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Abstract. Tomatoes are popular around the world due to their high nutritional 
value. Tomatoes are also one of the world’s most widely cultivated and profitable 
crops. The distribution and marketing of tomatoes depend highly on their quality. 
Estimating tomato ripeness is an essential step in determining shelf life and 
quality. With the abundant supply of tomatoes on the market, it is exceedingly 
difficult to estimate tomato ripeness using human graders. To address this issue 
and improve tomato quality inspection and sorting, automated tomato maturity 
classification models based on different features have been developed. However, 
current methods heavily rely on human-engineered or handcrafted features. 
Convolutional neural networks have emerged as the preferred technique for 
general object recognition problems because they can automatically detect and 
extract valuable features by directly working on input images. This paper proposes 
a CNN-ELM classification model for automated tomato maturity grading that 
combines CNNs’ automated feature learning capabilities with the efficiency of 
extreme learning machines to perform fast and accurate classification even with 
limited training data. The results showed that the proposed CNN-ELM model had 
a classification accuracy of 96.67% and an F1-score of 96.67% in identifying six 
maturity stages from the test data. 

Keywords: automated tomato maturity grading; CNN-ELM; convolutional neural 
networks; extreme learning machines; hybrid classification model; tomato classification.  

1 Introduction 

Tomatoes are popular around the world due to their high nutritional value. 
Tomatoes are also one of the most widely cultivated and profitable crops on the 
planet. Tomatoes contain essential vitamins and minerals that are beneficial to 
human health, including vitamin C, potassium, lycopene, beta-carotene, and 
dietary fibers. As a result, both production and consumption continue to increase. 
Tomatoes are sold fresh in markets as ingredients for a variety of dishes and 
processed into a range of products, including sauce, juice, paste, and ketchup [1]. 
The distribution and marketing of tomatoes are heavily reliant on their quality. 
However, since tomatoes ripen quickly, it is crucial to determine their ripeness 
properly to guarantee shelf life and quality. When tomatoes ripen, their shape, 
color, size, and texture change. The color is one of the most obvious 
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characteristics closely associated with their ripeness or maturity and is easy to 
recognize by humans. When tomato tissue matures, the pigments, internal texture, 
and chemical composition change [2]. Human graders can easily assess the 
maturity level of tomatoes based on visual perception and practical experience. 
However, with the abundance of tomatoes on the market, determining tomato 
ripeness has become exceedingly difficult. 

To address this issue and improve tomato quality inspection and sorting, 
automated tomato maturity classification models have been created that use a 
variety of features to determine the level of tomato maturity. Automated tomato 
maturity classification is a method that utilizes digital image processing, 
computer vision, and machine learning techniques to categorize tomatoes 
according to their maturity. Automated tomato maturity classification can be 
done on images using various features and then classifying them using different 
methods. Current methods use surface color descriptors derived from different 
color models, texture, shape, GLCM, and colorimetric properties [3-17]. These 
methods also employ different algorithms for ripeness classification, including 
Support Vector Machines (SVMs) [4-7], Linear Discriminant Analysis (LDAs) 
[6, 7], Naïve Bayes [8,9], Artificial Bee Colony-trained ANNs [10], the 
Levenberg–Marquardt NN algorithm [11], Backpropagation neural networks 
[12-14], K-Nearest Neighbor (KNN) [15], KNN-SVM [16], and decision trees 
[17]. There are three phases in the current automated tomato maturity 
classification methods: preprocessing, feature extraction, and classification. The 
feature extraction phase is laborious, challenging, and time-consuming because 
it heavily relies on human-engineered or handcrafted features. 

Convolutional neural networks (CNNs) [18] have emerged as the preferred 
technique for general object recognition problems due to their ability to 
automatically identify and extract useful features from input images. According 
to a recent study [19], CNNs also work well in automated tomato maturity 
classification. However, there are two significant drawbacks to using CNNs to 
grade tomato maturity automatically. Firstly, CNN training requires 
backpropagation of the classification error, which requires significant training 
time and data. Secondly, the amount of training data must be sufficiently large to 
avoid overfitting, whereas previous research on automated tomato maturity 
classification relied on datasets containing just a few hundred of tomato images 
for each maturity stage. To address these issues, this paper proposes a hybrid 
CNN-ELM classification model for automated tomato maturity grading that takes 
advantage of CNN’s capability in feature detection and extraction, and ELM’s 
ability to manage limited datasets. The CNN-ELM architecture integrates the 
capability of CNNs in automatic feature learning with the reliability of extreme 
learning machines (ELMs) [20] to perform fast and accurate classification even 
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with sparse training data. In the CNN-ELM architecture, ELMs replace CNN’s 
final fully connected layer and softmax classification layer [21-23]. 

The following are the major contributions of this work: 

1. It is the first study to demonstrate the use of a CNN-ELM architecture for 
automated tomato maturity grading. This hybrid classification model 
makes use of both convolutional neural networks and extreme learning 
machines.  

2. The proposed method employs a supervised learning framework to train 
the proposed hybrid architecture, which incorporates convolutional 
neural networks to automatically identify and extract features and 
extreme learning machines to achieve fast and accurate classification 
even with small training data.  

3. It was demonstrated that the proposed method can identify six maturity 
stages from the test data. The experimental results showed that 
combining CNN and ELM increased generalization performance.  

The remainder of this paper is organized as follows. Section 2 reviews recent 
studies on automated tomato maturity classification. Section 3 describes the 
proposed CNN-ELM architecture. Section 4 presents the experiments and results 
of the proposed method. This paper is concluded by Section 5. 

2 Related Work 

This section discusses recent approaches to the automated tomato maturity 
classification problem. Previous studies have shown that the various techniques 
used for estimating tomato maturity consist of three phases: preprocessing, 
feature extraction, and classification. The preprocessing phase of the different 
methods is almost identical and consists of a series of digital image processing 
operations, but they differ in the feature extraction method and the classification 
algorithm they employ. 

In two separate studies [4,5], El-Hariri, et al. used a PCA-SVM model. To create 
a feature vector for each image in the dataset, the feature extraction phase 
employs two color descriptors based on the HSV color model and the PCA 
algorithm. Finally, for the classification phase, the proposed method classifies 
tomatoes into one of five maturity classes using SVM. El-Bendary, et al. [6] used 
the same framework as [4,5] but introduced an LDA algorithm as a classifier. A 
250-image dataset was used to evaluate their proposed model, and the results 
showed that the PCA-LDA model successfully classified the tomato images in 
the dataset. On the other hand, Garcia, et al. [7] presented an automated tomato 
ripeness identification system using the CIE L*a*b* color model for the features 
vectors and SVM for the classifier. The feature extraction phase involves 
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generating a features vector for each image based on the CIE L*a*b* color model, 
while the classification phase involves labeling each image into one of six tomato 
ripeness classes. They validated their proposed approach using 900 sample 
images; the results showed an accuracy of 83.39% on the test data. 

Kusuma and Setiadi [8] and Ceh-Varela and Hernandez-Chan [9] demonstrated 
that a Naïve Bayes tomato classifier could replace a manual classification 
procedure using color histograms, but their methods for extracting histogram 
features differed. Kusuma and Setiadi [8] extracted six histogram features from 
grayscale images. Their study used a dataset of 100 images to train a Naïve Bayes 
classifier to predict whether a tomato image is raw, mature, or rotten; the trained 
classifier had a 76% accuracy score. Ceh-Varela and Hernandez-Chan [9] used 
the HSV color model to extract histogram features from the hue component. They 
designed a Naïve Bayes classifier that predicts whether an image is a red tomato, 
a green tomato, or a yellow tomato. The experiments used a dataset of 37 images 
and the K-fold cross-validation method. The results show that the trained model 
achieved 96% accuracy. 

Opeña and Yusiong [10], Astrianda and Mohamad [11], Kassem et al. [12], Wan 
et al. [13], and Kaur et al. [14] showed that artificial neural networks could be 
trained to estimate tomato maturity. Opeña and Yusiong [10] trained artificial 
neural networks using the artificial bee colony algorithm for this task. The RGB, 
HSI, and CIE L*a*b* color models were used during the feature extraction phase. 
Five color features were chosen from these three color models, and a color 
features vector was created for each tomato image. ANN training was performed 
during the classification phase to obtain a trained ANN classifier using the 
features vectors as inputs. A dataset of 600 tomato images was used in the 
experiments. The results suggest that an automated tomato classification method 
based on an ABC-trained ANN classifier can be used instead of a manual 
classification procedure to reduce the likelihood of misclassification. In 
comparison, Astrianda and Mohamad [11] generated features vectors for the CIE 
L*a*b*, YCbCr, and HSV color models. The Levenberg–Marquardt algorithm 
was used to train three networks to classify tomatoes in images as ripe or unripe. 
The experiments used a dataset of 70 sample tomato images to compare the 
performance of the three models. The results show that the network trained with 
the CIE L*a*b* color model outperformed the other two models. 

Kassem, et al. [12], Wan, et al. [13], and Kaur, et al. [14] used the 
backpropagation algorithm to train ANNs for tomato maturity grading. Kassem, 
et al. [12] extracted 12 color features from the CIE L*a*b* color model, Wan, et 
al. [13] generated a five-feature vector from the RGB and HSI color models, and 
Kaur, et al. [14] extracted 13 features using the RGB color model and shape 
attribute. The number of maturity classes can vary as well. Kassem, et al. [12] 
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trained an ANN classifier to distinguish between green, pink, and red tomato 
images. Wan, et al. [13] trained an ANN classifier to differentiate between red, 
orange, and green tomato images. Kaur, et al. [14] trained an ANN classifier to 
distinguish between defective and non-defective tomato images. During the 
experiments, Kassem, et al. [12] used 237 tomato images, Wan, et al. [13] used 
150 images, and Kaur, et al. [14] utilized 53 images. Regardless, all ANN 
classifiers trained with the backpropagation algorithm obtained a remarkable 
accuracy score. 

The K-Nearest Neighbor (KNN) algorithm can also be used to predict tomato 
maturity, as shown by Indriani, et al. [15] and Pavithra, et al. [16]. Indriani, et al. 
[15] used texture and color analysis to generate the features vector for each image, 
which are then fed into the KNN classifier. Their experiments used a dataset of 
100 images to develop a KNN classifier that can classify a tomato image into one 
of five maturity classes. In contrast, Pavithra, et al. [16] trained a KNN-SVM 
classifier using color, shape, and texture features to predict whether a tomato 
image belongs to one of three classes. The results of these two models revealed 
that KNN can achieve excellent classification performance. 

Goel, et al. [17] proposed a new methodology for classifying tomato images into 
six maturity classes based on the RGB color model, fuzzy logic, and decision 
trees. The approach is known as Fuzzy Rule-Based Classification (FRBCS). To 
create and evaluate the performance of FRBCS, a dataset of 116 sample images 
was used. The results showed that the proposed method attained a ripeness 
classification accuracy of 94.29% on the test images. 

These automated tomato maturity classification methods used various digital 
image processing, computer vision, and machine learning techniques. 
Furthermore, these traditional approaches relied heavily on human expertise to 
manually derive a variety of features from different color models, shapes, and 
texture attributes. The number of images in the dataset, the classification 
algorithms employed, and the number of maturity or ripeness classes also varied. 
While automated tomato classification systems can perform remarkably, the key 
bottleneck is the heavy reliance on human expertise to identify the features used 
as input of the classification algorithm. A method that can automatically detect 
and extract useful features from input images is needed to solve this bottleneck. 
A convolutional neural network’s feature learning capability automatically 
identifies and extracts features from input images. 

To enhance the generalization ability of the CNN-based tomato classification 
method, this paper proposes a hybrid CNN-ELM classification model that 
combines CNNs’ automated feature learning capability with the efficiency of 
extreme learning machines to perform quick and accurate classification even with 
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limited training data. The CNN-ELM architecture has been used to solve image 
classification problems [21], such as maritime ship recognition [22] and age and 
gender classification [23]. This hybrid approach has been shown to increase 
accuracy and performance [21-23]. 

3 CNN-ELM for Automated Tomato Maturity Grading 

This section discusses in detail the proposed supervised method for the automated 
tomato maturity grading system. A training dataset of tomato images with the 
corresponding ground-truth maturity labels is necessary for the proposed method. 
The supervised framework for tomato maturity grading is depicted in Figure 1, 
which consists of two training phases and a test phase.  

 

 

 

 

 

 

 

 

Figure 1 The supervised framework for tomato maturity grading using the 
proposed CNN-ELM architecture. 

3.1 Hybrid CNN-ELM Network Architecture 

There are two training phases, as described in Figure 1. The first phase entails 
training an end-to-end CNN classifier over many epochs. The CNN classifier is 
based on the PeleeNet architecture [24] and consists of a feature extractor and a 
softmax classifier. PeleeNet is a DenseNet derivative with optimizations for 
limited memory and computing resources. In this study, PeleeNet’s initial 
weights were generated at random.  

The CNN feature extractor part obtained in the first training phase is reused in 
the second phase to create a CNN-ELM architecture. Unlike the first training 
phase, which requires many epochs, CNN-ELM training is achieved in one single 
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pass over the training data due to the structure of the ELM network. The tomato 
dataset was used in both training phases, while the data augmentation methods 
were only employed in the first training phase. Figure 2 depicts the general 
structure of CNN-ELM for automated tomato maturity grading based on 
PeleeNet.  

 

 

 

 

 

 

 

 

 

Figure 2 The CNN classifier based on PeleeNet is pre-trained on the tomato 
dataset. Afterward, the fully connected and softmax layers are replaced by an ELM 
network, while the other trained layers are reused to create a new model, the CNN-
ELM classifier. 

The original PeleeNet architecture uses a fully connected layer and a softmax 
layer to classify the generated feature maps. On the other hand, the proposed 
hybrid model modifies the classification layer of PeleeNet by replacing the fully 
connected layer and softmax layer with a single-layer ELM with 100 neurons in 
the hidden layer and 6 output neurons because the tomato dataset has 6 classes.  

The neurons in the ELM use hyperbolic tangent (tanh) as the activation function. 
Although the number of ripeness classes in previous studies’ tomato datasets 
varies, using one of these datasets to re-train the CNN-ELM classifier is fast and 
straightforward since CNN-ELM training can be completed in one single pass 
over the training data due to the structure of the ELM network. On the other hand, 
re-training a CNN classifier will take several epochs if the number of ripeness 
classes is changed. 
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3.2 Loss Function 

A loss function is used to train the model. In this study, the cross-entropy loss 
function is employed, which is widely used for classification problems. For a 
multi-class classification problem, the loss function, as defined in Eq. (1), 
calculates the cross-entropy value between the probability vector predicted by the 
model and the ground truth, typically in the form of a one-hot encoded vector, 
where only one class label is true.  

 𝐶𝐸 = −∑ 𝑇௜ log(𝑆௜)
஼
௜ୀଵ  (1) 

Ti and Si denote the ground-truth class label and the CNN score for each class i in 
C, where C indicates the total number of classes. Before calculating the cross-
entropy loss, an activation function such as softmax is applied to the scores. 

3.3 Evaluation Metrics 

This section discusses the evaluation metrics used in this work in detail. 
Evaluation metrics are used to quantify the performance of trained models, that 
is, how well each model predicts unseen instances. There are four standard 
evaluation metrics for classification problems: accuracy, recall, precision, and 
F1-score [25]. As defined in Eq. (2), accuracy is the ratio between true outcomes 
and the total number of cases analyzed. Precision is the ratio between true 
positives and all the classifier’s positive predictions, as defined in Eq. (3). As 
defined in Eq. (4), recall is the ratio between true positives and all samples that 
should have been classified as positive. The F1-score is a metric that strikes a 
balance between precision and recall. A good F1 score should have a low rate of 
false positives and false negatives. Eq. (5) defines the F1-score metric.  

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
்௉ା்ே

்௉ା்ேାி௉ାி
 (2) 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
்௉

்௉ାி
 (3) 

 𝑅𝑒𝑐𝑎𝑙𝑙 =
்௉

்௉ାி
 (4) 

 𝐹ଵ − 𝑠𝑐𝑜𝑟𝑒 = 2 ∗
௉௥௘௖௜௦௜௢௡∗ோ௘௖௔௟௟

௉௥௘௖௜௦௜௢௡ାோ௘௖௔
 (5) 

3.4 Dataset 

The tomato dataset introduced in [10] was used in this study. During the image 
acquisition phase, tomatoes were bought from the local market. Each tomato was 
placed on top of a plain white paper that served as the background, and a Sony 
digital camera was used to obtain the tomato images. The tomato images included 
in the dataset were resized to an image resolution of 200 by 200 to speed up the 
training process. No additional pre-processing was done on the acquired images. 
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The tomato dataset includes 600 tomato images, 100 images for each stage of 
maturity: green (G), breakers (B), turning (T), pink (P), light red (LR), and red 
(R). These six tomato maturity classes are based on the USDA color classification 
and are widely used for fresh tomatoes. A detailed description of each tomato 
maturity class is presented in the work of Garcia et al. [7]. Figure 3 shows sample 
tomato images for each maturity class. Furthermore, the tomato images in the 
dataset were split into two sets. Four hundred twenty images, or seventy images 
per maturity class, were used as the training set, and one hundred eighty images, 
or thirty images per maturity class, were used as the test set. 
 

 

Figure 3 Sample tomato images for each maturity stage or class. 

4 Experimental Results and Discussions 

The CNN-ELM model for automated tomato maturity grading was implemented 
using Tensorflow [26]. A single Nvidia GTX 1080 Ti GPU equipped with 11 GB 
of memory was used to train the model. The recent Padam optimizer [27] with 
𝛽ଵ = 0.9, 𝛽ଶ = 0.999, 𝜖 = 10ି଼, and p = 0.125 was used during the initial 
training phase to train the model for 750 epochs by minimizing the loss as defined 
in Eq. (1). The initial learning rate was 𝜆 = 10ିଷ and was used for the first 450 
epochs; afterward, it was reduced by half every 150 epochs. Additionally, during 
the first training phase, the input images were resized from 200 by 200 to 128 by 
128, employing a batch size of 16, and performing online data augmentation on 
the input images to increase the quantity and diversity of the training data. The 
data augmentation methods used in this work were: random erasing, flipping, 
cropping, and affine transformation [28]. The second training phase was simpler 
than the first. It only reduced the input images from their original resolution to 
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128 by 128 and provided the CNN-ELM model with training data in one single 
pass.  

4.1.1 Results and Discussion 

This section discusses the experiments and results of the proposed CNN-ELM 
model for automated tomato maturity grading. Three experimental setups were 
designed to evaluate the CNN-ELM model. The first experiment entailed 
conducting the first training phase to evaluate the impact of integrating an online 
data augmentation module on the performance of the CNN model and using the 
test set to evaluate the trained CNN-only model. This setup trained two different 
models, with and without data augmentation, to classify tomato images into one 
of six maturity classes. In the second experiment, the feature extraction 
component of the CNN model trained without data augmentation was used, and 
the number of maturity classes was varied. Then four CNN-ELM models were 
evaluated separately with two, three, five, and six maturity classes, respectively. 
The third experiment setup was like the second experiment, but in this setup, the 
feature extraction component of the CNN model trained with data augmentation 
was used to train four CNN-ELM models with different maturity classes. The 
experimental setups used to evaluate the proposed approach are summarized in 
Table 1, where the maturity classes enclosed in parenthesis are considered a 
single maturity class. 

Table 1 Experimental setups to evaluate the CNN-ELM models. 

Setup Training Phase 1 Training Phase 2 
# of 

Maturity 
Classes 

Classes 

1 

CNN without online data 
augmentation (A) 

None 6 G, B, T, P, LR, R 

CNN with online data 
augmentation (B) 

None 6 G, B, T, P, LR, R 

2 
CNN feature extractors 

from setup 1(A) 

ELM 6 G, B, T, P, LR, R 
ELM 5 (G, B), T, P, LR, R 
ELM 3 (G, B), (T, P), (LR, R) 
ELM 2 (G, B, T), (P, LR, R) 

3 
CNN feature extractors 

from setup 1(B) 

ELM 6 G, B, T, P, LR, R 
ELM 5 (G, B), T, P, LR, R 
ELM 3 (G, B), (T, P), (LR, R) 
ELM 2 (G, B, T), (P, LR, R) 

Tables 2, 3, and 4 summarize the quantitative results from the various 
experimental setups. The impact of the online data augmentation module on the 
performance of the CNN model can be seen in Table 2. The CNN model trained 
with augmented data achieved an accuracy rate of 94.44%, while the CNN model 
trained without augmented data only achieved an accuracy rate of 87.22%. These 
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findings indicate that performing data augmentation during the training phase of 
a CNN improves the model’s accuracy because data augmentation techniques 
allow for a substantial increase in the size and diversity of data by introducing 
slightly modified copies of available data.  

Table 2 Setup 1: Impact of online data augmentation during CNN training. 

Model CNN without augmentation CNN with augmentation 
Correctly classified 157/180 170/180 

Accuracy 87.2222% 94.4444% 
Recall 88.1485% 94.7163% 

Precision 87.2222% 94.4444% 
F1-score 87.6829% 94.5802% 

Table 3 Setup 2: Quantitative results of the CNN-ELM models using the 
feature extractor of the CNN model trained without augmentation. 

Number of Maturity Classes 6 5 3 2 

Correctly classified 168/180 169/180 175/180 177/180 
Accuracy 93.3333% 93.8889% 97.2222% 98.3333% 

Recall 93.6864% 93.1644% 97.2678% 98.3393% 
Precision 93.3333% 94.0000% 97.2222% 98.3333% 
F1-score 93.5095% 93.5803% 97.2450% 98.3363% 

Table 4 Setup 3: Quantitative results of the CNN-ELM models using the 
feature extractor of the CNN model trained with augmentation. 

Number of Maturity Classes 6 5 3 2 

Correctly classified 174/180 174/180 177/180 179/180 
Accuracy 96.6667% 96.6667% 98.3333% 99.4444% 

Recall 96.7990% 96.1588% 98.4127% 99.4505% 
Precision 96.6667% 96.6667% 98.3333% 99.4444% 
F1-score 96.6731% 96.4121% 98.3730% 99.4475% 

Furthermore, a comparison of the findings in Table 3 and Table 4 reveals that the 
CNN model’s feature extraction functionality affects the CNN-ELM model’s 
efficiency. Indeed, all CNN-ELM models that used the feature extraction 
component of the CNN model trained with data augmentation outperformed all 
CNN-ELM models that used the CNN model’s feature extraction component 
trained without data augmentation. The results indicate that, in a hybrid setup, the 
success of the initial model can have a substantial impact on the performance of 
subsequent models. More precisely, the quality of the CNN feature extraction 
component affects the CNN-ELM model’s efficiency. However, as shown in 
Tables 3 and 4, the CNN-ELM models outperformed the CNN-only models 
presented in Table 2, demonstrating that combining two models can improve 
performance. Finally, since the CNN-ELM training can be performed in a single 
pass over the training data due to the ELM network’s architecture, training several 
CNN-ELM models with different maturity classes is straightforward, since only 
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the ELM model’s output layer is modified during training, while the ELM 
network’s previous layer and CNN feature extraction layers remain unchanged. 

Finally, Table 5 compares the CNN-ELM model’s performance to past studies 
that used other techniques in order to provide future researchers with insights into 
which model works best for tomato maturity classification. However, it should 
be noted that these models differ not only in their techniques but also in other 
aspects, such as the dataset used to evaluate the model, the number of maturity 
classes the model can identify, and the handcrafted features used by the 
conventional machine learning methods. It can also be observed that color is 
widely used in constructing the features vector, but the actual color descriptors 
vary, and these variations affect the model’s performance. 

Table 5 A comparative analysis of the different models for tomato maturity 
classification. 

Model 
Number of 

images in the 
dataset 

Features 
Number of 
maturity 
classes 

Accuracy 
score 

ABC-NN [10] 600 Color 6 98.19% 
CNN-ELM 600 Learned features 6 96.67% 
FRBCS [17] 116 Color 6 94.29% 

SVM [7] 900 Color 6 83.39% 
KNN [15] 100 Texture, color 5 100.00% 

CNN-ELM 600 Learned features 5 96.67% 
SVM [4] 230 Color 5 92.72% 

OAO-SVM [5] 250 Color 5 91.20% 
OAO-SVM [6] 250 Color 5 90.80% 
OAA-SVM [5] 250 Color 5 85.60% 
OAA-SVM [6] 250 Color 5 84.80% 

LDA [6] 250 Color 5 84.00% 
CNN-ELM 600 Learned features 3 98.33% 
BPNN [13] 150 Color 3 99.31% 
BPNN [12] 237 Color 3 97.90% 

Naïve Bayes [9] 37 Color 3 96.00% 
Naïve Bayes [8] 100 Color 3 76.00% 
KNN-SVM [16] - Texture, color, shape 3 - 

CNN-ELM 600 Learned features 2 99.44% 
LM [11] 70 Color 2 96.00% 

ANN [14] 53 Color 2 92.00% 

5 Conclusion 

This paper described a supervised learning framework for automated tomato 
maturity grading based on a CNN-ELM hybrid architecture. The proposed hybrid 
model capitalizes on the feature learning capabilities of convolutional neural 
networks and the fast and accurate classification performance of extreme learning 
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machines even with minimal training data. The experimental findings showed 
that the proposed CNN-ELM classifier outperformed the CNN-only classifier 
based on the standard evaluation metrics. Moreover, the experimental results 
revealed that the CNN-ELM model is flexible and reliable because it can be 
reconfigured easily to accommodate a different set of maturity classes without 
negative effect on the performance.  
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