8 research outputs found

    Comparative analysis of features extraction techniques for black face age estimation

    Get PDF
    A computer-based age estimation is a technique that predicts an individual's age based on visual traits derived by analyzing a 2D picture of the individual's face. Age estimation is critical for access control, e-government, and effective human–computer interaction. The other-race effect has the potential to cause techniques designed for white faces to underperform when used in a region with black faces. The outcome is the consequence of intermittent training with faces of the same race and the encoding structure of the trained face images, which is based on the feature extraction technique used. This study contributes to a constructive comparison of three feature-extraction techniques, namely, local binary pattern (LBP), Gabor Wavelet (GW), and wavelet transformation, used in the development of a genetic algorithm (GA)- artificial neural network (ANN)-based age estimation system. The feature extraction techniques used are proven to produce a wealth of shape and textural information. The GA-ANN constitutes the age classifier module. The correct classification rate was chosen as the performance metrics in this study. The results demonstrated that the LBP is a more robust representation of the black face than the GW and Wavelet transformations, as evidenced by its accuracy rate of 91.76 compared to 89.41 and 84.71 achieved with the GW and Wavelet transformation age estimation systems, respectively

    A CNN-ELM Classification Model for Automated Tomato Maturity Grading

    Get PDF
    Tomatoes are popular around the world due to their high nutritional value. Tomatoes are also one of the world’s most widely cultivated and profitable crops. The distribution and marketing of tomatoes depend highly on their quality. Estimating tomato ripeness is an essential step in determining shelf life and quality. With the abundant supply of tomatoes on the market, it is exceedingly difficult to estimate tomato ripeness using human graders. To address this issue and improve tomato quality inspection and sorting, automated tomato maturity classification models based on different features have been developed. However, current methods heavily rely on human-engineered or handcrafted features. Convolutional neural networks have emerged as the preferred technique for general object recognition problems because they can automatically detect and extract valuable features by directly working on input images. This paper proposes a CNN-ELM classification model for automated tomato maturity grading that combines CNNs’ automated feature learning capabilities with the efficiency of extreme learning machines to perform fast and accurate classification even with limited training data. The results showed that the proposed CNN-ELM model had a classification accuracy of 96.67% and an F1-score of 96.67% in identifying six maturity stages from the test data

    Gender recognition from unconstrained selfie images: a convolutional neural network approach

    Get PDF
    Human gender recognition is an essential demographic tool. This is reflected in forensic science, surveillance systems and targeted marketing applications. This research was always driven using standard face images and hand-crafted features. Such way has achieved good results, however, the reliability of the facial images had a great effect on the robustness of extracted features, where any small change in the query facial image could change the results. Nevertheless, the performance of current techniques in unconstrained environments is still inefficient, especially when contrasted against recent breakthroughs in different computer vision research. This paper introduces a novel technique for human gender recognition from non-standard selfie images using deep learning approaches. Selfie photos are uncontrolled partial or full-frontal body images that are usually taken by people themselves in real-life environment. As far as we know this is the first paper of its kind to identify gender from selfie photos, using deep learning approach. The experimental results on the selfie dataset emphasizes the proposed technique effectiveness in recognizing gender from such images with 89% accuracy. The performance is further consolidated by testing on numerous benchmark datasets that are widely used in the field, namely: Adience, LFW, FERET, NIVE, Caltech WebFaces andCAS-PEAL-R1

    Integrated Multi-Model Face Shape and Eye Attributes Identification for Hair Style and Eyelashes Recommendation

    Get PDF
    Identifying human face shape and eye attributes is the first and most vital process before applying for the right hairstyle and eyelashes extension. The aim of this research work includes the development of a decision support program to constitute an aid system that analyses eye and face features automatically based on the image taken from a user. The system suggests a suitable recommendation of eyelashes type and hairstyle based on the automatic reported users’ eye and face features. To achieve the aim, we develop a multi-model system comprising three separate models; each model targeted a different task, including; face shape classification, eye attribute identification and gender detection model. Face shape classification system has been designed based on the development of a hybrid framework of handcrafting and learned feature. Eye attributes have been identified by exploiting the geometrical eye measurements using the detected eye landmarks. Gender identification system has been realised and designed by implementing a deep learning-based approach. The outputs of three developed models are merged to design a decision support system for haircut and eyelash extension recommendation. The obtained detection results demonstrate that the proposed method effectively identifies the face shape and eye attributes. Developing such computer-aided systems is suitable and beneficial for the user and would be beneficial to the beauty industrial.</jats:p

    Hybrid meta-heuristic algorithm based parameter optimization for extreme learning machines classification

    Get PDF
    Most classification algorithms suffer from manual parameter tuning and it affects the training computational time and accuracy performance. Extreme Learning Machines (ELM) emerged as a fast training machine learning algorithm that eliminates parameter tuning by randomly assigning the input weights and biases, and analytically determining the output weights using Moore Penrose generalized inverse method. However, the randomness assignment, does not guarantee an optimal set of input weights and biases of the hidden neurons. This will lead to ELM instability and local minimum solution. ELM performance also is affected by the network structure especially the number of hidden nodes. Too many hidden neurons will increase the network structure complexity and computational time. While too few hidden neuron numbers will affect the ELM generalization ability and reduce the accuracy. In this study, a heuristic-based ELM (HELM) scheme was designed to secure an optimal ELM structure. The results of HELM were validated with five rule-based hidden neuron selection schemes. Then HELM performance was compared with Support Vector Machine (SVM), k-Nearest Neighbour (KNN), and Classification and Regression Tree (CART) to investigate its relative competitiveness. Secondly, to improve the stability of ELM, the Moth-Flame Optimization algorithm is hybridized with ELM as MFO-ELM. MFO generates moths and optimizes their positions in the search space with a logarithm spiral model to obtain the optimal values of input weights and biases. The optimal weights and biases from the search space were passed into the ELM input space. However, it did not completely solve the problem of been stuck in the local extremum since MFO could not ensure a good balance between the exploration and exploitation of the search space. Thirdly, a co-evolutionary hybrid algorithm of the Cross-Entropy Moth-Flame Optimization Extreme Learning Machines (CEMFO-ELM) scheme was proposed. The hybrid of CE and MFO metaheuristic algorithms ensured a balance of exploration and exploitation in the search space and reduced the possibility of been trapped in the local minima. The performances of these schemes were evaluated on some selected medical datasets from the University of California, Irvine (UCI) machine learning repository, and compared with standard ELM, PSO-ELM, and CSO-ELM. The hybrid MFO-ELM algorithm enhanced the selection of optimal weights and biases for ELM, therefore improved its classification accuracy in a range of 0.4914 - 6.0762%, and up to 8.9390% with the other comparative ELM optimized meta-heuristic algorithms. The convergence curves plot show that the proposed hybrid CEMFO meta-heuristic algorithm ensured a balance between the exploration and exploitation in the search space, thereby improved the stability up to 53.75%. The overall findings showed that the proposed CEMFO-ELM provided better generalization performance on the classification of medical datasets. Thus, CEMFO-ELM is a suitable tool to be used not only in solving medical classification problems but potentially be used in other real-world problems
    corecore