mx), and Tlapaneco 
(Tl). In the second column the initial diagnosis, given 
by medical doctors when the sample was taken, is 
shown. The diagnosed pathologies in the sampled new 
born babies are; Normal (Nor), Respiratory distress 
syndrome (RDS), Hyperbilirubinemia (Hip), 
Pneumonia (Neu), Malnutrition (Des). Next the total of 
pathological characteristics (CP) and normal 
characteristics (CN) found in the crying units, are 
shown. In the S/G column are the total of Shifts and 
Glides in the crying units. Finally, u30%, u50%, u70% 
specify the threshold that allows establishing the 
automatic diagnosis defining whether there is crying 
with a tendency to pathological (TP), or the crying is 
normal (Nor). 

 
Table 1. Some results with different thresholds 

Px/Et Dx C.P C.N. S/G u30% u50% u70% 
06/Am Nor 110 16 68% T.P. T.P. Nor 
07/Am Nor 242 32 44% T.P. Nor Nor 
17/Am SDR 134 21 59% T.P. T.P. T.P. 
08/Nh Hip 164 165 42% T.P. T.P. T.P. 
09/Nh SDR 85 42 60% T.P. T.P. T.P. 

15/Nh SDR
/Neu 91 99 73% T.P. T.P. T.P. 

02/Tl  Nor 222 137 50% T.P. T.P. T.P. 

13/Tl SDR
/Des 46 93 42% Nor T.P. T.P. 

22/Tl Nor 203 35 28% T.P. Nor Nor 
11/Mx SDR 107 187 68% T.P. T.P. T.P. 
25/Mx Nor 54 17 8% T.P. T.P. Nor 
26/Mx Nor 20 6 61% T.P.  T.P. Nor 
 

Table 1 shows the automatically identified 
diagnoses. It can be noted that by establishing the 
threshold contemplated in the 30% rule, 90% of the 
diagnoses are shown with a tendency to pathological, 
when the threshold increases to 50%, 80% of the 
diagnoses are shown with a tendency to pathological. 
On the other hand, when the threshold goes below 
70%, the cries are correctly classified, agreeing with 
the diagnoses determined by the experts. 
Table 1 shows the automatically identified diagnoses. 
It can be noted that by establishing the threshold 
contemplated in the 30% rule, 90% of the diagnoses 
are shown with a tendency to pathological, when the 
threshold increases to 50%, 70% of the diagnoses are 
shown with a tendency to pathological. On the other 
hand, when the threshold is 70%, the cries are correctly 
classified, agreeing with the diagnoses determined by 
the experts. In order to verify the effectiveness of the 
proposed method and the validity of the threshold 
established, a comparison was done with the 

BabyChillanto Database, of INAOE, with normal 
babies and babies with hyperbilirubinemia 
  

Table 2. Normal Results u70% 

Px Dx C.P. C.N. S/G u70% 

52a Normal 16 15 50% Normal 

52b Normal 24 12 70% Normal 

52c Normal 10 6 73% Normal 

52d Normal 6 1 77% Normal 

52e Normal 23 6 66% Normal 

52f Normal 10 5 68% Normal 

52g Normal 9 7 79% Normal 

52h Normal 9 1 79% Normal 

52i Normal 16 7 73% Normal 

52j Normal 18 2 64% Normal 
  

In Table 2, the prediction (Dx) of the 
BabyChillanto database is shown, with cries of the 
Normal class, when performing the test with a 
threshold of 70% (u70%) in all cases the cries were 
classified as Normal. 
 

Table 3. Hiperbilirubinemia Results at u70% 

Px Dx C.P. C.N. S/G u70% 

01 Hiperbilirrubinemia 49 23 73% T.P. 

02 Hiperbilirrubinemia 18 12 52% T.P. 

03 Hiperbilirrubinemia 25 16 70% T.P. 

04 Hiperbilirrubinemia 12 1 90% T.P. 

05 Hiperbilirrubinemia 20 12 72% T.P. 

06 Hiperbilirrubinemia 11 0 95% T.P. 

07 Hiperbilirrubinemia 1 0 99% T.P. 

08 Hiperbilirrubinemia 1 0 99% T.P. 
 
As shown in Table 3, the same test was performed 

with data from the BabyChillanto Database belonging 
to the Hyperbilirubinemia class. 100% of the diagnoses 
generated automatically with the threshold equal to 
70% (u70%) determined that the sample has a 
pathological tendency, which confirms the class 
established in the database. 

 
IV. DISCUSSION 

 
As shown in the results, the predictions obtained 

automatically through our system were possible after 
we were able to set up the right threshold which, 
consequently, allowed the rule to correctly classify the 
cries. When obtaining the first results with the support 
and supervision of the experts, we decided to test 
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different values of the threshold until setting up 70% as 
the best value for this database. The normalization of 
the samples was achieved in the first instance based on 
the time of each of the patients' cries, homologating 
their duration to a minimum of 1 minute and a 
maximum of 3 minutes. In addition to it and in order to 
have comparable samples, the average obtained for 
each baby was 184 crying units.   Previously, the 
medical specialists reviewed the diagnoses of the 
sampled patients, validating the information of some 
and correcting the information of others in order to 
confirm the initial diagnoses by the doctors and nurses 
of the different shifts at the moment the samples were 
taken. In this review the specialists verified that the 
case of sample 08/Nh and 09/Nh   corresponds to the 
same neonate at different moments of capture, the 
diagnosis had changed from Hyperbilirubinemia in the 
first registration of his record to SDR at a later date. It 
is worth mentioning that our system found that the 
crying in both cases showed pathological trend. 

A similar case occurred with the neonate 25/Mx 
and 26/Mx, for this situation the initial diagnosis 
reported in his file said "to confirm respiratory distress 
syndrome" (RDS). However, after 3 days of the initial 
capture, the medical diagnosis was changed to Normal. 
For both cases our proposed system predicted from the 
first capture, that they were normal cry. 

V. CONCLUSION

This study allowed us to carry out research for the 
first time over infant cry in Mexican indigenous 
groups. Literature and overall studies are scarce for 
these sectors of the original populations. In short, we 
did not find studies of extraction of qualitative 
characteristics of crying of indigenous babies, for 
which we consider that this research could give rise to 
new gaps and horizons to deepen into issues related to 
any of the 364 dialectical variants. In addition the 
system developed and presented in this article may be 
tested with real patients in any medical unit or general 
hospital within the health sector, helping to give 
opportune care and a better diagnosis on babies with 
still very limited communication skills. 

An interesting finding derived from the analysis of 
the samples was the variability of the sound intensity 
of the cries. When listening to each one of them it is 
noticeable that the babies that came from the most 
vulnerable regions were heard weaker than those from 
the less vulnerable ones, especially between the 
Tlapaneco and Mixtec languages, even when using the 
same capture instrument. We consider that there is an 
important relationship between intensity of crying and 
tongue and in turn nutritional status of pregnant 
mothers, this being a study that could be materialized 
in future research. 
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Abstract: Acoustic analysis of sustained vowels is 
typically used to quantify perturbations in 
fundamental frequency (F0), amplitude, and 
deviations from periodicity, and associate these with 
clinical outcomes of interest. Computational and 
practical constraints suggest that 2-3 seconds are 
often sufficient to acoustically characterize a 
sustained vowel phonation. The question then is how 
to best determine a short quasi-stationary segment 
from a typical 20-30 seconds speech recording. We 
computed the F0 contour in 10 millisecond epochs 
using SWIPE, a state-of-the-art F0 estimation 
algorithm, which we had previously demonstrated is 
very competitive in F0 estimation for sustained /a/ 
vowels. Subsequently, we determined the two second 
signal segment that exhibits the smallest mean 
absolute successive F0 difference. We tested the 
segmentation algorithm on 100 randomly selected 
sustained vowel /a/ phonations from the Parkinson’s 
Voice Initiative, where we had hand-labeled the 
quasi-stationary segments. We found the algorithm 
correctly identified the quasi-stationary segments in 
all cases, thus demonstrating it can be deployed at 
large scale studies automating further processing of 
sustained vowels. We also demonstrated that this 
pre-processing step can have a major influence in the 
acoustic characterization of the phonations.

Keywords: acoustic analysis, F0 estimation, speech 
signal segmentation, sustained vowels

I. INTRODUCTION

The use of sustained vowels to assess voice disorders 
is well established in clinical practice [1]. Compared to 
conversational speech or reading out loud specific 
abstracts of phonetically rich text, sustained vowels 
have the advantage that they circumvent linguistic 
confounds and accent effects [1]. The acoustic analysis 
of sustained vowels towards the development of robust
clinical decision support tools has received considerable 
research attention. Indicatively, we had previously used 
sustained vowel /a/ phonations to demonstrate: (i)

almost 99% accurate differentiation of people diagnosed 
with Parkinson’s Disease (PD) from Healthy Controls 
(HC) [2]; (ii) accurate replication of the most widely 
clinical tool assessing overall PD symptom severity 
reporting an error that is considerably lower than the 
inter-rater variability [3]–[6]; (iii) assessing PD voice 
rehabilitation [7]; and (iv) potential on early PD 
diagnosis/precursors [8], [9]. Researchers have also 
developed mechanistic models of speech articulation
using sustained vowels, which may provide insights into 
the underlying vocal production mechanism and voice 
disorders in a physically interpretable way [10], [11].

In practice, the raw speech signal recordings typically
include the prompt by the researcher/clinician, possibly 
some prior discussion, and one or more prolonged 
sustained vowel phonations by the study participant.
Using the entire sustained vowel phonation (typically 
20-30 seconds) is computationally demanding and may
be prone to problems (e.g. participant coughing, running
out of breath). Computational and practical constraints
suggest that processing 2-3 seconds of the sustained
vowel phonation are sufficient to acoustically
characterize the sustained vowels [1], [12] and to
develop mechanistic models [10].

The natural question then arises on how best to 
choose the short signal segment from the raw recording 
for further processing. Often, this is done manually by 
selecting the segment that ‘looks best’ (low amplitude 
and low frequency variation) or by selecting a pre-
specified signal segment (e.g. the middle of the 
phonation because that would likely be a stable part of 
the phonation). For small datasets it may be possible to 
manually detect segments, however as we move on 
larger datasets, such as with the Parkinson’s Voice 
Initiative (PVI) study with more than 18,000 sustained 
vowel phonations [13], [14], the need to develop an 
automated approach becomes obvious. Previous work in 
the context of speech signal analysis has focused on 
removing the non-sustained vowel segment of the 
recording (e.g. the prompts by investigators and
silences). Surprisingly, to the best of our knowledge
there is no published work on principled objective 
detection of short signal sustained vowel segments that 
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would be best applicable towards further acoustic 
analysis. Moreover, this crucial pre-processing step is 
rarely reported in the research literature. 

If we revisit the underlying principle of using 
sustained vowels, the aim is to elicit “stable” phonations 
and assess deviations from signal periodicity [1]. In 
practice, minor perturbations from maintaining constant 
amplitude and frequency are common even for people 
with no vocal pathologies, where larger fluctuations 
may be hinting towards a vocal pathology (which may 
be secondary e.g. to PD or other disorders) [1]. Hence, 
if we want to work on a short signal segment it would 
be reasonable to identify the most stable part of the 
phonation. Technically, that would be the most quasi-
stationary segment, where stationarity suggests that the 
central order moments of the signal remain constant 
[15]. Relaxing the requirement of quantifying non-
stationarity, we can instead aim to quantify changes in 
the fundamental frequency (F0), i.e. the F0 contour. The 
F0 is a key characteristic of speech and its computation 
is often a pre-requisite for many speech signal 
processing algorithms [1], [12]. 

The aim of this study is to develop an algorithmic 
approach towards automatically detecting the most 
quasi-stationary short signal segment from a speech 
recording that comprises a longer sustained vowel 
phonation which might also exhibit background noise 
(prompts, silence etc.). We demonstrate the 
effectiveness of the proposed approach towards the 
acoustic characterization of PD voices, although in 
principle the developed method is generalizable across 
applications focusing on sustained vowels. 

 
II. METHODS 

 
A. Data 
  

We used data from the large PVI study [13], [14], 
which was set in seven major geographical locations. 
Participants were invited to call in a dedicated phone 
number and contribute two sustained vowel /a/ 
phonations along with basic demographic information 
(age, gender), and whether they had been clinically 
diagnosed with PD. The phonations were sampled at 8 
kHz and stored on secure cloud servers. For the purposes 
of this study we have randomly selected phonations 
from 50 PD participants and from 50 control 
participants from the US cohort. 
 
B. F0 estimation and signal segmentation 
 

We had previously performed a thorough empirical 
comparison of multiple F0 estimation algorithms to 
establish the most accurate for the analysis of sustained 
vowels [16]. We had found that the Sawtooth Waveform 
Inspired Pitch Estimator (SWIPE) [17] was very 
competitive [16] and hence it was used in this study. We 

used 10 msec epochs to obtain the F0 contour in 
accordance to standard practice [1], [12], [16]. 

Following the computation of the F0 contour, we 
subsequently aimed to determine the short signal 
segment that exhibited the smallest mean absolute 
successive F0 differences (without loss of generality we 
searched for the best short segment of 2 seconds in 
duration). For convenience, we will simply use the term 
jitter later on to refer to the mean absolute successive F0 
differences. We remark that alternative definitions of 
jitter variants (F0 perturbations) are possible [1], [4], 
[12]; here we wanted to explore the simplest approach.  

 
C. Manual hand-labeling of quasi-stationary segments 

 
We have manually hand-labeled the quasi-stationary 

segments of the 100 speech recordings by aural and 
visual inspection (e.g. that the quasi-stationary window 
appears between 4th to the 12th second). We assessed 
whether the 2-second segment determined by the 
proposed segmentation algorithm falls completely 
within the hand-labeled segments. 

 
D. Acoustic analysis of speech segment 

 
We used the Voice Analysis Toolbox which we had 

previously developed (open source MATLAB code, 
available at https://www.darth-group.com/software) for 
the analysis of sustained vowels [5], [12], [18]. We 
extracted 307 acoustic features which characterize the 
speech signal: broadly, these features quantify 
frequency changes (jitter variants), amplitude changes 
(shimmer variants), signal-to-noise ratio concepts, F0 
variability using wavelets, and envelope modulation. 
For further information on the acoustic features, their 
algorithmic expression and their tentative interpretation 
please refer to the Voice Analysis Toolbox and the cited 
studies above. These features have been previously 
explored in detail in our PD work [4], [6], [9], [12].  

We applied the algorithmic expressions for the 
computation of the acoustic features using two different 
segments for comparison: (i) the segment between 1-3 
seconds, and (ii) the automatically determined 2-second 
segment with the algorithm in this study.  

 
III. RESULTS 

 
Fig. 1 presents an indicative sustained vowel 

recording and the F0 contour to visually illustrate the 
result of the segmentation algorithm. As a first step, we 
verified across all phonations used in the study that the 
automatically detected segment was indeed a short 
signal where the F0 variability appeared minimal and 
matched the hand-labeled quasi-stationary segments. 
Fig. 2 is the zoomed version of Fig. 1 focusing only on 
the selected signal segment. We can visually observe 
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would be best applicable towards further acoustic 
analysis. Moreover, this crucial pre-processing step is 
rarely reported in the research literature. 

If we revisit the underlying principle of using 
sustained vowels, the aim is to elicit “stable” phonations 
and assess deviations from signal periodicity [1]. In 
practice, minor perturbations from maintaining constant 
amplitude and frequency are common even for people 
with no vocal pathologies, where larger fluctuations 
may be hinting towards a vocal pathology (which may 
be secondary e.g. to PD or other disorders) [1]. Hence, 
if we want to work on a short signal segment it would 
be reasonable to identify the most stable part of the 
phonation. Technically, that would be the most quasi-
stationary segment, where stationarity suggests that the 
central order moments of the signal remain constant 
[15]. Relaxing the requirement of quantifying non-
stationarity, we can instead aim to quantify changes in 
the fundamental frequency (F0), i.e. the F0 contour. The 
F0 is a key characteristic of speech and its computation 
is often a pre-requisite for many speech signal 
processing algorithms [1], [12]. 

The aim of this study is to develop an algorithmic 
approach towards automatically detecting the most 
quasi-stationary short signal segment from a speech 
recording that comprises a longer sustained vowel 
phonation which might also exhibit background noise 
(prompts, silence etc.). We demonstrate the 
effectiveness of the proposed approach towards the 
acoustic characterization of PD voices, although in 
principle the developed method is generalizable across 
applications focusing on sustained vowels. 

 
II. METHODS 

 
A. Data 
  

We used data from the large PVI study [13], [14], 
which was set in seven major geographical locations. 
Participants were invited to call in a dedicated phone 
number and contribute two sustained vowel /a/ 
phonations along with basic demographic information 
(age, gender), and whether they had been clinically 
diagnosed with PD. The phonations were sampled at 8 
kHz and stored on secure cloud servers. For the purposes 
of this study we have randomly selected phonations 
from 50 PD participants and from 50 control 
participants from the US cohort. 
 
B. F0 estimation and signal segmentation 
 

We had previously performed a thorough empirical 
comparison of multiple F0 estimation algorithms to 
establish the most accurate for the analysis of sustained 
vowels [16]. We had found that the Sawtooth Waveform 
Inspired Pitch Estimator (SWIPE) [17] was very 
competitive [16] and hence it was used in this study. We 

used 10 msec epochs to obtain the F0 contour in 
accordance to standard practice [1], [12], [16]. 

Following the computation of the F0 contour, we 
subsequently aimed to determine the short signal 
segment that exhibited the smallest mean absolute 
successive F0 differences (without loss of generality we 
searched for the best short segment of 2 seconds in 
duration). For convenience, we will simply use the term 
jitter later on to refer to the mean absolute successive F0 
differences. We remark that alternative definitions of 
jitter variants (F0 perturbations) are possible [1], [4], 
[12]; here we wanted to explore the simplest approach.  

 
C. Manual hand-labeling of quasi-stationary segments 

 
We have manually hand-labeled the quasi-stationary 

segments of the 100 speech recordings by aural and 
visual inspection (e.g. that the quasi-stationary window 
appears between 4th to the 12th second). We assessed 
whether the 2-second segment determined by the 
proposed segmentation algorithm falls completely 
within the hand-labeled segments. 

 
D. Acoustic analysis of speech segment 

 
We used the Voice Analysis Toolbox which we had 

previously developed (open source MATLAB code, 
available at https://www.darth-group.com/software) for 
the analysis of sustained vowels [5], [12], [18]. We 
extracted 307 acoustic features which characterize the 
speech signal: broadly, these features quantify 
frequency changes (jitter variants), amplitude changes 
(shimmer variants), signal-to-noise ratio concepts, F0 
variability using wavelets, and envelope modulation. 
For further information on the acoustic features, their 
algorithmic expression and their tentative interpretation 
please refer to the Voice Analysis Toolbox and the cited 
studies above. These features have been previously 
explored in detail in our PD work [4], [6], [9], [12].  

We applied the algorithmic expressions for the 
computation of the acoustic features using two different 
segments for comparison: (i) the segment between 1-3 
seconds, and (ii) the automatically determined 2-second 
segment with the algorithm in this study.  

 
III. RESULTS 

 
Fig. 1 presents an indicative sustained vowel 

recording and the F0 contour to visually illustrate the 
result of the segmentation algorithm. As a first step, we 
verified across all phonations used in the study that the 
automatically detected segment was indeed a short 
signal where the F0 variability appeared minimal and 
matched the hand-labeled quasi-stationary segments. 
Fig. 2 is the zoomed version of Fig. 1 focusing only on 
the selected signal segment. We can visually observe 

from Fig. 1 that if we had pre-fixed a segment at the 
middle section of the phonation this would have 
included some large F0 fluctuations. This problem could 
have occurred at any point in the phonation, which 
cautions on the use of pre-fixed time segments for 
further acoustic analysis. 

So far, we have demonstrated that the proposed 
segmentation algorithm correctly identified a short 
quasi-stationary segment within a speech recording. The 
next question is whether this makes any practical 
difference in the subsequent step with the acoustic
characterization of the phonation. Table 1 provides 
summary statistics across some indicative acoustic 
features (selected to be representative of different 
acoustic feature families). We remark that some of the 
acoustic features exhibit considerable differences in the 
summary values, which indirectly suggests that this pre-
processing segmentation step can have a major 
influence on the reported results. 

IV. DISCUSSION

We have developed a robust algorithmic approach 
towards detecting the quasi-stationary speech signal 
segment in sustained vowel /a/ phonations that exhibits 
the lowest F0 fluctuations. This was achieved by first 
estimating the F0 contour in 10 msec epochs (which is 
standard in F0 estimation), and subsequently 
determining the two consecutive seconds segment that 
exhibited the lowest jitter. We visually verified that in 
all cases the algorithm had correctly identified a short 
signal segment where F0 does not fluctuate considerably 
(see Fig. 2). Finally, we reported that the signal segment 
that is passed for further processing affects the 
computed acoustic features (see Table 1).

Although segmentation is a well-researched area in 
the signal processing and image processing research 
literature, we are not aware of any similar work that 
presents a principled approach towards determining a 
short speech segment within sustained vowels which 
would be a useful pre-processing step prior to further 
acoustic analysis. For example, Badawy et al. [19]
attempted to correctly estimate the entire duration of the 
sustained vowel phonation, whereas here we aimed to 
determine the most quasi-stationary segment within a 
full recording. Other work has focused on removing 
silences in recordings [20] so that only the voiced 
segment could be presented to acoustic analysis 
algorithms. We remark that our algorithm can 
intrinsically automatically detect when the F0 
fluctuations are above a maximum threshold of F0 
fluctuations or unrealistic F0 ranges (e.g. silence 
recordings, background noise) and hence identify 
phonations of insufficient quality, prompting further 
investigation or rejecting those recordings from further 
processing.  

This study focused exclusively on sustained vowels 
/a/ phonations. We remark that in principle these 
findings should generalize well in other settings with 

Fig. 1: Indicative plot visually illustrating the selected 
signal segment (in transparent green) both in terms of 
the raw voice signal and the computed F0 contour.

Fig. 2: Focusing on the segmented signal and the F0 
contour (zoomed in version from Fig. 1).

Table 1: Summary statistics of indicative acoustic 
features for the  phonations used in the study.
Indicative 
acoustic features

Benchmark 
segment 
(1-3 sec)

Automatically 
determined 
segment

Jitter 1.65±2.37 1.33±1.94
Shimmer 0.21±0.07 0.20±0.06
HNR 8.36±10.21 8.49±10.46
GNE 1.47±0.36 1.45±0.40
EMD-ERNSR,TKEO 5.87±2.98 7.24±3.70
VFERTKEO 0.72±0.59 2.51±1.74

The features are summarized in the form mean±standard deviation.
HNR = Harmonics to Noise Ratio, GNE = Glottal to Noise 
Excitation, EMD-ER = Empirical Mode Decomposition Excitation 
Ratio, VFER = Vocal Fold Excitation Ratio. For the algorithmic 
definition of the features in the Table see [12].
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sustained vowel phonations (e.g. the other two corner 
vowels /i/ and /u/), but that remains to be tested. So far, 
we are not aware of any work that has empirically 
extensively tested F0 estimation algorithms beyond /a/, 
and future work would likely also need to be done for 
other vowels or phonetically rich sounds used in clinical 
practice [1]. A seemingly very different speech signal 
analysis area to sustained vowels which is, perhaps 
surprisingly, intrinsically linked is processing of voice 
fillers. Voice fillers essentially exhibit similar properties 
to sustained vowels [21] even though they originate in 
conversational speech, which is a more generic setting 
where participants are not specifically instructed to 
produce a specific type of phonation. Previously, we had 
extracted the corresponding voice fillers for further 
acoustic analysis manually [21]; in principle, the 
presented algorithm herein should be generalizable.  

We are currently working on extending our early 
work using the noisy speech data collected as part of the 
PVI project [13], [14]. This dataset presents 
considerable challenges because of its large size and the 
data have not been collected under carefully controlled 
acoustic conditions. This very challenging setting 
requires robust methodologies to extract clinically 
useful information, where automating segmentation and 
reducing the computations demands on acoustic 
characterization of phonations is crucial. 

Collectively, these results provide a compelling 
argument that speech segmentation should be carefully 
considered and reported. This may also have important 
implications for real-time biomedical signal processing 
applications (e.g. processing on smartphones), where 
computational constraints need to be carefully 
considered. We envisage the proposed algorithm 
providing a convenient, robust approach to determining 
a short signal segment from a longer sustained vowel 
phonation towards standardizing acoustic analysis.  
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Abstract: The present paper describes a case study 
exploring the longitudinal effect of repetitive 
Transcranial Magnetic Stimulation (rTMS) on 
hypokinetic dysarthria in a patient with Parkinson’s 
Disease (PD). Several correlates from phonation and 
articulation such as jitter, shimmer, Harmonic-Noise 
Ratio (HNR), first two formant amplitudes and 
quality factors, and the Absolute Kinematic Velocity 
(AKV) were estimated and compared against 
equivalent features from a normative dataset using 
the Jensen-Shannon Divergence. The action of rTMS 
showed a positive impact on the amplitude and 
quality factor of the first formant, and consequently, 
on the AKV. These promising findings will need to 
be explored in further detail in follow up work.  
Keywords:  Transcranial Magnetic Stimulation, 
Hypokinetic Dysarthria, Parkinson’s Disease. 

 
I. INTRODUCTION 

Hypokinetic Dysarthria (HD) is a common 
manifestation of PD in speech, difficult to treat. 
Repetitive Transcraneal Magnetic Stimulation (rTMS) 
has been used to assess its long-term treatment effects 
on HD in PD [1]. A case study is analized here to 
observe functional changes after the rTMS, based on 
acoustic features quantifying phonation (Energy profile 
in dB logEn, F0 profile, HNR, Zero Crossings (ZX), 
jitter (Jt) and shimmer (Sh)), and vowel articulation 
stability (first two formant profiles (vF1, vF2), formant 
bandwidth correlates (mF1, mF2) and Absolute 
Kinematic Velocity (AKV) [2]).   
 

II. MATERIALS AND METHODS 

A PD participant (male, 61 years-old, UPDRS-III=9, 
LED=990 mg) was monitored uttering a sustained 

vowel [a:] before (baseline, day 0) and after rTMS (four 
recordings at 15, 26, 78 and 109 days into the study). 
The stimulation was performed using the 
instrumentation and methods described in [1].  

A. Signal Analysis 
The analysis was based on the sustained vowel [a:]. The 
signal was low-pass filtered and down-sampled to 8 kHz 
to maintain compliance with telephone-line quality. It 
was framed on sliding windows of 128 ms (equivalent 
to 1024 samples) with a stride of 2 ms  (equivalent to 16 
samples) to capture fast changes in phonation and 
articulation phenomena. Each signal frame was inverse-
filtered using a lattice LPC filter with order k=9 for male 
voice and k=7 for female voice.  

B. Feature extraction 
The following features were estimated for each sliding 
window We(m): 
 The squared signal envelope in dB (logEn) 

= 10 ( { }); 

=
( )

 
(1)  

where x is the speech signal, n is the time index, m 
is the index of the Hamming sliding window, and 

{ } is a fourth-order Butterworth low-pass filter 
with cutoff frequency at 4 Hz. 

 The fundamental frequency F0 estimated from the 
autocorrelation function  [3] 

=
1

 { } (2)  

where  is the sampling interval. 
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 The zero-crossing function (ZX), estimated from the 
speech signal, counting the number of sign changes 
on the estimation window We(m).  

 The harmonic-to-noise ratio (HNR) estimated from 
the first maximum of the autocorrelation function 

= 10 
1

 (3)  

to be positive where the energy of harmonic contents 
is larger than that of turbulent contents. 

 The first two formants, estimated from the zeros of 
the prediction-error polynomial HK(z) estimated for 
each window frame (vF1 and vF2) 

( = ) = 0; 

= ; 0; =
2

 
(4)  

 The proximity of each zero in the prediction-error 
polynomial to the unity circle is used as a quality 
factor (mF1 and mF2) 

= ; =  (5)  

 The Absolute Kinematic Velocity, as a measure of 
the neuromotor control of the jaw-tongue system is 
estimated from vF1 and vF2 [1] 

| ( )|
( )

+
( )

 (6)   

where H1 and H2 are quadratic forms of formant-
velocity projection weights wij. In this way an 
estimation of the AKV may be produced exclusively 
in terms of formant dynamics. 

 The perturbation features known as jitter and 
shimmer. Jitter (Jt) is estimated as the difference 
between the F0 values in two neighbor windows 
relative to their average as 

= 2
0 0
0 + 0

 (7)   

 Similarly, Shimmer (Sh) is estimated as the 
difference between the energy En of the signal from 
two neighbor windows relative to their average as 

= 2
+

 (8)   

where m is the index of the sliding window.  

                                                           
1 Normative male database (50 speakers, age 30.83±10.37 
years), ENT services, Hospital Gregorio Marañón of Madrid. 

C. Jensen-Shannon Divergence (JSD) 
JSD is a generalization of the measure of the mutual 
information contents between two probability density 
distributions of feature m to be compared pi( k) and 
pj( k), given by Kulback-Leibler’s Divergence [4] 

( ), ( )

=
1
2

{ , }

+
1
2
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(9)  

with 1 k K being the feature index, and K the number 
of features, where 

, = ( ), ( )

= ( )
( )
( )

 (10)  

is Kulback-Leibler’s Divergence defined for a generic 
feature . For this comparison a normalized histogram 
must be estimated from each feature amplitude. As an 
example, the probability density for feature the sampled 
value of the AKV given in (6), estimated as: 
 An N-bin histogram of counts by amplitudes is built 

from each subject’s AKV. The interval covered for 
speeds is [0, |vr|max], with |vr|max=50 cm.s-1, and 
K=50, with bin bk=[|vr|max/K]=1 cm.s-1 wide. 
The count histogram is built for each bin bk=k bk 
ck being the number of counts for bin bk 

if bk-1 vr(t) < bk then ck=ck+1 
 Count histograms ck k are normalized to 

their total number of counts Ct bk k to be 
considered estimators of probability density 
functions pk=ck/Ct. 

Thence p(|vrk|)=pk will be an estimate of the AKV 
probability density function. This feature has proven to 
be quite relevant in differentiating dysarthric from 
normative speech [5]. The signal analysis was carried on 
using an application built on MATLAB [6], and 
optimized for the fast analysis and feature extraction as 
well as for the statistical comparison of the case study 
participant’s features against the same ones from an age-
matched normative subset of a larger database1. For 
such, the distributions of each feature were compared 
using (9) against distributions from 16 age-matched 
male speakers selected from the normative database. 

 
III. RESULTS 

The following plots in Fig. 1 show the pre-stimulus 
phonation, En, F0, ZX and HNR profiles. 
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using an application built on MATLAB [6], and 
optimized for the fast analysis and feature extraction as 
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matched normative subset of a larger database1. For 
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III. RESULTS 

The following plots in Fig. 1 show the pre-stimulus 
phonation, En, F0, ZX and HNR profiles. 

Fig. 1 Example of the signal quality correlates from 
an emission of vowel [a:] by a 58-year old male 

participant (pre-stimulus): a) speech; b) En and F0 
contours; c) HNR and ZX contours. 

Their respective probability density distributions 
may be seen in Fig. 2 

Fig. 2 Distributions of the logEn, F0, ZX and HNR. 

An example of the two first formant contours and 
their plot on the vowel triangle are shown in Fig. 3 

Fig. 3 Formant correlates of the pre-stimulus vocal 
emission: a) Longitudinal evolution of the first two 

formants (F1: blue, F2: red): b) F1 density distribution; 
c) F2 density distribution.  

Important correlates informing on signal quality and 
estimation robustness are the moduli of the prediction-
error polynomial zeros, being shown in Fig. 4. 

Fig. 4 Formant moduli of the pre-stimulus vocal 
emission: a) Time evolution of the modulus of F1: b) 

density distribution of the modulus of F1; c) Time 
evolution of the modulus of F2: b) density distribution 

of the modulus of F2. 

The Absolute Kinematic Velocity is a semantic 
correlate, with a density distribution 2-
behavior, which can be related to the “emotional 
temperature” of the speech production [7]. Its temporal 
evolution and density distribution are shown in Fig. 5. 

Fig. 5 Formant Kinematics: a) Time derivatives of the 
first two formants (F1: blue, F2: red): b) Absolute 

Kinematic Velocity from formant derivatives; c) Polar 
plot of the Absolute Kinematic Velocity; d) AKV 

density distribution.  

The results from the evaluation of the JSD from pre- 
(baseline) and post-stimulus (15 days, 26 days, 78 days 
and 109 days, respectively) using the density 
distributions of the logEn, F0, Jt, Sh, ZX, HNR, vF1, vF2, 
mF1, mF2 and AKV are presented in Table 1 (the 
maximum JSD relative to the normative subset for each 
feature is given in bold). 
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Table 1. Statistical summary of acoustic features over specific dates in the monitoring period
(maxima given in bold).

Record logEn F0 Jt Sh ZX HNR vF1 vF2 mF1 mF2 AKV
Pre (0) 0.399 0.239 0.030 0.275 0.683 0.526 0.419 0.135 0.694 0.362 0.394
15 days 0.425 0.124 0.051 0.320 0.636 0.604 0.073 0.173 0.674 0.655 0.327
26 days 0.258 0.406 0.030 0.317 0.670 0.611 0.079 0.227 0.665 0.352 0.264
78 days 0.366 0.208 0.045 0.363 0.694 0.665 0.124 0.101 0.658 0.657 0.359
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graphically displayed in Fig. 6.

Fig. 6 Longitudinal evolution of the JSD for the first
formant value (vF1), quality factor (mF1) and AKV

from the pre- and four post-stimulus sessions from the
58-y old male participant against the normative subset.

IV. DISCUSSION

In analyzing the results, it must be taken into account 
that the larger the JSD, the bigger the difference from 
the normative reference is. The results presented in 
Table 1 and Fig. 6 show that three acoustic features
related with jaw movement manifest a drift towards 
normativity after rTMS, which may be interpreted as a 
beneficial effect regarding HD. In fact, it may be seen 
that vF1, mF1 and AKV show a clear trend towards the 
normative data (with a monotonic trend in mF1). On its 
turn, vF1 shows a decay at the first recording session (15
days) followed by a regression to worse conditions in 
the last three sessions.  AKV shows a descent except at
the fourth session (78 days). It must be mentioned that 
these preliminary results need further evaluation on a 
larger size database, and that the analysis of the prosodic 
profile and fluency are not covered in the present study.

V. CONCLUSIONS

The case studied shows some beneficial timely effects 
of rTMS on the stability and quality of the first formant.
This behavior is also manifested in the joint jaw-tongue 
kinematics (AKV) possibly due to a stabilization of the 
jaw-tongue neuromotor control mechanisms. These 
tentative findings are to be confirmed with an extended 
study on more participants of both genders. 
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Abstract: Sustained vowels have often been used to 
clinically assess vocal performance and infer 
symptoms in Parkinson’s disease, with most studies 
focusing on cohorts from a single linguistic 
background. Arguably, sustained vowels are generic 
and language-independent, however it is not clear 
how findings might generalize across cohorts of 
people from different linguistic backgrounds. In this 
study, we aimed to compare phonations from UK-
and US-English speaking people with Parkinson’s 
disease using the largest known speech-Parkinson’s 
database collected using a standard telephone 
network, the Parkinson’s Voice Initiative (PVI). We
processed 1988 sustained vowel /a/ phonations from 
the US-cohort and 525 phonations from the UK-
cohort. We stratified data according to gender and 
computed the fundamental frequency (F0) as a 
function of age and characterized phonations using 
307 acoustic measures that we have used in previous 
related work. There was generally very good 
agreement between UK- and US-English speakers in
terms of F0 characteristics and traditional acoustic 
measures such as jitter and shimmer. However, we
find pronounced cohort differences with a few of the
complex nonlinear acoustic measures. These findings 
provide useful insights into the acoustic differences 
between two English speaking cohorts, which should 
be taken into account when generalizing findings.

Keywords:  acoustic analysis, Parkinson’s disease, 
speech signal processing, sustained vowels

I. INTRODUCTION

Parkinson’s Disease (PD) is a debilitating progressive
neurodegenerative disorder with cornerstone symptoms 
which include tremor, rigidity and bradykinesia, within 
the broader remit of motor and non-motor symptoms
[1]. PD incidence and prevalence rates have been 
consistently growing where there was an estimated 6.1 
million of People with Parkinson’s (PwP) in 2016, and 
this number is projected to grow further as the average 

life expectancy increases [2]. Vocal impairment is very 
common in PD [3] and is met in approximately 70-90% 
PwP [3].

Studies over the last two decades have demonstrated 
the enormous potential that speech signals have in 
neurodegenerative applications including PD. 
Indicatively, we had previously used sustained vowel /a/ 
phonations and demonstated: (i) differentiating PwP
from age- and gender-matched controls with almost 
99% accuracy [4], (ii) accurately replicating the gold 
standard PD symptom severity score with accuracy 
greater than the inter-rater variability [5]–[9], and (iii)
automatically assisting voice rehabilitation [10]. More 
recently, we reported on the potential of speech signals 
towards early PD diagnosis both when using 
information with LRRK2 gene mutations [11] and also 
with known disease precursors such as rapid eye 
movement sleep behavior disorder [12]. Similarly, we 
have developed speech articulation kinematic models to 
characterize PD dysarthria to provide mechanistic 
insights into the underlying physiology [13]–[15], and 
explored PD subgroups [16], [17].

The use of sustained vowels towards the assessment 
of vocal performance has been well established [18] and 
in particular towards assessing neurodegenerative 
disorders [18], [19]. Most studies in the PD research 
literature focus on cohorts from a single linguistic 
background, e.g. US-English speakers. Although it 
could be argued that sustained vowels may be language-
independent, there has not been a systematic 
investigation into acoustic characterization in PwP 
cohorts from different linguistic backgrounds. This may 
limit potential comparisons and insights which could be 
drawn when comparing PwP from different linguistic 
backgrounds. Motivated by the need to assess speech-
PD at large, we initiated the Parkinson’s Voice Initiative 
(PVI), an international study that collected sustained 
vowel /a/ phonations and basic demographic 
information from approximately 10,000 people [20]–
[22]. This is the largest known speech-PD database and 
provides a unique opportunity for forming new 
hypotheses and exploratory analyses.
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In this study, we aimed to compare PwP from UK- 
and US-English speaking linguistic backgrounds across 
a range of acoustic characteristics to investigate 
alignment at a cohort level using age and gender 
stratification. 

 
II. METHODS 

 
A. Data 
  

The study makes secondary analysis of the PVI data 
focusing on the UK- and US-English speaking cohorts. 
We processed 1988 sustained vowel /a/ phonations from 
the US-cohort and 525 phonations from the UK-cohort. 
The speech recordings were sampled at 8 kHz and were 
stored at secure Aculab servers, along with basic 
demographic information (age, gender). For further 
details on PVI please see our previous work [20]–[22]. 
 
B. Acoustic analysis of sustained vowels 
 

We computed the fundamental frequency (F0) 
contour using SWIPE [23], which we had previously 

demonstrated is very competitive in accurate F0 
estimation specifically for sustained /a/ vowels [24]. We 
also used the Voice Analysis Toolbox (MATLAB open 
source code: https://www.darth-group.com/software), 
which provides an overview of acoustic characterization 
of sustained vowels across 307 acoustic measures. 
These have been specifically developed for PD 
applications [5], [6], [19], [25] and were later shown to 
be more broadly applicable to other settings including 
general voice pathology assessment [26] and forensic 
phonetics [27]. We compared the UK and US-English 
speaking cohorts in terms of average F0 and F0 
trajectories stratified by age and gender to objectively 
illustrate overall cohort differences. Also, we compared 
the cohort distributions across the computed 307 
acoustic measures to demonstrate how well these align 
in the two PwP groups. 

 
III. RESULTS 

 
Fig. 1 presents the average estimated F0 as a function 

of age, where results are stratified by gender. We 
observe that the general trend is similar for both cohorts, 

Table 1: Indicative acoustic measures of people with Parkinson’s, stratified by gender  
Acoustic 
measure 

Brief explanation US cohort 
(males) 

US cohort 
(females) 

UK cohort 
(males) 

UK cohort 
(females) 

Mean F0 Mean fundamental frequency 
(F0) computed using SWIPE 

139.61±34.03 206.84±33.24 139.17±33.79 216.25±32.98 

Jitter Average successive F0 
differences (10 ms windows)  

0.49±1.35 0.23±0.64 0.43±1.29 0.21±0.54 

Shimmer Average successive 
amplitude differences (10 ms 
windows) 

0.10±0.04 0.09±0.04 0.09±0.04 0.10±0.05 

NHR Noise-to-harmonics ratio 0.10±0.24 0.05±0.16 0.06±0.09 0.04±0.14 

GNE Glottal to noise excitation 
(assessing SNR) 

0.88±0.17 1.08±0.21 0.86±0.11 1.09±0.20 

VFERmean Vocal fold excitation ratio, 
average frequency excitation 

2.18±2.49 0.95±3.05 2.25±2.34 1.36±3.40 

VFERSNR-

TKEO 
Vocal fold excitation ratio, 
SNR energy excitation 

257.40±473.70 313.12±519.29 677.63±835.43 885.88±823.73 

PPE Pitch period entropy 
(assessing F0 variability) 

0.05±0.10 0.02±0.06 0.03±0.08 0.02±0.06 

0th MFCC 0th Mel Frequency Cepstral 
Coefficient  

0.92±2.28 1.18±2.24 -0.30±2.11 0.04±2.01 

1st MFCC 1st Mel Frequency Cepstral 
Coefficient 

2.10±1.74 1.32±1.67 3.97±1.69 3.40±1.28 

12th MFCC 12th Mel Frequency Cepstral 
Coefficient 

0.10±0.40 -0.57±0.47 0.22±0.40 -0.28±0.49 

Distributions are summarized in the form mean ± standard deviation. GNE = Glottal to Noise Excitation, MFCC = Mel Frequency 
Cepstral Coefficient, SNR = Signal to Noise Ratio, VFER = Vocal Fold Excitation Ratio. 
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where the average F0 is increasing with age. However, 
for both male and female PwP the US cohort exhibit a 
sharper rate of change. 

Table 1 summarizes indicative acoustic measures of 
the two PwP cohorts to facilitate a side-by-side 
comparison, stratified by gender. We remark that the 
classical acoustic measures (e.g. jitter, shimmer, NHR) 
were very similar. However, there were subtle and 
pronounced differences in some acoustic measures, in 
particular the Vocal Fold Excitation Ratio (VFER) 
measures and Mel Frequency Cepstral Coefficient 
(MFCC) measures. 
 

IV. DISCUSSION 
 

This study investigated the use of sustained vowel /a/ 
phonations between speakers from UK- and US-English 
linguistic backgrounds across a range of acoustic 
measures. Overall, there was generally very good 
agreement between the two cohorts in terms of F0 

characteristics and most of the acoustic measures 
investigated. This is a strong indication that clinical 
decision support tools developed using sustained vowel 
/a/ phonations in English-speaking PwP cohorts should 
in principle generalize to other English-speaking PwP. 
However, there are some subtle pronounced cohort 
differences with some of the acoustic measures (VFER, 
MFCCs), which need to be considered when 
generalizing findings across cohorts with different 
linguistic backgrounds.  

VFER and MFCCs have been particularly successful 
in related PD clinical decision support tools that we had 
previously reported on using either UK- or US-English 
speaking cohorts [7], [12], [19]. The present study’s 
findings could indicate that clinical decision support 
tools developed across either PwP cohort might need 
some careful tuning to be generalizable, for example 
exploring options with transfer learning. In turn, this 
could also inherently suggest that the PVI cohorts (data 
collected across seven countries) should be investigated 
separately to report on individual cohort properties and 
provide a cross-linguistic comparison of acoustic 
measure outputs and F0 changes as a function of age. 
 

V. CONCLUSION 
 

Collectively, these findings support the use of 
sustained vowels towards vocal assessment in PD as a 
robust and broadly generalizable signal modality, at 
least in the English-speaking cohorts. However, care 
needs to be exercised with some of the acoustic 
measures (VFER, MFCCs) which appear to differ 
considerably between cohorts. 
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 Abstract: Due to the COVID-19 pandemic, there 
has been a dramatic change in the work conditions 
of all voice professionals. In 2020 university 
professors around the world had to shift to online 
teaching. The objective of this research is to analyse 
the impact of this new professional reality on the 
vocal load of Saint Petersburg university professors 
and possible risks of vocal fatigue increase due to 
online synchronous teaching. In this study the vocal 
fatigue is understood as a separate phenomenon 
caused by excessive professional voice load. It can 
result in auditory perceptual and acoustic changes 
in the voice signal and lead to serious pathological 
conditions. We followed the protocol used in our 
pre-pandemic vocal fatigue studies to make the 
results comparable. The acoustic evaluation and 
self-reports are presented.  
Keywords: vocal fatigue, voice disorders, teacher’s 
voice, voice load. online synchronous teaching, 
COVID-19 pandemic 
 

I. INTRODUCTION 
Vocal fatigue in voice professionals (teachers, singers, 
guides etc.) has been a focus of research for decades, 
especially regarding its symptoms and risk factors. It is 
frequently self-reported as a sense of increased vocal 
effort and a sensation of laryngeal and pharyngeal 
constriction caused by excessive workload [2], [11]. 
There is a variety of vocal fatigue symptoms which are 
mainly explained by the physiologic mechanisms of 
vocal production. There exist many studies on vocal 
fatigue providing various concepts of the phenomenon. 
However, there is no universally accepted definition. 
Vocal fatigue is viewed either as a voice disorder 
caused by other pathological voice conditions or as a 
separate voice problem resulting from prolonged and 

excessive voice use [10]. In this study the vocal fatigue 
is understood as a separate phenomenon caused by 
excessive professional voice load. It can result in 
auditory perceptual and acoustic changes in the voice 
signal and can lead to serious pathological conditions. 
Identifying vocal fatigue in its initial stage is important 
to prevent voice disorders. 
Acoustically, vocal fatigue is associated with changes 
in tonal range, dynamic range, vocal quality, intensity, 
fundamental frequency. Consequently, acoustic 
analysis is a good objective method to evaluate voice 
quality under fatigue. Besides, it causes perceivable 
changes in pitch, loudness, pauses, and voice quality. 
We presented the acoustic, auditory and clinical 
analysis of vocal fatigue symptoms in the professors of 
Saint Petersburg university (pronunciation teachers and 
lecturers) in a number of previous studies. [5-7]  
However, due to the COVID-19 pandemic, there has 
been a dramatic change in the work conditions of all 
voice professionals. Particularly, in 2020, university 
professors around the world had to shift to online 
teaching. In [1], [9], [10] the influence of the new 
experience on different types of teaching professionals 
is described. 
The objective of this research is to analyse the impact 
of this new professional reality on Saint Petersburg 
university professors and possible risks of vocal fatigue 
increase due to online synchronous teaching.  
 

II. METHODS 
The methodologies used across numerous vocal fatigue 
studies can vary [1-10]. In most studies the vocal 
fatigue is induced artificially as a result of reading or 
speaking tasks of various types. [3], [8] The conditions 
of our pre-pandemic experiments seem to be more 
realistic. A total of 20 Saint Petersburg university 
professors were recorded before and after their 
workdays. The participants were asked to read at 
habitual loudness a four minute phonetically 
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representative text before classes in the morning. After 
continuous classroom teaching during the working day 
they were asked to record the same text. The 
recordings were used later for acoustic evaluation of 
the vocal fatigue symptoms. [5-7] The subjects also 
were asked to fill in a special questionnaire before each 
type of the recordings. In the questionnaire they 
evaluated their physical state, mood and a level of 
activity. 
The given study also employed 20 professors of Saint 
Petersburg State University (with the average teaching 
experience of 7 years) who had shifted to online 
synchronous teaching in 2020 due to the pandemic. 
The participants were involved in different types of 
teaching activities: 

1) teachers delivering lectures on linguistics (the 
Department of Phonetics and the Department 
of English Philology and Cultural 
Linguistics).  

2) English teachers running practical classes (the 
Department of English Philology and Cultural 
Linguistics); 

3) pronunciation coaches (the Department of 
Phonetics).  

The minimum workload a day was 3 hours while the 
maximum was 6 hours. 
No participant reported pathological voice problems.  
Given that the most of the participants had taken part 
in the pre-pandemic vocal fatigue experiments, we 
followed the same protocol:  

- to make it possible to compare the results (pre-
pandemic vs. pandemic) in terms of self-
assessment (subjective evaluation) and 
acoustic analysis (objective evaluation);  

- to find out if shifting to online synchronous 
teaching due to the pandemic caused vocal 
fatigue to increase; 

- to upgrade the guidelines concerning the 
optimal working-time regime and teacher’s 
voice-use routine.   

Whereas the recordings in the previous studies had 
been made in the studio at the Department of Phonetics 
with the use of Multichannel recording system Motu 
Traveler, in the presented experiments the participants 
were asked to record themselves before and after 
online class/lecture delivery using available devices 
such as mobile phones.  
All the subjects were asked to fill in two types of 
questionnaires before each type of the recordings.  
We used the WAM questionnaire to evaluate 
psychoemotional state of the teachers before and after 
their work.  
WAM (wellbeing consisting of strength, fatigue and 
health, activity comprising mobility, speed of flow of 
functions and mood compiled by the characteristics of 

the emotional state) is often used to assess the mental 
state of patients and healthy people, their 
psychoemotional response to loading. [6] It is 
presented in the form of a scale with indices (3 2 1 0 1 
2 3). The subject is offered 30 pairs of words with 
opposite meanings (strong - weak, active – passive, 
happy – unhappy etc.). The task is to select and circle 1 
digit on each scale. The selected value should most 
accurately reflect the state of the person as it is at the 
time of the test.  
Each of the scales has an average score of 4. When the 
score exceeds 4 points the state of well-being, activity, 
mood is defined as favorable. For normal state 
assessments, a range of 5.0-5.5 points is typical.  
All the subjects were also asked to fill in a self-
reporting questionnaire specially designed for the study 
before each type of the recordings.  
In the questionnaire, they described their working 
conditions in detail and commented on any problems 
with their voice before, during or after the work load.  

 
Table 1. A fragment of the self-reporting questionnaire 
showing the types of questions asked 

Working conditions The self-perception 
of voice before, 
during or after 
(yes/no) 
 

location (home, office, 
classroom) 
 

a high level of 
muscular 
tension/discomfort 

a type of environment (quiet, 
noisy) 

hoarse voice quality 
 

a type of their workload (a 
lecture, a seminar, a 
practical class, a 
pronunciation training) 

breathy voice quality 
 

the amount of voice load a 
day/a week 

unsteady voice 
 

  
a type of an online teaching 
platform or an application 
they were using 

inability to maintain 
typical pitch 
 

the absence/presence of a 
headset 

dry throat 

quality of the internet 
connection 
(speedy/slow/stable/unstable) 
 

sore throat 

work experience (less than 5 
years/more than 5 years) 

throat 
clearing/frequent 
pausing 
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The before (non-fatigued voice) and after (fatigued 
voice) recordings were analysed for basic acoustic 
parameters. We calculated (in Praat) a number of 
acoustic parameters based on formant values, jittter, 
shimmer, pitch and loudness which can help detecting 
the absence/presence of voice fatigue in a given speech 
sample. The results obtained during pandemic studies 
(online teaching) as well as the pre-pandemic studies 
(classsroom teaching) [5-7] showed a consistent 
dependency between acoustic parameters and vocal 
fatigue. After a working day F0 values were higher, the 
duration of vowels increased; pitch and loudness range 
values increased. Measuring jitter and shimmer did not 
give consistent results. The analysis of F0 features 
shows that the mean pitch value tends to be higher in 
fatigued speech across all the subjects. The pitch range 
increases significantly due to the increase of upper 
range value. The mean lower range value stays 
practically unchanged.  
The pre-pandemic analysis had showed that the main 
tendency was the increase in the mean value of F0 in 
the fatigued speech. The evaluation of pandemic 
recordings yielded similar results. However, as it is 
shown in Table 2, the mean duration of laryngalized 
speech segments is longer in the pandemic recordings. 
Laryngalization which is marked by significant 
decrease in pitch value and pitch breaks is associated 
with a creaky voice quality. The symptom was 
frequently reported by the teachers during the self-
assessment of voice quality.  
 
Table 2. The ratio of laryngalized speech segments to 
the whole text recorded (pre-pandemic vs. pandemic 
material) 

Pre-pandemic 
material, % 

Pandemic material, % 

Non-
fatigued 

1,5 
 

Non-
fatigued 
 

1.8 

Fatigued 1,2 
 

Fatigued 2.3 

 
Table 3. The increase in vowel duration in fatigued 
speech (pre-pandemic vs. pandemic material) 

Vowel Duration Increase in fatigued speech (ms) 
Pre-
pandemic 
material  

4.3 

Pandemic 
material 

7.2 

 
As it is shown table 2, the mean increase in vowel 
duration (all vowels) in fatigued speech is more 
significant in pandemic recordings.  

The differences in the acoustic parameters before and 
after vocal loading mainly seem to reflect increased 
muscle activity as a consequence of excessive vocal 
loading. 
The results of the WAM questionnaire according to 
Wellbeing scale in all phases of measurements before 
and after the workload exceeded 4 points, which 
indicated a favorable state of the teachers (Table 4). 
However, on average, before the work load swellbeing 
was rated at 5.5 points which is associated with a 
normal psychoemotional state (whereas the maximum 
is 7). The after self-assessment showed decreased 
wellbeing index, but it did not fall out of the range of 
4.0 points.  
The results of the WAM questionnaire according to the 
Activity scale in all phases of measurements before 
and after the classes also exceeded 4 points, which 
indicated a favorable state. The Mood rates were 
similar to the Activity ones.   
 
Table 4. The mean rates of WAM test 

Wellbeing 
Before After 

5.5 (min. 4.3 – max. 5.8) 4.3 (min. 4 – max.5.1) 
Activity 

4.3 (min. 4.1 – max. 5.5) 5.4 (min. 4.1 – max. 6.1) 
Mood 

5.0 (min. 4.3 – max. 5.2) 5.3 (min. 4.9 – max. 6.3) 
 
A total of 20 participants indicated feelings of vocal 
fatigue, general tiredness and psychoemotional 
exhaustion at the end of a day full of online classes and 
lectures (up to 6 hours of teaching).  
The analysis of the self-reports revealed symptoms of a 
high degree of vocal fatigue during and after the work 
load such as  

- a high level of muscular tension/discomfort 
(due to the microphone effect), 

- vocal fatigue and general tiredness 
- hoarse voice quality 
- creaky voice quality 
- breathy voice quality 
- unsteady voice 
- inability to maintain typical pitch 
- a dry or scratchy throat  
- a sore throat  
- dry cough 
- muscle pain in the neck and the larynx 

(obviously caused by inadequate posture and 
continuous talking while sitting) 

- psychological stress (caused by a lack of 
auditory and visual feedback or student 
interaction, technical problems and online 
connection failures). 
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The pronunciation teachers reported the largest number 
of vocal problems then practical class teachers as 
pronunciation training is the most challenging in terms 
of vocal effort. 
 
 

IV. DISCUSSION 
The comparison of the pre-pandemic results and the 
current ones based on acoustical analysis and self-
reporting questionnaires showed that the shift to 
delivering classes and lectures online caused 
substantial vocal fatigue increase. The main 
symptoms included hoarseness of voice, cracked or 
split voice, throat discomfort, neck and dry cough. 
However, the voice symptoms turned to be milder in 
the teachers using a headset which seems to be an 
effective way of adjusting to the new working 
conditions. However, in should be noted that wearing a 
headset continuously during the working day in some 
cases caused a headache and pain in the neck in a quiet 
big group of the subjects. 

V. CONCLUSION 
The concern should be raised over the significant 
increase in the focal fatigue in university professors in 
comparison with the pre-pandemic time. 
The guidelines concerning teacher’s voice-use routine 
should be developed by voice pathologists according to 
the new working conditions. They may include special 
sets of vocal exercises and strategies to avoid voice 
overstraining by slowing the pace, taking frequent 
pauses, putting an emphasis on diction and 
consonants rather on increasing the loudness.  
The optimal working-time regime should be also 
reconsidered both for those delivering online classes 
and working in a hybrid regime. It especially concerns 
pronunciation teachers who seem to be particularly 
susceptible to vocal fatigue. They have to repeat 
articulation drills in front of the students many times 
and correct continuously their pronunciation which 
demands a high level of vocal effort and excessive 
muscular tension of articulators. As a consequence of 
this vocal overloading, the pronunciation teachers often 
suffer from dysphonia and benign lesions such as 
nodules. 
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The pronunciation teachers reported the largest number 
of vocal problems then practical class teachers as 
pronunciation training is the most challenging in terms 
of vocal effort. 
 
 

IV. DISCUSSION 
The comparison of the pre-pandemic results and the 
current ones based on acoustical analysis and self-
reporting questionnaires showed that the shift to 
delivering classes and lectures online caused 
substantial vocal fatigue increase. The main 
symptoms included hoarseness of voice, cracked or 
split voice, throat discomfort, neck and dry cough. 
However, the voice symptoms turned to be milder in 
the teachers using a headset which seems to be an 
effective way of adjusting to the new working 
conditions. However, in should be noted that wearing a 
headset continuously during the working day in some 
cases caused a headache and pain in the neck in a quiet 
big group of the subjects. 

V. CONCLUSION 
The concern should be raised over the significant 
increase in the focal fatigue in university professors in 
comparison with the pre-pandemic time. 
The guidelines concerning teacher’s voice-use routine 
should be developed by voice pathologists according to 
the new working conditions. They may include special 
sets of vocal exercises and strategies to avoid voice 
overstraining by slowing the pace, taking frequent 
pauses, putting an emphasis on diction and 
consonants rather on increasing the loudness.  
The optimal working-time regime should be also 
reconsidered both for those delivering online classes 
and working in a hybrid regime. It especially concerns 
pronunciation teachers who seem to be particularly 
susceptible to vocal fatigue. They have to repeat 
articulation drills in front of the students many times 
and correct continuously their pronunciation which 
demands a high level of vocal effort and excessive 
muscular tension of articulators. As a consequence of 
this vocal overloading, the pronunciation teachers often 
suffer from dysphonia and benign lesions such as 
nodules. 
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Abstract: During the last two years the use of masks 
as personal protective equipment became necessary 
and mandatory to deal with the SARS-CoV-2
epidemiological emergency with impact on the 
quality and efficiency of verbal communication. 
This paper compares for the first time 7 different 
mask configurations. The sustained vowels /a/, /i/ 
and /u/ emitted by Italian speakers are considered. 
The purpose of this work is to evaluate whether the 
use of different types of masks, by themselves or
worn together with a protective shield, may affect 
the acoustical parameters and thus voice quality. 
This is exploited by means of acoustical analysis 
performed with the BioVoice tool that estimates 
more than 20 parameters. For each vowel, the 
values of the fundamental frequency F0, the first 
two formant frequencies F1 and F2, jitter and noise
are compared among the 7 configurations.
Preliminary results show that for the three vowels 
there are few statistically significant differences 
among masks when worn alone, while the presence 
of the shield has a relevant impact on the signal 
energy above 1 kHz. Further studies are ongoing to 
analyze vocalic sentences in order to detect possible 
influence of the masks on vowel articulation.
Keywords:  Face masks, SARS-CoV-2, acoustical 
analysis, BioVoice, F0, formants.

I. INTRODUCTION

Most personal protective equipments (PPEs) have a 
relevant impact both on the quality and the 
intelligibility of the voice signal especially in the case 
of noisy environments or hearing impairments. 
Moreover the inter-personal mandatory distance often 
leads to raise the voice, increasing voice fatigue 
especially for professionals that have a high daily voice 
load. Therefore, in the last two years the scientific 
community has examined the influence of masks on 
vocal acoustic characteristics. [1-6]. This paper 
compares for the first time 7 different mask 

configurations. The study is preliminary and limited to 
sustained vowels /a/, /i/ and /u/ emitted by Italian 
speakers, but further work is ongoing to analyze 
vocalic sentences in order to detect possible influence 
of the masks on vowel articulation.

The main characteristics of vowels are the 
fundamental frequency F0 and the formant frequencies, 
that is, the resonant frequencies of the vocal tract. In 
particular, the first two formants, F1 and F2, are related 
to the position of the tongue: F1 is linked to height, 
while F2 is linked to the front-to-back movement.
Formants position may vary according to age and 
gender, but is also related to the language under 
consideration. In particular, the Italian language 
comprises just 7 vocalic sounds and does not make a 
distinction between rounded and non-rounded vowels. 
Figure 1 shows the vowel trapezoid of the Italian 
language according to the International Phonetic 
Alphabet (IPA):

Figure 1 – Vowel trapezoid for the Italian language

In this work only the three vowels at the corners of the 
trapezoid are analyzed: /a/, /i/ and /u/. They roughly 
correspond to American English vowels /a/ (“father”), 
/I/ (“it”) and /U/ (“foot”) as reported in [7].

II. METHODS

Voice signals were recorded from 10 subjects (5 males 
and 5 females, mean age: 27,3, std= 1,494) of Italian 
mother tongue. Specifically, for females: mean=27,8; 
std= 0,836. For males: mean=26,8; std= 1,923.
Each subject was asked to emit the sustained vowels 
/a/, /i/ and /u/ at conversational amplitude for at least 
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5s. Seven configurations of different masks without or 
with protective shield were considered: 
- No mask (Baseline) 
- Surgical mask (Surgical) 
- Ffp2 mask (Ffp2) 
- Ffp3 mask (Ffp3) 
- Surgical mask and visor (Surgical+shield) 
- Ffp2 mask and visor (Ffp2+shield) 
- Ffp3 mask and visor (Ffp3+shield) 
Each vowel was repeated 3 times. Thus 210 recordings 
were collected. 
Each recording was processed using the BioVoice tool 
that automatically distinguish among newborn cry, 
children, adults and singers voices, and in case of 
adults performs separate analyses for male and female 
voices [8, 9]. 
In this work, for each vowel the following acoustical 
parameters were considered: F0, F1, F2, jitter, and 
Adaptive Normalized Noise Energy (ANNE), along 
with their descriptive statistics (mean, median and 
standard deviation). A high-resolution method for F0 
estimation is implemented in BioVoice, based on 
parametric AutoRegressive (AR) models applied to 
time-windows of varying length. AR models were also 
implemented to estimate the Power Spectral Density 
(PSD). PSD is automatically computed in the 
frequency range specific of each category, and 
normalized with respect to its maximum value, 
therefore the PSD range is 0dB downward. The first 
two PSD peaks correspond to F1 and F2. 
ANNE relies on a comb filtering approach, optimised 
to deal with data windows of varying time duration. 
Large negative ANNE values correspond to good voice 
quality, while values close to zero reflect the presence 
of strong noise. 

Concerning PSD, statistical analysis was 
implemented by dividing the frequency spectrum into 
500 Hz intervals and calculating the average power 
over each interval for each mask configuration and 
each vowel, distinguishing between males and females. 
Also overall results (males and females) were 
considered and they are reported in this paper. 
As data were not normally distributed, a non-
parametric Friedman test was performed to find 
possible differences between the acoustical parameters 
obtained with the 7 configurations of face masks. In 
case of significant level of the Friedman test (p value < 
0.05), a post-hoc multiple comparison was applied 
using the Dunn-Sidak method.  

 
III. RESULTS 

 
Results reported here concern male and female voices 
altogether. Separate analysis will be reported 
elsewhere. 

A. F0, formant, jitter and noise 
For all vowels and all configurations, F0 mean and 
median values are similar, both ranging between 168 
Hz and 182 Hz, with a slight increase from the baseline 
to masks with shield. This could be related to an 
increasing effort in vocal emission due to protective 
equipments.  However, no statistically significant 
differences were obtained for F0. 
For the mean values of F1 and F2, the following ranges 
were found. Median values are not reported as they 
gave similar results. 
Vowel /a/ 
F1: 720 Hz - 810 Hz. F2: 1080 Hz - 1180 Hz. 
Vowel /i/ 
F1: 340 Hz - 370 Hz. F2: 1830 Hz - 2200 Hz. 
Vowel /u/ 
F1: 400 Hz - 440 Hz. F2: 1010 Hz - 1120 Hz. 
For all vowels jitter ranges between 0.50% and 1.4% 
and ANNE ranges between -23 dB and -27 dB. 
The 6 configuration with masks were compared to the 
baseline with the Friedman test. Concerning jitter, no 
statistically significant difference was found for the 
three vowels.  
Only the statistically significant results are reported 
here: 
Vowel /a/ 
 F1 mean of FFP3 + shield was significantly lower 

than the baseline result. 
 NNE of FFP2 + shield was significantly higher than 

the baseline result. 
 NNE of FFP3 + shield was significantly higher than 

the baseline result. 
 ANNE of FFP2 + shield and FFP3 + shield was 

significantly higher than the baseline result. 
Vowel /i/ 
 F2 mean obtained with FFP2 + shield was 

significantly lower than the baseline. 
 F2 median obtained with FFP2 + shield was 

significantly lower than the baseline. 
Vowel /u/ 
No statistically significant differences were found with 
respect to the baseline. 
B. Power Spectral Density 
Figures 1-3 show the PSD trend in steps of 500 Hz for 
the three sustained vowels /a/, /i/ and /u/ and all the 7 
configurations. The mean PSD of male and female 
values are presented, without differentiating between 
the two genders.  
Baseline (no mask) is indicated with a solid line. Each 
dot corresponds to the mean value of the PSD values in 
each frequency step. 
 

IV. DISCUSSION 
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Results show that F0 is only slightly influenced by 
masks and shield, while formants values exhibit 
statistically significant differences. This is especially 
true for F2 and for the vowel /a/. Indeed, F2 tends to be 
lowered by a back tongue constriction and raised by a 
front tongue constriction [7], therefore changes might 
be due to the presence of face mask and shield.
Also, higher ANNE values with shield with respect to 
the baseline might indicate a higher effort required in 
vowel emission. No statistically significant difference 
was found for jitter.
Concerning PSD: For vowel /a/ (Figure 1) the decrease 
in PSD is quite evident for the three configurations 
with shield  already around 1kHz, where about 10dB of 
decrease is shown. Even larger differences are found 
from 2 kHz on for the same configurations. Less 
evident decrease is shown in Figures 2 and 3 that 
concern vowel /i/ and /u/ respectively. 
It should be taken into account that these plots concern
cumulative average values of men and women 
calculated over 500 Hz intervals, so they are somewhat 
different from the traditional power spectrum. In fact, 
when gender data were considered separately, a greater 
decrease and higher frequency values were observed 
for women. This might indicate a greater effort 
required to females with respect to males, possibly 
related to their shorter vocal tract and higher formant 
frequencies.
Furthermore, the vowel / u / is one of the most difficult 
to analyze through automatic tools, due to the position 
of its formants that depends on the position of the 
tongue and the conformation of the vocal tract which 
are very particular in this case.
Though preliminary, results show that masks alone 
have a negligible influence on the power spectral 
density (PSD) of sustained vowels /a/, /i/ and /u/, while 
the presence of the shield causes a relevant energy 
decreases above 1 kHz that is directly related to voice 
energy. This is particularly evident for vowel /a/ while 
vowels /i/ and /u/ show a less strong PSD decrease 
especially for frequencies below 2 kHz.
However, high standard deviation was found for all the 
configurations and vowels, baseline included. This 
might be related both to the mixture of male and 
female parameters used here and to the time of day 
when the recordings were made, i.e. at the end of the 
working day. Consequently, also the baseline 
parameters may have suffered from some distortion 
due to voice fatigue. 
Work is ongoing to detect the influence of masks and 
shield on articulation in conversational voice and 
speech.
Though mandatory, the use of masks and shields might 
have negative impact especially in professions that 
make large use of voice such as teachers. These 

preliminary results suggest that some vocal exercise 
such as bubbling and face gym would be advisable at 
least for professionals [10].

V. CONCLUSION

This paper presents preliminary results on the impact 
of protective masks and shield on voice parameters 
estimated on the three basic sustained vowels of the 
Italian language /a/, /i/ and /u/. Recordings were made 
after a working day and concern 10 adult healthy 
subjects. Results confirm that voice energy decreases 
above 1 kHz especially when masks are worn along 
with the protective shield.

To the authors knowledge this is the first attempt to 
compare seven different masks configurations. 

Figure 1 – /a/ vowel: dots correspond to the average 
PSD over 500Hz slices.

Figure 2 – /i/ vowel: dots correspond to the average 
PSD over 500Hz slices.
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Figure 3 – /u/ vowel: dots correspond to the average 
PSD over 500Hz slices.

Future work will concern the analysis of vowels during 
articulation [11] and vocalic sentences. Moreover, self-
perceptual evaluation based on a specific questionnaire 
will be performed.
In this work only non-invasive measures are 
considered, based on voice recordings and the 
acoustical analysis of the signal. More invasive 
analysis could be performed such as videokymography 
that might provide further helpful parameters [12].
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Figure 3 – /u/ vowel: dots correspond to the average 
PSD over 500Hz slices.

Future work will concern the analysis of vowels during 
articulation [11] and vocalic sentences. Moreover, self-
perceptual evaluation based on a specific questionnaire 
will be performed.
In this work only non-invasive measures are 
considered, based on voice recordings and the 
acoustical analysis of the signal. More invasive 
analysis could be performed such as videokymography 
that might provide further helpful parameters [12].
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Abstract: Laryngectomy for laryngeal cancer is the 
treatment of choice in these patients. Rehabilitation 
of patients with voice impairment is not an easy 
task. For the purpose of rehabilitation, 
tracheoesophageal bypass (TEB) is performed. 
When examining patients with TPS, medical 
personnel must be protected by personal protective 
equipment. Patients with PSI are at high risk for 
aspiration pneumonia. In the context of the 
COVID-19 pandemic, patients after laryngectomy 
with tracheoesophageal bypass surgery with 
prosthetics need to be given special attention. When 
infected with SARSCoV-2, these patients are at a 
special risk group. They need special conditions in 
the clinic - special care and rehabilitation.
Keywords: laryngectomy, rehabilitation, 
tracheoesophageal bypass, COVID-19, SARSCoV-2

I. INTRODUCTION

At the end of 2019, an outbreak of a new 
coronavirus infection occurred in the People's Republic 
of China (PRC) with an epicenter in the city of Wuhan 
(Hubei province), the causative agent of which was 
given the temporary name 2019-nCoV.

In an analysis of 72,314 COVID-19 patients in 
China, the overall case fatality rate was 2.3%. 
However, for patients with severe concomitant 
pathology, it was equal to 7.3% (10.5% of patients 
with cardiovascular diseases, 7.3% - for patients with 
diabetes, 6.3% - with chronic respiratory diseases, 
6.0% - for cancer patients) [1]

The main method of treating patients with tumors of 
the upper respiratory tract is usually surgery [1]. 
Laryngectomy for laryngeal cancer is the treatment of 
choice in these patients [2]. However, this type of 
surgery is disabling as patients lose their voice. 
Rehabilitation of patients with impaired voice function 
is not an easy problem [3-6]. For the purpose of 
rehabilitation, tracheoesophageal bypass surgery (TEB) 
is performed [7].

After laryngectomy, separation of the upper and
lower respiratory tract occurs, a permanent 
tracheostomy is formed, and the entire biomechanism 

of respiration changes. Therefore, this category of 
patients is inevitably the most susceptible to the 
COVID-19 virus in a pandemic, in overcrowded 
hospitals, as well as in patients with severe 
comorbidities.

As a rule, these patients belong to the older age 
group, with a long history of smoking, severe 
manifestations of chronic obstructive pulmonary 
disease, and a high risk of infection against the 
background of mucociliary dysfunction.

Given the presence of a high viral load in the upper 
respiratory tract, all ENT procedures are high-risk 
procedures, and otorhinolaryngologists are at risk for 
COVID-19 infection.

All of these patients have a high risk of 
postoperative wound complications, as well as the risk 
of contracting the COVID-19 coronavirus. In case of 
infection, the patient himself becomes a source of 
transmission. Aerosol viral particles can infect 
surrounding health care workers and other patients, 
especially during airway sanitation.

II. TEB PATIENTS & COVID-19

When performing TEB with prosthetics after 
laryngectomy, a number of complications are possible 
associated with the displacement of the prosthesis and / 
or its course [8]. Usually, these problems can be 
corrected on an outpatient basis. But in the context of 
coronavirus infection and with an increased risk of 
SARS-COV-2, the patient and staff should be as safe 
as possible. Optimally, if in the examination room, 
forced ventilation with negative pressure and HEPA-
filters are installed, which minimizes the risk of 
infection transmission [9].In patients after 
laryngectomy, there is no nasal breathing and untreated 
air through the tracheostomy directly enters the 
respiratory tract, which, as a rule, is accompanied by 
severe cough. At the same time, aerosol transmission 
of viral particles can significantly increase, compared 
with an ordinary person, when the protective function 
of the nose is preserved [5, 9]. So, during the outbreak 
of the SARS epidemic in 2003, a significant 
concentration of viral particles was determined in 
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tracheal aspirates. Therefore, the issue of care and 
contact with the patient after laryngectomy, both in 
inpatient and at home, is extremely important. Based 
on this, we recommend that any patient after 
laryngectomy be considered as potentially dangerous 
and infected with COVID-19. 

We recommend a standard set of personal protective 
equipment for staff in contact with COVID patients to 
prevent infection of medical personnel when 
examining all patients after laryngeal surgery. It should 
be noted that the use of respirator No. 95 and a 
protective screen for the face in 100% of cases 
effectively protects the employee from infection [3]. 

In the case when an in-person consultation is 
absolutely necessary (examination after surgery, 
complications, suspicion of a relapse of the disease), it 
is important to "screen" these patients even before 
visiting the clinic. It is advisable to take a thorough 
history and conduct an examination for COVID-19. 

It is important to note that a patient with a 
tracheostomy must use a respiratory heat exchanger 
with a viral-bacterial hygroscopic filter and cover the 
tracheostomy with a mask, scarf or clothing during a 
visit to the clinic [11]. 

 
III. TEB COMPLICATIONS 

 
If the patient has a leak around the prosthesis, there 

is a risk of developing aspiration pneumonia, which 
can even have lethal consequences for the patient in the 
context of COVID-19. In the case of displacement of 
the prosthesis towards the trachea or esophagus, this 
can be diagnosed by X-ray, as well as using gastro- or 
tracheoscopy. It is advisable to start the study with 
standard X-ray images, and, if necessary, perform 
computed tomography (CT). Aspiration of the 
prosthesis into the airway is an absolute indication for 
urgent endoscopic intervention (regardless of the 
patient's COVID-19 status). It is prudent to treat all 
such patients as potentially infectious and to take all 
precautions to minimize the transmission of aerosol 
particles. When transporting to the operating room, it is 
necessary to cover the tracheostomy with a napkin, 
mask. Any attempt to use a filter or trachea tube in 
such a situation can further aggravate the cough and 
worsen the patient's condition. 

When the patient's condition is stabilized, it is 
necessary to eliminate the complication as quickly as 
possible and, if possible, test for COVID-19. If there is 
a leak through the prosthesis, the patient should try to 
cope on his own at home. There are special plugs for 
the prosthesis ("like a key to a lock"), with which it is 
possible to block the lumen of the prosthesis. The flow 
will stop immediately, but the patient will not be able 
to talk (aphonia will occur). The patient may be 

advised to eat thicker food, which can also reduce 
aspiration. 

If the voice prosthesis has completely fallen out, 
then at home the patient can temporarily insert a rubber 
catheter or a special dilator into the shunt in order to 
stop aspiration (the patient should be taught these 
procedures in advance or informed about the 
possibility of their own implementation). After that, the 
patient, in a stable condition and in safety, can already 
see a doctor on an outpatient basis. 

In the clinic, the patient should be tested for 
COVID-19. Before receiving the test results, it is better 
to let the patient go home, and in case of a negative 
result, after 48 hours, invite again and replace the 
prosthesis. 

If the test for COVID-19 is positive, then such a 
patient should stay at home as long as possible and 
undergo special antiviral treatment. Only after 
complete recovery from infection is it recommended to 
carry out procedures for replacing the prosthesis. When 
working with COVID-positive patients, all staff and all 
procedures are advised to wear a PARP respirator. If 
this is not possible, then use at least a respirator No. 95 
and personal protective equipment (dressing gown, 
glasses, shoe covers).  
 

V. CONCLUSION 
 

In the context of the COVID-19 pandemic, patients 
after laryngectomy with tracheoesophageal bypass 
surgery with prosthetics need to be given special 
attention. When infected with SARSCoV-2, these 
patients are at a special risk group. They need special 
conditions in the clinic - special care and rehabilitation. 
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contact with the patient after laryngectomy, both in 
inpatient and at home, is extremely important. Based 
on this, we recommend that any patient after 
laryngectomy be considered as potentially dangerous 
and infected with COVID-19. 

We recommend a standard set of personal protective 
equipment for staff in contact with COVID patients to 
prevent infection of medical personnel when 
examining all patients after laryngeal surgery. It should 
be noted that the use of respirator No. 95 and a 
protective screen for the face in 100% of cases 
effectively protects the employee from infection [3]. 

In the case when an in-person consultation is 
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standard X-ray images, and, if necessary, perform 
computed tomography (CT). Aspiration of the 
prosthesis into the airway is an absolute indication for 
urgent endoscopic intervention (regardless of the 
patient's COVID-19 status). It is prudent to treat all 
such patients as potentially infectious and to take all 
precautions to minimize the transmission of aerosol 
particles. When transporting to the operating room, it is 
necessary to cover the tracheostomy with a napkin, 
mask. Any attempt to use a filter or trachea tube in 
such a situation can further aggravate the cough and 
worsen the patient's condition. 

When the patient's condition is stabilized, it is 
necessary to eliminate the complication as quickly as 
possible and, if possible, test for COVID-19. If there is 
a leak through the prosthesis, the patient should try to 
cope on his own at home. There are special plugs for 
the prosthesis ("like a key to a lock"), with which it is 
possible to block the lumen of the prosthesis. The flow 
will stop immediately, but the patient will not be able 
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If the voice prosthesis has completely fallen out, 
then at home the patient can temporarily insert a rubber 
catheter or a special dilator into the shunt in order to 
stop aspiration (the patient should be taught these 
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possibility of their own implementation). After that, the 
patient, in a stable condition and in safety, can already 
see a doctor on an outpatient basis. 

In the clinic, the patient should be tested for 
COVID-19. Before receiving the test results, it is better 
to let the patient go home, and in case of a negative 
result, after 48 hours, invite again and replace the 
prosthesis. 

If the test for COVID-19 is positive, then such a 
patient should stay at home as long as possible and 
undergo special antiviral treatment. Only after 
complete recovery from infection is it recommended to 
carry out procedures for replacing the prosthesis. When 
working with COVID-positive patients, all staff and all 
procedures are advised to wear a PARP respirator. If 
this is not possible, then use at least a respirator No. 95 
and personal protective equipment (dressing gown, 
glasses, shoe covers).  
 

V. CONCLUSION 
 

In the context of the COVID-19 pandemic, patients 
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Abstract: The coronavirus pandemic is spreading 
rapidly around the world. The health systems of all 
countries faced extraordinary problems in terms of 
the creation and distribution of medical resources, 
including the re-equipment and creation of new 
hospital beds, and the provision of personal 
protective equipment. The patients who undergo a 
laryngectomy are a special category. Given the fact 
that during the operation they have a separation of 
the upper and lower respiratory tract, in the 
context of the COVID-19 pandemic, such patients 
require special attention from oncologists and 
otorhinolaryngologists. Purpose of the study is to 
review the characteristics of patient management 
after a laryngectomy in a COVID-19 pandemic. 
Laryngectomy patients represent a unique 
contingent in conditions of coronavirus infection 
SARS-COV-2, it is advisable to focus on providing 
them with protective equipment. This will 
significantly reduce the risk of infection with their 
virus, which can be a deadly threat to them. 
Infected patients during an epidemic represent a 
potential source of infection for medical personnel, 
which requires special protective measures. All 
procedures associated with the replacement of the 
prosthesis, endoscopic manipulations, it is advisable 
to postpone until the normalization of the 
epidemiological situation. If carrying out such 
operations is vital, then they should be carried out, 
observing all necessary precautions for both the 
patient and medical personnel.
Keywords: coronavirus pandemic, COVID-19,
laryngectomy

I. INTRODUCTION

COVID-19 is caused by the SARS-CoV-2 (Severe 
acute respiratory syndrome-related coronavirus 2) 
coronavirus, which is genetically related to the SARS 
family and the Middle East Respiratory Syndrome 
(MERS) virus and is a recombinant virus between bat 
coronavirus and an unknown coronavirus. The genetic 

sequence of SARSCoV-2 is similar to the SARS-CoV 
sequence by at least 79% [1, 2].

In the last two years, the SARS-CoV-2 (Severe acute 
respiratory syndrome-related coronavirus 2) pandemic 
has been taking place. The transmission of infection is 
carried out by airborne droplets, airborne dust and 
contact routes [3]. The leading route of transmission of 
SARS-CoV-2 is airborne, which is realized when 
coughing, sneezing and talking at a close (less than 2 
meters) distance. The contact route of transmission is 
carried out during handshakes and other types of direct 
contact with an infected person, as well as through 
food, surfaces and objects contaminated with the virus.

II. FEATURES OF EXAMINATION OF PATIENTS
AFTER LARYNGECTOMY UNDER COVID-19

EPIDEMIC

The defeat of the pharynx and larynx by a tumor 
process leads to disabling consequences [4-6]. 
Moreover, the rehabilitation of such patients is an 
extremely difficult process [7-10].

Given the presence of a high viral load in the upper 
respiratory tract, all ENT procedures are high-risk 
procedures, and otorhinolaryngologists are at risk for 
COVID-19 infection.

The most common symptoms of coronavirus 
infection are cough (dry or with little sputum) in 80% 
of cases; shortness of breath (55%); fatigue (44%); a 
feeling of congestion in the chest (> 20%).

Testing for COVID-19 is most often done by 
swabbing the oropharynx and nasopharynx. But given 
that the breathing of patients after laryngectomy is 
carried out through a tracheostomy, it is advisable to 
consider testing for SARS-COV-2 by detecting the 
virus in tracheal aspirates and from the nasal cavity, 
which is consistent with the WHO recommendations.

Any diagnostic and therapeutic procedures in the 
upper respiratory and digestive tracts, as a rule, cause 
coughing and should be considered as potentially 
dangerous in terms of aerosol transmission for medical 
personnel [3]. To limit the transmission of COVID-19 
and to maximize the safety of medical personnel, it is 
shown to use personal protective equipment (PPE), 
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and, if possible, even to cancel or postpone a 
dangerous procedure (AAO-HNS). 

Taking into account the peculiarities of the anatomy, 
as well as the volume of laryngectomy [3, 5, 9], which 
is associated with the formation of a tracheoesophageal 
fistula and voice prosthetics, all medical 
recommendations should be organized in such a way as 
to minimize the possibility of transmission of the 
SARS-COV-2 virus from the patient to the medical 
staff. In this case, the use of personal protective 
equipment is relevant. 

In patients after laryngectomy, there is no nasal 
breathing and untreated air through the tracheostomy 
directly enters the respiratory tract, which, as a rule, is 
accompanied by severe cough. At the same time, 
aerosol transmission of viral particles can significantly 
increase, compared with an ordinary person, when the 
protective function of the nose is preserved [5, 9]. So, 
during the outbreak of the SARS epidemic in 2003, a 
significant concentration of viral particles was 
determined in tracheal aspirates. Therefore, the issue of 
care and contact with the patient after laryngectomy, 
both in inpatient and at home, is extremely important. 
Based on this, we recommend that any patient after 
laryngectomy be considered as potentially dangerous 
and infected with COVID-19. 

We recommend a standard set of personal protective 
equipment for staff in contact with COVID patients to 
prevent infection of medical personnel when 
examining all patients after laryngeal surgery. It should 
be noted that the use of respirator No. 95 and a 
protective screen for the face in 100% of cases 
effectively protects the employee from infection [3]. 

In the case when an in-person consultation is 
absolutely necessary (examination after surgery, 
complications, suspicion of a relapse of the disease), it 
is important to "screen" these patients even before 
visiting the clinic. It is advisable to take a thorough 
history and conduct an examination for COVID-19. 

It is important to note that a patient with a 
tracheostomy must use a respiratory heat exchanger 
with a viral-bacterial hygroscopic filter and cover the 
tracheostomy with a mask, scarf or clothing during a 
visit to the clinic [11]. 

 
III. TREATMENT OF PATIENTS WITH THE 

COVID-19 VIRUS IN A HOSPITAL 
When a patient is admitted to a hospital and 

planning treatment, it is extremely important that all 
medical workers of the department understand the 
surgical anatomy of the airways in a patient after 
laryngectomy. The attention of the personnel should be 
emphasized that the use of oxygen masks and nasal 
catheters in such a patient will be useless, since the 
upper respiratory tract is "turned off" from breathing as 

a result of the operation, and oxygenation occurs only 
through the tracheostomy. Under ideal conditions, it is 
advisable to test all incoming patients for COVID-19. 

However, if testing is not possible, all patients 
should be treated as potentially infected and all feasible 
remedies should be used. It is extremely important for 
patients to use heat exchangers with viral or bacterial 
filters attached to the tracheostomy area. 

In case of severe coughing and profuse sputum 
secretion, special tracheotubes with powerful HEPA-
filters can be used. And such a patient can be placed in 
a room with negative pressure and / or a closed 
ventilation system in order to prevent the spread of 
viral particles to other rooms. In some cases, it is 
advisable to use mechanical ventilation in auxiliary 
modes in order to provide a closed breathing circuit for 
the patient (even if his oxygenation does not suffer 
greatly). It is also important to use mechanical barriers 
over the tracheostomy (transparent blocks with holes 
for the doctor's hands), which is especially important at 
the time of intubation and extubation, when caring for 
the tracheotomy tube. The main thing in this situation 
is to prevent the spread of aerosol particles of the virus 
by any possible means. 

Each patient after laryngectomy in the ward should 
have an individual suction, which the patient should be 
trained to use even before the operation. When caring 
for such patients, strict use of PPE is necessary, at least 
until negative tests for COVID-19 are obtained. 

In case of a negative COVID-19 status for patients, 
it is still recommended to use HME with viral and 
bacterial filters from the very first hours after the 
operation, as well as wear a mask on the face and neck 
(which will provide a mechanical obstacle to the 
spread of the virus). 

The patient should be explained that it is not 
necessary to touch the tracheostomy unnecessarily, and 
after all hygiene measures have been taken, hands 
should be thoroughly washed. Caring for the skin 
around the tracheostomy is very important to reduce 
airway contamination. 

After laryngectomy, self-contamination 
(contamination with viral particles of one's own 
airways) is also possible during the use of a voice 
prosthesis and when closing the tracheostomy with a 
finger, therefore it is so important to focus the patient's 
attention on frequent hand washing. During an 
epidemic, the use of HANDS-FREE systems becomes 
extremely relevant, which allow the patient after 
laryngectomy not to touch the tracheostomy with a 
finger at all during speech load.  
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V. CONCLUSION 
 

Considering the fact that patients after laryngectomy 
are a unique contingent in conditions of SARS-COV-2 
coronavirus infection, it is advisable to focus on 
providing them with protective equipment (filters and 
heat exchangers). This will significantly reduce their 
risk of contracting the virus, which could pose a lethal 
threat to them. 

In addition, already infected patients themselves 
during an epidemic represent a potential source of 
infection for medical personnel, which requires the use 
of special protective measures. 

It is advisable to postpone all procedures related to 
the replacement of the prosthesis, endoscopic 
manipulations until the epidemiological situation 
normalizes. If the conduct of such operations is vital, 
then they should be carried out, observing all the 
necessary precautions for both the patient and the 
medical staff.. 
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