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Recently, researchers have paid escalating attention to studying the emotional state of an individual from his/her speech signals
as the speech signal is the fastest and the most natural method of communication between individuals. In this work, new feature
enhancement using Gaussian mixture model (GMM) was proposed to enhance the discriminatory power of the features extracted
from speech and glottal signals. Three different emotional speech databases were utilized to gauge the proposed methods. Extreme
learning machine (ELM) and k-nearest neighbor (𝑘NN) classifier were employed to classify the different types of emotions. Several
experiments were conducted and results show that the proposed methods significantly improved the speech emotion recognition
performance compared to research works published in the literature.

1. Introduction

Spoken utterances of an individual can provide information
about his/her health state, emotion, language used, gender,
and so on. Speech is the one of the most natural form of
communication between individuals. Understanding of indi-
vidual’s emotion can be useful for applications like web
movies, electronic tutoring applications, in-car board system,
diagnostic tool for therapists, and call center applications [1–
4]. Most of the existing emotional speech database contains
three types of emotional speech recordings such as simulated,
elicited, and natural ones. Simulated emotions tend to be
more expressive than real ones and most commonly used
[4]. In the elicited category, emotions are nearer to the
natural database but if the speakers know that they are being
recorded, the quality will be artificial. Next, in the natural
category, all emotions may not be available and difficult to
model because these are completely naturally expressed.Most
of the researchers have analysed four primary emotions such
as anger, joy, fear, and sadness either in stimulated domain or
in natural domain.High emotion recognition accuracieswere

obtained for two-class emotion recognition (high arousal
versus low arousal), but multiclass emotion recognition is
still disputing. This is due to the following reasons: (a) which
speech features are information-rich and parsimonious, (b)
different sentences, speakers, speaking styles, and rates, (c)
more than one perceived emotion in the same utterance, and
(d) long-term/short-term emotional states [1, 3, 4].

To improve the accuracy of multiclass emotion recogni-
tion, a new GMM based feature enhancement was proposed
and tested using 3 different emotional speech databases
(Berlin emotional speech database (BES), Surrey audio-visual
expressed emotion (SAVEE) database, and SahandEmotional
Speech database (SES)). Both speech signals and its glottal
waveforms were used for emotion recognition experiments.
To extract the glottal and vocal tract characteristics from the
speech waveforms, several techniques have been proposed
[5–8]. In this work, we extracted the glottal waveforms
from the emotional speech signals by using inverse filtering
and linear predictive analysis [5, 6, 9]. Emotional speech
signals and its glottal waveforms were decomposed into 4
levels using discrete wavelet packet transform and relative
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energy and entropy features were calculated for each of the
decomposition nodes. A total of 120 features were obtained.
Higher degree of overlap between the features of different
classes may degrade the performance of classifiers which
results in poor recognition of speech emotions. To decrease
the intraclass variance and to increase the interclass variance
among the features, GMM based feature enhancement was
proposed which results in improved recognition of speech
emotions. Both raw and enhanced features were subjected to
several experiments to validate their effectiveness in speech
emotion recognition. The rest of this paper is organized as
follows. Some of the significant works on speech emotion
recognition are discussed in Section 2. Section 3 presents
the materials and methods used. Experimental results and
discussions are presented in Section 4. Finally, Section 5
concludes the paper.

2. Previous Works

Several speech features have been successfully applied for
speech emotion recognition and can be mainly classified into
four groups such as continuous features, qualitative features,
spectral features, and nonlinear Teager energy operator based
features [1, 3, 4]. Various types of classifiers have been
proposed for speech emotion recognition such as hidden
Markov model (HMM), Gaussian mixture model (GMM),
support vector machine (SVM), artificial neural networks
(ANN), and 𝑘-NN [1, 3, 4]. This section describes some of
the recently published works in the area of multiclass speech
emotion recognition. Table 1 shows the list of some of the
recent works in multiclass speech emotion recognition using
BES and SAVEE databases.

Though speech related features are widely used for speech
emotion recognition, there is a strong correlation between the
emotional states and features derived from glottal waveforms.
Glottal waveform is significantly affected by the emotional
state and speaking style of an individual [10–12]. In [10–12],
researchers have investigated that the glottal waveform was
affected due to the excessive tension or lack of coordination
in the laryngeal musculature under different emotional states
and the speech produced under stress. The classification of
clinical depression using the glottal features was carried out
by Moore et al. in [13, 14]. In [15], authors have obtained
85% of the correct emotion recognition rate by using the
glottal flow spectrum as a possible cue for depression and
near-term suicide risk. Iliev and Scordilis have investigated
the effectiveness of glottal features derived from the glottal
airflow signal in recognizing emotions [16]. The average
emotion recognition rate of 66.5% for all six emotions
(happiness, anger, sadness, fear, surprise, and neutral) and
99% for four emotions (happiness, neutral, anger, and sad-
ness) was achieved. He et al. have proposed wavelet packet
energy entropy features for emotion recognition from speech
and glottal signals with GMM classifier [17]. They achieved
average emotion recognition rates for BES database between
51% and 54%. In [18], prosodic features, spectral features,
glottal flow features, and AM-FM features were utilized and
two-stage feature reductionwas proposed for speech emotion
recognition. The overall emotion recognition rate of 85.18%

for gender-dependent and 80.09% for gender-independent
was achieved using SVM classifier.

Several feature selection/reduction methods were pro-
posed to select/reduce the course of dimensionality of speech
features. Although all the above works are novel contri-
butions to the field of speech emotion recognition, it is
difficult to compare them directly since division of datasets
is inconsistent: the number of emotions used, the number
of datasets used, inconsistency in the usage of simulated
or naturalistic speech emotion databases, and lack of uni-
formity in computation and presentation of the results.
Most of the researchers have commonly used 10-fold cross
validation and conventional validation (one training set +
one testing set) and some of them have tested their meth-
ods under speaker-dependent, speaker-independent, gender-
dependent and gender-independent environments. In this
regard, the proposed methods were validated using three dif-
ferent emotional speech databases and emotion recognition
experiments were also conducted under speaker-dependent
and speaker-independent environments.

3. Materials and Methods

3.1. Emotional Speech Databases. In this work, three different
emotional speech databases were used for emotion recog-
nition and to test the robustness of the proposed methods.
First, Berlin emotional speech database (BES)was usedwhich
consists of speech utterances in German [19]. 10 professional
actors/actresses were used to simulate 7 emotions (anger: 127,
disgust: 45, fear: 70, neutral: 79, happiness: 71, sadness: 62,
and boredom: 81). Secondly, Surrey audio-visual expressed
emotion (SAVEE) database [20] was used and it is an audio-
visual emotional database which includes seven emotion
categories of speech utterances (anger: 60, disgust: 60, fear:
60, neutral: 120, happiness: 60, sadness: 60, and surprise: 60)
from four native English male speakers aged from 27 to 31
years. 3 common, 2 emotion-specific, and 10 generic sen-
tences from 15 TIMIT sentences per emotion were recorded.
In this work, only audio samples were utilized. Lastly,
Sahand Emotional Speech database (SES) was used [21] and
it was recorded at Artificial Intelligence and Information
Analysis Lab, Department of Electrical Engineering, Sahand
University of Technology, Iran.This database contains speech
utterances of five basic emotions (neutral: 240, surprise:
240, happiness: 240, sadness: 240, and anger: 240) from 10
speakers (5 male and 5 female). 10 single words, 12 sentences,
and 2 passages in Farsi language were recorded which results
in a total of 120 utterances per emotion. Figures 1(a)–1(d)
show an example of portion of utterance spoken by a speaker
in the four different emotions (neutral, anger, happiness,
and disgust). It can be observed from the figures that the
structure of the speech signals and its glottal waveforms
are considerably different for speech spoken under different
emotional states.

3.2. Features for Speech Emotion Recognition. Extraction of
suitable features for efficiently characterizing different emo-
tions is still an important issue in the design of a speech
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Table 1: Some of the significant works on speech emotion recognition.

Ref. number Database Signals Number of emotions Methods Best result

[49] BES Speech signals
Anger, boredom, disgust,
fear, happiness, sadness,
and neutral

Nonlinear dynamic features
+ prosodic + spectral
features + SVM classifier

82.72%
(females)

85.90% (males)

[50] BES Speech signals Neutral, fear, and anger Nonlinear dynamic features
+ neural network

93.78%

[51] BES Speech signals
Anger, boredom, disgust,
fear, happiness, sadness,
and neutral

Modulation spectral
features (MSFs) +
multiclass SVM

85.60%

[30] BES Speech signals
Anger, boredom, disgust,
fear, happiness, sadness,
and neutral

Combination of spectral
excitation source features +
autoassociative neural
network

82.16%

[27] BES Speech signals
Anger, boredom, disgust,
fear, happiness, sadness,
and neutral

Combination of
utterancewise global and
local prosodic features +
SVM classifier

62.43%

[52] BES Speech signals
Anger, boredom, disgust,
fear, happiness, sadness,
and neutral

LPCCs + formants + GMM
classifier

68%

[28] BES Speech signals
Anger, boredom, fear,
happiness, sadness, and
neutral

Discriminative band
wavelet packet power
coefficients (db-WPPC)
with Daubechies filter of
order 40 + GMM classifier

75.64%

[53] BES Speech signals
Anger, boredom, disgust,
fear, happiness, sadness,
and neutral

Low level audio descriptors
and high level perceptual
descriptors with linear
SVM

87.7%

[54] BES Speech signals
Anger, boredom, disgust,
fear, happiness, sadness,
and neutral

MPEG-7 low level audio
descriptors + SVM with
radial basis function kernel

77.88%

[55] SAVEE Speech signals
Anger, surprise, sadness,
happiness, fear, disgust, and
neutral

Mel-frequency cepstral
coefficients + signal energy
+ correlation based feature
selection + SVMwith radial
basis function kernels

79%

[56] SAVEE Speech signals
Anger, surprise, sadness,
happiness, fear, disgust, and
neutral

Energy intensity + pitch +
standard deviation + jitter +
shimmer + 𝑘NN

74.39%

[57] SAVEE Speech signals
Anger, surprise, sadness,
happiness, fear, disgust, and
neutral

Audio features + LDA
feature reduction + single
component Gaussian
classifier

63%

[20] SAVEE Speech signals
Anger, surprise, sadness,
happiness, fear, disgust, and
neutral

Pitch + energy + duration +
spectral + Gaussian
classifier

59.2%

emotion recognition system. Short-term features were widely
used by the researchers, called frame-by-frame analysis.
All the speech samples were downsampled to 8 kHz. The
unvoiced portions between words were removed by seg-
menting the downsampled emotional speech signals into
nonoverlapping frames with a length of 32ms (256 samples)
based on the energy of the frames. Frames with low energy
were discarded and the rest of the frames (voiced portions)

were concatenated and used for feature extraction [17]. Then
the emotional speech signals (only voiced portions) are
passed through a first-order low pass filter to spectrally flatten
the signal and to make it less susceptible to finite precision
effects later in the signal processing [22]. The first-order
preemphasis filter is defined as

𝐻(𝑧) = 1 − 𝑎 ∗ 𝑧
−1

0.9 ≤ 𝑎 ≤ 1.0. (1)
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Figure 1: ((a)–(d)) Emotional speech signals and its glottal waveforms (BES database).

The commonly used 𝑎 value is 15/16 = 0.9375 or 0.95 [22].
In this work, the value of 𝑎 is set equal to 0.9375. Extraction
of glottal flow signal from speech signal is a challenging
task. In this work, glottal waveforms were estimated based
on the inverse filtering and linear predictive analysis from
the preemphasized speech waveforms [5, 6, 9]. Wavelet or
wavelet packet transform has the ability to analyze any
nonstationary signals in both time and frequency domain
simultaneously. The hierarchical wavelet packet transform
decomposes the original emotional speech signals/glottal
waveforms into subsequent subbands. InWP decomposition,
both low and high frequency subbands are used to generate
the next level subbands which results in finer frequency
bands. Energy of the wavelet packet nodes is more robust
in representing the original signal than using the wavelet
packet coefficients directly. Shannon entropy is a robust
description of uncertainty in the whole signal duration
[23–26]. The preemphasized emotional speech signals and
glottal waveforms were segmented into 32ms frames with
50% overlap. Each frame was decomposed into 4 levels
using discrete wavelet packet transform and relative wavelet
packet energy and entropy features were derived for each of

the decomposition nodes as given in (4) and (7). Consider the
following:
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where 𝑗 = 1, 2, 3, . . . , 𝑚, 𝑘 = 0, 1, 2, . . . , 2
𝑚

− 1, 𝑚 is
the number of decomposition levels, and 𝐿 is the length
of wavelet packet coefficients at each node (𝑗, 𝑘). In this
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work, Daubechies wavelets with 4 different orders (db3, db6,
db10, and db44) were used since Daubechies wavelets are
frequently used in speech emotion recognition and provide
better results [1, 17, 27, 28]. After obtaining the relativewavelet
packet energy and entropy based features for each frame, they
were averaged over all frames and used for analysis. Four-
level wavelet decomposition gives 30 wavelet packet nodes
and features were extracted from all the nodes which yield
60 features (30 relative energy features + 30 relative entropy
features). Similarly, the same features were extracted from
emotional glottal signals. Finally, a total of 120 features were
obtained.

3.3. Feature Enhancement Using Gaussian Mixture Model. In
any pattern recognition applications, escalating the interclass
variance and diminishing the intraclass variance of the
attributes or features are the fundamental issues to improve
the classification or recognition accuracy [24, 25, 29]. In the
literature, several research works can be found to escalate
the discriminating ability of the extracted features [24, 25,
29]. GMM has been successfully applied in various pattern
recognition applications particularly in speech and image
processing applications [17, 28–36]; however its capability
of escalating the discriminative ability of the features or
attributes is not being extensively explored. Different appli-
cations of GMM motivate us to suggest GMM based feature
enhancement [17, 28–36]. High intraclass variance and low
interclass variance among the features may degrade the
performance of classifiers which results in poor emotion
recognition rates. To decrease the intraclass variance and to
increase the interclass variance among the features, GMM
based clustering was suggested in this work, to enrich the
discriminative ability of the relative wavelet packet energy
and entropy features. GMM model is a probabilistic model
and its application to labelling is based on the assumption
that all the data points are generated from a finite mixture of
Gaussian mixture distributions. In a model-based approach,
certain models are used for clustering and attempting to
optimize the fit between the data andmodel. Each cluster can
be mathematically represented by a Gaussian (parametric)
distribution. The entire dataset 𝑧 is modeled by a weighted
sum of 𝑀 numbers of mixtures of Gaussian component
densities and is given by the equation

𝑝 (𝑧
𝑖

| 𝜃) =

𝑀

∑

𝑘=1

𝜌
𝑘

𝑓 (𝑧
𝑖

| 𝜃
𝑘

) , (8)

where 𝑧 is the 𝑁-dimensional continuous valued relative
wavelet packet energy and entropy features, 𝜌
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(9)
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Figure 2: Proposed GMM based feature enhancement.

where 𝜇
𝑖

is the mean vector and Σ
𝑖

is the covariance matrix.
Using the linear combination of mean vectors, covariance
matrices, and mixture weights, overall probability density
function is estimated [17, 28–36]. Gaussian mixture model
uses an iterative expectation maximization (EM) algorithm
that converges to a local optimum and assigns posterior
probabilities to each component density with respect to each
observation. The posterior probabilities for each point indi-
cate that each data point has some probability of belonging to
each cluster [17, 28–36]. The working of GMM based feature
enhancement is summarized (Figure 2) as follows: firstly, the
component means (cluster centers) of each feature belonging
to dataset using GMM based clustering method was found.
Next, the ratios of means of features to their centers were
calculated. Finally, these ratios were multiplied with each
respective feature.

After applying GMM clustering based feature weighting
method, the raw features (RF) were known as enhanced
features (EF).

The class distribution plots of raw relative wavelet packet
energy and entropy features were shown in Figures 3(a), 3(c),
3(e), and 3(g) for different orders of Daubechies wavelets
(“db3,” “db6,” “db10,” and “db44”). From the figures, it can
be seen that there is a higher degree of overlap among
the raw relative wavelet packet energy and entropy features
which results in the poor performance of the speech emotion
recognition system. The class distribution plots of enhanced
relative wavelet packet energy and entropy features were
shown in Figures 3(b), 3(d), 3(f), and 3(h). From the figures,
it can be observed that the higher degree of overlap can be
diminished which in turn improves the performance of the
speech emotion recognition system.

3.4. Feature Reduction Using Stepwise Linear Discriminant
Analysis. Curse of dimensionality is a big issue in all pattern
recognition problems. Irrelevant and redundant features may
degrade the performance of the classifiers. Feature selec-
tion/reduction was used for selecting the subset of relevant
features from a large number of features [24, 29, 37]. Several
feature selection/reduction techniques have been proposed
to find most discriminating features for improving the per-
formance of the speech emotion recognition system [18, 20,
28, 38–43]. In this work, we propose the use of stepwise
linear discriminant analysis (SWLDA) since LDA is a linear
technique which relies on the mixture model containing
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Figure 3: ((a), (c), (e), and (g)) Class distribution plots of raw features for “db3,” “db6,” “db10,” and “db44.” ((b), (d), (f), and (h)) Class
distribution plots of enhanced features for “db3,” “db6,” “db10,” and “db44”.

the correct number of components and has limited flexibility
when applied to more complex datasets [37, 44]. Stepwise
LDA uses both forward and backward strategies. In the
forward approach, the attributes that significantly contribute
to the discrimination between the groups will be determined.
This process stops when there is no attribute to add in

the model. In the backward approach, the attributes (less
relevant features) which do not significantly degrade the
discrimination between groups will be removed. 𝐹-statistic
or 𝑝 value is generally used as predetermined criterion to
select/remove the attributes. In this work, the selection of
the best features is controlled by four different combinations
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of (0.05 and 0.1, SET1; 0.01 and 0.05, SET2; 0.01 and 0.001,
SET3; 0.001 and 0.0001, SET4)𝑝 values. In a feature entry step,
the features that provide the most significant performance
improvement will be entered in the feature model if the 𝑝
value < 0.05. In the feature removal step, attributes which
do not significantly affect the performance of the classifiers
will be removed if the 𝑝 value > 0.1. SWLDA was applied to
the enhanced feature set to select best features and to remove
irrelevant features.

The details of the number of selected enhanced features
for every combination were tabulated in Table 2. From
Table 2, it can be seen that the enhanced relative energy and
entropy features of the speech signals were more significant
than the glottal signals. Approximately between 32% and
82% of insignificant enhanced features were removed in all
the combination of 𝑝 values (0.05 and 0.1, 0.01 and 0.05,
0.01 and 0.001, and 0.001 and 0.0001) and speaker-dependent
and speaker-independent emotion recognition experiments
were carried out using these significant enhanced features.
The results were compared with the original raw relative
wavelet packet energy and entropy features and some of the
significant works in the literature.

3.5. Classifiers

3.5.1. 𝑘-Nearest Neighbor Classifier. 𝑘NN classifier is a type of
instance-based classifiers and predicts the correct class label
for the new test vector by relating the unknown test vector to
known training vectors according to some distance/similarity
function [25]. Euclidean distance function was used and
appropriate 𝑘-value was found by searching a value between
1 and 20.

3.5.2. Extreme Learning Machine. A new learning algorithm
for the single hidden layer feedforward networks (SLFNs)
called ELM was proposed by Huang et al. [45–48]. It has
beenwidely used in various applications to overcome the slow
training speed and overfitting problems of the conventional
neural network learning algorithms [45–48]. The brief idea
of ELM is as follows [45–48].

For the given 𝑁 training samples, the output of a SLFN
network with 𝐿 hidden nodes can be expressed as the
following:

𝑓
𝐿

(𝑥
𝑗

) =

𝐿

∑

𝑖

𝛽
𝑖

𝑔 (𝑤
𝑖

⋅ 𝑥
𝑗

+ 𝑏
𝑖

) , 𝑗 = 1, 2, 3, . . . , 𝑁. (10)

It can be written as 𝑓(𝑥) = ℎ(𝑥)𝛽, where 𝑥
𝑗

, 𝑤
𝑖

, and 𝑏
𝑖

are the input training vector, input weights, and biases to
the hidden layer, respectively. 𝛽

𝑖

are the output weights that
link the 𝑖th hidden node to the output layer and 𝑔(⋅) is the
activation function of the hidden nodes. Training a SLFN
is simply finding a least-square solution by using Moore-
Penrose generalized inverse:

𝛽 = 𝐻†𝑇, (11)

where 𝐻† = (𝐻
󸀠

𝐻)
−1

𝐻
󸀠 or 𝐻󸀠(𝐻𝐻󸀠)−1, depending on the

singularity of𝐻󸀠𝐻 or𝐻𝐻󸀠. Assume that𝐻󸀠𝐻 is not singular;

the coefficient 1/𝜀 (𝜀 is positive regularization coefficient) is
added to the diagonal of𝐻󸀠𝐻 in the calculation of the output
weights 𝛽

𝑖

. Hence, more stable learning system with better
generalization performance can be obtained.

The output function of ELM can be written compactly as

𝑓 (𝑥) = ℎ (𝑥)𝐻
󸀠

(
1

𝜀
+ 𝐻𝐻

󸀠

)

−1

𝑇. (12)

In this ELM kernel implementation, the hidden layer feature
mappings need not be known to users and Gaussian kernel
was used. Best values for positive regularization coefficient
(𝜀) as 1 and Gaussian kernel parameter as 10 were found
empirically after several experiments.

4. Experimental Results and Discussions

This section describes the average emotion recognition rates
obtained for speaker-dependent and speaker-independent
emotion recognition environments using proposed meth-
ods. In order to demonstrate the robustness of the pro-
posed methods, 3 different emotional speech databases were
used. Amongst, 2 of them were recorded using professional
actors/actresses and 1 of them was recorded using university
students. The average emotion recognition rates for the
original raw and enhanced relative wavelet packet energy
and entropy features and for best enhanced features were
tabulated in Tables 3, 4, and 5. Table 3 shows the results
for the BES database. 𝑘NN and ELM kernel classifiers were
used for emotion recognition. From the results, ELM kernel
always performs better compared to 𝑘NN classifier in terms
of average emotion recognition rates irrespective of different
orders of “db” wavelets. Under speaker-dependent experi-
ment,maximumaverage emotion recognition rates of 69.99%
and 98.98% were obtained with ELM kernel classifier using
the raw and enhanced relative wavelet packet energy and
entropy features, respectively. Under speaker-independent
experiment, maximum average emotion recognition rates of
56.61% and 97.24% were attained with ELM kernel classifier
using the raw and enhanced relative wavelet packet energy
and entropy features, respectively. 𝑘NN classifier gives only
maximum average recognition rates of 59.14% and 49.12%
under speaker-dependent and speaker-independent experi-
ment, respectively.

The average emotion recognition rates for SAVEE
database are tabulated in Table 4. Only audio signals from
SAVEE database were used for emotion recognition experi-
ment. According to Table 4, ELM kernel has achieved better
average emotion recognition of 58.33% than 𝑘NN clas-
sifier which gives only 50.31% using all the raw relative
wavelet packet energy and entropy features under speaker-
dependent experiment. Similarly, maximum emotion recog-
nition rates of 31.46% and 28.75% were obtained under
speaker-independent experiment using ELMkernel and 𝑘NN
classifier, respectively.

After GMMbased feature enhancement, average emotion
recognition rate was improved to 97.60% and 94.27% using
ELM kernel classifier and 𝑘NN classifier under speaker-
dependent experiment. During speaker-independent experi-
ment, maximum average emotion recognition rates of 77.92%
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Table 3: Average emotion recognition rates for BES database.

Different order “db” wavelets Speaker dependent
Raw features Enhanced features SET1 SET2 SET3 SET4

ELM kernel
db3 69.99 98.24 98.52 98.15 97.50 98.15
db6 68.55 95.65 96.39 97.31 96.67 97.13
db10 68.77 98.52 97.78 97.69 96.85 96.39
db44 67.43 98.70 98.43 98.98 98.89 98.61

kNN
db3 59.14 95.19 96.57 96.11 95.83 96.30
db6 58.68 89.72 87.31 91.30 90.65 91.67
db10 57.93 97.04 96.57 96.57 95.46 95.28
db44 57.63 95.46 95.56 95.56 95.00 96.11

Speaker independent
ELM kernel

db3 56.61 96.04 97.07 97.24 96.40 96.40
db6 54.70 92.26 91.26 91.83 91.62 91.48
db10 52.08 92.12 94.13 93.37 93.00 92.93
db44 53.60 93.04 93.13 94.10 93.67 94.33

kNN
db3 49.12 91.75 93.32 92.01 92.79 93.90
db6 48.21 81.93 82.22 81.43 82.18 82.77
db10 45.17 90.64 89.81 89.46 90.23 90.15
db44 46.87 91.69 90.15 90.57 90.35 91.99

Table 4: Average emotion recognition rates for SAVEE database.

Different order “db” wavelets Speaker dependent
Raw features Enhanced features SET1 SET2 SET3 SET4

ELM kernel
db3 55.63 96.35 96.77 95.21 95.83 96.04
db6 55.63 96.35 95.52 97.60 95.73 96.35
db10 58.23 96.77 91.35 92.60 93.33 91.67
db44 58.33 96.04 95.52 95.63 95.83 96.35

𝑘NN
db3 47.08 90.63 89.90 90.52 91.56 91.77
db6 47.81 93.54 92.81 94.27 92.29 93.75
db10 46.56 93.23 93.96 93.33 92.60 94.17
db44 50.31 90.21 91.04 91.77 90.10 91.35

Speaker independent
ELM kernel

db3 27.92 70.00 69.17 68.54 70.21 70.00
db6 31.04 67.92 72.71 73.75 76.25 76.25
db10 31.04 77.92 76.88 76.88 76.88 76.67
db44 31.46 70.83 76.46 76.04 76.25 76.67

kNN
db3 28.75 63.96 62.50 62.50 63.13 64.38
db6 27.92 63.75 66.04 65.42 66.25 66.25
db10 27.92 69.17 67.50 67.50 67.50 67.71
db44 27.50 64.17 62.50 62.71 61.67 62.50
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Table 5: Average emotion recognition rates for SES database.

Different order “db” wavelets Speaker dependent
Raw features Enhanced features SET1 SET2 SET3 SET4

ELM kernel
db3 41.93 89.92 90.38 89.00 88.46 86.21
db6 42.14 92.79 91.21 92.04 90.63 91.21
db10 40.90 88.83 89.96 90.04 88.58 88.67
db44 42.38 90.00 89.79 88.83 84.67 82.13

kNN
db3 31.15 77.79 79.50 78.00 78.42 76.88
db6 32.80 81.79 82.17 82.96 81.46 81.63
db10 31.23 78.63 79.38 80.08 79.79 81.08
db44 32.08 78.79 79.38 78.25 74.63 73.71

Speaker independent
ELM kernel

db3 27.25 78.75 79.17 78.25 78.50 77.50
db6 26.00 83.67 83.75 84.58 83.58 83.42
db10 27.08 79.42 80.42 80.25 80.33 79.92
db44 26.00 80.50 80.92 78.67 76.33 74.92

kNN
db3 25.92 69.33 69.67 67.92 68.17 66.83
db6 25.50 71.92 73.67 74.00 72.17 73.50
db10 26.33 70.00 71.00 71.08 71.17 70.92
db44 24.67 67.58 69.50 68.08 66.08 67.83

(ELM kernel) and 69.17% (𝑘NN) were achieved using the
enhanced relativewavelet packet energy and entropy features.
Table 5 shows the average emotion recognition rates for
SES database. As emotional speech signals were recorded
from nonprofessional actors/actresses, the average emo-
tion recognition rates were reduced to 42.14% and 27.25%
under speaker-dependent and speaker-independent exper-
iment, respectively. Using our proposed GMM based fea-
ture enhancement method, the average emotion recognition
rates were increased to 92.79% and 84.58% under speaker-
dependent and speaker-independent experiment, respec-
tively. The superior performance of the proposed methods
in all the experiments is mainly due to GMM based feature
enhancement and ELM kernel classifier.

A paired 𝑡-test was performed on the emotion recog-
nition rates obtained using the raw and enhanced relative
wavelet packet energy and entropy features, respectively, with
the significance level of 0.05. In almost all cases, emotion
recognition rates obtained using enhanced features were
significantly better than using raw features. The results of
the proposed method cannot be compared directly to the
literature presented in Table 1 since the division of datasets
is inconsistent: the number of emotions used, the number
of datasets used, inconsistency in the usage of simulated or
naturalistic speech emotion databases, and lack of uniformity
in computation and presentation of the results. Most of the
researchers have widely used 10-fold cross validation and
conventional validation (one training set + one testing set)
and some of them have tested their methods under speaker-
dependent, speaker-independent, gender-dependent, and

gender-independent environments. However, in this work,
the proposed algorithms have been tested with 3 different
emotional speech corpora and also under speaker-dependent
and speaker-independent environments. The proposed algo-
rithms have yielded better emotion recognition rates under
both speaker-dependent and speaker-independent environ-
ments compared to most of the significant works presented
in Table 1.

5. Conclusions

This paper proposes a new feature enhancement method
for improving the multiclass emotion recognition based on
Gaussian mixture model. Three different emotional speech
databases were used to test the robustness of the proposed
methods. Both emotional speech signals and its glottal wave-
forms were used for emotion recognition experiments. They
were decomposed using discrete wavelet packet transform
and relative wavelet packet energy and entropy features
were extracted. A new GMM based feature enhancement
method was used to diminish the high within-class variance
and to escalate the between-class variance. The significant
enhanced features were found using stepwise linear discrimi-
nant analysis.The findings show that the GMMbased feature
enhancement method significantly enhances the discrimina-
tory power of the relative wavelet packet energy and entropy
features and therefore the performance of the speech emotion
recognition system could be enhanced particularly in the
recognition of multiclass emotions. In the future work, more
low-level and high-level speech features will be derived and
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tested by the proposed methods. Other filter, wrapper, and
embedded based feature selection algorithmswill be explored
and the results will be compared.The proposed methods will
be tested under noisy environment and also in multimodal
emotion recognition experiments.
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